## UC Irvine <br> Working Paper Series

## Title

# An Improved Branch and Bound Algorithm for Minimum Concave Cost Network Flow Problems 

## Permalink

https://escholarship.org/uc/item/3m30j7s5

## Author

Lamar, Bruce W.

## Publication Date

1989-07-01

# An Improved Branch and Bound Algorithm for Minimum Concave Cost Network Fow Problems 

## UCI-ITS-WP-89-7

Bruce W. Lamar

Graduate School of Management and Institute of Transportation Studies University of California, Irvine

July 1989
Institute of Transportation Studies
University of California, Irvine
Irvine, CA 92697-3600, U.S.A.
http://www.its.uci.edu

## ABSTRACT

This paper formulates the minimum concave cost network flow (MCCNF) problem as a mixed integer program and solves this program using a new branch and bound algorithm. The algorithm combines Driebeek's "up and down" penalties with a new technique referred to as the simple bound improvement (SBI) procedure. An efficient numerical method for the SBI procedure is described and computational results are presented which show that the SBI procedure reduces both the in-core storage and the CPU time required to solve the MCCNF problem. In fact, for large problems (with over 200 binary decision variables) the SBI procedure reduced the in-core storage by more than one-third and the CPU time by more than 40 percent.

## 1. INTRODUCTION

This paper examines minimum concave cost network flow (MCCNF) problems; that is, problems wherein the marginal cost of carrying flow on an arc decreases as the volume of flow on that arc increases (see Figure 1). This type of cost functionrepresenting quantity discounting, volume-based price incentives, and other forms of scale economies-is a salient feature of many problems involving the transport of people, commodities, or information (Ballou (1985)). Moreover, facility location, network design, and other types of network flow problems involving fixed charges can also be modelled as MCCNF problems.

It is well-known that the general MCCNF problem is NP-hard (Garey and Johnson (1979)). The complexity of the problem arises from the fact that-although a minimum cost solution (if one exists) always occurs at an extreme point of the feasible region (Zangwill (1968)) -identification of the optimal point requires, in the worst case, a complete enumeration of all extreme points in the feasible region. Thus, except in special cases, exact algorithms for the MCCNF problem run in exponential time.

Very efficient methods for solving network flow problems with constant marginal costs have been available since the early 1960's (Ford and Fulkerson (1962)). However, MCCNF problems, being much harder to solve, require specialized solution procedures (see Magnanti and Wong (1984) and Erickson et al. (1987) for recent surveys). In general, solution methods for MCCNF problems can be grouped into three categories: (1) heuristic procedures; (2) dynamic programming methods; and (3)
branch and bound procedures. Heuristic procedures are applicable to MCCNF problems with an arbitrary network topology, but they do not provide a measure of quality (i.e., near-optimality) of the solution obtained. Just the reverse is true for dynamic programming approaches. They provide exact results, but are efficient only for applications involving a limited number of supply and/or demand points (e.g., economic lot-sizing problems). Finally, branch and bound procedures have the dual advantage of providing exact results and being applicable to MCCNF problems with arbitrary network topologies. But, because the enumeration tree grows exponentially with problem size, very efficient bounding techniques are required when branch and bound procedures are used to solve MCCNF problems.

This paper presents a new bounding technique, referred to as the "simple bound improvement" (SBI) procedure, for MCCNF problems comprised of piecewise-linear-concave arc cost functions. The SBI procedure is of theoretical as well as practical interest because it can reduce both the time and the in-core memory required to solve MCCNF problems using a branch and bound procedure. The majority of this paper is devoted to a formal description of the SBI procedure and its role in solving MCCNF problems. The concept underlying this method, however, can be stated very simply. Each arc in a network has a lower (possibly zero) and upper (possibly infinity) bound on the flow that can be carried on that arc. If these bounds can be made tighter, then the feasible solution space of the problem is reduced. The "trick" to the SBI procedure is to tighten these
bounds as much as possible while, at the same time, ensuring that these improved bounds do not "cut off" the optimal flow on any of the arcs in the network. By using this method, larger MCCNF problems can be solved more efficiently.

This paper is organized as follows. Section 2 formulates a family of mixed integer programs representing a generic subprogram in a branch and bound enumeration tree. The linear programming relaxation of a subprogram is characterized in Section 3. This section also discusses postoptimality analysis of a subprogram relaxation. Sections 4 through 6 discuss a trilogy of algorithms used to solve the MCCNF problem. Section 4 specializes Driebeek's (1966) "up and down" penalties for a generic subprogram of the MCCNF problem. These penalties form part of the SBI procedure presented in section 5. In this section, conceptual as well as computational aspects of the SBI method are discussed. The SBI procedure, in turn, forms part of the branch and bound algorithm outlined in Section 6 . Section 7 presents some computational results demonstrating that the SBI procedure accelerates the branch and bound algorithm. Finally, Section 8 summarizes the paper and suggests several possible extensions of the SBI procedure.

## 2. MIXED INTEGER PROGRAMMTNG SUBPROGRAM

The mixed integer programming formulation developed in this section represents a generic subprogram in a branch and bound procedure that is used to solve the minimum concave cost network flow (MCCNF) problem. However, in contrast to the standard branch and bound procedure (where there is a one-to-one correspondence between subprograms and nodes in an enumeration tree), the branch and bound method presented in this paper associates an entire family of subprograms with each node in the enumeration tree. This family of mixed integer programming subprograms is denoted by MIP $^{k}$ where the superscript $k(k=0,1,2, \ldots)$ is an index number that identifies an individual subprogram within this family. For each family of subprograms, we refer to $\mathrm{MIP}^{0}$ as the "initial" subprogram. The initial subprogram at the root node in the enumeration tree is the original problem, MCCNF.

Below, we define notation and formulate a generic subprogram, MIP ${ }^{k}$.

To describe the network topology used with each subprogram, let NODE denote the node set (with generic element $n$ ) and let ARC denote the arc set (with generic element i). For each $i \in A R C$, let $T A I L_{i}$ and $H E A D_{i}$ denote, respectively, the tail and head nodes for arc i. For each $n \in N O D E$, let LEAVE $_{n}$ denote the set of arcs whose tail node is $n$, let $E N T E R_{n}$ denote the set of arcs whose head node is $n$, and let $d_{n}$ denote the net demand (i.e., $d_{n}<0$ ) or supply (i.e., $d_{n}>0$ ) at node $n$. Note that the network topology descriptors defined above are not indexed by $k$.

For each i. $\in A R C, \operatorname{COST}_{i}$ denotes the cost function for arc $i$. We assume that $\operatorname{cosT}_{i}$ is a concave nondecreasing function consisting of two piecewise linear segments with marginal costs $\mathrm{a}_{\mathrm{i}}$ and $\mathrm{b}_{\mathrm{i}}$, respectively (see Figure 1). [Although the MCCNF problem formulated in this paper consists of arc cost functions with, at most, two piecewise linear segments, generalization to more than two segments is straightforward.] We assume that $a_{i} \geqq$ $b_{i} \geqq 0$. In addition, we let $m_{i}$ denote the flow "breakpoint" at which the marginal cost of $\operatorname{COST}_{i}$ switches from $a_{i}$ to $b_{i}$. We assume that $m_{i}$ is a nonnegative integer. Note that the cost function parameters given above also are not indexed by $k$.

The lower and upper flow bounds for arc $i$ in program MIP ${ }^{k}$, however, are indexed by $k$. These bounds are denoted by $\ell_{i}{ }^{k}$ and $u_{i}{ }^{k}$, respectively. We assume that these bounds are integers and that $0 \leqq \ell_{i}{ }^{k} \leqq m_{i} \leqq u_{i}{ }^{k}$. [Note that this latter assumption is not restrictive because if $\ell_{i}{ }^{k}>m_{i}$ or $u_{i}{ }^{k}<m_{i}$, then arc $i$ will have a constant marginal cost in program MIP ${ }^{k}$ so $m_{i}$ can be reset to $\ell_{i}{ }^{k}$ or $u_{i}{ }^{k}$ in $\operatorname{CoST}_{i}$.] It is also useful to define the following two flow interval coefficients (see Figure 1):

$$
\begin{array}{ll}
g_{i}^{k}=m_{i}-\ell_{i}^{k} & \forall i \in A R C \\
h_{i}^{k}=u_{i}^{k}-m_{i} & \forall i \in A R C \tag{1b}
\end{array}
$$

By construction, $g_{i}{ }^{k}$ and $h_{i}{ }^{k}$ are nonnegative integers.
For each arc $i \in \operatorname{ARC}$ in program $M I P^{k}$, one binary and three continuous decision variables are defined. The binary variable, denoted $y_{i}$, specifies whether the applicable marginal cost of function $\operatorname{cosT}_{i}$ is $a_{i}\left(\right.$ if $y_{i}=0$ ) or $b_{i}\left(\right.$ if $Y_{i}=1$ ). We also
partition the arc set ARC into three disjoint, collectively exhaustive subsets: ZERO, ONE, and FREE. The value of $Y_{i}$ depends, in part, upon which subset arc $i$ is a member. If $i \in$ ZERO, then $Y_{i}$ is fixed at zero; if $i \in O N E$, then $Y_{i}$ is fixed at one; and if $i \in \operatorname{FREE}$, then $y_{i}$ may assume either value.

The continuous variables for $i \in A R C$, denoted $x_{i}, v_{i}$, and $w_{i}$, measure the level of flow carried on arc i. Decision variable $\mathrm{x}_{\mathrm{i}}$ gives the total flow on arc i. This total flow is the sum of two components: (1) decision variable $\mathrm{v}_{\mathrm{i}}$ (representing the flow carried on arc $i$ at a marginal cost of $a_{i}$ ); and (2) decision variable $w_{i}$ (representing the flow carried on arc $i$ at a marginal cost of $b_{i}$ ). For purposes of formulating the problem, we represent each arc $i \in A R C$ as a pair of parallel arcs, one for each of the flow components defined above (see Figure 2). Note that $i \in$ ZERO implies that $x_{i} \leqq m_{i}$, and that $i \in O N E$ implies that $x_{i} \geqq m_{i}$.

The formulation also uses an arc flow set, denoted by FLow ${ }^{k}$, which represents the set of arc flow vectors, $\underline{x}=\left(\ldots, x_{i}, \ldots\right)$, that conform to the following capacitated flow balance equations:

$$
\begin{align*}
& \sum x_{i}-\sum x_{i}=d_{n} \quad \forall n \in \operatorname{NODE} \\
& i \in \text { LEAVE }_{n} \quad i \in E^{\prime} T E R_{n} \\
& \begin{array}{ll}
\ell_{i}^{k} \leq x_{i} \leq m_{i} & \forall i \in \text { ZERO } \\
m_{i} \leq x_{i} \leq u_{i}^{k} & \forall i \in \text { ONE } \\
\ell_{i}^{k} \leq x_{i} \leq u_{i}^{k} & \forall i \in \text { FREE }
\end{array} \tag{2b}
\end{align*}
$$

We now formulate $M I P^{k}$, a generic subprogram of the minimum concave cost network flow problem considered in this paper.

Program MIP ${ }^{k}$ :
$\underset{\underline{x} \in F L O W^{k}}{\operatorname{Min}} \sum_{i \in A R C}\left(a_{i} \cdot v_{i}+b_{i} \cdot w_{i}\right)$

Subject to:

$$
\begin{array}{ll}
v_{i}+w_{i}=x_{i} & \forall i \in \operatorname{ARC} \\
\ell_{i}^{k}+g_{i}^{k} \cdot y_{i} \leqq v_{i} \leqq m_{i} & \forall i \in \operatorname{ARC} \\
0 \leqq w_{i} \leqq h_{i}^{k} \cdot y_{i} & \forall i \in \operatorname{ARC} \\
y_{i}=0 & \forall i \in \mathrm{ZERO} \\
y_{i}=1 & \forall i \in \mathrm{ONE} \\
y_{i} \in\{0,1\} & \forall i \in \operatorname{FREE} \tag{3g}
\end{array}
$$

Objective function (3a) minimizes the total cost of carrying flow in the network. Performing this minimization over the set FLow ${ }^{k}$ ensures that only feasible flow patterns are considered. Constraint (3b) establishes the conservation of flow for the parallel arc representation for each arc $i \in \operatorname{ARC}$ (see Figure 2). Because $\operatorname{COST}_{i}$ is a concave function, the marginal cost of arc $i$ must be nonincreasing as the flow on arc $i$ increases. This requirement is enforced by constraints (3c) and (3d), which guarantee that $w_{i}=0$ if $\mathrm{v}_{\mathrm{i}}<\dot{m}_{i}$. Finally, constraints (3e) through (3g) identify the restrictions placed on the binary
decision variables in subprogram MIP ${ }^{k}$. [The nonnegativity conditions for the continuous decision variables are implicitly enforced by constraints (2b) through (2d), (3c), and (3d).]

For any program $P$, let FEASIBLE[P], SOLUTION[P], and OBJFCTN[P] denote, respectively, the feasible region, the optimal solution vector, and the optimal objective function value for that program. Thus, for subprogram MIP ${ }^{k}$, this information is denoted by FEASIBLE[MIP $\left.{ }^{k}\right]$, SOLUTION[MIP $\left.{ }^{k}\right]$, and OBJFCTN[MIP $\left.{ }^{k}\right]$. Also, let the optimal value of an individual decision variable be denoted by the symbol for that variable followed by the name of the program (in square brackets) for which that decision variable is optimal. Thus, for each arc $i$ in subprogram $M I P^{k}$, the optimal value of the decision variables is denoted by $y_{i}\left[M I P^{k}\right], x_{i}\left[M I P^{k}\right]$, $v_{i}\left[M I P^{k}\right]$, and $w_{i}\left[\right.$ MIP $\left.^{k}\right]$.

Mixed integer programming formulations used in implicit enumeration procedures for concave cost networks with arbitrary topologies have also been developed by Balakrishnan (1984), Florian and Robillard (1971), Lamar (1985), Lamar and Sheffi (1988), and Los and Lardinois (1982). Formulations and branch and bound algorithms for fixed charge transportation (i.e., bipartite) network flow problems-originally formulated by Balinski (1961) -have been developed by Barr et al. (1981), Cabot and Erenguc (1984), Gray (1971), and Kennington and Unger (1976). Florian and Robillard (1971) and Malek-Zavarei and Frisch (1972) have shown the equivalence between bipartite and arbitary network topologies for MCCNF problems (also see Erickson et al: (1987)). Gallo et al. (1980) considered networks with a single source
node; Afentakis et al. (1984) applied a branch and bound algorithm to a lot sizing problem involving concave costs; and Sa (1969) and Soland (1974) used branch and bound methods for plant location problems with concave production, holding, and/or transportation costs.

The structure of the linear programming relaxation of subprogram MIP ${ }^{k}$ is examined next.

## 3. LINEAR PROGRAMMING RELAXATION

It is well known (see, for example, Yaged (1971)) that a lower bound to OBJFCTN[MIPk can be obtained by solving a linear program in which, for each arc $i \in A R C, \operatorname{COST}_{i}$ is replaced with a the linear underestimator of $\operatorname{CoST}_{i}$ (see Figure 1). Moreover, because this linear program is a minimum (linear) cost network flow problem, it can be solved very efficiently. The contribution of this section is to show that the linear program described above is equivalent to the linear program formed by relaxing the integrality requirements in subprogram MIP ${ }^{k}$, thereby establishing the tightness of the lower bound obtained by using a linear underestimator of a concave cost function. This work extends Balinski's (1961) results for fixed charge problems to a more general class of problems.

The material in this section is divided into two parts. The first part shows the equivalence between alternative linear programming representations and the second part discusses postoptimality analysis. This analysis is used later in this paper to develop tight bounds to OBJFCTN[MIP ${ }^{k}$ ].

### 3.1 Equivalent Formulations

We begin by formulating the linear programming relaxation of subprogram MIP ${ }^{k}$. This relaxation, denoted $L^{k}$, is formed simply by replacing the binary constraints (3g) with the following nonnegativity conditions:

$$
\begin{equation*}
0 \leq y_{i} \leq 1 \quad \forall i \in \operatorname{FREE} \tag{4}
\end{equation*}
$$

Let FEASIBLE[LP $\left.{ }^{k}\right]$, SOLUTION[LP $\left.{ }^{k}\right]$, and OBJFCTN[LP $\left.{ }^{k}\right]$ denote, respectively, the feasible region, optimal solution vector, and the optimal objective function value for program $L P^{k}$. Also, for each $\operatorname{arc} i$, let $y_{i}\left[L P^{k}\right], x_{i}\left[L P^{k}\right], v_{i}\left[L P^{k}\right]$, and $w_{i}\left[L P^{k}\right]$ denote the optimal value of the decision variables in program LP ${ }^{k}$.

Relaxation $L P^{k}$ has the property that, if the total flow on each arc $i \in A R C$ is given (i.e., fixed), then program $L P^{k}$ separates by arc and the optimal value of the other decision variables associated with each arc $i$ can be obtained by inspection. Thus, we can conceptualize a solution procedure for program LP ${ }^{k}$ as follows: for each feasible flow vector in FLOW ${ }^{k}$, solve a separate linear program for each arc in ARC; then select, from among this (possibly infinite) set of flow vectors, the one that minimizes the total cost. As shown below, this solution method is equivalent to solving a linear cost network flow problem in which the cost for arc i is taken as the linear underestimator of $\operatorname{COST}_{i}$.

The concept outlined in the preceding paragraph can be expressed algebraically by representing the linear programming relaxation of subprogram $M I P^{k}$ in the following equivalent form:

Program LP ${ }^{k}$ :

$$
\begin{equation*}
\operatorname{Min}_{\underline{x} \in F L O W^{k}} \sum_{i \in \operatorname{ARC}}\left(b_{i} \cdot x_{i}+\operatorname{OBJFCTN}\left[\operatorname{FIXLP}_{i}{ }^{k}\right]\right) \tag{5}
\end{equation*}
$$

Here, OBJFCTN[FIXLP ${ }_{i}{ }^{k}$ ] is the optimal objective function value of the following linear program for arc $i$ in which $x_{i}$ (the total flow on arc i) is considered fixed:

Program FIXLP $_{i}{ }^{k}$ :
$\operatorname{Min}\left(a_{i}-b_{i}\right) \cdot v_{i}$

Subject to:

$$
\begin{align*}
& v_{i} \leqq m_{i}  \tag{6b}\\
& -g_{i}^{k} \cdot y_{i}+v_{i} \geqq \ell_{i}^{k}  \tag{6c}\\
& \mathrm{~h}_{\mathrm{i}}^{k} \cdot y_{i}+v_{i} \geqq x_{i}  \tag{6d}\\
& v_{i} \leqq x_{i}  \tag{6e}\\
& y_{i} \geqq p_{i}  \tag{6f}\\
& y_{i} \leqq q_{i} \tag{6~g}
\end{align*}
$$

where $p_{i}$ and $q_{i}$ are parameters such that $p_{i}=0$ if $i \in$ ZERO $U$ FREE; $p_{i}=1$ if $i \in O N E ; q_{i}=0$ if $i \in \operatorname{ZERO} ;$ and $q_{i}=1$ if $i \in$ ONE $U$ FREE. We refer to program (6) as the "fixed flow" linear program. Note that there is a separate program for each arc $i \in A R C$ and that $x_{i}$ is considered a constant in each of these programs. The fixed flow program for arc i is composed of the constraints and objective function terms involving arc in in program LP ${ }^{k}$. Constraints (6b) and (6c) correspond to constraint (3c); constraints (6d) and (6e) correspond to constraint (3d); and constraints (6f) and (6g) correspond to constraints (3e) through (3g). Note, however, that decision variable $w_{i}$ has been eliminated from the fixed flow program by substituting $x_{i}-v_{i}$ for $w_{i}$ (see eq. (3b)). Thus, $w_{i}$ can also be interpreted as the slack variable associated with constraint (6e). Because $w_{i}$ has
been eliminated and $X_{i}$ is considered a constant, each fixed flow linear program involves only two decision variables: $y_{i}$ and $v_{i}$.

Program FIXLP ${ }_{i}{ }^{k}$ has been expressed in the form given above because its optimal solution can be obtained by inspection. If i $\in$ ZERO, then it is clear that the fixed flow program is feasible only if $\ell_{i}{ }^{k} \leq x_{i} \leqq m_{i}$; and if the program is feasible, then the optimal solution is

$$
\begin{align*}
& \mathrm{y}_{\mathrm{i}}\left[\mathrm{FIXLP}_{\mathrm{i}}^{k}\right]=0  \tag{7a}\\
& \mathrm{v}_{\mathrm{i}}\left[\mathrm{FIXLP}_{i}^{k}\right]=\mathrm{x}_{\mathrm{i}}  \tag{7b}\\
& \mathrm{w}_{\mathrm{i}}\left[\mathrm{FIXLP}_{i}^{k}\right]=0 \tag{7c}
\end{align*}
$$

Similarly, if $i \in O N E$, then the fixed flow program is feasible only if $m_{i} \leqq x_{i} \leqq u_{i}{ }^{k}$, in which case the optimal solution is

$$
\begin{equation*}
Y_{i}\left[\mathrm{FIXLP}_{i}^{k}\right]=1 \tag{8a}
\end{equation*}
$$

$\mathrm{v}_{\mathrm{i}}\left[\mathrm{FIXLP}_{i}^{k}\right]=\mathrm{m}_{\mathrm{i}}$

$$
\begin{equation*}
w_{i}\left[\operatorname{FIXLP}_{i}^{k}\right]=x_{i}-m_{i} \tag{8C}
\end{equation*}
$$

Finally, if $i \in$ FREE, then the fixed flow program will be feasible only if $\ell_{i}{ }^{k} \leqq x_{i} \leq u_{i}{ }^{k}$. Figure 3 shows a typical feasible region for program $\operatorname{FIXLP}_{i}{ }^{k}$ for the case where $i \in \operatorname{FREE}$. Observe that, because of the concavity assumption for the cost function $\operatorname{COST}_{i}$, the coefficient $\left(a_{i}-b_{i}\right)$ in objective function (6a) is always nonnegative. This means that, if program $\mathrm{FIXLP}_{i}{ }^{k}$ is feasible, then an optimal solution always occurs at the extreme point in which constraints (6c) and (6d) are binding (see
point 1 in Figure 3). Thus, these two constraints (taken as equalities), together with equality (3b), can be used to determine the optimal value of the decision variables. We consider two possible cases. On the one hand, if $g_{i}{ }^{k}+h_{i}{ }^{k}$ equals zero, then the fixed flow program is feasible only if $\mathrm{x}_{\mathrm{i}}=$ $m_{i}$ and the value of $y_{i}$ is arbitrary. Thus, in this case, the optimal solution to the program can be expressed using either (7) or (8). On the other hand, if $g_{i}{ }^{k}+h_{i}^{k}$ is nonzero, then we can solve explicitly for $y_{i}, v_{i}$, and $w_{i}$. This yields,

$$
\begin{align*}
& y_{i}\left[\operatorname{FIXLP}_{i}{ }^{k}\right]=\frac{x_{i}-\ell_{i}{ }^{k}}{g_{i}^{k}+h_{i}^{k}}  \tag{9a}\\
& v_{i}\left[\operatorname{FIXLP}_{i}{ }^{k}\right]=\frac{g_{i}{ }^{k} \cdot x_{i}+h_{i}^{k} \cdot \ell_{i}{ }^{k}}{g_{i}{ }^{k}+h_{i}{ }^{k}}  \tag{9b}\\
& W_{i}\left[\operatorname{FIXLP}_{i}{ }^{k}\right]=\frac{h_{i}{ }^{k} \cdot\left(x_{i}-\ell_{i}{ }^{k}\right)}{g_{i}{ }^{k}+h_{i}{ }^{k}} \tag{9c}
\end{align*}
$$

Observe that, if the RHS of eq. (7b), (8b), or (9b) is substituted for $v_{i}$ in eq. (6a), then eq. (5) can be expressed solely in terms of the total arc flow decision variables $\left\{x_{i}\right\}$. This substitution can be expressed compactly by defining the following new parameters:

$$
\begin{align*}
& c_{i}^{k}= \begin{cases}a_{i} & \text { if } i \in \text { ZERO or } g_{i}{ }^{k}+h_{i}{ }^{k}=0 \\
b_{i} & \text { if } i \in \text { ONE and } g_{i}{ }^{k}+h_{i}{ }^{k} \neq 0 \\
\frac{a_{i} \cdot g_{i}{ }^{k}+b_{i} \cdot h_{i}{ }^{k}}{g_{i}{ }^{k}+h_{i}{ }^{k}} \text { if } i \in \operatorname{FREE} \text { and } g_{i}{ }^{k}+h_{i}{ }^{k} \neq 0\end{cases}  \tag{10a}\\
& f_{i}^{k}= \begin{cases}0 & \text { if } i \in \text { ZERO or } g_{i}{ }^{k}+h_{i}{ }^{k}=0 \\
\left(a_{i}-b_{i}\right) \cdot m_{i} & \text { if } i \in \text { ONE and } g_{i}{ }^{k}+h_{i}{ }^{k} \neq 0 \\
\left(a_{i}-c_{i}{ }^{k}\right) \cdot e_{i}^{k} & \text { if } i \in \operatorname{FREE} \text { and } g_{i}{ }^{k}+h_{i}{ }^{k} \neq 0\end{cases} \tag{10b}
\end{align*}
$$

These two parameters can be interpreted as the slope and intercept, respectively, of the line representing the linear underestimator of function $\operatorname{COST}_{i}$ over the feasible domain of $x_{i}$ (see Figure 1). Using these parameters, eq. (5) can be reexpressed as the following program:

Program LP ${ }^{k}$ :

$$
\begin{equation*}
\sum_{i \in A R C} f_{i}^{k}+\operatorname{Min}_{\underline{x} \in F L O W^{k}} \sum_{i \in A R C} c_{i}^{k} \cdot x_{i} \tag{11}
\end{equation*}
$$

Observe that three equivalent forms of the linear programming relaxation of subprogram MIP ${ }^{k}$ have been presented:
(1) Eq. (3a) through (3f) and (4),
(2) Eq. (5) and (6), and
(3) Eq. (11)

The formulation given in eq. (11) is preferred, however, because it is clear from the form of this expression, that the linear programming relaxation of $M I P^{k}$ is simply a minimum (linear) cost capacitated network flow model, plus an objective function constant term $\left(\Sigma f_{i}{ }^{k}\right)$. By using special tree labeling techniques (see, for example, Barr, Glover, and Klingman (1979)), program $L^{k}$ can be solved very efficiently. Moreover, eq. (11) establishes that the lower bound to OBJFCTN[MIP ${ }^{k}$ ] obtained by using the linear underestimator of $\operatorname{cosT}_{i}$ is as tight as OBJFCTN[LP $\left.\mathrm{P}^{k}\right]$.

In subsequent sections of this paper, two procedures are presented for obtaining a lower bound to OBJFCTN[MIP ${ }^{k}$ ] that can be tighter then OBJFCTN[LP ${ }^{k}$ ]. Both of these methods are based on an incremental change of flow from the optimal solution of program $L P^{k}$. As shown in the next subsection, the effects of these changes can be determined directly from the solution to $L^{k}$.

### 3.2 Postoptimality Flow Analysis

To evaluate the effect of an incremental change of flow on arc $i$ in program $L P^{k}$, we consider a new linear program, denoted POSTOPTLP $_{i}{ }^{k}$, formed by adding the single constraint

$$
\begin{equation*}
x_{i}=x_{i}\left[L P^{k}\right]+\delta_{i}^{k} \tag{12}
\end{equation*}
$$

to program $L P^{k}$. Here, $x_{i}\left[L P^{k}\right]$ is the optimal value of decision variable $x_{i}$ in program $L P^{k}$ and $\delta_{i}^{k}$ is a fixed number. Because program POSTOPTLP ${ }_{i}{ }^{k}$ is of the form of a network flow program
augmented by a single side constraint, it could be evaluated by the methods proposed by Belling-Seib et al. (1988) or Glover et al. (1978). However, assuming no change in basis, the effect of constraint (12) can be determined directly from the optimal solution to program LP .

To describe this effect, let $\alpha_{i}{ }^{k}$ denote the rate of increase in OBJFCTN[POSTOPTLP ${ }_{i}{ }^{k}$ ] as $\delta_{i}{ }^{k}$ changes from 0 to $0^{-}$(i.e., to a small negative value) and let $\beta_{i}{ }^{k}$ denote the rate of increase in OBJFCTN[POSTOPTLP ${ }_{i}{ }^{k}$ ] as $\delta_{i}{ }^{k}$ changes from 0 to $0^{+}$(i.e., to a small positive value). [Typical values of these rates of increase (i.e., slopes) are shown in Figure 4.] In addition, let $\pi_{n}{ }^{k}$ denote the optimal value of the dual variable in program $L P^{k}$ associated with node $n$ in the flow balance equation (2a), and let

$$
\begin{equation*}
r_{i}^{k}=c_{i}^{k}+\pi_{\text {TAIL }_{i}}{ }^{k}-\pi_{\operatorname{HEAD}_{i}}{ }^{k} \tag{13}
\end{equation*}
$$

denote the reduced cost associated with decision variable $\mathrm{x}_{\mathrm{i}}$ in the optimal solution to program $L P^{k}$. The effect of constraint (12) depends on whether $x_{i}$ is a basic or nonbasic decision variable. Thus, let BASIC $^{k}$ denote the set of arcs $i \in$ ARC such that $\mathrm{x}_{\mathrm{i}}$ is basic in the optimal solution in program $\mathrm{LP}^{k}$ and let NONBASIC ${ }^{k}=$ ARC - BASIC $^{k}$.

If $i \in$ BASIC $^{k}$, then arc $i$ must be part of a basis-equivalent spanning tree representing the basic solution to program $L P^{k}$ (Johnson (1966)). If arc i were omitted from this spanning tree, two disjoint subtrees would be created, one containing $\mathrm{TAIL}_{\mathrm{i}}$ (the tail node of arc i) and the other containing $H E A D_{i}$ (the head node of arc $i$ ). Let $T_{i}{ }^{k}$ and $H_{i}{ }^{k}$ denote, respectively, the subtrees
containing node $\mathrm{TAIL}_{i}$ and $\mathrm{HEAD}_{i}$. As summarized in Table 1, we now define four (disjoint but not collective exhaustive) subsets of the arcs contained in NONBASIC ${ }^{k}$. Table 1 shows, for example, that $T H L_{i}^{k}$ is the set of arcs $j \in \operatorname{NONBASIC}^{k}$ such that node TAIL ${ }_{j}$ is contained in subtree $T_{i}{ }^{k}$, node $H E A D_{j}$ is contained in $H_{i}{ }^{k}$, and $x_{j}\left[L P^{k}\right]$ (the optimal flow on arc $j$ in program $L P^{k}$ ) is equal to $\ell_{j}{ }^{k}$.

Assuming no change in basis, observe that if $i \in \operatorname{BASIC}^{k}$, then a unit decrease in the flow on arc $i$ requires either (1) a unit increase in flow on an arc contained in arc subset $\mathrm{THL}_{i}{ }^{k}$; or (2) a unit decrease in flow on an arc contained in arc subset $\operatorname{HTU}_{i}{ }^{k}$. So, the minumum cost way of forcing this change of flow on arc $i$ is expressed by the minimum (absolute value) reduced cost of the arcs contained in subsets $\mathrm{THL}_{i}{ }^{k}$ and $\mathrm{HTU}_{i}{ }^{k}$.

On the other hand, if $i \in$ NONBASIC $^{k}$, then it must be the case that either (1) $x_{i}\left[L P^{k}\right]=\ell_{i}{ }^{k}$; or (2) $x_{i}\left[L P^{k}\right]=u_{i}{ }^{k}$. If $x_{i}\left[\mathrm{LP}^{k}\right]$ is at its lower bound, then clearly the flow on arc $i$ cannot be decreased; and if $x_{i}\left[L P^{k}\right]$ is at its upper bound, then, assuming no change in basis, the minumum cost for a unit decrease in the flow on arc $i$ is simply (the absolute value of) the reduced cost for arc i.

Thus, $\alpha_{i}{ }^{k}$, the rate of increase in OBJFCTN[POSTOPTLP ${ }_{i}{ }^{k}$ ] as $\delta_{i}{ }^{k}$ (in constraint (12)) changes from 0 to $0^{-}$, is given by

$$
\alpha_{i}^{k}=\left\{\begin{array}{l}
\operatorname{Min}_{j}\left\{\left|r_{j}^{k}\right|: j \in \operatorname{THL}_{i}^{k} \cup \operatorname{HTU}_{i}^{k}\right\} \text { if i } \in \text { BASIC }^{k}  \tag{14}\\
\infty \quad \text { if i } \in \text { NONBASIC }^{k} \text { and } x_{i}\left[L P^{k}\right]=\ell_{i}^{k} \\
\left|r_{i}^{k}\right| \\
\text { if i } \in \text { NONBASIC }^{k} \text { and } x_{i}\left[L P^{k}\right]=u_{i}^{k}
\end{array}\right.
$$

Similarly, if $i \in B_{A S I C}{ }^{k}$ and no basis change occurs, then increasing the flow on arc $i$ by one unit requires either (1) a unit decrease in flow on an arc contained in $\mathrm{THU}_{i} k$; or (2) a unit increase in flow on an arc contained in $\mathrm{HTL}_{\mathrm{i}}{ }^{k}$; and the cost associated with this flow change is given by the reduced cost of the arcs in these two subsets. On the other hand, if i $\in$ NONBASIC ${ }^{k}$, then the cost associated with a unit increase in the flow on arc $i$ is the reduced cost of arc i if $x_{i}\left[L P^{k}\right]=\ell_{i}^{k}$; and infinity if $x_{i}\left[L^{k}\right]=u_{i}{ }^{k}$. Thus, $\beta_{i}{ }^{k}$, the rate of increase in OBJFCTN[POSTOPTLP ${ }_{i}{ }^{k}$ ] as $\delta_{i}{ }^{k}$ changes from 0 to $0^{+}$is given by

Note that, once program $L P^{k}$ has been solved, then the rates $\alpha_{i}{ }^{k}$ and $\beta_{i}{ }^{k}$ can be determined with very little additional computational effort. The next two sections discuss procedures that use these rates to obtain a lower bound to OBJFCTN[MIP ${ }^{k}$ ] that can be significantly tighter than OBJFCTN[LP ${ }^{k}$ ].

## 4. UP AND DOWN PENALTTIES

This section specializes, for program $M I P^{k}$, the "up and down" penalties developed by Driebeek (1966). This well-known procedure is briefly recapitulated here because it is incorporated into the stronger bounds developed in the next section.

The concept of Driebeek's penalty procedure applied to program $M P^{k}$ is as follows: if, for any arc $i \in \operatorname{FREE}$, the optimal value of decision variable, $y_{i}$, is fractional in program $L P^{k}$, then the value of $O B J F C T N\left[L P^{k}\right]$ might be increased (i.e., "penalized") by forcing $Y_{i}$ to be zero or one; and this penalized objective function value will be a lower bound to OBJFCTN[MIP ${ }^{k}$ ] that is at least as tight as OBJFCTN[LP $\left.{ }^{k}\right]$. Note that, although it was intended only for the initial subprogram MIP ${ }^{0}$, Driebeek's penalty method can be applied to any subprogram MIP for $k=$ 0,1,2,... .

To analyze the penalty associated with an arc i $\in$ FREE whose decision variable $Y_{i}$ is fractional-valued in the optimal solution to $L P^{k}$, consider a new linear program, denoted $\operatorname{PENLP}_{i}{ }^{k}$, formed by adding the single constraint

$$
\begin{equation*}
y_{i}=y_{i}\left[L P^{k}\right]+\Delta_{i}^{k} \tag{16}
\end{equation*}
$$

to program $L P^{k}$. In this constraint, $Y_{i}\left[L P^{k}\right]$ is the optimal value of $y_{i}$ in program $L P^{k}$ and $\Delta_{i}{ }^{k}$ is a fixed number. If $\Delta_{i}{ }^{k}$ changes from 0 to $0^{-}$(i.e., to a small negative value), then one of two possible changes to the solution of program $L P^{k}$ will occur: (1) the flow on arc $i$ will remain at $x_{i}\left[L P^{k}\right]$; or (2) the flow on arc
i will change (i.e., decrease) by $\Delta_{i}{ }^{k} \cdot\left(g_{i}{ }^{k}+h_{i}{ }^{k}\right)$. In the first case, the optimal solution of program PENLP $_{i}{ }^{k}$ will shift from point 1 to point 2 in Figure 3 and the optimal objective function value of program $\operatorname{PENLP}_{i}{ }^{k}$ will change from OBJFCTN[LP ${ }^{k}$ ] to OBJFCTN[LP $\left.{ }^{k}\right]-\Delta_{i}^{k} \cdot\left(g_{i}^{k}+h_{i}^{k}\right) \cdot\left(a_{i}-c_{i}^{k}\right)$. In the second case, the optimal solution of program PENLP $_{i}{ }^{k}$ will shift from point 1 to point 3 in Figure 3 (with a corresponding shift in constraint (6d)) and the optimal objective function value will change from OBJFCTN[LP $\left.{ }^{k}\right]$ to OBJFCTN[LP $\left.{ }^{k}\right]-\Delta_{i}{ }^{k} \cdot\left(g_{i}{ }^{k}+h_{i}{ }^{k}\right) \cdot \alpha_{i}{ }^{k}$ (where $\alpha_{i}{ }^{k}$ is the marginal rate of change defined in eq. (14)). Thus, the penalty, denoted $\mathrm{DOWN}_{i}{ }^{k}$, for forcing $y_{i}$ down to zero must be at least as great as

$$
\begin{equation*}
\operatorname{DOWN}_{i}^{k}=Y_{i}\left[L P^{k}\right] \cdot\left(g_{i}^{k}+h_{i}^{k}\right) \cdot \operatorname{Min}\left\{a_{i}-c_{i}^{k}, \alpha_{i}^{k}\right\} \tag{17}
\end{equation*}
$$

Similarly, if $\Delta_{i}{ }^{k}$ changes from 0 to $0^{+}$(i.e., to a small positive value), then either (1) the flow on arc i will remain at $\mathrm{x}_{\mathrm{i}}\left[L \mathrm{P}^{k}\right]$; or (2) the flow will change (i.e., increase) by $\Delta_{i}{ }^{k} \cdot\left(g_{i}{ }^{k}+h_{i}^{k}\right)$. In the first case, the optimal solution of program PENLP $_{i}{ }^{k}$ will shift from point 1 to point 4 in Figure 3 and the optimal objective function value of program $\operatorname{PENLP}_{i}{ }^{k}$ will change from OBJFCTN[LP $\left.{ }^{k}\right]$ to OBJFCTN[LP $\left.{ }^{k}\right]$ $+\Delta_{i}^{k} \cdot\left(g_{i}^{k}+h_{i}^{k}\right) \cdot\left(c_{i}^{k}-b_{i}\right)$. In the second case, the optimal solution of program $\operatorname{PENLP}_{i}{ }^{k}$ will shift from point 1 to point 5 (with a corresponding shift in constraint (6d)) and the optimal objective function value will change from OBJFCTN[LP ${ }^{k}$ ] to OBJFCTN $\left[L P^{k}\right]+\Delta_{i}{ }^{k} \cdot\left(g_{i}^{k}+h_{i}^{k}\right) \cdot \beta_{i}^{k}$ (where $\beta_{i}^{k}$ is the marginal rate of change defined in eq. (15)). Thus, the penalty, denoted,
$U P_{i}{ }^{k}$, for forcing $Y_{i}$ up to one must be at least as great as

$$
\begin{equation*}
U P_{i}^{k}=\left(1-Y_{i}\left[L P^{k}\right]\right) \cdot\left(g_{i}^{k}+h_{i}^{k}\right) \cdot \operatorname{Min}\left(c_{i}^{k}-b_{i}, \beta_{i}^{k}\right\} \tag{18}
\end{equation*}
$$

Because, in the optimal solution to $M I P^{k}$, every $y_{i}$ must be either 0 or 1 , the "penalty" lower bound, denoted $z_{P E N} k$, to OBJFCTN[MIP ${ }^{k}$ ] is given by

$$
\begin{equation*}
\left.z_{\mathrm{PEN}}^{k}=\operatorname{OBJFCTN}\left[L \mathrm{P}^{k}\right]+\operatorname{Max}_{\mathrm{i} \in \mathrm{FREE}}\left\{\operatorname{Min}^{\mathrm{MAOWN}}{ }_{\mathrm{i}}^{k}, \mathrm{UP}_{\mathrm{i}}{ }^{k}\right\}\right\} \tag{19}
\end{equation*}
$$

The next section describes a procedure, which can be used in conjunction with the penalty method described above, to obtain a tighter lower bound.

## 5. SIMPLE BOUND IMPROVEMENT PROCEDURE

In contrast to the "up and down" penalty procedure summarized in Section 4 (which concentrated on the binary decision variables $\left.\left\{Y_{i}\right\}\right)$, the "simple bound improvement" (SBI) method presented here focuses on the continuous variables $\left\{\mathrm{x}_{\mathrm{i}}\right.$ ). In this section, we generalize Lamar and Sheffi's (1988) and Lamar et al. (1989) work on fixed charge problems. We also introduce a simplified computational procedure.

The discussion below is divided into two parts. The first part develops the concept of the SBI procedure for MCCNF problems; and the second part shows that the parameters used in this procedure are easy to compute.

### 5.1 Concept

Starting with the solution $L P^{0}$ (the relaxation of the initial subprogram), the SBI procedure evaluates the family of linear programming relaxations $L P^{k}$ for $k=1,2, \ldots$ to obtain a successively tighter lower bound to OBJFCTN[MIP ${ }^{0}$ ] (the optimal objective function value of the initial subprogram). The process uses $z_{\text {INC }}$, the objective function value of an incumbent (i.e., feasible but not necessarily optimal) solution to the original problem, MCCNF. [The determination of $z_{\text {INC }}$ is discussed in Section 6.] Regardless of the value of $z_{\text {INC }}$, though, it must be the case that either (1) $z_{\text {INC }}>\operatorname{OBJFCTN}\left[\mathrm{MIP}^{0}\right]$; or (2) $\mathrm{z}_{\text {INC }} \leqq$ OBJFCTN[MIP $\left.{ }^{0}\right]$. Below, we consider each of these cases separately and then summarize the lower bound implied by these two cases.

## - Case 1: Incumbent Value overestimates OBTFCTN[MIP ${ }^{0}$ ]

For the first case we assume that $\left.z_{\text {INC }}>\operatorname{OBJFCTN[MIP}{ }^{0}\right]$. For this case, we also assume that SOLUTION[MIP ${ }^{0}$ ] (the optimal solution to the initial subprogram MIP ${ }^{0}$ ) is contained in FEASIBLE[LP ${ }^{k}$ ] (the feasible region of relaxation LP ${ }^{k}$ ). [As explained at the end of Case 1, this assumption will always be true if $\left.z_{\text {INC }}>\operatorname{OBJFCTN}\left[M I P^{0}\right].\right] \quad$ The incumbent objective function value can be used to seek tighter bounds for the flow on any arc $i \in A R C$. Let $\ell_{i}{ }^{k+1}$ and $u_{i}{ }^{k+1}$ denote, respectively, these tighter lower and upper flow bounds for arc i. In order to determine the value of these tighter bounds, we once again consider the previously defined linear program, $\operatorname{POSTOPTLP}_{i}{ }^{k}$, formed by adding constraint (12) to program LP ${ }^{k}$. [In this subsection, however, we consider all possible values of $\delta_{i}{ }^{k}$ rather than just those that are close to zero.]

Starting with $\delta_{i}{ }^{k}=0$, we first consider the effect of decreasing the value of $\delta_{i}{ }^{k}$. From parametric RHS analysis, we know that if $\delta_{i}{ }^{k}=0$ then $\operatorname{OBJFCTN}\left[\operatorname{POSTOPTLP}_{i}{ }^{k}\right]=\operatorname{OBJFCTN}\left[\mathrm{LP}^{k}\right]$; and that if $\delta_{i}{ }^{k}<0$, then OBJFCTN[POSTOPTLP $\left.{ }_{i}{ }^{k}\right] \geqq \operatorname{OBJFCTN}\left[L P^{k}\right]$. We continue decreasing the value of $\delta_{i}{ }^{k}$ until either (1) $\delta_{i}{ }^{k}=$ $\ell_{i}{ }^{k}-\mathrm{x}_{\mathrm{i}}\left[\mathrm{LP}^{k}\right]$; or (2) OBJFCTN[POSTOPTLP $\left.{ }_{i}{ }^{k}\right]=\mathrm{z}_{\text {INC }}$. We then set $\ell_{i}^{k+1}=x_{i}\left[L P^{k}\right]+\delta_{i}^{k}$. observe that if $\delta_{i}^{k}=\ell_{i}^{k}-x_{i}\left[L P^{k}\right]$, then $\ell_{i}{ }^{k+1}$ is simply $\ell_{i}^{k}$ and since (by assumption) $\mathrm{x}_{i}\left[\mathrm{MIP}^{0}\right] \geqq$ $\ell_{i}{ }^{k}$, this means that $x_{i}\left[M I P^{0}\right] \geq \ell_{i}{ }^{k+1}$. on the other hand, if OBJFCTN[POSTOPTLP ${ }_{i}{ }^{k}$ ] $=z_{\text {INC }}$ (and, by assumption, $z_{\text {INC }}>$ $\left.\operatorname{OBJFCTN}\left[M I P^{0}\right]\right)$, then $\mathrm{x}_{\mathrm{i}}\left[\mathrm{MIP}^{0}\right]$ cannot be less than $\mathrm{x}_{\mathrm{i}}\left[L P^{k}\right]+\delta_{i}{ }^{k}$,
so it must be true that $X_{i}\left[M I P^{0}\right] \geqslant \ell_{i}{ }^{k+1}$. Thus, in either case, $\ell_{i}{ }^{k+1}$ is a lower bound to $\mathrm{x}_{\mathrm{i}}\left[\mathrm{MIP}^{0}\right]$.

Once again starting with $\delta_{i}{ }^{k}=0$, we now consider the effect of increasing the value of $\delta_{i}{ }^{k}$. Clearly, if $\delta_{i}{ }^{k}>0_{i}$, then $\operatorname{OBJFCTN}\left[\operatorname{POSTOPTLP}_{i}{ }^{k}\right] \geq \operatorname{OBJFCTN}\left[L \mathrm{P}^{k}\right]$. We continue increasing $\delta_{i}{ }^{k}$ until either (1) $\delta_{i}{ }^{k}=u_{i}{ }^{k}-x_{i}\left[\operatorname{LP}^{k}\right]$; or (2) OBJFCTN [POSTOPTLP $\left.{ }_{i}{ }^{k}\right]$ $=z_{\text {INC }}$. We then set $u_{i}{ }^{k+1}=x_{i}\left[L P^{k}\right]+\delta_{i}{ }^{k}$. Observe that, if $\delta_{i}{ }^{k}$ $=u_{i}{ }^{k}-x_{i}\left[L P^{k}\right]$, then $u_{i}{ }^{k+1}=u_{i}{ }^{k}$, so $x_{i}\left[M_{P}{ }^{0}\right] \leqq u_{i}{ }^{k+1}$. Moreover, if OBJFCTN[POSTOPTLP ${ }_{i}{ }^{k}$ ] $=z_{\text {INC }}$, then once again it must be true that $\mathrm{x}_{\mathrm{i}}\left[\mathrm{MIP}^{0}\right] \leqq u_{i}{ }^{k+1}$. Thus, in either case, $u_{i}{ }^{k+1}$ is an upper bound to $x_{i}\left[\mathrm{MIP}^{0}\right]$.

By performing the analysis outlined in the preceding paragraphs for each arc $i \in A R C$, we obtain a set of tighter flow bounds $\left\{\ell_{i}{ }^{k+1}\right\}$ and $\left\{u_{i}{ }^{k+1}\right\}$. Using these bounds, we then solve program $L^{k+1}$.

As mentioned at the beginning of Case 1 , we assume that SOLUTION[MIP $\left.{ }^{0}\right] \in$ FEASIBLE[LP $\left.{ }^{k}\right]$. This will certainly be true for $k=0$ because $L P^{0}$ is the linear programming relaxation of MIP $P^{0}$. Moreover, we have shown above that if $z_{\text {INC }}>\operatorname{OBJFCTN}\left[\mathrm{MIP}^{0}\right.$ ] and $\ell_{i}^{k} \leqq \mathrm{x}_{\mathrm{i}}\left[\mathrm{MIP}^{0}\right] \leqq u_{i}^{k}$ for all $i$, then it must be true that $\ell_{i}^{k+1} \leqq$ $\mathrm{x}_{\mathrm{i}}\left[\mathrm{MIP}^{0}\right] \leqq u_{i}^{k+1}$ for all i. Thus, by mathematical induction, if $z_{\text {INC }}>\operatorname{OBJFCTN}\left[M I P^{0}\right]$, then it must be true that SOLUTION[MIP $\left.{ }^{0}\right] \in$ FEASIBLE[LP ${ }^{k}$ ] for all $k$.

Driebeek's penalty lower bound can also be used in conjunction with the SBI procedure. Using eq. (19), we set $z_{\text {PEN }}{ }^{k+1} \leftarrow \operatorname{Max}\left\{z_{\text {PEN }}{ }^{k+1}, z_{\text {PEN }}{ }^{k}\right\}$. observe that FEASIBLE[LP $\left.{ }^{k+1}\right] \subseteq$ FEASIBLE[LP $\left.{ }^{k}\right]$ which, in turn, implies that OBJFCTN[LP $\left.{ }^{k+1}\right] \geqq$

OBJFCTN[LP ${ }^{k}$ ]. Thus, in many cases, $z_{\text {PEN }}{ }^{k+1}$ will be strictly greater than $z_{\text {PEN }}{ }^{k}$. Furthermore, because SOLN[MIP ${ }^{0}$ ] $\epsilon$
 true that SOLUTION $\left[M I P^{0}\right] \equiv \operatorname{SOLUTION}\left[M I P^{k}\right] \equiv \operatorname{SOLUTION}\left[M I P^{k+1}\right]$. So, not only is the initial penalty bound, $z_{\text {PEN }} 0$, a lower bound to OBJFCTN [MIP ${ }^{0}$ ], but so are $z_{\text {PEN }}{ }^{k}$ and $z_{\text {PEN }}{ }^{k+1}$. Thus, if $z_{\text {INC }}>$ OBJFCTN[MIP ${ }^{0}$ ], then the following relationships hold:

$$
\begin{equation*}
z_{\mathrm{PEN}}{ }^{0} \leqq \mathrm{z}_{\mathrm{PEN}}{ }^{k} \leqq \mathrm{z}_{\mathrm{PEN}}{ }^{k+1} \leqq \operatorname{OBJFCTN}\left[\mathrm{MIP}{ }^{0}\right] \tag{20}
\end{equation*}
$$

This completes the discussion of the first case in which it is assumed that $z_{\text {INC }}>\operatorname{OBJFCTN}\left[M I P^{0}\right]$.

## - Case 2: Incumbent Value Does Not overestimate oBJFCIN[MIP ${ }^{0}$ ]

For completeness, we now consider the second case in which it is assumed that $z_{I N C} \leqq O B J F C T N\left[M I P^{0}\right]$. In this case, we simply note that $z_{\text {INC }}$ itself is a lower bound to OBJFCTN[MIP ${ }^{0}$ ].

## - Lower Bound

The two cases given above can be combined to develop a lower bound to OBJFCTN[MIP ${ }^{0}$ ]. Observe that, for any incumbent objective function value, if $z_{\text {INC }}$ itself is not a lower bound to OBJFCTN[MIP ${ }^{0}$ ], then $z_{\text {PEN }}{ }^{k+1}$ must be. Thus, we define a new lower bound, referred to as the "simple bound improvement" lower bound and denoted as $z_{S B I}{ }^{k+1}$, to OBJFCTN[MIP ${ }^{0}$ ] as follows:

$$
\begin{equation*}
z_{\mathrm{SBI}}{ }^{k+1}=\operatorname{Min}\left\{\mathrm{z}_{\mathrm{PEN}}{ }^{k+1}, \mathrm{z}_{\mathrm{INC}}\right\} \tag{21}
\end{equation*}
$$

Note that, because of relationship (20), if $z_{\text {INC }}$ is greater than $z_{\text {PEN }}{ }^{0}$, then the SBI procedure produces a stronger lower bound to the optimal objective function value of the initial subprogram than Driebeek's penalty method used alone (i.e., $z_{S B I}{ }^{k+1}$ is tighter than $z_{\text {PEN }}{ }^{0}$ ). For the $S B I$ procedure to be useful, however, the lower and upper flow bounds, $\ell_{i}{ }^{k+1}$ and $u_{i}{ }^{k+1}$, must be easy to compute. This result is shown next.

### 5.2 Computation of Improved Flow Bounds

An important step in the $S B I$ procedure is the efficient computation of the improved lower and upper flow bounds, $\left\{\ell_{i}{ }^{k+1}\right\}$ and $\left\{u_{i}{ }^{k+1}\right\}$. Note that although tighter flow bounds can be sought for any arc $i \in A R C$, the only arcs for which the linear underestimator strictly underestimates the concave cost function, $\operatorname{COST}_{i}$, are the arcs contained in set IMPROVE ${ }^{k}$, where

$$
\begin{equation*}
\text { IMPROVE }^{k}=\left\{i: i \in \operatorname{FREE} \text { and } \ell_{i}{ }^{k}<m_{i}<u_{i}^{k}\right\} \tag{22}
\end{equation*}
$$

Thus, if $i \notin \operatorname{IMPROVE}{ }^{k}$, then $\ell_{i}{ }^{k+1}$ and $u_{i}{ }^{k+1}$ can simply be set to $\ell_{i}{ }^{k}$ and $u_{i}{ }^{k}$, respectively.

On the other hand, if arc $i \in$ IMPROVE $^{k}$, then, as discussed in Subsection 5.1, the determination of $\ell_{i}{ }^{k+1}$ and $u_{i}{ }^{k+1}$ requires a RHS parametric analysis of eq. (12) in program POSTOPTLP ${ }_{i}{ }^{k}$. For instance, the dotted line in Figure 4 shows a typical change in OBJFCTN[POSTOPTLP ${ }_{i}{ }^{k}$ ] as the parameter. $\delta_{i}{ }^{k}$ is varied. A complete parametric analysis of this constraint would, of course, be computationally burdensome. But, as explained in Subsection 3.2, $\alpha_{i}{ }^{k}$ and $\beta_{i}{ }^{k}$, the rate of change in OBJFCTN[POSTOPT ${ }_{i}{ }^{k}$ ] for an
incremental change in $\delta_{i}{ }^{k}$, can be determined directly from the solution to $\mathrm{LP}^{k}$ (see eq. (14) and (15)). Thus, an underestimator of $\ell_{i}^{k+1}$ and an overestimator of $u_{i}^{k+1}$ can be obtained with very little additional computational effort.

Specifically, if $\alpha_{i}{ }^{k}=0$ then $\ell_{i}{ }^{k+1}=\ell_{i}{ }^{k}$, otherwise, as indicated in Figure 4,

$$
\begin{equation*}
\ell_{i}^{k+1}=\operatorname{Max}\left\{\ell_{i}^{k}, \mathrm{x}_{\mathrm{i}}\left[L \mathrm{P}^{k}\right]-\left\lfloor\frac{z_{I N C}-\operatorname{OBJFCTN}\left[L P^{k}\right]}{\alpha_{i}^{k}}\right]\right\} \tag{23}
\end{equation*}
$$

where "Le]" denotes the "floor" function for any expression e (i.e., the largest integer less than or equal to e). Moreover, if $\beta_{i}^{k}=0$, then $u_{i}^{k+1}=u_{i}^{k}$, otherwise

$$
\begin{equation*}
u_{i}^{k+1}=\operatorname{Min}\left\{u_{i}^{k}, x_{i}\left[\mathrm{LP}^{k}\right]+\left\lfloor\frac{z_{I N C}-\operatorname{OBJFCTN}\left[\mathrm{LP}^{k}\right]}{\beta_{i}^{k}}\right]\right\} \tag{24}
\end{equation*}
$$

We assume, in eq. (23) and (24), that $z_{I N C} \geqq \operatorname{OBJFCTN}\left[\mathrm{LP}^{k}\right]$. This is because, if $z_{\text {INC }}<O B J F C T N\left[L P^{k}\right]$, then SOLUTION[MCCNF] cannot be contained in FEASIBLE[MIP $\left.{ }^{k}\right]$ and hence there is no need to evaluate program MIP ${ }^{k}$ any further.

The tighter bounds developed in this section form an integral part of the branch and bound procedure outlined next.

## 6. BRANCH AND BOUND PROCEDURE

The branch and bound procedure described in this section solves program MCCNF (or determines that the problem is infeasible). The distinguishing feature between the standard branch and bound method (see, for example, Parker and Rardin (1988))-denoted BBSTANDARD-and the one presented in this section-denoted BBSBI-is the incorporation of the SBI procedure to generate a tighter bound to the current subprogram.

The following paragraphs comment on each of the steps in the branch and bound flowchart shown in Figure 5. [The actual implementations of BBSTANDARD and BBSBI (which are compared empirically in Section 7) are also discussed.]

Step 0 initializes the branch and bound algorithm. Here, the initial subprogram $M I P^{0}$ at the root node in the enumeration tree is taken as the original problem, MCCNF, in which all arcs i $\epsilon$ ARC are members of FREE; and sets ZERO and ONE are empty. Step 0 places program MCCNF in the "candidate list", denoted CAND. This list contains the subprograms that are to be evaluated in the branch and bound procedure. As mentioned in Section 5, we let $z_{\text {INC }}$ denote the objective function value of the current incumbent. Step 0 sets $z_{\text {INC }}$ to infinity.

Steps 1 and 2 review the subprograms in CAND. If this list is empty, then the branch and bound algorithm terminates and the current incumbent is the optimal solution to MCCNF. [If CAND is empty and there is no incumbent, then MCCNF is infeasible.] If CAND is nonempty, then a subprogram is selected to be the current initial subprogram, MIP ${ }^{0}$. [In the computational tests conducted
in Section 7, both BBSTANDARD and BBSBI use a LIFO (rather than a priority) subprogram selection rule because a LIFO selection rule minimizes the in-core storage requirements for CAND. For BBSBI, if "backtracking" occurs in the enumeration tree in order to select the current subprogram, then the values of the initial lower and upper flow bounds, $\left\{\ell_{i}^{0}\right\}$ and $\left\{u_{i}^{0}\right\}$, for arcs $i \in \operatorname{FREE}$ are taken from the subprogram at the root node in the enumeration tree; otherwise these bounds are taken from the final iteration of the previously evaluated subprogram (i.e., from the "parent" subprogram). In this way, BBSBI requires no additional storage for the improved flow bound parameters.]

In preparation for the $S B I$ procedure, step 2 also sets the iteration index, $k$, to zero. [In Section 7, BBSTANDARD keeps $k$ permanently set at zero.]

Step 3 first computes the flow interval parameters, $\left\{g_{i}{ }^{k}\right\}$ and $\left\{h_{i}{ }^{k}\right\}$, using eq. (1) and the objective function parameters, $\left\{c_{i}{ }^{k}\right\}$ and $\left\{f_{i}{ }^{k}\right\}$, using eq. (10). This step then solves LP ${ }^{k}$, the linear programming relaxation of the current subprogram. Because this relaxation is a minimum (linear) cost network flow problem (see Section 3), program $L P^{k}$ can be solved very efficiently. [See Barr, Glover, and Klingman (1979) for a discussion of solution methods for this class of problems.]

Step 4 seeks to find a new incumbent solution to MCCNF by obtaining a heuristic solution (see, for example, Yaged (1971)) to the current subprogram, MIP ${ }^{0}$. [In Section 7, both BBSTANDARD and BBSBI obtain a heuristic solution to $M^{0} P^{0}$ with very little computational effort by simply setting $y_{i}$ to zero (respectively,
one) for any arc $i$ such that $x_{i}\left[L P^{k}\right]$ is less than or equal to (respectively, greater than) $m_{i}$ : This "rounding" technique always produces a feasible solution to $M I P^{0}$, and hence, a feasible solution to MCCNF]. If the objective function value of the heuristic solution obtained in step 4 is less than $z_{\text {INC }}$ (the objective function value of the current incumbent), then this heuristic solution is retained as the new incumbent solution and the value of $z_{\text {INC }}$ is updated.

Step 5 computes a lower bound to OBJFCTN[MIP ${ }^{0}$ ] using the penalty and SBI procedures described in Sections 4 and 5. Here, the penalties, $\mathrm{DOWN}_{\mathrm{i}}{ }^{k}$ and $\mathrm{UP}_{\mathrm{i}}{ }^{k}$, defined in eq. (17) and (18), are used to compute Dribeek's penalty lower bound, $z_{\text {PEN }}{ }^{k}$, defined in eq. (19). Then, the SBI lower bound, $z_{S B I}{ }^{k}$, defined in eq. (21), is calculated. [In Section 7, BBSTANDARD does not compute $\left.z_{S B I}{ }^{k} \cdot\right]$

Step 6 computes the tighter lower and upper flow bounds, $\left\{\ell_{i}{ }^{k+1}\right\}$ and $\left\{u_{i}{ }^{k+1}\right\}$. If $i \notin \operatorname{IMPROVE}^{k}$ (see eq. (22)), then step 6 sets $\ell_{i}{ }^{k+1} \leftarrow \ell_{i}{ }^{k}$ and $u_{i}{ }^{k+1} \leftarrow u_{i}^{k}$. Otherwise, if $i \in$ IMPROVE $^{k}$, then this step uses eq. (23) and (24) to compute the improved flow bounds. [In Section 7, BBSTANDARD omits this step.]

Step 7 tests whether or not the SBI lower bound-computed in step 5-equals the incumbent objective function value, $z_{\text {INC }}$. If $z_{S B I}{ }^{k}=z_{\text {INC }}$, then this means that $z_{\text {PEN }}{ }^{k} \geq z_{\text {INC }}$ (see eq. (21)), so program MIP ${ }^{k}$ cannot contain a feasible solution to MCCNF that is better than the current incumbent. In other words, program $M I P^{k}$ can be "fathomed". Therefore, if $z_{S B I}{ }^{k}=z_{\text {INC }}$, then the branch and bound algorithm goes to step 1 to review the
subprograms contained in CAND; otherwise the algorithm goes to step 8. [In Section 7, BBSTANDARD tests whether or not $z_{\text {PEN }} \geq$ $z_{\text {INC }}$ in this step.]

Step 8 tests whether or not additional effort should be expended on determining an improved lower bound for the current subprogram. Note that if there is an arc $i \in$ IMPROVE $^{k}$ such that (1) $\ell_{i}{ }^{k}<x_{i}{ }^{k}<u_{i}{ }^{k}$; (2) $\ell_{i}{ }^{k+1}>\ell_{i}{ }^{k}$ or $u_{i}{ }^{k+1}<u_{i}{ }^{k}$; and (3) $\alpha_{i}{ }^{k}$ $>0$ and $\beta_{i}{ }^{k}>0$; then OBJFCTN[LP $\left.\mathrm{P}^{k+1}\right]$ will be strictly greater than OBJFCTN[LP $\left.{ }^{k}\right]$. Thus, if there is at least one arc that meets the conditions given above, then the iteration index, $k$, is incremented by one (i.e., $k \leftarrow k+1$ ) and the algorithm goes to step 3 to resolve the relaxation of the current subprogram. [Note that SOLUTION[LP $\left.{ }^{k}\right] \in \operatorname{FEASIBLE}\left[L P^{k+1}\right]$. Thus SOLUTION[LP $\left.{ }^{k}\right]$ can be used as an initial basic feasible solution in program $L P^{k+1}$. In many cases SOLUTION[LP $\left.{ }^{k}\right]$ will be optimal or near-optimal in program $L P^{k+1}$, so program $L P^{k+1}$ can be solved with very little additional computational effort.] On the other hand, if there are no arcs that satisfy the conditions given above, then the algorithm goes to step 9 to separate the current subprogram. [In Section 7, BBSTANDARD omits this step and proceeds to step 9.]

Finally, step 9 selects, from among the elements in arc set FREE, a "branching arc", denoted $\hat{i}$. [In Section 7, both BBSTANDARD and BBSBI select, as arc $\hat{i}$, the arc with the maximum of $\min \left\{\operatorname{DOWN}_{i}{ }^{k}, \mathrm{UP}_{i}{ }^{k}\right\}$ (see eq. (17) and (18)).] Step 9 adds two new subprograms-one in which arc $\hat{i}$ is removed from FREE and added to ZERO, and the other in which arc $\hat{i}$ is removed from FREE and added to ONE-to the candidate list, CAND. [In Section 7,
the subprogram associated with maximum up and down penalty for arc $\hat{i}$ is referred to as the "twin" problem. The twin problem is added first to CAND in order to seek "good" heuristic solutions with the LIFO subprogram selection rule (Little et al. (1963)). In addition, $z_{\text {TWIN }}{ }^{k}$, a lower bound to the optimal objective function of the twin problem, is also stored in CAND. Here, $z_{\text {TWIN }}{ }^{k}$ is given by

$$
\begin{equation*}
\mathrm{z}_{\text {TWIN }^{k}}=\text { OBJFCTN }\left[\mathrm{LP}^{k}\right]+\operatorname{Max}\left\{\operatorname{DOWN}_{\hat{i}}^{k}, \mathrm{UP}_{\hat{i}}^{k}\right\} \tag{25}
\end{equation*}
$$

If, when the twin problem is selected from CAND, $z_{\text {INC }}$ is less than or equal to $\mathrm{z}_{\text {TWIN }}{ }^{k}$, then the twin problem can be fathomed without any further evaluation of that problem.] After completing step 9, the branch and bound algorithm goes to step 1 to review the candidate list.

The next section illustrates the use of the branch and bound algorithm described above.

## 7. COMPUTATIONAI PERFORMANCE

In this section we demonstrate empirically that, by incorporating the SBI procedure into a conventional branch and bound algorithm, both solution time and in-core memory requirements can be reduced. We do this by solving a series of MCCNF problems. As in section 6, we let BBSBI and BBSTANDARD denote, respectively, the branch and bound procedure with and without the SBI procedure. Both algorithms were programmed in Microsoft Fortran version 4.1 and run on a Micro Source International microcomputer (comparable to an IBM-AT). Solution time was measured by the total CPU-time exclusive of $1 / 0$ operations; and in-core storage was measured by the maximum depth of the branch and bound enumeration tree.

The material below is divided into two subsections. The first subsection uses a simple example to illustrate the effect that the SBI procedure has on computational performance; and the second subsection reports the computational results for a series of randomly generated test problems.

### 7.1 Example

The four node, five arc MCCNF problem depicted in Figure 6 and Table 2 is taken from Florian and Robillard (1971). To illustrate the effect of the SBI procedure, we first solved this simple problem using BBSTANDARD, then resolved it using BBSBI.

The enumeration tree associated with BBSTANDARD for this problem is shown in Figure 7a. The node numbers in the tree
indicate the order in which the subprograms were solved. At node 1 the linear programming relaxation of the original mixed integer program, MCCNF, was solved using a network simplex algorithm. The solution to this relaxation was 3 units of flow on $\operatorname{arc}(1,2) ; 3$ on $(1,3) ; 0$ on $(2,3) ; 6$ on $(2,4)$, and 3 on (3,4). "Rounding" this solution produced an incumbent solution with an objective function value of $z_{\text {INC }}=48.00$. This incumbent solution was also the optimal solution to MCCNF. But, because the penalty lower bound was only $z_{\text {PEN }}{ }^{0}=46.05$, subprogram 1 could not be fathomed. Thus, using arc (1,2) as the branching arc, two new subprograms-one with $(1,2) \in Z E R O$ and the other with $(1,2) \in O N E-w e r e ~ c r e a t e d ~ a n d ~ t h e ~ p r o c e s s ~ w a s ~ r e p e a t e d . ~$

In all, BBSTANDARD required the evaluation of three subprograms. [Note that subprograms 4 and 5 did not need evaluation because their stored penalty lower bound, $z_{\text {TWIN }}{ }^{0}$ (see eq. (25)), exceeded $z_{\text {INC. }}$ ] The CPU time for this algorithm was 0.11 seconds and the maximum depth for its enumeration tree was three.

In contrast, as shown in Figure 7b, the enumeration "tree" for $B$ BSBI consisted solely of the root node representing the original mixed integer program, MCCNF. As with BBSTANDARD, LP ${ }^{0}$, the linear programming relaxation of this subprogram, was solved using a network simplex algorithm; the incumbent solution was obtained by "rounding-up" the relaxation solution; and the penalty lower bound was computed. However, in BBSBI the SBI procedure was then performed to generate tighter lower and upper flow bounds, $\left\{\ell_{i}{ }^{k}\right\}$ and $\left\{u_{i}{ }^{k}\right\}$, and then program $L P^{I}$ was solved.

This increased the penalty lower bound to $z_{\mathrm{PEN}^{1}}{ }^{1}=48.00$ (which equals $z_{\text {INC }}$ ) so that the entire branch and bound enumeration tree was fathomed at the root node.

Thus, for BBSBI, the maximum depth in the enumeration tree was one. Two relaxations, $L P^{0}$ and $L P^{1}$, were solved, but the solution to $L P^{1}$ was trivial since the optimal solution to $L P^{0}$ was also optimal in LP ${ }^{1}$. The total CPU time was 0.05 seconds.

The dominance of BBSBI over BBSTANDARD, brought out in this example, is next examined in a series of computational tests.

### 7.2 Computation Tests

In order to evaluate the SBI procedure more fully, a series of test problems was solved with BBSTANDARD and BBSBI. Below, we describe how the problems were generated and comment on the results of these two branch and bound algorithms.

## - Problem Generation

As summarized in Table 3, three sizes of MCCNF problems were considered, each consisting of five randomly generated test networks. All networks were complete; i.e., there was a directed arc between every pair of nodes. Remember that, because the arc cost functions for our problems were piecewise-linear-concave, each arc in the network corresponded to a binary decision variable in program MCCNF. Thus, it is reasonable to characterize a network with over 200 such arcs as a "large" problem.

For each arc $i \in A R C$ in each test problem, the marginal Costs $a_{i}$ and $b_{i}$ were randomly sampled from a uniform distribution $\operatorname{UNIFORM}[0,100]$. If $a_{i}>b_{i}$, then the values of $a_{i}$ and $b_{i}$ were interchanged. Also, for each arc $i$, the original flow bounds $\ell_{i}$, $m_{i}$, and $u_{i}$ were sampled from UNIFORM[0,100]. The values of $\ell_{i}$, $m_{i}$, and $u_{i}$ were sorted so that $\ell_{i} \leq m_{i} \leq u_{i}$. For each test problem a node, denoted $\bar{n}$, was randomly selected. Then, for each node $n \in N O D E-\{\bar{n}\}$, the demand/supply constant $d_{n}$ was sampled from UNIFORM $[-10,+10]$; and the demand/supply constant for node $\bar{n}$ was set such that the total demand and supply in the network summed to zero.

## - Results

Each of the fifteen test problems identified in Table 3 was solved twice, first using BBSTANDARD, then using BBSBI. The results are shown in Tables 4 and 5. These tables show the average value and the range for the five test problems solved in each problem size. The results for BBSTANDARD and BBSBI are given; and the percent improvement of BBSBI over BBSTANDARD is reported.

Table 4, giving the maximum depth in the branch and bound enumeration tree, indicates the relative in-core storage requirements for the test problems. In all cases, the SBI procedure reduced the storage requirements for the branch and bound algorithm. Comparing BBSBI with BBSTANDARD, there was, on average, more than a two-thirds improvement for small problems, and more than a one-third improvement for large ones. Thus,
although the amount of improvement decreased as the problem size increased, the overall reduction in in-core storage was still substantial.

Table 5 reports the CPU time required to solve the test problems. Once again, the SBI procedure increased the efficiency of the branch and bound procedure. Moreover, this improvement increased as the problem size increased. Thus, comparing BBSBI with BBSTANDARD, there was, on average, more than a forty percent reduction in the time required to solve the large test problems.

It should be pointed out, though, that for one test problem, problem 10, the CPU time for $B B S B I$ was slightly greater than that for BBSTANDARD. For this particular test problem, BBSTANDARD required the evaluation of 65 subprograms whereas BBSBI required the evaluation of 27 families of subprograms. But, because in BBSBI each family consisted of an average of three subprograms, this problem had an overall solution time of 34 seconds using BBSBI (compared to 33 seconds using BBSTANDARD). Thus, we see from Table 5, that although the $S B I$ procedure cannot be guaranteed to reduce computation time of the branch and bound procedure, it will, on average, have a significant impact.

The next section concludes the paper.

## 8. CONCLDSIONS AND EXTENSIONS

This paper has presented a new branch and bound algorithm for minimum concave cost network flow problems with piecewiselinear arc cost functions. The distinctive feature of this algorithm is the incorporation of the simple bound improvement (SBI) method. As shown by the computational tests conducted in Section 7, the SBI procedure reduces both the CPU time and the in-core storage requirements of the branch and bound algorithm.

In closing, three alternative implementations of the SBI procedure are worth noting. First, although the SBI procedure discussed in this paper was used in conjunction with Driebeek's (1966) penalty bounds, other penalty procedures (see, for example, Tomlin (1971) and Cabot and Erenguc (1986)) could also be used instead. In this case, the SBI procedure would produce tighter bounds for each subprogram evaluated in the branch and bound, but with somewhat increased computational effort.

Second, when a subprogram was selected by backtracking in the candidate list in the branch and bound procedure described in this paper, the lower and upper flow bounds for arcs in set FREE were set to the values determined in the root node subprogram. In this manner, no additional storage requirement for the improved arc flow bounds was required. An alternative implementation of the branch and bound algorithm would be to store the improved arc flow bounds along with each of the subprogram in the candidate list. Then, because the initial flow bounds of each subprogram would be tighter, less computational effort would be required for evaluating each subprogram, but at
the cost of increased in-core storage.
Finally, this paper has focused on the SBI procedure for network flow problems with piecewise-linear-concave arc cost functions. We point out, however, that the SBI procedure is also applicable to problems with more general objective functions as well as to problems involving constraints other than network flow constraints (see Lamar (1989)).

## ACNOWLEDGEMENTS

This work was supported, in part, by a research grant from the Institute of Transportation Studies, University of California, Irvine, CA. The author would like to thank MaryAnne Causino for her thoughtful reading of the manuscript, and Barbara Skelly for her preparation of the illustrations used in this paper.

## REFERENCES

1. P. Afentakis, B. Gavish, and U. Karmarkar (1984), "Computationally Efficient Optimal Solutions to the LotSizing Problem in Multistage Assembly Systems", Management Science, vol. 30, no. 2, pp. 222-239.
2. A. Balakrishnan (1984), "Valid Inequalities and Algorithms for the Network Design Problem with Application to LTL Consolidation", Ph.D. dissertation, sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA.
3. M.L. Balinski (1961), "Fixed-Cost Transportation Problems", Naval Research Logistics Quarterly, vol. 8, no. 1., pp. 4154.
4. R.H. Ballou (1985), Business Logistics Management: Planning and Control, Prentice-Hall, Inc., Englewood Cliffs, NJ.
5. R.S. Barr, F. Glover, and D. Klingman (1979), "Enhancements of Spanning Tree Labelling Procedures for Network Optimization", INFOR, vol. 17, no. 1, pp. 16-34.
6. R.S. Barr, F. Glover, and D. Klingman (1981), "A New Optimization Method for Large Scale Fixed Charge Transportation Problems", Operations Research, vol. 29, no. 3, pp. 448-463.
7. J. Billheimer and P. Gray (1973), "Network Design with Fixed and Variable Cost Elements", Transportation Science, vol. 7, pp. 49-74.
8. K. Belling-Seib, P. Mever, and C. Müller (1988), "Network Flow Problems with One Side Constraint: A Comparison of Three Solution Methods", Computers and Operations Research, vol. 15, no. 4, pp. 381-394.
9. A.V. Cabot and S.S. Erenguc (1984), "Some Branch-and-Bound Procedures for Fixed-Cost Transportation Problems", Naval Research Logistics Quarterly, vol. 31, pp. 145-154.
10. A.V. Cabot and S.S. Erenguc (1986), "Improved Penalties for Fixed Cost Linear Programs Using Lagrangian Relaxation", Hanagement Science, vol. 32, no. 7, pp. 856-869.
11. N. Driebeek (1966), An Algorithm for the Solution of Mixed Integer Programming Problems", Management Science, vol. 12, no. 7, pp. 576-587.
12. R.E. Erickson, C.L. Monna, and A.F. Veinott, Jr. (1987), "Send-and-Split Method for Minimum-Concave-Cost Network Flows", Mathematics of Operations Research, vol. 12, no. 4, pp. 634-664.
13. M. Florian and P. Robillard (1971), "An Implicit Enumeration Algorithm for the Concave cost Network Flow Problem", Management Science, vol. 18, no. 3, pp. 184-193.
14. L.R. Ford and D.R. Fulkerson (1962), Flows in Networks, Princeton University Press, Princeton, NJ.
15. G. Gallo, C. Sandi, and C. Sodini (1980), "An Algorithm for the Min Concave Cost Flow Problem", European Journal of Operational Research, vol. 4, pp. 248-255.
16. M.R. Garey and D.S. Johnson (1979), Computers and Intractability: A Guide to the Theory of $N P$-Completeness, W.H. Freeman and Company, Inc., San Francisco, CA.
17. F. Glover, D. Karney, D. Klingman, R. Russell (1978), "Solving Singly Constrained Transshipment Problems", Transportation Science, vol. 12, no. 4, pp. 277-297.
18. P. Gray (1971), "Exact Solution of the Fixed-Charge Transportation Problem", Operations Research, vol. 19, no. 6, pp. 1529-1538.
19. E.L. Johnson (1966), "Networks and Basic Solutions", Operations Research, vol. 14, no. 4, pp. 619-623.
20. J. Kennington and E. Unger (1976), "A New Branch-and-Bound Algorithm for the Fixed-Charge Transportation Problems", Management Science, vol. 22, no. 10, pp. 1116-1126.
21. B.W. Lamar (1985), "Network Design Algorithms with Applications to Freight Transportation", Ph.D. dissertation, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA.
22. B.W. Lamar and Y. Sheffi (1988), "An Implicit Enumeration Method for LTL Network Design", Transportation Research Record, no. 1120, pp. 1-16.
23. B.W. Lamar, Y. Sheffi, and W.B. Powell (1989), "A Capacity Improvement Lower Bound for Fixed Charge Network Design Problems", operations Research, (forthcoming).
24. B.W. Lamar (1989) "A Simple Bound Improvement Procedure for Mixed Integer Programming Problems", work in progress.
25. J.D.C. Little, K.C. Murty, D.W. Sweeney, and C. Karel (1963), "An Algorithm for the Travelling Salesman Problem", Operations Research, vol. 11, pp972-989.
26. M. Los and C. Lardinois (1982), "Combinatorial Programming, Statistical Optimization and the Optimal Transportation Network Problem", Transportation Research-B, vol. 16B, no. 2, pp.89-124.
27. T.L. Magnanti and R.T. Wong (1984), "Network Design and Transportation Planning: Models and Algorithms", Transportation Science, vol. 18, no. 1, pp. 1-55.
28. M. Malek-Zavarei and I.T. Frisch (1972), "On the Fixed Cost Flow Problem", International Journal of Control, vol.16, no. 5, pp. 897-902.
29. R.G. Parker and R.L. Rardin (1988), Discrete Optimization, Academic Press, Inc., San Diego, CA.
30. G. Sa (1969), "Branch-and-Bound and Approximate Solutions to the Capacitated Plant Location Problem", Operations Research, vol. 17, pp. 1005-1016.
31. R.M. Soland (1974), "Optimal Facility Location with Concave Costs", Operations Research, vol. 22, pp. 373-382.
32. B. Yaged, Jr. (1971), "Minumum Cost Routing for Static Network Models", Networks, vol. 1, pp. 139-172.
33. W.I. Zangwill (1968), "Minimum Concave Cost Flows in Certain Networks", Hanagement Science, vol. 14, no. 7, pp. 429-450.

## LIST OF FIGURES

1. Typical Arc Cost Function
2. Parallel Arc Representation
3. Typical Feasible Region for Fixed Flow Program
4. Typical Postoptimal Flow Analysis for Linear Relaxation
5. Flowchart for Branch and Bound Procedure
6. Example Network
7. Example Branch and Bound Enumeration Trees
a. Using BBSTANDARD
b. Using BBSBI


Figure 1.
Typical Arc Cost Function


Figure 2.
Parallel Arc Representation


Figure 3.
Typical Feasible Region for Fixed Flow Program


Figure 4.
Typical Postoptimal Flow Analysis for Linear Relaxation


Figure 5.
Flowchart for Branch and Bound Procedure


Figure 6.
Example Network

a. Using BBSTANDARD

$$
\begin{align*}
& Z_{\text {INC }}=48.00 \\
& {Z_{\text {PEN }}}=46.05  \tag{1}\\
& \text { Z PEN } 1=48.00
\end{align*}
$$

b. Using BBSBI

$$
\text { Figure } 7
$$

## LIST OF TABLES

```
Number
Caption
```

1. 
2. 
3. 
4. 
5. 

Nonbasic Arc Subsets in Postoptimal Flow Analysis
Example Cost and Flow Coefficients
Test Problem Characteristics
Test Problem Results: Depth in Enumeration Tree Test Problem Results: CPU Time

| Arc Subset <br> Name | Subtree Contain- <br> ing Tail Node | Subtree Contain- <br> ing Head Node | Arc Flow |
| :---: | :---: | :---: | :---: |
| $\mathrm{THL}_{\mathrm{i}}{ }^{k}$ | $\mathrm{~T}_{\mathrm{i}}{ }^{k}$ | $\mathrm{H}_{\mathrm{i}}{ }^{k}$ | lower bound |
| $\mathrm{THU}_{\mathrm{i}}{ }^{k}$ | $\mathrm{~T}_{\mathrm{i}}{ }^{k}$ | $\mathrm{H}_{\mathrm{i}}{ }^{k}$ | upper bound |
| $\mathrm{HTL}_{\mathrm{i}}{ }^{k}$ | $\mathrm{H}_{\mathrm{i}}{ }^{k}$ | $\mathrm{~T}_{\mathrm{i}}{ }^{k}$ | lower bound |
| $\mathrm{HTL}_{\mathrm{i}}{ }^{k}$ | $\mathrm{H}_{\mathrm{i}}{ }^{k}$ | $\mathrm{~T}_{\mathrm{i}}{ }^{k}$ | upper bound |

Table 1.
Nonbasic Arc Subsets in Postoptimal Flow Analysis

| Arc $i$ | Marginal Costs |  | Flow Bounds |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{a}_{\mathrm{i}}$ | $\mathrm{b}_{\mathrm{i}}$ | $\ell_{i}$ | $\mathrm{~m}_{\mathrm{i}}$ | $\mathrm{u}_{\mathrm{i}}$ |  |
| $(1,2)$ | 3 | 0 | 0 | 1 | 7 |  |
| $(1,3)$ | 4 | 1 | 0 | 1 | 5 |  |
| $(2,3)$ | 5 | 2 | 0 | 1 | 3 |  |
| $(2,4)$ | 6 | 3 | 0 | 1 | 6 |  |
| $(3,4)$ | 8 | 5 | 0 | 1 | 4 |  |

Table 2.
Example Cost and Flow Coefficients

| Problem <br> Number | Size | Number <br> of Nodes | Number <br> of Arcs |
| :---: | :--- | :---: | :---: |
| 1 to 5 | Small | 5 | 20 |
| 6 to 10 | Medium | 10 | 90 |
| 11 to 15 | Large | 15 | 210 |

Table 3.
Test Problem Characteristics

| $\begin{aligned} & \text { Problem } \\ & \text { Size } \end{aligned}$ | Depth in Enumeration Tree |  |  |  | Percent Improvement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BBSTANDARD |  | BBSBI |  |  |  |
|  | Range | Avg. | Range | Avg. | Range | Avg. |
| Small | 2 to 5 | 4.5 | 1 to 2 | 1.2 | +50 to +80 | +68 |
| Medium | 11 to 15 | 13.0 | 1 to 10 | 5.6 | +27 to +92 | +57 |
| Large | 19 to 32 | 27.0 | 11 to 22 | 17.4 | +29 to +41 | +36 |

Table 4.
Test Problem Results: Depth in Enumeration Tree

| $\begin{aligned} & \text { Problem } \\ & \text { Size } \end{aligned}$ | CPU Seconds ${ }^{\text {a }}$ |  |  |  | Percent Improvement |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BBSTANDARD |  | BBSBI |  |  |  |
|  | Range | Avg . | Range | Avg. | Range | Avg. |
| Small | 0.2 to 0.9 | 0.5 | 0.2 to 0.7 | 0.4 | +15 to +45 | +21 |
| Medium | 6.2 to 47.2 | 27.5 | 4.1 to 38.6 | 21.8 | -3 to +65 | +27 |
| Large | 320.5 to 1863.6 | 923.4 | 151.7 to 862.5 | 479.0 | +14 to +56 | +44 |

a Using a Micro Source International microcomputer (comparable to an IBM-AT).

Table 5.
Test Problem Results: CPU Time

