
UC Irvine
Working Paper Series

Title
An Improved Branch and Bound Algorithm for Minimum Concave Cost Network Flow
Problems

Permalink
https://escholarship.org/uc/item/3m30j7s5

Author
Lamar, Bruce W.

Publication Date
1989-07-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3m30j7s5
https://escholarship.org
http://www.cdlib.org/

UCI-ITS-WP-89-7

An Improved Branch and Bound Algorithm for
Minimum Concave Cost Network now Problems

UCI-ITS-WP-89-7

Bruce W. Lamar

Graduate School of Management and
Institute of Transportation Studies

University of California, Irvine

July 1989

Institute of Transportation Studies
University of California, Irvine

Irvine, CA 92697-3600, U.S.A.
http:/ /www.its.uci.edu

ABSTRACT

This paper formulates the minimum concave cost network flow

(MCCNF) problem as a mixed integer program and solves this

program using a new branch and bound algorithm. The al·gorithm

combines Driebeek's "up and down" pe.Q,alties with a new technique

referred to as the simple bound improvement (SBI) procedure. An

efficient numerical method for the SBI procedure is described and

computational results are presented which show that the SBI

procedure reduces both the in-core storage and the CPU time

required to solve the MCCNF problem. In fact, for large problems

(with over 200 binary decision variables) the SBI procedure

reduced the in-core storage by more than one-third and the CPU

time by more than 40 percent.

- 1 -

1. INTRODUCTION

This paper examines minimum concave cost network flow

(MCCNF) problems; that is, problems wherein the marginal cost of

carrying flow on an arc decreases as the volume of flow.9n that

arc increases (see Figure 1). \ This type of cost fun~tion­

representing quantity discounting, volume-based price incentives,

and other forms of scale economies-is a salient feature of many

problems involving the transport of people, commodities, or

information (Ballou (1985)). Moreover, facility location,

network design, and other types of network flow problems

involving fixed charges can also be modelled as MCCNF problems.

It is well-known that the general MCCNF problem is NP-hard

(Garey and Johnson (1979)). The complexity of the problem arises

from the fact that-al though a minimum cost solution (if one

exists) always occurs at an extreme point of the feasible region

(Zangwill (1968))-identification of the optimal point requires,

in the worst case, a complete enumeration of all extreme points

in the feasible region. Thus, except in special cases, exact

algorithms for the MCCNF problem run in exponential time.

Very efficient methods for solving network flow problems

with constant marginal costs have been available since the early

1960's (Ford and Fulkerson (1962)). However, MCCNF problems,

being much harder to solve, require specialized solution

procedures (see Magnanti and Wong (1984) and Erickson et al.

(1987) for recent surveys). In general, solution methods for

MCCNF problems can be grouped into three categories: (1)

heuristic procedures; (2) dynamic programming methods; and (3)

- 2 -

branch and bound procedures. Heuristic procedures are applicable

to MCCNF problems with an arbitrary network topology, but they do

not provide a measure of quality (i.e., near-optimality) of the

solution obtained. Just the reverse is true for dynamic

programming approaches. They provide exact results, but are

efficient only for applic<;1tions involving a limited number of

supply and/or demand points (e.g., economic lot-sizing problems).

Finally, branch and bound procedures have the dual advantage of

providing exact results and being applicable to MCCNF problems

with arbitrary network topologies. But, because the enumeration

tree grows exponentially with problem size, very efficient

bounding techniques are required when branch and bound procedures

are used to solve MCCNF problems.

This paper presents a new bounding technique, referred to as

the "simple bound improvement" (SBI) procedure, for MCCNF

problems comprised of piecewise-linear-concave arc cost

functions o The SBI procedure is of theoretical as well as

practical interest because it can reduce both the time and the

in-core memory required to solve MCCNF problems using a branch

and bound procedure. The majority of this paper is devoted to a

formal description of the SBI procedure and its role in solving

MCCNF problems. The concept underlying this method, however, can

be stated very simply. Each arc in a network has a lower

(possibly zero) and upper (possibly infinity) bound on the flow

that can be carried on that arc. If these bounds can be made

tighter, then the · feasible solution space of the problem is

reduced. The "trick" to the SBI procedure is to tighten these

- 3 -

bounds as much as possible while, at the same time, ensuring that

these improved bounds do not "cut off" the optimal flow on any of

the arcs in the network. By using this method, larger MCCNF

problems can be solved more efficiently.

This paper is organized as follows. Section 2 formulates a

family of mixed integer programs representing a generic

subprogram in a branch and bound enumeration tree. The linear

programming relaxation of a subprogram is characterized in

Section 3. This section also discusses postoptimality analysis

of a subprogram relaxation. Sections 4 through 6 discuss a

trilogy of algorithms used to solve the MCCNF problem. Section

4 specializes Driebeek's (1966) "up and down" penalties for a

generic subprogram of the MCCNF problem. These penal ties form

part of the SBI procedure presented in Section 5. In this

section, conceptual as well as computational aspects of the SBI

method are discussed. The SBI procedure, in turn, forms part of

the· branch and bound algorithm outlined in Section 6. Section 7

presents some computational results demonstrating that the SBI

procedure accelerates the branch and bound algorithm. Finally,

Section 8 summarizes the paper and suggests several possible

extensions of the SBI procedure.

- 4 -

2. MIXED INTEGER PROGRAMMING SUBPROGRAM

The mixed integer programming formulation developed in this

section represents a generic subprogram in a branch and bound

procedure that is used to solve the minimum concave cost 'network

flow (MCCNF) prob,lem. However, in contrast to the standard branch

and bound procedure (where there is a one-to-one correspondence

between subprograms and nodes in an enumeration tree), the branch

and bound method presented in this paper associates an entire

family of subprograms with each node in the enumeration tree.

This family of mixed integer programming subprograms is denoted

by MIPk where the superscript k (k = 0, 1,2, •••) is an index

number that identifies an individual subprogram within this

family. For each family of subprograms, we refer to MIPO as the

"initial'' subprogram. The initial subprogram at the root node in

the enumeration tree is the original problem, MCCNF.

Below, we define

subprogram, MIPk.

notation and formulate a generic

To describe the network topology used with each subprogram,

let NODE denote the node set (with generic element n) and let ARC

denote the arc set (with generic element i). For each i E ARC,

let TAILi and HEADi denote, respectively, the tail and head nodes

for arc i. For each n e NODE, let LEAVEn denote the set of arcs

whose tail node is n, let ENTERn denote the set of arcs whose

head node is n, and let dn denote the net demand (i.e., dn < 0)

or supply (i.e., dn > 0) at node n. Note that the network

topology descriptors defined above are no~ indexed by k.

- 5 -

For each i e ARC, COSTi denotes the cost function for arc i.

We assume that COSTi is a concave nondecreasing function

consisting of two piecewise linear segments with marginal costs

ai and bi, respectively (see Figure 1). [Although th~ MC CNF

problem formulated in this paper consists of arc cost functions

with, at most, two piecewise linear segments, generalization to

more than two segments is straightforward.] We assume that ai ~

bi;;:;: o. In addition, we let mi denote the flow "breakpoint" at

which the marginal cost of COSTi switches from ai to bi. We

assume that mi is a nonnegative integer. Note that the cost

function parameters given above also are noL indexed by k.

The lower and upper flow bounds for arc i in program MIPk,

however, are indexed by k. These bounds are denoted by iik and

uik, respectively. We assume that these bounds are integers and

th t O ::,; n • k < < k a - X, l = mi = ui . [Note that this latter assumption is

not restrictive because if iik > mi or uik < mi, then arc i will

have a constant marginal cost in program MIPk so mi can be reset

It is also useful to define the

following two flow interval coefficients (see Figure 1):

= m• - £.k
l l V i

V i

E ARC

E ARC

By construction, gik and hik are nonnegative integers.

(la)

(lb)

For each arc i e ARC in program MIPk, one binary and three

continuous decision variables are defined. The binary variable,

denoted y i, specifies whether the applicable marginal cost of

function COSTi is ai (if Yi= O) or bi (if Yi= 1). We also

- 6 -

partition the arc set ARC into three disjoint, collectively

exhaustive subsets: ZERO, ONE, and FREE. The value of Yi

depends, in part, upon which subset arc i is a member. Ifie

ZERO, then Yi is fixed at zero; if i e ONE, then Yi is f_ixed at

one; and if i e FREE, then Yi may assume either value.

The continuous variables for i e ARC, denoted xi, vi, and

measure the level of flow carried on arc i. Decision

variable xi gives the total flow on arc i. This total flow is

the sum of two components: (1) decision variable vi (representing

the flow carried on arc i at a marginal cost of ai); and (2)

decision variable wi (representing the flow carried on arc i at a

marginal cost of bi)• For purposes of formulating the problem,

we represent each arc i e ARC as a pair of parallel arcs, one for

each of the flow components defined above (see Figure 2). Note

that i e ZERO implies that xi~ mi, and that i e ONE implies that

xi ~ mi.

The formulation also uses an arc flow set, denoted by FLOWk,

which represents the set of arc flow vect:ors, x = (... ,xi, ...),

that conform to the following capacitated flow balance equations:

[xi [xi = dn 'v n e NODE (2a)

iELEAVEn iEENTERn

.R, • k :s X• :s m• l. l. J.
'vie ZERO (2b)

m• l. :s X• l. :s u,k
J.

'vi E ONE (2c)

.R,. k :s X• :s u,k
l. l. l. 'v i e FREE · (2d)

- 7 -

We now formulate MIPk, a generic subprogram of the minimum

concave cost network flow problem considered in this paper.

Program MIPk:

Min
XEFLOWk

\ (a. ·v. + b. ·w.) L i i i i

iEARC

Subject to:

Yi= O

Yi= 1

Yi E {0,1}

"I i

"I i

"I i

'v i

'v i

'v i

(3a)

E ARC (3b)

E ARC (3c)·

E ARC (3d)

E ZERO (3e)

E ONE (3 f)

e FREE (3g)

Objective function (3a) minimizes the total cost .of carrying

flow in the network. Performing this minimization over the set

FLOWk ensures that only feasible flow patterns are considered.

Constraint (3b) establishes the conservation of flow for the

parallel arc representation for each arc i e ARC (see Figure 2).

Because COSTi is a concave function, the marginal cost of arc i

must be nonincreasing as the flow on arc i increases. This

requirement is enforced by constraints (3c) and (3d), which

guarantee that w i = O if vi < ini. Finally, ·constraints (3e)

through (3g) identify the restrictions placed on the binary

- 8 -

decision variables in subprogram MIPk. [The nonnegativity

conditions for the continuous decision variables are implicitly

enforced by constraints (2b) through (2d), (3c), and (3d).]

For any program P, let FEASIBLE[P], SOLUTION[P], and

OBJFCTN(P] denote, respectively, the feasible region, the optimal

solution vector, and the optimal objective function value for

that program. Thus, for subprogram MIPk, this information is

denoted by FEASIBLE[MIPk], SOLUTION[MIPk], and OBJFCTN[MIPk].

Also, let the optimal value of an individual decision variable be

denoted by the symbol for that variable followed by the name of

the program (in square brackets) for which that decision variable

is optimal. Thus, for each arc i in subprogram MIPk, the optimal

value of the decision variables is denoted by Yi[MIPk], xi[MIPk],

vi[MIPk], and wi[MIPk].

Mixed integer programming formulations used in implicit

enumeration procedures for concave cost networks with arbitrary

top.ologies have also been developed by Balakrishnan (1984) ,

Florian and Robillard (1971), Lamar (1985), Lamar and Sheffi

(1988) , and Los and Lardinois (1982} . Formulations and branch

and bound algorithms for fixed charge transportation (i.e.,

bipartite) network flow problems-originally formulated by

Balinski (1961)-have been developed by Barr et al. (1981), Cabot

and Erenguc (1984), Gray (1971), and Kennington and Unger (1976).

Florian and Robillard (1971) and Malek-Zavarei and Frisch (1972)

have shown the equivalence between bipartite and arbitary network

t6pologies for MCCNF problems (also see Erickson et al: (1987)).

Gallo et al. (1980) considered networks with a single source

- 9 -

node; Afentakis et al. (1984) applied a branch and bound

algorithm to a lot sizing problem involving concave costs; and Sa

(1969) and Soland (1974) used branch and bound methods for plant

location problems with concave production, holding, . \and/or

transportation costs.

The structure of the linear programming relaxation of

subprogram MIPk is examined next.

- 10 -

3. LINEAR PROGRAMMING REIAXATION

It is well known (see, for example, Yaged (1971)) that a

lower bound to OBJFCTN[MIPk] can be obtained by solving a linear

program in which, for each arc i E ARC, COSTi is replaced:', with a

the linear underestimator of COSTi (see Figure 1). Moreover,

because this linear program is a minimum (linear) cost network

flow problem, it can be solved very efficiently. The

contribution of this section is to show that the linear program

described above is equivalent to the linear program formed by

relaxing the integrality requirements in subprogram MIPk, thereby

establishing the tightness of the lower bound obtained by using a

linear underestimator of a concave cost function. This work

extends Balinski's (1961) results for fixed charge problems to a

more general class of problems.

The material in this section is divided into two parts. The

first part shows the equivalence between alternative linear

programming representations and the second part discusses

postoptimality analysis. This analysis is used later in this

paper to develop tight bounds to OBJFCTN[MIPk].

3.1 Equivalent Formulations

We begin by formulating the linear programming relaxation of

subprogram MIPk. This relaxation, denoted LPk, is formed simply

by replacing the binary constraints· (3g) with the following

nonnegativity conditions:

O :s Yi :S 1 'vi E FREE (4)

- 11 -

Let FEASIBLE[LPk], SOLUTION[LPk], and OBJFCTN[LPk] denote, re­

spectively, the feasible region, optimal solution vector, and the

optimal objective function value for program LPk. Also, for each

arc i, let Yi[LPk], xi[LPk], vi[LPk], and wi[LPk] denote the

optimal value of the decision variables in program LPk.

Relaxation LPk has the property that, if the total flow on

each arc i E ARC is given (i.e., fixed), then program LPk

separates by arc and the optimal value of the other decision

variables associated with each arc i can be obtained by

inspection. Thus, we can conceptualize a solution procedure for

program LPk as follows: for each feasible flow vector in FLOWk,

solve a separate linear program for each arc in ARC; then select,

from among this (possibly infinite) set of flow vectors, the one

that minimizes the total cost. As shown below, this solution

method is equivalent to solving a linear cost network flow

problem in which the cost for arc i is taken as the linear

underestimator of COSTi.

The concept outlined in the preceding paragraph can be

expressed algebraically by representing the linear programming

relaxation of subprogram MIPk in the following equivalent form:

Program LPk:

Min
XEFLOWk

[(bi-xi+ OBJFCTN[FIXLPik])

iEARC

(5)

Here, OBJFCTN[FIXLPik] is the optimal objective function value of

the following linear program for arc i in which xi (the total

flow on arc i) is considered fixed:

- 12 -

Program FIXLPik:

Min (a• - b ·) ·V • J. J. J.

Subject to:

V•
J. ~ m• J.

-gik.Yi + V•
J.

h·k·y•
J. J. + V•

J.

V· ~ X• J. J.

(6a)

(6b)

~ .2 • k
J. (6c)

~ X• J. (6d)

(6e)

(6f)

(6g)

where Pi and qi are parameters such that Pi= O if i E

ZERO U FREE; Pi= 1 if i E ONE; qi =O if i E ZERO; and qi= 1 if

i E ONE U FREE. We refer to program (6) as the "fixed flow"

linear program. Note that there is a separate program for each

arc i E ARC and that xi is considered a constant in each of these

programs. The fixed flow program for arc i is composed of the

constraints and objective function terms involving arc i in

program LPk. Constraints (6b) and (6c) correspond to constraint

(3c); constraints (6d) and (6e) correspond to constraint (3d);

and constraints (6f) and (6g) correspond to constraints (3e)

through (3g). Note, however, that decision variable wi has been

eliminated from the fixed flow program by substituting xi - vi

for wi (see eq. (3b)). Thus, wi can also be interpreted as the

slack variable associated with constraint (6e). Because wi has

- 13 -

been eliminated.and xi is considered a constant, each fixed flow

linear program involves only two decision variables: Yi and vi.

Program FIXLPik has been expressed in the form given above

because its optimal solution can be obtained by inspection~ If i

E ZERO, then it is clear that the fixed flow program is fe·asible

only if iik ~xi~ mi; and if the program is feasible, then the

optimal solution is

Yi[FIXLPikJ = 0 (7a}

vi[FIXLPik] = X•
J. (7b)

wi[FIXLPik] = 0 (7c}

Similarly, if i E ONE, then the fixed flow program is feasible

only if mi

m• J.

in which case the optimal solution is

(8a}

(8b)

(8c)

Finally, if i e FREE, then the fixed flow program will be

feasible only if ii k ~ xi ~ ui k. Figure 3 shows a typical

feasible region for program FIXLPik for the case where i e FREE.

Observe that, because of the concavity assumption for the cost

function COSTi, the coefficient (ai - bi) in objective function

(Ga) is always nonnegative. This means that, if program FIXLPik

is feasible, then· an optimal solution always occurs at the

extreme point in which constraints (Gc) and (Gd) are binding (see

- 14 -

point 1 in Figure 3) • Thus, these two constraints (taken as

equalities), together with equality {3b), can be used to

determine the optimal value of the decision variables. We

consider two possible cases.

equals zero, then the fixed flow program is feasible only·1f xi=

mi and the value of Yi is arbitrary. Thus, in this case, the

optimal solution to the program can be expressed using either (7)

or (8). On the other hand, if gik + hik is nonzero, then we can

solve explicitly for Yi, vi, and wi. This yields,

y. [FIXLP. k] =
J. J.

w. [FIXLP. k] =
J. J.

x.
J.

k g.
J.

(9a)

(9b)

(9c)

Observe that, if the RHS of eq. (7b), (8b), or (9b) is

substituted for vi in eq. (6a), then eq. (5) can be expressed

solely in terms of the total arc flow decision variables {xi}.

This substitution can be expressed compactly by defining the

following new parameters:

- 15 -

if i ZERO k k a. e or g. +h. =O
J. J. J.

b. if i ONE and k k
k

e g. +h. :icO
c. J. J. J. (10a) =

J.
k k a. ·g. + b. ·h. k k . J. J. J. J. if i e FREE and
k k

g. +h. :icO ·
+ h. J. J. g.

J. J.

0 if i ZERO k k e or g. +h. =O
J. J.

f.k (a. - b.) ·m. if i ONE and k k (10b) = e g. +h. :icO
J. J. J. J. J. 1

(a. k k if i FREE and k k - C.) · .£. e g. +h. :;cO
1 1 1 J. 1

These two parameters can be interpreted as the slope and

intercept, respectively, of the line representing the linear

underestimator of function COSTi over the feasible domain of xi

(see Figure 1). Using these parameters, eq. (5) can be

reexpressed as the following program:

Program LPk:

+ Min
xeFLOWk

(11)

Observe that three equivalent forms of the linear

programming relaxation of subprogram MIPk have been presented:

(1) Eq. (3a) through (3f) and (4),

(2) Eq. (5) and (6), and

(3) Eq. (11)

- 16 -

The formulation given in eq. (11) is preferred, however, because

it is clear from the form of this expression, that the linear

programming relaxation of MIPk is simply a minimum (linear) cost

capacitated network flow model, plus an objective +~nction
.;

By using special tree labeling -t:echniques

(see, for example, Barr, Glover, and Klingman (1979)), program

LPk can be solved very efficiently. Moreover,

establishes that the lower bound to OBJFCTN [MIPk]

eq. (11)

obtained by

using the linear underestimator of COSTi is as tight as

OBJFCTN [LPk] .

In subsequent sections of this paper, two procedures are

presented for obtaining a lower bound to OBJFCTN[MIPk] that can

be tighter then OBJFCTN[LPk]. Both of these methods are based on

an incremental change of flow from the optimal solution of

program LPk. As shown in the next subsection, the effects of

these changes can be determined directly from the solution to

LPk.

3.2 Postoptimality Flow Analysis

To evaluate the effect of an incremental change of flow on

arc i in program LPk, we consider a new linear program, denoted

POSTOPTLPik, formed by adding the single constraint

X• = X•[LPk] + 6,k
1 1 1 (12)

to program LPk. Here, xi[LPk] is the optimal.value of decision

variable xi in program LPk and 6ik is a fixed number. Because

program POSTOPTLPik is of the form of a network flow program

- 17 -

augmented by a -single side constraint, it could be evaluated by

the methods proposed by Belling-Seib et al. (1988) or Glover et

al. (1978). However, assuming no change in basis, the effect of

constraint (12) can be determined directly from the optimal

solution to program LPk.

To describe this effect, let aik denote the rate of increase

in OBJFCTN[POSTOPTLPik] as 6ik changes from Oto O (i.e., to a

small negative value) and let ~ik denote the rate of increase in

OBJFCTN[POSTOPTLPik] as 6ik changes from O to o+ (i.e., to a

small positive value). (Typical values of these rates of

increase (i.e., slopes) are shown in Figure 4.] In addition, let

Rnk denote the optimal value of the dual variable in program LPk

associated with node n in the flow balance equation (2a), and let

(13)

denote the reduced cost associated with decision variable xi in

the optimal solution to program LPk. The effect of constraint

(12) -- depends on whether xi is a basic or nonbasic decision

variable. Thus, let BASick denote the set of arcs i e ARC such

that xi is basic in the optimal solution in program LPk and let

NONBASICk = ARC - BASICk.

Ifie BASick, then arc i must be part of a basis-equivalent

spanning tree representing the basic solution to program LPk

(Johnson (1966)). If arc i were omitted from this spanning tree,

two disjoint subtrees would be created, one containing TAILi (the

tail node of arc i) and the other containing HEADi (the head node

of arc i). Let Tik and Hik denote, respectively, the subtrees

- 18 -

containing node TAILi and HEADi. As summarized in Table 1, we

now define four (disjoint but not collective exhaustive) subsets

of the arcs contained in NONBASick. Table 1 shows, for example,

that THLik is the set of arcs j e NONBASick such that nod~ TAILj
• ;1

is contained in subtree Tik, node HEADj is coftained in H{k, and

xj[LPk] (the optimal flow on arc j in progra~ LPk) is equal to

k .e j •

Assuming no change in basis, observe that if i e BASick,

then a unit decrease in the flow on arc i requires either (1) a

unit increase in flow on an arc contained in arc subset THLik; or

(2) a unit decrease in flow on an arc contained in arc subset

HTUik· So, the minumum cost way of forcing this change of flow

on arc i is expressed by the minimum (absolute value) reduced

cost of the arcs contained in subsets THLik and HTUik•

On the other hand, if i E NONBASICk, then it must be the

case that either (1) xi[LPk] =

xi[LPk) is at its lower bound,

If

then clearly the flow on arc i

_cannot be decreased; and if xi[LPk] is at its upper bound, then,

assuming no change in basis, the minurnurn cost for a unit decrease

in the flow on arc i is simply (the absolute value of) the

reduced cost for arc i.

Thus, aik, the rate of increase in OBJFCTN[POSTOPTLPik] as

6ik (in constraint (12)) changes from o too-, is given by

- 19 -

Min { Ir.kl . j E THL.k U HTU.k } if i E BASICk .
j J l. l.

k if i E NONBASICk and x. [LPk] .e . k (14) a. = 00 =
l. l. l.

Ir.kl if i E NONBASICk and x. [LPk] k = u.
l. ' l. l.

Similarly, if i e BAS I ck and no basis change occurs, then

increasing the flow on arc i by one unit requires either (1) a

unit decrease in flow on an arc contained in THUik; or (2) a unit

increase in flow on an arc contained in HTLi k; and the cost

associated with this flow change is given by the reduced cost of

the arcs in these two subsets. On the other hand, if i e

NONBASick, then the cost associated with a unit increase in the

flow on arc i is the reduced cost of arc i if xi[LPk] = .eik; and

infinity if xi[LPk] = uik· Thus, ~ik, the rate of increase in

OBJFCTN(POSTOPTLPik] as 6ik changes from Oto o+ is given by

k r.
l.

if i E NONBASICk and x.[LPk]
l.

= P,. k
l.

= u. k
J.

(15)

Note that, once program LPk has been solved, then the rates

aik and pik can be determined with very little additional

computational effort. The next two sections discuss procedures

that use these rates to obtain a lower bound to OBJFCTN[MIPk]

that can be significantly tighter than OBJFCTN[LPk].

- 20 -

4. UP AND OOWN PENALTIES

This section specializes, for program MI Pk, the "up and

down" penalties developed by Driebeek (1966). This well-known

procedure is briefly recapitulated here because · ·;it is

incorporated into the stronger bou~ds developed in the next

section.

The concept of Driebeek's. penalty procedure applied to

program MI Pk is as follows: if, for any arc i e FREE, the

optimal value of decision variable, Yi, is fractional in program

LPk, then the value of OBJFCTN [LPk J might be increased (i.e. ,

"penalized") by forcing Yi to be zero or one; and this penalized

objective function value will be a lower bound to OBJFCTN[MIPk]

that is at least as tight as OBJFCTN[LPk]. Note that, although

it was intended only for the initial subprogram MIPo, Driebeek's

penalty method can be applied to a.ny subprogram MIPk for k =

0,1,2, ••• •

To analyze the penalty associated with an arc i e FREE whose

decision variable Yi is fractional-valued in the optimal solution

to LPk, consider a new linear program, denoted PENLPik, formed by

adding the single constraint

(16)

to program LPk. In this constraint, Yi[LPk] is the optimal value

of Yi in program LPk and ~ik is a fixed number. If aik changes

from Oto o- (i.e., to a small negative value), then one of two

possible changes to the solution of program LPk will occur: (1)

the flow on arc i will remain at xi[LPk]; or (2) the flow on arc

- 21 -

i will change (i.e., decrease) by l:iik·(gik + hik). In the first

case, the optimal solution of program PENLP i k will shift from

point 1 to point 2 in Figure 3 and the optimal objective

function value of program PENLPik will change from OBJFC';I'N[LPk)

to OBJFCTN[Lpk] - A•k·(g,k + h,k) ·(a• - c,k) In the second l. l. ,l. l. l. •

case, the optimal solution of program PENLPik will shift from

point 1 to point 3 in Figure 3 (with a corresponding shift in

constraint (6d)) and the optimal objective function value will

change from OBJFCTN[LPk] to OBJFCTN[LPk] - Aik. (gik + hik) ·aik

(where aik is the marginal rate of change defined in eq. (14)).

Thus, the penalty, denoted DOWNik, for forcing Yi down to zero

must be at least as great as

(17)

Similarly, if 1:iik changes from O to o+ (i.e., to a small

positive value), then either (1) the flow on arc i will remain at

xi[LPk); or (2) the flow will change (i.e., increase) by

In the first case, the optimal solution of

program PENLP1k will shift from point 1 to point 4 in Figure

3 and the optimal objective function value

PENLPik will change from OBJFCTN[LPk] to

+ 1:iik. (gik + hik). (cik - bi). In the second case,

of program

OBJFCTN[LPk]

the optimal

solution of program PENLPik will shift from point 1 to point

5 (with a corresponding shift in constraint (6d)) and the

optimal objective function value will change from OBJFCTN[LPk] to

OBJFCTN[LPk] + 1:,.ik·(gik + hik) -~ik (where ~ik is the marginal

rate of change defined in eq. (15)). Thus, the penalty, denoted,

- 22 -

UPik, for forcing Yi up to one must be at least as great as

Because, in the optimal solution to Mipk, every Yi must be ,.

either 0 or 1, the "pen,alty" lower bound, denoted ZpE~k, to

OBJFCTN[MIPk] is given by

(19)

The next section describes a procedure, which can be used in

conjunction with the penalty method described above, to obtain a

tighter lower bound.

- 23 -

5. SIMPLE BOUND IMPROVEMENT PROCEDURE

In contrast to the "up and down" penalty procedure

summarized in Section 4 (which concentrated on the binary

decision_ variables {Yi}), the "simple bound improvement~• (SBI)

method presented he~e focuses on the continuous variables {xi}•

In this section, we generalize Lamar and Sheffi's (1988) and

Lamar et al. (1989) work on fixed charge problems.

introduce a simplified computational procedure.

We also

The discussion below is divided into two parts. The first

part develops the concept of the SBI procedure for MCCNF

problems; and the second part shows that the parameters used in

this procedure are easy to compute.

5.1 Concept

Starting with the solution LPO (the relaxation of the

initial subprogram), the SBI procedure evaluates the family of

linear programming relaxations LPk for k=l , 2, • • • to obtain a

successively tighter lower bound to OBJFCTN[MIPO] (the optimal

objective function value of the initial subprogram). The process

uses ZINC' the objective function value of an incumbent (i.e.,

feasible but not necessarily optimal) solution to the original

problem, MCCNF. [The determination of ZINC is discussed in

Section 6.] Regardless of the value of ZINC' though, it must be

the case that either (1) ZINC > OBJFCTN[MIPO]; or (2) ZINC :;;

OBJFCTN[MIPo]. Below, we consider each of these cases separately

and then summarize the lower bound implied by these two cases.

- 24 -

• Case 1: Incumbent Value overestimates OBJFCTN[KIPO]

For the first case we assume that ZINC> OBJFCTN[MIP0]. For

this case, we also assume that SOLUTION[MIPO] (the ·optimal

solution to the initial subprogram MIPO) is contained in

FEASIBLE[LPk] (the feasible region of relaxation LPk). [As

explained at the end of Case 1, this assumption will always be

true if ZINC> OBJFCTN[MIP0].] The incumbent objective function

value can be used to seek tighter bounds for the flow on any arc

i e ARC. Let P,ik+l and uik+l denote, respectively, these tighter

lower and upper flow bounds for arc i. In order to determine the

value of these tighter bounds, we once again consider the

previously defined linear program, POSTOPTLPik, formed by adding

constraint (12) to program LPk. [In this subsection, however, we

consider all possible values of 6ik rather than just those that

are close to zero.]

Starting with 6ik = o, we first consider the effect of

decreasing the value of 6ik• From parametric RHS analysis, we

know that if 6ik = 0 then OBJFCTN[POSTOPTLPik] = OBJFCTN[LPk];

and that if 6ik < 0, then OBJFCTN[POSTOPTLPik] ~ OBJFCTN[LPk].

We continue decreasing the value of 6ik until either (1) 6ik =

P,ik - Xi[LPk]; or (2) OBJFCTN[POSTOPTLPik] = ZINC· We then set

£.k+l = X·[LPk] + 5.k Observe that if 5.k =£,k - x•[LPk]
1 1 1· 1 1 1 '

then P,ik+l is simply P,ik and since (by assumption) xi[MIPO] ~

P,ik, this means that xi[MIPO] ii:: ;,ik+l. On the other hand, if

OBJFCTN[POSTOPTLPik] = ZINC (and, by assumption, ZINC >

OBJFCTN[MIPO]), then xi[MIPO] cannot be less than xi[LPk] + 6ik,

- 25 -

so it must be true that xi[MIP0] ;;:; .eik+l. Thus, in either case,

.eik+l is a lower bound to xi[MIP0].

Once again starting with 6ik = o, we now consider the effect

of increasing the value of 6 i k.

OBJFCTN[POStOPTLPik] ~ OBJFCTN[LPk].
·,

until either (1) 6ik = u,k
l.

= u,k
l.

We then set u,k+l
l.

- xi[LPk], then

- Xi[LPk];

= xi[LPk]

u,k+l =
l.

Clearly, if 5.k
l. > 0 . / then

We continue increasi~g 6ik

or _ (2) OBJFCTN [POSTOPTLP i k]

Ob th t l.'f 5.k serve a, 1

so U ,k+l
l. •

Moreover, if OBJFCTN[POSTOPTLPik] = ZINC' then once again it must

be true that xi[MIPO] ~ uik+l. Thus, in either case, uik+l is an

upper bound to xi[MIP0].

By performing the analysis outlined in the preceding

paragraphs for each arc i E ARC, we obtain a set of tighter flow

bounds {Aik+l} and {uik+l}. Using these bounds, we then solve

program LPk+l.

As mentioned at the beginning of Case 1, we assume that

SOLUTION[MIPO] E FEASIBLE[LPk]. This will certainly be true for

k = o because LPO is the linear programming relaxation of MIP0 ;·

Moreover, we have shown above that if zINC > OBJFCTN[MIP0] and

.eik ~ xi[MIPO] ~ uik for all i, then it must be true that Aik+l ~

xi[MIPO] ~ uik+l for all i. Thus, by mathematical induction, if

ZINC> OBJFCTN[MIPO], then it must be true that SOLUTION[MIPO] E

FEASIBLE[LPk] for all k.

Driebeek's penalty lower bound can also be used in

conj unction with the SBI procedure. Using eq. (19), we set

k+l { k+l k 2 PEN +- Max ZPEN , 2 PEN } •

FEASIBLE[LPk] which, in turn,

Observe that FEASIBLE[LPk+l] f

implies that OBJFCTN[LPk+l] ~

- 26 -

OBJFCTN[LPk]. .Thus, in many cases, z k+l
PEN will be strictly

greater than zPENk. Furthermore, because SOLN[MIPO] E

FEASIBLE[LPk] and SOLUTION[MIPO J E FEASIBLE[LPk+l J, it must be

true that SOLUTION[MIPO J - SOLUTION[MIPk J = SOLUTION[M,IPk+l].

0 ;
So, not only is the initial penalty bound, zPEN, a lowe~ bound

to OBJF~TN[MIP0 J, but so are ZPENk and ZPENk+l. Thus, if ZINC>

OBJFCTN[MIPOJ, then the following relationships hold:

(20)

This completes the discussion of the first case in which it

is assumed that ZINC> OBJFCTN(MIPO].

• Case 2: Incwnbent Value Does Not overestimate OBJFCTN[MipD]

For completeness, we now consider the second case in which

it is assumed that zINC ~ OBJFCTN[MIP0 J. In this case, we simply

note that zINC itself is a lower bound to OBJFCTN[MIP0 J.

• Lower Bound

The two cases given above can be combined to develop a lower

bound to OBJFCTN[MIP0]. Observe that, for any incumbent

objective function value, if ZINC itself is not a lower bound to

OBJFCTN(MIP0 J, then zPENk+l must be. Thus, we define a new lower

bound, referred to as the "simple bound improvement" lower bound

k+l 0 and denoted as zSBI , to OBJFCTN[MIP] as follows:

z k+l =
SBI M • { k+l } in ZPEN ' ZINC

- 27 -

(21)

Note that, because of relationship (20), if ZINC is greater than

zPENo, then the SBI procedure produces a stronger lower bound to

the optimal objective function value of the initial subprogram

than Driebeek's penalty method used alone (i.e., zsBik+l is

' tighter than For the SBI procedure to be useful,

however, the lower and upper flow bounds, iik+l and uik+l, must

be easy to compute. This result is shown next.

5.2 Computation of Improved Flow Bounds

An important step in the SBI procedure is the efficient

computation of the improved lower and upper flow bounds, {£ik+l}

Note that al though tighter flow bounds can be

sought for any arc i E ARC, the only arcs for which the linear

underestimator strictly underestimates the concave cost function,

COSTi, are the arcs contained in set IMPROVEk, where

IMPROVEk = {i (22)

Thus, if i ~ IMPROVEk, then £ik+l and uik+l can simply be set to

iik and uik, respectively.

On the other hand, if arc i E IMPROVEk, then, as discussed

in Subsection 5.1, the determination of

a RHS parametric analysis of eq. (12)

£,k+l and u,k+l requires
1 1

in program POSTOPTLP i k.

For instance, the dotted line in Figure 4 shows a typical change

in OBJFCTN[POSTOPTLPik] as the parameter is varied. A

complete parametric _analysis of this constraint would, qf course,

· be computationally burdensome. But, as explained in Subsection

3.2, aik and pik, the rate of change in OBJFCTN[POSTOPTik] for an

- 28 -

incremental change in 6 i k, can be determined directly from the

solution to LPk (see eq. (14) and (15)). Thus, an underestimator

of .R,ik+l and an overestimator of uik+l can be obtained with very

little additional computational effort.

Specifically, if aik = O then 1,ik+l =

indicated in Figure 4,

otherwise, as

n.k+l M { n k ~1 = ax ~i,
ZINC - OBJFCTN[LPk]

k
(X •

1 J l {23)

where "LeJ" denotes the "floor" function for any expression e

(i.e., the largest integer less than or equal toe). Moreover,

1'f /3ik O th k+l k = , en ui = ui, otherwise

J l (24)

We assume, in eq. (23) and {24), that ZINC~ OBJFCTN[LPk]. This

is because, if ZINC< OBJFCTN[LPk], then SOLUTION(MCCNF] cannot

be contained in FEASIBLE [MIPk] and hence there is no need to

evaluate program MIPk any further.

The tighter bounds developed in this section form an

integral part of the branch and bound procedure outlined next.

- 29 -

6. BRANCH AND BOUND PROCEDURE

The branch and bound procedure described in this section

solves program MCCNF (or determines that the problem is
,.

infeasible) . The distinguishing feature between the standard

branch and bound method (see, for example, Parker and Rardin

(1988))-denoted BBSTANDARD--and the one presented in this

section-denoted BBSBI-is the incorporation of the SBI procedure

to generate a tighter bound to the current subprogram.

The following paragraphs comment on each of the steps in the

branch and bound flowchart shown in Figure 5. [The actual

implementations of BBSTANDARD and BBSBI (which are compared

empirically in Section 7) are also discussed.]

Step 0 initializes the branch and bound algorithm. Here,

the initial subprogram MIPO at the root node in the enumeration

tree is taken as the original problem, MCCNF, in which all arcs i

e ARC are members of FREE; and sets ZERO and ONE are empty. Step

0 places program MCCNF in the "candidate list", denoted CAND.

This list contains the subprograms that are to be evaluated in

the branch and .bound procedure. As mentioned in Section 5, we

let ZINC denote the objective function value of the current

incumbent. Step o sets ZINC to infinity.

Steps 1 and 2 review the subprograms in CANO. If this list

is empty, then the branch and bound algorithm terminates and the

current incumbent is the optimal solution to MCCNF. [If CAND is

empty and there is no incumbent, then MCCNF is infeasible.] If

CAND is nonempty, then a subprogram is selected to be the current

initial subprogram, MIPo. [In the computational tests conducted

- 30 -

in Section 7, both BBSTANDARD and BBSBI use a LIFO (rather than a

priority) subprogram selection rule because a LIFO selection rule

minimizes the in-core storage requirements for CAND. For BBSBI,

if "backtracking" occurs in the enumeration tree in order to

select the current subprogram, then the values of the · initial

lower and upper flow bounds, {£io} and {ui0 }, for arcs i e FREE

are taken from the subprogram at the root node in the enumeration

tree; otherwise these bounds are taken from the final iteration

of the previously evaluated subprogram (i.e., from the "parent"

subprogram) . In this way, BBSBI requires no additional storage

for the improved flow bound parameters.]

In preparation for the SBI procedure, step 2 also sets the

iteration index, k, to zero. [In Section 7, BBSTANDARD keeps k

permanently set at zero.]

Step 3 first computes the flow interval parameters, {gik}

and {hik}, using

k k {ci} and {fi },

eq. (1) and the objective function parameters,

using eq. (10). This step then solves LPk, the

linear programming relaxation of the current subprogram. Because

this relaxation is a minimum (linear) cost network flow problem

(see Section 3), program LPk can be solved very efficiently.

[See Barr, Glover, and Klingman (1979) for a discussion of

solution methods for this class of problems.]

Step 4 seeks to find a new incumbent solution to MCCNF by

obtaining a heuristic solution (see, for example, Yaged (1971))

to the current subprogram, MI~O • [In Section 7, both BBSTANDARD

and BBSBI obtain a heuristic solution to MIPO with very little

computational effort by simply setting Yi to zero (respectively,

- 31 -

one) for any arc i such that xi[LPk] is less than or equal to

(respectively, greater than) mi: This "rounding" technique

always produces a feasible solution to and hence, a

feasible solution to MCCNF]. If the objective function value of

the heuristic solution obtained in step 4 is less than ZINC (the

objective function value of the current incumbent), then this

heuristic solution is retained as the new incumbent solution and

the value of ZINC is updated.

Step 5 computes a lower bound to OBJFCTN [MIPO] using the

penalty and SBI procedures described in Sections 4 and 5. Here,

the penalties, DOWNik and upik, defined in eq. (17) and (18), are

used to compute Dribeek's penalty lower bound, zPENk, defined in

eq. (19). Then, the SBI lower bound, zsBik' defined in eq. (21),

is calculated. [In Section 7, BBSTANDARD does not compute

Step 6 computes the tighter lower and upper flow bounds,

{£ik+l} and {uik+l}. If i ~ IMPROVEk (see eq. (22)), then step 6

sets tik+l ~ tik and uik+l ~ uik• Otherwise, if i e IMPROVEk,

then this step uses eq. (23) and (24) to compute the improved

flow bounds. (In Section 7, BBSTANDARD omits this step.]

Step 7 tests whether or not the SBI lower bound-computed in

step 5-equals the incumbent objective function value, ZINC· If

ZSBik = ZINC' then this means that ZPENk ~ ZINC (see eq. (21)),

so program MIPk cannot contain a feasible solution to MCCNF that

is better than the current incumbent. In other words, program

MIPk can be "fathomed". Th f 1.f k ere ore, zsBI = ZINC' then the

branch and bound algorithm goes to step 1 to review the

- 32 -

subprograms contained in CANO; otherwise the algorithm goes to

step 8. [In Section 7, BBSTANDARD tests whether or not ZPENO ~

ZINC in this step.]
,.

Step 8 tests whether or not additional effort should be

expended on determining an improved lower bound for the currei\t

subprogram. Note that if there is an arc i E IMPROVEk such that

(1) 1,ik < xik < uik; (2) 1,ik+l > 1,ik or uik+l < uik; and (3) (Xik

> o and f.,i k > o; then OBJFCTN[LPk+l] will be strictly greater

than OBJFCTN[LPk]. Thus, if there is at least one arc that meets

the conditions given above, then the iteration index, k, is

incremented by one (i.e., k ~ k+l} and the algorithm goes to step

3 to resolve the relaxation of the current subprogram. [Note

that SOLUTION[LPk] E FEASIBLE[LPk+l]. Thus SOLUTION[LPk] can be

used as an initial basic feasible solution in program LPk+l. In

many cases SOLUTION [LPk] will be optimal or near-optimal in

program LPk+l, so program LPk+l can be solved with very little

additional computational effort.] On the other hand, if ther.e

are no arcs that ·satisfy the conditions given above, then the

algorithm goes to step 9 to separate the current subprogram. (In

Section 7, BBSTANDARD omits this step and proceeds to step 9.]

FREE,

Finally, step 9 selects, from among the elements in arc set

a "branching arc", denoted ❖
l.. (In Section 7, both

❖
BBSTANDARD and BBSBI select, as arc 1., the arc with the maximum

of min{DOWNik, UPik} (see eq. (17) and (18)).) Step 9 adds two

new subprograms-one in which arc 1 is removed from FREE and

added to ZERO, and the other in which arc 1 is ·removed from FREE

and added to ONE-to the candidate list, CAND. [In Section 7,

- 33 -

the subprogram associated with maximum up and down penalty for

❖ arc 1 is referred to as the "twin" problem. The twin problem is

added first to CAND in order to seek "good" heuristic solutions

with the LIFO subprogram selection rule (Little et al. (l963)).
'

In addition, zTWINk, a lower bound to the optimal objective

function of the twin problem, is also stored in CAND.

ZTWINk is given by

Here,

(25)

If, when the twin problem is selected from CAND, ZINC is less

than or equal to zTWINk, then the twin problem can be fathomed

without any further evaluation of that problem. J After

completing step 9, the branch and bound algorithm goes to step 1

to review the candidate list.

The next section illustrates the use of the branch and bound

algorithm described above.

- 34 -

7. COMPUTATIONAL PERFORMANCE

In this section we demonstrate empirically that, by

incorporating the SBI procedure into a conventional branch and

bound algorithm, both solution time and in-core ,memory

requirements can be reduced. We do this by solving ·,a series of

MCCNF problems. As in Section 6, we let BBS BI and BBSTANDARD

denote, respectively, the branch and bound procedure with and

without the SBI procedure. Both algorithms were programmed in

Microsoft Fortran version 4.1 and run on a Micro Source

International microcomputer (comparable to an IBM-AT). Solution

time was measured by the total CPU-time exclusive of I/0

operations; and in-core storage was measured by the maximum depth

of the branch and bound enumeration tree.

The material below is divided into two subsections. The

first subsection uses a simple example to illustrate the effect

that the SBI procedure has on computational performance; and the

second subsection reports the computational results for a series

of randomly generated test problems.

7.1 Example

The four node, five arc MCCNF problem depicted in Figure 6

and Table 2 is taken from Florian and Robillard (1971). To

illustrate the effect of the SBI procedure, we first solved this

simple problem using BBSTANDARD, then resolved it using BBSBI.

The enumeration tree associated with BBSTANDARD for this

problem is shown in Figure 7a. The node numbers in the tree

- 35 -

indicate the order in which the subprograms were solved. At node

1 the linear programming relaxation of the original mixed

integer program, MCCNF, was solved using a network simplex

algorithm. The solution to this relaxation was 3 units of flow

on arc (1 , 2) ; 3 on (1, 3) ; 0 on (2 , 3) ; 6 on (2 , 4) , ; and. 3 on

(3,4). "Rounding" this solution produced an incumbent solution

with an objective function value of zINC = 48.00. This incumbent

solution was also the optimal solution to MCCNF. But, because

the penalty lower bound was only zPENO = 46.05, subprogram 1

could not be fathomed. Thus, using arc (1, 2) as the branching

arc, two new subprograms-one with (1, 2) e ZERO and the other

with (1,2) e ONE-were created and the process was repeated.

In all, BBSTANDARD required the evaluation of three

subprograms. [Note that subprograms 4 and 5 did not need

evaluation because their stored penalty lower bound, zTWINO (see

eq. (25)), exceeded zINc•J The CPU time for this algorithm was

0.11 seconds and the maximum depth for its enumeration tree was

three.

In contrast, as shown in Figure 7b, the enumeration "tree"

for BBSBI consisted solely of the root node representing the

original mixed integer program, MCCNF. As with BBSTANDARD, LPo,

the linear programming relaxation of this subprogram, was solved

using a network simplex algorithm; the incumbent solution was

obtained by "rounding-up" the relaxation solution; and the

penalty lower bound was computed. However, in BBS BI the SBI

procedure was then performed to generate tighter lower and upper

flow bounds, { .R, i k} and { ui k} , and then program LP1 was solved.

- 36 -

This increased· the penalty lower bound to zPEN1 = 48. oo (which

equals ZINC) so that the entire branch and bound enumeration tree

was fathomed at the root node.

Thus, for BBS BI, the maximum depth in the enumerati.on tree

was one. Two relaxations, and 1 LP , , were solved, · but the

solution to LP1 was trivial since the optimal solution to LPO was

also optimal in LP1 . The total CPU time was 0.05 seconds.

The dominance of BBSBI over BBSTANDARD, brought out in this

example, is next examined in a series of computational tests.

7.2 Computation Tests

In order to evaluate the SBI procedure more fully, a series

of test problems was solved with BBSTANDARD and BBSBI. Below, we

describe how the problems were generated and comment on the

results of these two branch and bound algorithms.

• Problem Generation

As summarized in Table 3, three sizes of MCCNF problems were

considered, each consisting of five randomly generated test

networks. All networks were complete; i.e., there was a directed

arc between every pair of nodes. Remember that, because the arc

cost functions for our problems were piecewise-linear-concave,

each arc in the network corresponded to a binary decision

variable in program MCCNF. Thus, it is reasonable to

characterize a network with over 200 such arcs as a "large"

problem.

- 37 -

·•.

For each .arc i e ARC in each test problem, the marginal

costs ai and bi were randomly sampled from a uniform distribution

UNIFORM(0,100]. If ai > bi, then the values of ai and bi were

interchanged. Also, for each arc i, the original flow bounds ii,

mi, and ui were sampled from UNIFORM[0,100]. The values'of ii,

mi, and ui were sorted so that ii ~ mi ~ ui.

problem a node, denoted n, was randomly selected.

For each test

Then, for each

node n e NODE - {n}, the demand/supply constant dn was sampled

from UNIFORM[-10,+10]; and the demand/supply constant for node n

was set such that the total demand and supply in the network

summed to zero.

• Results

Each of the fifteen test problems identified in Table 3 was

solved twice, first using BBSTANDARD, then using BBSBI. The

results are shown in Tables 4 and 5. These tables show the

average value and the range for the five test problems solved in

each problem size. The results for BBSTANDARD and BBS BI are

given; and the percent improvement of BBS BI over BBSTANDARD is

reported.

Table 4, giving the maximum depth in the branch and bound

enumeration tree, indicates the relative in-core storage

requirements for the test problems. In all cases, the SBI

procedure reduced the storage requirements for the branch and

bound algorithm. Comparing BBSBI with BBSTANDARD,_ there was, on

average, more than a two-thirds improvement for small problems,

and more than a one-third improvement for large ones. Thus,

- 38 -

although the amount of improvement decreased as the problem size

increased, the overall reduction in in-core storage was still

substantial.

Table 5 reports the CPU time required to solve t~e test

problems. Once again, the SBI procedure increased the efficiency

of the branch and bound procedure. Moreover, this improvement

increased as the problem size increased. Thus, comparing BBSBI

with BBSTANDARD, there was, on average, more than a forty percent

reduction in the time required to solve the large test problems.

It should be pointed out, though, that for one test problem,

problem 10, the CPU time for BBSBI was slightly greater than that

for BBSTANDARD. For this particular test problem, BBSTANDARD

required the evaluation of 65 subprograms whereas BBSBI required

the evaluation of 27 families of subprograms. But, because in

BBSBI each family consisted of an average of three subprograms,

this problem had an overall solution time of 34 seconds using

BBSBI (compared to 33 seconds using BBSTANDARD). Thus, we see

from Table 5, that although the SBI procedure cannot be

guaranteed to reduce computation time of the branch and bound

procedure, it will, on average, have a significant impact.

The next section concludes the paper.

- 39 -

8. CONCIBSIONS AND EXTENSIONS

This paper has presented a new branch and bound algorithm

for minimum concave cost network flow problems with piecewise-

linear arc cost functions. The distinctive feature of this
. ·!

algorithm is the incorporation of the simple bound improvement

(SBI) method. As shown by the computational tests conducted in

Section 7, the SBI procedure reduces both the CPU time and the

in-core storage requirements of the branch and bound algorithm.

In closing, three alternative implementations of the SBI

procedure are worth noting. First, although the SBI procedure

discussed in this paper was used in conjunction with Driebeek's

(1966) penalty bounds, other penalty procedures (see, for

example, Tomlin {1971) and Cabot and Erenguc {1986)) could also

be used instead. In this case, the SBI procedure would produce

tighter bounds for each subprogram evaluated in the branch and

bou~d, but with somewhat increased computational effort.

Second, when a subprogram was selected by backtracking in

the candidate list in the branch and bound procedure described in

this paper, the lower and upper flow bounds for arcs in set FREE

were set to the values determined in the root node subprogram.

In this manner, no additional storage requirement for the

improved arc flow bounds was required. An alternative

implementation of the branch and bound a;tgorithm would be to

store the improved arc flow bounds along with each of the

subprogram in the candidate list. Then, because the initial flow

bounds of each subprogram would be tighter, less computational

effort would be required for evaluating each subprogram, but at

- 40 -

the cost of increased in-core storage.

Finally, this paper has focused on the SBI procedure for

network flow problems with piecewise-linear-concave arc cost

functions. We point out, however, that the SBI procedure_ fs also

applicable to problems with more general objective functions as

well as to problems involving constraints other than network flow

constraints (see Lamar (1989)).

- 41 -

ACNOWLEDGEMENTS

This work was supported, in part, by a research grant from

the Institute of Transportation Studies, University of

California, Irvine, CA. The author would like to thank .M.aryAnne

Causino for her thoughtful reading of the manuscript, and Barbara

Skelly for her preparation of the illustrations used in this

paper.

- 42 -

REFERENCES

1. P. Afentakis, B. Gavish, and U. Karmarkar (1984),
"Computationally Efficient Optimal Solutions to the Lot­
Sizing Problem in Multistage Assembly Systems", Ha.na.gement:
Science, vol. 30, no. 2, pp. 222-239.

2. A. Balakrishnan (1984),
for the Network Design
Consolidation", Ph.D.
Management, Massachusetts
MA.

"Valid Inequalities and Algo'rithms
Problem with Application to LTL
dissertation, Sloan School of
Institute of Technology, Cambridge,

3. M.L. Balinski (1961), "Fixed.:..cost Transportation Problems",
Na.val Research Logist:ics Qua.rt:erly, vol. 8, no. 1., pp. 41-
54.

4. R.H. Ballou (1985), Business Logist:ics Ha.na.gement:: Planning
a.nd Cont:rol, Prentice-Hall, Inc., Englewood Cliffs, NJ.

5. R.S. Barr, F. Glover, and D. Klingman (1979), "Enhancements
of Spanning Tree Labelling Procedures for Network
Optimization", INFOR, vol. 17, no. 1, pp. 16-34.

(1981) ,
Fixed

vol.

6. R.S. Barr, F. Glover, and D. Klingman
Optimization Method for Large Scale
Transportation Problems", Operat:ions Research,
3, pp. 448-463.

"A New
Charge

29, no.

7. J. Billheimer and P. Gray (1973), "Network Design with Fixed
and Variable Cost Elements", Tra.nsport:a.t:ion Science, vol. 7,

"pp. 49-74.

8. K. Belling-Seib, P. Mever, and c. Muller (1988), "Network
Flow Problems with One Side Constraint: A Comparison of Three
Solution Methods", Comput:ers and Opera.t:ions Research, vol.
15, no. 4, pp. 381-394.

9. A. V. Cabot and S.S. Erenguc (1984}, "Some Branch-and-Bound
Procedures for Fixed-Cost Transportation Problems", Na.val
Research Logist:ics Qua.rt:erly, vol. 31, pp. 145-154.

10. A.V. Cabot and S.S. Erenguc (1986), "Improved Penalties for
Fixed Cost Linear Programs Using Lagrangian Relaxation",
na.nagement: Science, vol. 32, no. 7, pp. 856-869.

11. N. Driebeek (1966), An Algorithm for the Solution of Mixed
Integer Programming Problems", Hanagement: Science, vol. 12,
no. 7, pp. 576-587.

- 43 -

12. R.E. Erickson, C.L. Menna, and A.F. Veinott, Jr. (1987),
"Send-and-Split Method for Minimum-Concave-Cost Network
Flows", Hat::hemat::ics of Operat:ions Research, vol. 12, no. 4,
pp. 634-664.

13. M. Florian and P. Robillard (1971), "An Implicit Enumeration
Algorithm for the Concave Cost Network Flow P~oblem",
Hanagement:: Science, vol. 18, no. 3, pp. 184-193.

14. L.R. Ford and D.R. \Fulkerson (1962), Flows in Net::vorks,
Princeton University Press, Princeton, NJ.

15. G. Gallo, c. Sandi, and C. Sodini (1980), "An Algorithm for
the Min Concave Cost Flow Problem", European Journal of
Operat::ional Research, vol. 4, pp. 248-255.

16. M.R. Garey and D.S. Johnson (1979), Comput::ers and
Int::ract::abilit::y: A Guide t::o t::he Theory of NP-Complet:eness,
W.H. Freeman and Company, Inc., San Francisco, CA.

17. F. Glover, D. Karney, D. Klingman, R. Russell (1978),
"Solving Singly Constrained Transshipment Problems",
Transport:at::ion Science, vol. 12, no. 4, pp. 277-297.

18. P. Gray (1971), "Exact Solution of the Fixed-Charge
Transportation Problem", Operat::ions Research, vol. 19, no. 6,
pp. 1529-1538.

19. E.L. Johnson (1966),
Operat:ions Research, vol.

"Networks and Basic
14~ no. 4, pp. 619-623.

Solutions",

20. J. Kennington and E. Unger (1976), "A New Branch-and-Bound
Algorithm for the Fixed-Charge Transportation Problems",
Hanagement:: Science, vol. 22, no. 10, pp. 1116-1126.

21. B.W. Lamar (1985), "Network Design Algorithms with
Applications to Freight Transportation", Ph.D. dissertation,
Department of Civil Engineering, Massachusetts Institute of
Technology, Cambridge, MA.

22. B.W. Lamar and Y. Sheffi (1988),
Method for LTL Network Design",
Record, no. 1120, pp. 1-16.

"An Implicit Enumeration
Transport::at::ion Research

23. B.W. Lamar, Y. Sheffi, and W.B. Powell (1989), "A Capacity
Improvement Lower Bound for Fixed Charge -Network Design
Problems", Operat:ions Research, (forthcoming).

24. B.W. Lamar (1989) "A Simple Bound Improvement Procedure for
Mixed Integer Programming Problems", work in progress.

25. J.D.C. Little, K.C. Murty, D.W. Sweeney, and c. Karel (1963),
"An Algorithm for the Travelling Salesman Problem",
Operat::ions Research, vol. 11, pp972-989.

- 44 -

26. M. Los and c. Lardinois (1982), "Combinatorial Programming,
Statistical Optimization and the Optimal Transportation
Network Problem", Transporcacion Research-B, vol. 16B, no. 2,
pp.89-124.

27. T.L. Magnanti and R.T. Wong (1984), "Network Design and
Transportation Planning: Models and Algorithms",
Transporcacion Science, vol. 18, no. 1, pp. 1-55.

28. M. Malek-Zavarei\~nd I.T. Frisch (1972), "On the Fixed Cost
Flow Problem", Int::ernaCional Journal of Concrol, vol.16, no.
5, PP. 897-902.

29. R.G. Parker and R.L. Rardin· (1988), Discrece Opcimizacion,
Academic Press, Inc., San Diego, CA.

30. G. Sa (1969), "Branch-and-Bound and Approximate Solutions to
the Capacitated Plant Location Problem", Operacions Research,
vol. 17, pp. 1005-1016.

31. R.M. Soland (1974), "Optimal Facility Location with Concave
Costs", Operacions Research, vol. 22, pp. 373-382.

32. B. Yaged, Jr. (1971), "Minumum Cost Routing for Static
Network Models", Necworks, vol. 1, pp. 139-172.

33. W.I. Zangwill (1968), "Minimum Concave Cost Flows in Certain
Networks", Hanagemenc Science, vol. 14, no. 7, pp. 429-450.

- 45 -

Number

1.

2.

3.

4.

5.

6.

7.

LIST OF FIGURES

Caption

Typical Arc Cost Function

Parall~l Arc Representation

Typical Feasible Region for Fixed Flow Program

Typical Postoptimal Flow Analysis for Linear Relaxation

Flowchart for Branch and Bound Procedure

Example Network

Example Branch and Bound Enumeration Trees

a. Using BBSTANDARD

b. Using BBSBI

- 46 -

COST
1

1

Figure 1.

Typical Arc Cost Function

- 47 -

'·

TAIL 1

Marginal cost: Marginal cost:

ai bi

Flow lower bound: Flow lower bound:
k k

I + g . Yi 0
i i

Flow upper bound: Flow upper bound:

mi
k

hi . Yi

Flow decision Flow decision
variable: variable:

vi wi
HEAD

I

Figure 2.

Parallel Arc Representation

- 48 -

-lk
i

lk
1

m
1

lk
1

- (6f)

CD ®
:

: :

Y1 [Lpk]
..____, '-----"

Af Ak
1

Figure 3.

(6e)

~

- (6g)

(6d)

~

1 xi
--

bk
i

Typical Feasible Region for Fixed Flow Program

- 49 -

Yi

OBJFCTN[POSTOPTLP t]

z
INC

k
- C1 1

I

1 k
OBJFCTN[LP] -------------. ----------

L--------4------~----------+-----6k
1 0 k+J k

Ul - x [LP]
1

Figure 4.

Typical Postoptimal Flow Analysis for Linear Relaxation

- 50 -

Ye• a ---~
No

l. Select S•••roeram

3. Soln LP R.eb:utlon

.C. Obtain Hnrfltfc Soh1tlon

5. Compute Objective

Function Lower Bound

6. Compute Improved
Flow Bounds

Yea

t No

9. Separate Sallprocram

Figure 5.

Yea

Flowchart for Branch and Bound Procedure

- 51 -

Supply
6

Supply
3

~-

Figure 6.

Example Network

- 52 -

Demand
9

ZINC = 41.00

2pENO = 48.00

2iNc • 48.00

Z,EN(J s .C7.l5

"1 -= 1
(1,3)

0

"1 s O
(1,3)

0 Z (J s 50.25
TWIN

a. Using BBSTANDARD

Z,ENO • 46.05

z,ENL - .ca.oo
0

b. Using BBSBI

Figure 7.

Example Branch and Bound Enumeration Trees

- 53 -

Z O = 52.05
TWIN

LIST OF TABLES

Number Caption

1. Nonbasic Arc Subsets in Postoptimal Flow Analysis

2. Example Cost and Flow Coefficients

3. Test Problem Characteristics

4. Test Problem Results: Depth in Enumeration Tree

5. Test Problem Results: CPU Time

- 54 -

Arc Subset Subtree Contain- Subtree Contain- Arc Flow
Name ing Tail Node ing Head Node

,·
• ;i

THL·k
J.

T·k
J.

H,k
J. lower bound

THU·k
J.

T,k
J.

H·k
J. upper bound

HTL·k
J.

H,k
J.

T,k
J. lower bound

HTL,k
J.

H,k
J.

T,k
J. upper bound

Table 1.

Nonbasic Arc Subsets in Postoptimal Flow Analysis

- 55 -

Arc i Marginal Costs Flow Bounds
,.

;

ai b· 1
..e.

1 m• 1
u,;

1'

(1,2) 3 0 0 1 7

(1,3) 4 1 0 1 5

(2,3) 5 2 0 1 3

(2,4) 6 3 0 1 6

(3,4) 8 5 0 1 4

Table 2.

Example Cost and Flow Coefficients

- 56 -

Problem Size · Number Number
Number of Nodes of Arcs

1 to 5 Small 5 20

6 to 10 Medium 10 90

11 to 15 Large 15 210

Table 3.

Test Problem Characteristics

- 57 -

Problem Depth in Enumeration Tree Percent
Size Impro.v;ement

BBSTANDARD BBSBI .,

Range Avg. Range Avg. Range Avg.

Small 2 to 5 4.5 1 to 2 1.2 +50 to +80 +68

Medium 11 to 15 13.0 1 to 10 5.6 +27 to +92 +57

Large 19 to 32 27.0 11 to 22 17.4 +29 to +41 +36

Table 4.

Test Problem Results: Depth in Enumeration Tree

- 58 -

Problem CPU Secondsa Percent
Size Improvement

BBSTANDARD BBSBI '

Range Avg. Range Avg. Range Avg.

Small 0.2 to 0.9 0.5 0.2 to 0.7 0.4 +15 to +45 +21

Medium 6.2 to 47.2 27.5 4.1 to 38.6 21.8 -3 to +65 +27

Large 320.5 to 1863.6 923.4 151.7 to 862.5 479.0 +14 to +56 +44

a Using a Micro Source International microcomputer (comparable to an IBM-AT).

Table 5.

Test Problem Results: CPU Time

- 59 -

