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ABSTRACT 

This paper formulates the minimum concave cost network flow 

(MCCNF) problem as a mixed integer program and solves this 

program using a new branch and bound algorithm. The al·gorithm 

combines Driebeek's "up and down" pe.Q,alties with a new technique 

referred to as the simple bound improvement (SBI) procedure. An 

efficient numerical method for the SBI procedure is described and 

computational results are presented which show that the SBI 

procedure reduces both the in-core storage and the CPU time 

required to solve the MCCNF problem. In fact, for large problems 

(with over 200 binary decision variables) the SBI procedure 

reduced the in-core storage by more than one-third and the CPU 

time by more than 40 percent. 
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1. INTRODUCTION 

This paper examines minimum concave cost network flow 

(MCCNF) problems; that is, problems wherein the marginal cost of 

carrying flow on an arc decreases as the volume of flow.9n that 

arc increases (see Figure 1). \ This type of cost fun~tion­

representing quantity discounting, volume-based price incentives, 

and other forms of scale economies-is a salient feature of many 

problems involving the transport of people, commodities, or 

information (Ballou (1985)). Moreover, facility location, 

network design, and other types of network flow problems 

involving fixed charges can also be modelled as MCCNF problems. 

It is well-known that the general MCCNF problem is NP-hard 

(Garey and Johnson (1979)). The complexity of the problem arises 

from the fact that-al though a minimum cost solution ( if one 

exists) always occurs at an extreme point of the feasible region 

(Zangwill (1968))-identification of the optimal point requires, 

in the worst case, a complete enumeration of all extreme points 

in the feasible region. Thus, except in special cases, exact 

algorithms for the MCCNF problem run in exponential time. 

Very efficient methods for solving network flow problems 

with constant marginal costs have been available since the early 

1960's (Ford and Fulkerson (1962)). However, MCCNF problems, 

being much harder to solve, require specialized solution 

procedures (see Magnanti and Wong (1984) and Erickson et al. 

(1987) for recent surveys). In general, solution methods for 

MCCNF problems can be grouped into three categories: (1) 

heuristic procedures; ( 2) dynamic programming methods; and ( 3) 
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branch and bound procedures. Heuristic procedures are applicable 

to MCCNF problems with an arbitrary network topology, but they do 

not provide a measure of quality (i.e., near-optimality) of the 

solution obtained. Just the reverse is true for dynamic 

programming approaches. They provide exact results, but are 

efficient only for applic<;1tions involving a limited number of 

supply and/or demand points (e.g., economic lot-sizing problems). 

Finally, branch and bound procedures have the dual advantage of 

providing exact results and being applicable to MCCNF problems 

with arbitrary network topologies. But, because the enumeration 

tree grows exponentially with problem size, very efficient 

bounding techniques are required when branch and bound procedures 

are used to solve MCCNF problems. 

This paper presents a new bounding technique, referred to as 

the "simple bound improvement" (SBI) procedure, for MCCNF 

problems comprised of piecewise-linear-concave arc cost 

functions o The SBI procedure is of theoretical as well as 

practical interest because it can reduce both the time and the 

in-core memory required to solve MCCNF problems using a branch 

and bound procedure. The majority of this paper is devoted to a 

formal description of the SBI procedure and its role in solving 

MCCNF problems. The concept underlying this method, however, can 

be stated very simply. Each arc in a network has a lower 

(possibly zero) and upper (possibly infinity) bound on the flow 

that can be carried on that arc. If these bounds can be made 

tighter, then the · feasible solution space of the problem is 

reduced. The "trick" to the SBI procedure is to tighten these 
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bounds as much as possible while, at the same time, ensuring that 

these improved bounds do not "cut off" the optimal flow on any of 

the arcs in the network. By using this method, larger MCCNF 

problems can be solved more efficiently. 

This paper is organized as follows. Section 2 formulates a 

family of mixed integer programs representing a generic 

subprogram in a branch and bound enumeration tree. The linear 

programming relaxation of a subprogram is characterized in 

Section 3. This section also discusses postoptimality analysis 

of a subprogram relaxation. Sections 4 through 6 discuss a 

trilogy of algorithms used to solve the MCCNF problem. Section 

4 specializes Driebeek's (1966) "up and down" penalties for a 

generic subprogram of the MCCNF problem. These penal ties form 

part of the SBI procedure presented in Section 5. In this 

section, conceptual as well as computational aspects of the SBI 

method are discussed. The SBI procedure, in turn, forms part of 

the· branch and bound algorithm outlined in Section 6. Section 7 

presents some computational results demonstrating that the SBI 

procedure accelerates the branch and bound algorithm. Finally, 

Section 8 summarizes the paper and suggests several possible 

extensions of the SBI procedure. 
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2. MIXED INTEGER PROGRAMMING SUBPROGRAM 

The mixed integer programming formulation developed in this 

section represents a generic subprogram in a branch and bound 

procedure that is used to solve the minimum concave cost 'network 

flow (MCCNF) prob,lem. However, in contrast to the standard branch 

and bound procedure (where there is a one-to-one correspondence 

between subprograms and nodes in an enumeration tree), the branch 

and bound method presented in this paper associates an entire 

family of subprograms with each node in the enumeration tree. 

This family of mixed integer programming subprograms is denoted 

by MIPk where the superscript k (k = 0, 1,2, ••• ) is an index 

number that identifies an individual subprogram within this 

family. For each family of subprograms, we refer to MIPO as the 

"initial'' subprogram. The initial subprogram at the root node in 

the enumeration tree is the original problem, MCCNF. 

Below, we define 

subprogram, MIPk. 

notation and formulate a generic 

To describe the network topology used with each subprogram, 

let NODE denote the node set (with generic element n) and let ARC 

denote the arc set (with generic element i). For each i E ARC, 

let TAILi and HEADi denote, respectively, the tail and head nodes 

for arc i. For each n e NODE, let LEAVEn denote the set of arcs 

whose tail node is n, let ENTERn denote the set of arcs whose 

head node is n, and let dn denote the net demand (i.e., dn < 0) 

or supply (i.e., dn > 0) at node n. Note that the network 

topology descriptors defined above are no~ indexed by k. 
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For each i e ARC, COSTi denotes the cost function for arc i. 

We assume that COSTi is a concave nondecreasing function 

consisting of two piecewise linear segments with marginal costs 

ai and bi, respectively (see Figure 1). [Although th~ MC CNF 

problem formulated in this paper consists of arc cost functions 

with, at most, two piecewise linear segments, generalization to 

more than two segments is straightforward.] We assume that ai ~ 

bi;;:;: o. In addition, we let mi denote the flow "breakpoint" at 

which the marginal cost of COSTi switches from ai to bi. We 

assume that mi is a nonnegative integer. Note that the cost 

function parameters given above also are noL indexed by k. 

The lower and upper flow bounds for arc i in program MIPk, 

however, are indexed by k. These bounds are denoted by iik and 

uik, respectively. We assume that these bounds are integers and 

th t O ::,; n • k < < k a - X, l = mi = ui . [Note that this latter assumption is 

not restrictive because if iik > mi or uik < mi, then arc i will 

have a constant marginal cost in program MIPk so mi can be reset 

It is also useful to define the 

following two flow interval coefficients (see Figure 1): 

= m• - £.k 
l l V i 

V i 

E ARC 

E ARC 

By construction, gik and hik are nonnegative integers. 

(la) 

(lb) 

For each arc i e ARC in program MIPk, one binary and three 

continuous decision variables are defined. The binary variable, 

denoted y i, specifies whether the applicable marginal cost of 

function COSTi is ai (if Yi= O) or bi (if Yi= 1). We also 
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partition the arc set ARC into three disjoint, collectively 

exhaustive subsets: ZERO, ONE, and FREE. The value of Yi 

depends, in part, upon which subset arc i is a member. Ifie 

ZERO, then Yi is fixed at zero; if i e ONE, then Yi is f_ixed at 

one; and if i e FREE, then Yi may assume either value. 

The continuous variables for i e ARC, denoted xi, vi, and 

measure the level of flow carried on arc i. Decision 

variable xi gives the total flow on arc i. This total flow is 

the sum of two components: (1) decision variable vi (representing 

the flow carried on arc i at a marginal cost of ai); and (2) 

decision variable wi (representing the flow carried on arc i at a 

marginal cost of bi)• For purposes of formulating the problem, 

we represent each arc i e ARC as a pair of parallel arcs, one for 

each of the flow components defined above (see Figure 2). Note 

that i e ZERO implies that xi~ mi, and that i e ONE implies that 

xi ~ mi. 

The formulation also uses an arc flow set, denoted by FLOWk, 

which represents the set of arc flow vect:ors, x = ( ... ,xi, ... ), 

that conform to the following capacitated flow balance equations: 

[xi [xi = dn 'v n e NODE (2a) 

iELEAVEn iEENTERn 

.R, • k :s X• :s m• l. l. J. 
'vie ZERO (2b) 

m• l. :s X• l. :s u,k 
J. 

'vi E ONE (2c) 

.R,. k :s X• :s u,k 
l. l. l. 'v i e FREE · (2d) 
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We now formulate MIPk, a generic subprogram of the minimum 

concave cost network flow problem considered in this paper. 

Program MIPk: 

Min 
XEFLOWk 

\ (a. ·v. + b. ·w.) L i i i i 

iEARC 

Subject to: 

Yi= O 

Yi= 1 

Yi E {0,1} 

"I i 

"I i 

"I i 

'v i 

'v i 

'v i 

(3a) 

E ARC (3b) 

E ARC ( 3c)· 

E ARC ( 3d) 

E ZERO ( 3e) 

E ONE ( 3 f) 

e FREE (3g) 

Objective function (3a) minimizes the total cost .of carrying 

flow in the network. Performing this minimization over the set 

FLOWk ensures that only feasible flow patterns are considered. 

Constraint (3b) establishes the conservation of flow for the 

parallel arc representation for each arc i e ARC (see Figure 2). 

Because COSTi is a concave function, the marginal cost of arc i 

must be nonincreasing as the flow on arc i increases. This 

requirement is enforced by constraints (3c) and (3d), which 

guarantee that w i = O if vi < ini. Finally, ·constraints (3e) 

through (3g) identify the restrictions placed on the binary 

- 8 -



decision variables in subprogram MIPk. [The nonnegativity 

conditions for the continuous decision variables are implicitly 

enforced by constraints (2b) through (2d), (3c), and (3d).] 

For any program P, let FEASIBLE[P], SOLUTION[P], and 

OBJFCTN(P] denote, respectively, the feasible region, the optimal 

solution vector, and the optimal objective function value for 

that program. Thus, for subprogram MIPk, this information is 

denoted by FEASIBLE[MIPk], SOLUTION[MIPk], and OBJFCTN[MIPk]. 

Also, let the optimal value of an individual decision variable be 

denoted by the symbol for that variable followed by the name of 

the program (in square brackets) for which that decision variable 

is optimal. Thus, for each arc i in subprogram MIPk, the optimal 

value of the decision variables is denoted by Yi[MIPk], xi[MIPk], 

vi[MIPk], and wi[MIPk]. 

Mixed integer programming formulations used in implicit 

enumeration procedures for concave cost networks with arbitrary 

top.ologies have also been developed by Balakrishnan ( 1984) , 

Florian and Robillard (1971), Lamar (1985), Lamar and Sheffi 

( 1988) , and Los and Lardinois ( 1982} . Formulations and branch 

and bound algorithms for fixed charge transportation (i.e., 

bipartite) network flow problems-originally formulated by 

Balinski (1961)-have been developed by Barr et al. (1981), Cabot 

and Erenguc (1984), Gray (1971), and Kennington and Unger (1976). 

Florian and Robillard (1971) and Malek-Zavarei and Frisch (1972) 

have shown the equivalence between bipartite and arbitary network 

t6pologies for MCCNF problems (also see Erickson et al: (1987)). 

Gallo et al. (1980) considered networks with a single source 
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node; Afentakis et al. (1984) applied a branch and bound 

algorithm to a lot sizing problem involving concave costs; and Sa 

(1969) and Soland (1974) used branch and bound methods for plant 

location problems with concave production, holding, . \and/or 

transportation costs. 

The structure of the linear programming relaxation of 

subprogram MIPk is examined next. 
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3. LINEAR PROGRAMMING REIAXATION 

It is well known (see, for example, Yaged (1971)) that a 

lower bound to OBJFCTN[MIPk] can be obtained by solving a linear 

program in which, for each arc i E ARC, COSTi is replaced:', with a 

the linear underestimator of COSTi (see Figure 1). Moreover, 

because this linear program is a minimum (linear) cost network 

flow problem, it can be solved very efficiently. The 

contribution of this section is to show that the linear program 

described above is equivalent to the linear program formed by 

relaxing the integrality requirements in subprogram MIPk, thereby 

establishing the tightness of the lower bound obtained by using a 

linear underestimator of a concave cost function. This work 

extends Balinski's (1961) results for fixed charge problems to a 

more general class of problems. 

The material in this section is divided into two parts. The 

first part shows the equivalence between alternative linear 

programming representations and the second part discusses 

postoptimality analysis. This analysis is used later in this 

paper to develop tight bounds to OBJFCTN[MIPk]. 

3.1 Equivalent Formulations 

We begin by formulating the linear programming relaxation of 

subprogram MIPk. This relaxation, denoted LPk, is formed simply 

by replacing the binary constraints· (3g) with the following 

nonnegativity conditions: 

O :s Yi :S 1 'vi E FREE (4) 
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Let FEASIBLE[LPk], SOLUTION[LPk], and OBJFCTN[LPk] denote, re­

spectively, the feasible region, optimal solution vector, and the 

optimal objective function value for program LPk. Also, for each 

arc i, let Yi[LPk], xi[LPk], vi[LPk], and wi[LPk] denote the 

optimal value of the decision variables in program LPk. 

Relaxation LPk has the property that, if the total flow on 

each arc i E ARC is given (i.e., fixed), then program LPk 

separates by arc and the optimal value of the other decision 

variables associated with each arc i can be obtained by 

inspection. Thus, we can conceptualize a solution procedure for 

program LPk as follows: for each feasible flow vector in FLOWk, 

solve a separate linear program for each arc in ARC; then select, 

from among this (possibly infinite) set of flow vectors, the one 

that minimizes the total cost. As shown below, this solution 

method is equivalent to solving a linear cost network flow 

problem in which the cost for arc i is taken as the linear 

underestimator of COSTi. 

The concept outlined in the preceding paragraph can be 

expressed algebraically by representing the linear programming 

relaxation of subprogram MIPk in the following equivalent form: 

Program LPk: 

Min 
XEFLOWk 

[(bi-xi+ OBJFCTN[FIXLPik]) 

iEARC 

(5) 

Here, OBJFCTN[FIXLPik] is the optimal objective function value of 

the following linear program for arc i in which xi (the total 

flow on arc i) is considered fixed: 
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Program FIXLPik: 

Min (a• - b ·) ·V • J. J. J. 

Subject to: 

V• 
J. ~ m• J. 

-gik.Yi + V• 
J. 

h·k·y• 
J. J. + V• 

J. 

V· ~ X• J. J. 

(6a) 

(6b) 

~ .2 • k 
J. (6c) 

~ X• J. (6d) 

(6e) 

( 6f) 

(6g) 

where Pi and qi are parameters such that Pi= O if i E 

ZERO U FREE; Pi= 1 if i E ONE; qi =O if i E ZERO; and qi= 1 if 

i E ONE U FREE. We refer to program (6) as the "fixed flow" 

linear program. Note that there is a separate program for each 

arc i E ARC and that xi is considered a constant in each of these 

programs. The fixed flow program for arc i is composed of the 

constraints and objective function terms involving arc i in 

program LPk. Constraints (6b) and (6c) correspond to constraint 

(3c); constraints (6d) and (6e) correspond to constraint (3d); 

and constraints (6f) and (6g) correspond to constraints (3e) 

through (3g). Note, however, that decision variable wi has been 

eliminated from the fixed flow program by substituting xi - vi 

for wi (see eq. (3b)). Thus, wi can also be interpreted as the 

slack variable associated with constraint (6e). Because wi has 
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been eliminated.and xi is considered a constant, each fixed flow 

linear program involves only two decision variables: Yi and vi. 

Program FIXLPik has been expressed in the form given above 

because its optimal solution can be obtained by inspection~ If i 

E ZERO, then it is clear that the fixed flow program is fe·asible 

only if iik ~xi~ mi; and if the program is feasible, then the 

optimal solution is 

Yi[FIXLPikJ = 0 (7a} 

vi[FIXLPik] = X• 
J. (7b) 

wi[FIXLPik] = 0 (7c} 

Similarly, if i E ONE, then the fixed flow program is feasible 

only if mi 

m• J. 

in which case the optimal solution is 

( 8a} 

(8b) 

( 8c) 

Finally, if i e FREE, then the fixed flow program will be 

feasible only if ii k ~ xi ~ ui k. Figure 3 shows a typical 

feasible region for program FIXLPik for the case where i e FREE. 

Observe that, because of the concavity assumption for the cost 

function COSTi, the coefficient (ai - bi) in objective function 

(Ga) is always nonnegative. This means that, if program FIXLPik 

is feasible, then· an optimal solution always occurs at the 

extreme point in which constraints (Gc) and (Gd) are binding (see 
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point 1 in Figure 3) • Thus, these two constraints (taken as 

equalities), together with equality {3b), can be used to 

determine the optimal value of the decision variables. We 

consider two possible cases. 

equals zero, then the fixed flow program is feasible only·1f xi= 

mi and the value of Yi is arbitrary. Thus, in this case, the 

optimal solution to the program can be expressed using either (7) 

or (8). On the other hand, if gik + hik is nonzero, then we can 

solve explicitly for Yi, vi, and wi. This yields, 

y. [ FIXLP. k] = 
J. J. 

w. [FIXLP. k] = 
J. J. 

x. 
J. 

k g. 
J. 

(9a) 

(9b) 

(9c) 

Observe that, if the RHS of eq. (7b), (8b), or (9b) is 

substituted for vi in eq. (6a), then eq. (5) can be expressed 

solely in terms of the total arc flow decision variables {xi}. 

This substitution can be expressed compactly by defining the 

following new parameters: 
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if i ZERO k k a. e or g. +h. =O 
J. J. J. 

b. if i ONE and k k 
k 

e g. +h. :icO 
c. J. J. J. (10a) = 

J. 
k k a. ·g. + b. ·h. k k . J. J. J. J. if i e FREE and 
k k 

g. +h. :icO · 
+ h. J. J. g. 

J. J. 

0 if i ZERO k k e or g. +h. =O 
J. J. 

f.k (a. - b.) ·m. if i ONE and k k (10b) = e g. +h. :icO 
J. J. J. J. J. 1 

(a. k k if i FREE and k k - C. ) · .£. e g. +h. :;cO 
1 1 1 J. 1 

These two parameters can be interpreted as the slope and 

intercept, respectively, of the line representing the linear 

underestimator of function COSTi over the feasible domain of xi 

(see Figure 1). Using these parameters, eq. (5) can be 

reexpressed as the following program: 

Program LPk: 

+ Min 
xeFLOWk 

(11) 

Observe that three equivalent forms of the linear 

programming relaxation of subprogram MIPk have been presented: 

(1) Eq. (3a) through (3f) and (4), 

(2) Eq. (5) and (6), and 

(3) Eq. (11) 
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The formulation given in eq. (11) is preferred, however, because 

it is clear from the form of this expression, that the linear 

programming relaxation of MIPk is simply a minimum (linear) cost 

capacitated network flow model, plus an objective +~nction 
.; 

By using special tree labeling -t:echniques 

(see, for example, Barr, Glover, and Klingman (1979)), program 

LPk can be solved very efficiently. Moreover, 

establishes that the lower bound to OBJFCTN [MIPk] 

eq. ( 11) 

obtained by 

using the linear underestimator of COSTi is as tight as 

OBJFCTN [ LPk] . 

In subsequent sections of this paper, two procedures are 

presented for obtaining a lower bound to OBJFCTN[MIPk] that can 

be tighter then OBJFCTN[LPk]. Both of these methods are based on 

an incremental change of flow from the optimal solution of 

program LPk. As shown in the next subsection, the effects of 

these changes can be determined directly from the solution to 

LPk. 

3.2 Postoptimality Flow Analysis 

To evaluate the effect of an incremental change of flow on 

arc i in program LPk, we consider a new linear program, denoted 

POSTOPTLPik, formed by adding the single constraint 

X• = X•[LPk] + 6,k 
1 1 1 (12) 

to program LPk. Here, xi[LPk] is the optimal.value of decision 

variable xi in program LPk and 6ik is a fixed number. Because 

program POSTOPTLPik is of the form of a network flow program 
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augmented by a -single side constraint, it could be evaluated by 

the methods proposed by Belling-Seib et al. (1988) or Glover et 

al. (1978). However, assuming no change in basis, the effect of 

constraint (12) can be determined directly from the optimal 

solution to program LPk. 

To describe this effect, let aik denote the rate of increase 

in OBJFCTN[POSTOPTLPik] as 6ik changes from Oto O (i.e., to a 

small negative value) and let ~ik denote the rate of increase in 

OBJFCTN[POSTOPTLPik] as 6ik changes from O to o+ (i.e., to a 

small positive value). (Typical values of these rates of 

increase (i.e., slopes) are shown in Figure 4.] In addition, let 

Rnk denote the optimal value of the dual variable in program LPk 

associated with node n in the flow balance equation (2a), and let 

(13) 

denote the reduced cost associated with decision variable xi in 

the optimal solution to program LPk. The effect of constraint 

( 12) -- depends on whether xi is a basic or nonbasic decision 

variable. Thus, let BASick denote the set of arcs i e ARC such 

that xi is basic in the optimal solution in program LPk and let 

NONBASICk = ARC - BASICk. 

Ifie BASick, then arc i must be part of a basis-equivalent 

spanning tree representing the basic solution to program LPk 

(Johnson (1966)). If arc i were omitted from this spanning tree, 

two disjoint subtrees would be created, one containing TAILi (the 

tail node of arc i) and the other containing HEADi (the head node 

of arc i). Let Tik and Hik denote, respectively, the subtrees 

- 18 -



containing node TAILi and HEADi. As summarized in Table 1, we 

now define four (disjoint but not collective exhaustive) subsets 

of the arcs contained in NONBASick. Table 1 shows, for example, 

that THLik is the set of arcs j e NONBASick such that nod~ TAILj 
• ;1 

is contained in subtree Tik, node HEADj is coftained in H{k, and 

xj[LPk] (the optimal flow on arc j in progra~ LPk) is equal to 

k .e j • 

Assuming no change in basis, observe that if i e BASick, 

then a unit decrease in the flow on arc i requires either (1) a 

unit increase in flow on an arc contained in arc subset THLik; or 

( 2) a unit decrease in flow on an arc contained in arc subset 

HTUik· So, the minumum cost way of forcing this change of flow 

on arc i is expressed by the minimum (absolute value) reduced 

cost of the arcs contained in subsets THLik and HTUik• 

On the other hand, if i E NONBASICk, then it must be the 

case that either (1) xi[LPk] = 

xi[LPk) is at its lower bound, 

If 

then clearly the flow on arc i 

_cannot be decreased; and if xi[LPk] is at its upper bound, then, 

assuming no change in basis, the minurnurn cost for a unit decrease 

in the flow on arc i is simply (the absolute value of) the 

reduced cost for arc i. 

Thus, aik, the rate of increase in OBJFCTN[POSTOPTLPik] as 

6ik (in constraint (12)) changes from o too-, is given by 
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Min { Ir.kl . j E THL.k U HTU.k } if i E BASICk . 
j J l. l. 

k if i E NONBASICk and x. [LPk] .e . k (14) a. = 00 = 
l. l. l. 

Ir.kl if i E NONBASICk and x. [LPk] k = u. 
l. ' l. l. 

Similarly, if i e BAS I ck and no basis change occurs, then 

increasing the flow on arc i by one unit requires either (1) a 

unit decrease in flow on an arc contained in THUik; or (2) a unit 

increase in flow on an arc contained in HTLi k; and the cost 

associated with this flow change is given by the reduced cost of 

the arcs in these two subsets. On the other hand, if i e 

NONBASick, then the cost associated with a unit increase in the 

flow on arc i is the reduced cost of arc i if xi[LPk] = .eik; and 

infinity if xi[LPk] = uik· Thus, ~ik, the rate of increase in 

OBJFCTN(POSTOPTLPik] as 6ik changes from Oto o+ is given by 

k r. 
l. 

if i E NONBASICk and x.[LPk] 
l. 

= P,. k 
l. 

= u. k 
J. 

(15) 

Note that, once program LPk has been solved, then the rates 

aik and pik can be determined with very little additional 

computational effort. The next two sections discuss procedures 

that use these rates to obtain a lower bound to OBJFCTN[MIPk] 

that can be significantly tighter than OBJFCTN[LPk]. 
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4. UP AND OOWN PENALTIES 

This section specializes, for program MI Pk, the "up and 

down" penalties developed by Driebeek (1966). This well-known 

procedure is briefly recapitulated here because · ·;it is 

incorporated into the stronger bou~ds developed in the next 

section. 

The concept of Driebeek's. penalty procedure applied to 

program MI Pk is as follows: if, for any arc i e FREE, the 

optimal value of decision variable, Yi, is fractional in program 

LPk, then the value of OBJFCTN [ LPk J might be increased (i.e. , 

"penalized") by forcing Yi to be zero or one; and this penalized 

objective function value will be a lower bound to OBJFCTN[MIPk] 

that is at least as tight as OBJFCTN[LPk]. Note that, although 

it was intended only for the initial subprogram MIPo, Driebeek's 

penalty method can be applied to a.ny subprogram MIPk for k = 

0,1,2, ••• • 

To analyze the penalty associated with an arc i e FREE whose 

decision variable Yi is fractional-valued in the optimal solution 

to LPk, consider a new linear program, denoted PENLPik, formed by 

adding the single constraint 

( 16) 

to program LPk. In this constraint, Yi[LPk] is the optimal value 

of Yi in program LPk and ~ik is a fixed number. If aik changes 

from Oto o- (i.e., to a small negative value), then one of two 

possible changes to the solution of program LPk will occur: (1) 

the flow on arc i will remain at xi[LPk]; or (2) the flow on arc 
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i will change (i.e., decrease) by l:iik·(gik + hik). In the first 

case, the optimal solution of program PENLP i k will shift from 

point 1 to point 2 in Figure 3 and the optimal objective 

function value of program PENLPik will change from OBJFC';I'N[LPk) 

to OBJFCTN[Lpk] - A•k·(g,k + h,k) ·(a• - c,k) In the second l. l. ,l. l. l. • 

case, the optimal solution of program PENLPik will shift from 

point 1 to point 3 in Figure 3 (with a corresponding shift in 

constraint (6d)) and the optimal objective function value will 

change from OBJFCTN[LPk] to OBJFCTN[LPk] - Aik. (gik + hik) ·aik 

(where aik is the marginal rate of change defined in eq. (14)). 

Thus, the penalty, denoted DOWNik, for forcing Yi down to zero 

must be at least as great as 

(17) 

Similarly, if 1:iik changes from O to o+ (i.e., to a small 

positive value), then either (1) the flow on arc i will remain at 

xi[LPk); or (2) the flow will change (i.e., increase) by 

In the first case, the optimal solution of 

program PENLP1k will shift from point 1 to point 4 in Figure 

3 and the optimal objective function value 

PENLPik will change from OBJFCTN[LPk] to 

+ 1:iik. (gik + hik). (cik - bi). In the second case, 

of program 

OBJFCTN[LPk] 

the optimal 

solution of program PENLPik will shift from point 1 to point 

5 (with a corresponding shift in constraint (6d)) and the 

optimal objective function value will change from OBJFCTN[LPk] to 

OBJFCTN[LPk] + 1:,.ik·(gik + hik) -~ik (where ~ik is the marginal 

rate of change defined in eq. (15)). Thus, the penalty, denoted, 
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UPik, for forcing Yi up to one must be at least as great as 

Because, in the optimal solution to Mipk, every Yi must be ,. 

either 0 or 1, the "pen,alty" lower bound, denoted ZpE~k, to 

OBJFCTN[MIPk] is given by 

(19) 

The next section describes a procedure, which can be used in 

conjunction with the penalty method described above, to obtain a 

tighter lower bound. 
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5. SIMPLE BOUND IMPROVEMENT PROCEDURE 

In contrast to the "up and down" penalty procedure 

summarized in Section 4 (which concentrated on the binary 

decision_ variables {Yi}), the "simple bound improvement~• (SBI) 

method presented he~e focuses on the continuous variables {xi}• 

In this section, we generalize Lamar and Sheffi's (1988) and 

Lamar et al. (1989) work on fixed charge problems. 

introduce a simplified computational procedure. 

We also 

The discussion below is divided into two parts. The first 

part develops the concept of the SBI procedure for MCCNF 

problems; and the second part shows that the parameters used in 

this procedure are easy to compute. 

5.1 Concept 

Starting with the solution LPO (the relaxation of the 

initial subprogram), the SBI procedure evaluates the family of 

linear programming relaxations LPk for k=l , 2, • • • to obtain a 

successively tighter lower bound to OBJFCTN[MIPO] (the optimal 

objective function value of the initial subprogram). The process 

uses ZINC' the objective function value of an incumbent (i.e., 

feasible but not necessarily optimal) solution to the original 

problem, MCCNF. [The determination of ZINC is discussed in 

Section 6.] Regardless of the value of ZINC' though, it must be 

the case that either (1) ZINC > OBJFCTN[MIPO]; or (2) ZINC :;; 

OBJFCTN[MIPo]. Below, we consider each of these cases separately 

and then summarize the lower bound implied by these two cases. 
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• Case 1: Incumbent Value overestimates OBJFCTN[KIPO] 

For the first case we assume that ZINC> OBJFCTN[MIP0 ]. For 

this case, we also assume that SOLUTION[MIPO] (the ·optimal 

solution to the initial subprogram MIPO) is contained in 

FEASIBLE[LPk] (the feasible region of relaxation LPk). [As 

explained at the end of Case 1, this assumption will always be 

true if ZINC> OBJFCTN[MIP0 ].] The incumbent objective function 

value can be used to seek tighter bounds for the flow on any arc 

i e ARC. Let P,ik+l and uik+l denote, respectively, these tighter 

lower and upper flow bounds for arc i. In order to determine the 

value of these tighter bounds, we once again consider the 

previously defined linear program, POSTOPTLPik, formed by adding 

constraint (12) to program LPk. [In this subsection, however, we 

consider all possible values of 6ik rather than just those that 

are close to zero.] 

Starting with 6ik = o, we first consider the effect of 

decreasing the value of 6ik• From parametric RHS analysis, we 

know that if 6ik = 0 then OBJFCTN[POSTOPTLPik] = OBJFCTN[LPk]; 

and that if 6ik < 0, then OBJFCTN[POSTOPTLPik] ~ OBJFCTN[LPk]. 

We continue decreasing the value of 6ik until either (1) 6ik = 

P,ik - Xi[LPk]; or (2) OBJFCTN[POSTOPTLPik] = ZINC· We then set 

£.k+l = X·[LPk] + 5.k Observe that if 5.k =£,k - x•[LPk] 
1 1 1· 1 1 1 ' 

then P,ik+l is simply P,ik and since (by assumption) xi[MIPO] ~ 

P,ik, this means that xi[MIPO] ii:: ;,ik+l. On the other hand, if 

OBJFCTN[POSTOPTLPik] = ZINC (and, by assumption, ZINC > 

OBJFCTN[MIPO]), then xi[MIPO] cannot be less than xi[LPk] + 6ik, 
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so it must be true that xi[MIP0 ] ;;:; .eik+l. Thus, in either case, 

.eik+l is a lower bound to xi[MIP0 ]. 

Once again starting with 6ik = o, we now consider the effect 

of increasing the value of 6 i k. 

OBJFCTN[POStOPTLPik] ~ OBJFCTN[LPk]. 
·, 

until either (1) 6ik = u,k 
l. 

= u,k 
l. 

We then set u,k+l 
l. 

- xi[LPk], then 

- Xi[LPk]; 

= xi[LPk] 

u,k+l = 
l. 

Clearly, if 5.k 
l. > 0 . / then 

We continue increasi~g 6ik 

or _ ( 2) OBJFCTN [ POSTOPTLP i k] 

Ob th t l.'f 5.k serve a, 1 

so U ,k+l 
l. • 

Moreover, if OBJFCTN[POSTOPTLPik] = ZINC' then once again it must 

be true that xi[MIPO] ~ uik+l. Thus, in either case, uik+l is an 

upper bound to xi[MIP0 ]. 

By performing the analysis outlined in the preceding 

paragraphs for each arc i E ARC, we obtain a set of tighter flow 

bounds {Aik+l} and {uik+l}. Using these bounds, we then solve 

program LPk+l. 

As mentioned at the beginning of Case 1, we assume that 

SOLUTION[MIPO] E FEASIBLE[LPk]. This will certainly be true for 

k = o because LPO is the linear programming relaxation of MIP0 ;· 

Moreover, we have shown above that if zINC > OBJFCTN[MIP0 ] and 

.eik ~ xi[MIPO] ~ uik for all i, then it must be true that Aik+l ~ 

xi[MIPO] ~ uik+l for all i. Thus, by mathematical induction, if 

ZINC> OBJFCTN[MIPO], then it must be true that SOLUTION[MIPO] E 

FEASIBLE[LPk] for all k. 

Driebeek's penalty lower bound can also be used in 

conj unction with the SBI procedure. Using eq. (19), we set 

k+l { k+l k 2 PEN +- Max ZPEN , 2 PEN } • 

FEASIBLE[LPk] which, in turn, 

Observe that FEASIBLE[LPk+l] f 

implies that OBJFCTN[LPk+l] ~ 
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OBJFCTN[LPk]. .Thus, in many cases, z k+l 
PEN will be strictly 

greater than zPENk. Furthermore, because SOLN[MIPO] E 

FEASIBLE[LPk] and SOLUTION[MIPO J E FEASIBLE[LPk+l J, it must be 

true that SOLUTION[MIPO J - SOLUTION[MIPk J = SOLUTION[M,IPk+l]. 

0 ; 
So, not only is the initial penalty bound, zPEN, a lowe~ bound 

to OBJF~TN[MIP0 J, but so are ZPENk and ZPENk+l. Thus, if ZINC> 

OBJFCTN[MIPOJ, then the following relationships hold: 

( 20) 

This completes the discussion of the first case in which it 

is assumed that ZINC> OBJFCTN(MIPO]. 

• Case 2: Incwnbent Value Does Not overestimate OBJFCTN[MipD] 

For completeness, we now consider the second case in which 

it is assumed that zINC ~ OBJFCTN[MIP0 J. In this case, we simply 

note that zINC itself is a lower bound to OBJFCTN[MIP0 J. 

• Lower Bound 

The two cases given above can be combined to develop a lower 

bound to OBJFCTN[MIP0 ]. Observe that, for any incumbent 

objective function value, if ZINC itself is not a lower bound to 

OBJFCTN(MIP0 J, then zPENk+l must be. Thus, we define a new lower 

bound, referred to as the "simple bound improvement" lower bound 

k+l 0 and denoted as zSBI , to OBJFCTN[MIP] as follows: 

z k+l = 
SBI M • { k+l } in ZPEN ' ZINC 
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Note that, because of relationship (20), if ZINC is greater than 

zPENo, then the SBI procedure produces a stronger lower bound to 

the optimal objective function value of the initial subprogram 

than Driebeek's penalty method used alone (i.e., zsBik+l is 

' tighter than For the SBI procedure to be useful, 

however, the lower and upper flow bounds, iik+l and uik+l, must 

be easy to compute. This result is shown next. 

5.2 Computation of Improved Flow Bounds 

An important step in the SBI procedure is the efficient 

computation of the improved lower and upper flow bounds, {£ik+l} 

Note that al though tighter flow bounds can be 

sought for any arc i E ARC, the only arcs for which the linear 

underestimator strictly underestimates the concave cost function, 

COSTi, are the arcs contained in set IMPROVEk, where 

IMPROVEk = {i (22) 

Thus, if i ~ IMPROVEk, then £ik+l and uik+l can simply be set to 

iik and uik, respectively. 

On the other hand, if arc i E IMPROVEk, then, as discussed 

in Subsection 5.1, the determination of 

a RHS parametric analysis of eq. ( 12) 

£,k+l and u,k+l requires 
1 1 

in program POSTOPTLP i k. 

For instance, the dotted line in Figure 4 shows a typical change 

in OBJFCTN[POSTOPTLPik] as the parameter is varied. A 

complete parametric _analysis of this constraint would, qf course, 

· be computationally burdensome. But, as explained in Subsection 

3.2, aik and pik, the rate of change in OBJFCTN[POSTOPTik] for an 
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incremental change in 6 i k, can be determined directly from the 

solution to LPk (see eq. (14) and (15)). Thus, an underestimator 

of .R,ik+l and an overestimator of uik+l can be obtained with very 

little additional computational effort. 

Specifically, if aik = O then 1,ik+l = 

indicated in Figure 4, 

otherwise, as 

n.k+l M { n k ~1 = ax ~i, 
ZINC - OBJFCTN[LPk] 

k 
(X • 

1 J l {23) 

where "LeJ" denotes the "floor" function for any expression e 

(i.e., the largest integer less than or equal toe). Moreover, 

1'f /3ik O th k+l k = , en ui = ui, otherwise 

J l (24) 

We assume, in eq. (23) and {24), that ZINC~ OBJFCTN[LPk]. This 

is because, if ZINC< OBJFCTN[LPk], then SOLUTION(MCCNF] cannot 

be contained in FEASIBLE [MIPk] and hence there is no need to 

evaluate program MIPk any further. 

The tighter bounds developed in this section form an 

integral part of the branch and bound procedure outlined next. 
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6. BRANCH AND BOUND PROCEDURE 

The branch and bound procedure described in this section 

solves program MCCNF (or determines that the problem is 
,. 

infeasible) . The distinguishing feature between the standard 

branch and bound method (see, for example, Parker and Rardin 

(1988))-denoted BBSTANDARD--and the one presented in this 

section-denoted BBSBI-is the incorporation of the SBI procedure 

to generate a tighter bound to the current subprogram. 

The following paragraphs comment on each of the steps in the 

branch and bound flowchart shown in Figure 5. [The actual 

implementations of BBSTANDARD and BBSBI (which are compared 

empirically in Section 7) are also discussed.] 

Step 0 initializes the branch and bound algorithm. Here, 

the initial subprogram MIPO at the root node in the enumeration 

tree is taken as the original problem, MCCNF, in which all arcs i 

e ARC are members of FREE; and sets ZERO and ONE are empty. Step 

0 places program MCCNF in the "candidate list", denoted CAND. 

This list contains the subprograms that are to be evaluated in 

the branch and .bound procedure. As mentioned in Section 5, we 

let ZINC denote the objective function value of the current 

incumbent. Step o sets ZINC to infinity. 

Steps 1 and 2 review the subprograms in CANO. If this list 

is empty, then the branch and bound algorithm terminates and the 

current incumbent is the optimal solution to MCCNF. [If CAND is 

empty and there is no incumbent, then MCCNF is infeasible.] If 

CAND is nonempty, then a subprogram is selected to be the current 

initial subprogram, MIPo. [In the computational tests conducted 
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in Section 7, both BBSTANDARD and BBSBI use a LIFO (rather than a 

priority) subprogram selection rule because a LIFO selection rule 

minimizes the in-core storage requirements for CAND. For BBSBI, 

if "backtracking" occurs in the enumeration tree in order to 

select the current subprogram, then the values of the · initial 

lower and upper flow bounds, {£io} and {ui0 }, for arcs i e FREE 

are taken from the subprogram at the root node in the enumeration 

tree; otherwise these bounds are taken from the final iteration 

of the previously evaluated subprogram (i.e., from the "parent" 

subprogram) . In this way, BBSBI requires no additional storage 

for the improved flow bound parameters.] 

In preparation for the SBI procedure, step 2 also sets the 

iteration index, k, to zero. [In Section 7, BBSTANDARD keeps k 

permanently set at zero.] 

Step 3 first computes the flow interval parameters, {gik} 

and {hik}, using 

k k {ci} and {fi }, 

eq. (1) and the objective function parameters, 

using eq. (10). This step then solves LPk, the 

linear programming relaxation of the current subprogram. Because 

this relaxation is a minimum (linear) cost network flow problem 

(see Section 3), program LPk can be solved very efficiently. 

[See Barr, Glover, and Klingman (1979) for a discussion of 

solution methods for this class of problems.] 

Step 4 seeks to find a new incumbent solution to MCCNF by 

obtaining a heuristic solution (see, for example, Yaged (1971)) 

to the current subprogram, MI~O • [In Section 7, both BBSTANDARD 

and BBSBI obtain a heuristic solution to MIPO with very little 

computational effort by simply setting Yi to zero (respectively, 
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one) for any arc i such that xi[LPk] is less than or equal to 

(respectively, greater than) mi: This "rounding" technique 

always produces a feasible solution to and hence, a 

feasible solution to MCCNF]. If the objective function value of 

the heuristic solution obtained in step 4 is less than ZINC (the 

objective function value of the current incumbent), then this 

heuristic solution is retained as the new incumbent solution and 

the value of ZINC is updated. 

Step 5 computes a lower bound to OBJFCTN [MIPO] using the 

penalty and SBI procedures described in Sections 4 and 5. Here, 

the penalties, DOWNik and upik, defined in eq. (17) and (18), are 

used to compute Dribeek's penalty lower bound, zPENk, defined in 

eq. (19). Then, the SBI lower bound, zsBik' defined in eq. (21), 

is calculated. [In Section 7, BBSTANDARD does not compute 

Step 6 computes the tighter lower and upper flow bounds, 

{£ik+l} and {uik+l}. If i ~ IMPROVEk (see eq. (22)), then step 6 

sets tik+l ~ tik and uik+l ~ uik• Otherwise, if i e IMPROVEk, 

then this step uses eq. (23) and (24) to compute the improved 

flow bounds. (In Section 7, BBSTANDARD omits this step.] 

Step 7 tests whether or not the SBI lower bound-computed in 

step 5-equals the incumbent objective function value, ZINC· If 

ZSBik = ZINC' then this means that ZPENk ~ ZINC (see eq. (21)), 

so program MIPk cannot contain a feasible solution to MCCNF that 

is better than the current incumbent. In other words, program 

MIPk can be "fathomed". Th f 1.f k ere ore, zsBI = ZINC' then the 

branch and bound algorithm goes to step 1 to review the 
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subprograms contained in CANO; otherwise the algorithm goes to 

step 8. [In Section 7, BBSTANDARD tests whether or not ZPENO ~ 

ZINC in this step.] 
,. 

Step 8 tests whether or not additional effort should be 

expended on determining an improved lower bound for the currei\t 

subprogram. Note that if there is an arc i E IMPROVEk such that 

(1) 1,ik < xik < uik; (2) 1,ik+l > 1,ik or uik+l < uik; and (3) (Xik 

> o and f.,i k > o; then OBJFCTN[LPk+l] will be strictly greater 

than OBJFCTN[LPk]. Thus, if there is at least one arc that meets 

the conditions given above, then the iteration index, k, is 

incremented by one (i.e., k ~ k+l} and the algorithm goes to step 

3 to resolve the relaxation of the current subprogram. [Note 

that SOLUTION[LPk] E FEASIBLE[LPk+l]. Thus SOLUTION[LPk] can be 

used as an initial basic feasible solution in program LPk+l. In 

many cases SOLUTION [LPk] will be optimal or near-optimal in 

program LPk+l, so program LPk+l can be solved with very little 

additional computational effort.] On the other hand, if ther.e 

are no arcs that ·satisfy the conditions given above, then the 

algorithm goes to step 9 to separate the current subprogram. (In 

Section 7, BBSTANDARD omits this step and proceeds to step 9.] 

FREE, 

Finally, step 9 selects, from among the elements in arc set 

a "branching arc", denoted ❖ 
l.. (In Section 7, both 

❖ 
BBSTANDARD and BBSBI select, as arc 1., the arc with the maximum 

of min{DOWNik, UPik} (see eq. (17) and (18)).) Step 9 adds two 

new subprograms-one in which arc 1 is removed from FREE and 

added to ZERO, and the other in which arc 1 is ·removed from FREE 

and added to ONE-to the candidate list, CAND. [ In Section 7, 
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the subprogram associated with maximum up and down penalty for 

❖ arc 1 is referred to as the "twin" problem. The twin problem is 

added first to CAND in order to seek "good" heuristic solutions 

with the LIFO subprogram selection rule (Little et al. (l963)). 
' 

In addition, zTWINk, a lower bound to the optimal objective 

function of the twin problem, is also stored in CAND. 

ZTWINk is given by 

Here, 

( 25) 

If, when the twin problem is selected from CAND, ZINC is less 

than or equal to zTWINk, then the twin problem can be fathomed 

without any further evaluation of that problem. J After 

completing step 9, the branch and bound algorithm goes to step 1 

to review the candidate list. 

The next section illustrates the use of the branch and bound 

algorithm described above. 
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7. COMPUTATIONAL PERFORMANCE 

In this section we demonstrate empirically that, by 

incorporating the SBI procedure into a conventional branch and 

bound algorithm, both solution time and in-core ,memory 

requirements can be reduced. We do this by solving ·,a series of 

MCCNF problems. As in Section 6, we let BBS BI and BBSTANDARD 

denote, respectively, the branch and bound procedure with and 

without the SBI procedure. Both algorithms were programmed in 

Microsoft Fortran version 4.1 and run on a Micro Source 

International microcomputer (comparable to an IBM-AT). Solution 

time was measured by the total CPU-time exclusive of I/0 

operations; and in-core storage was measured by the maximum depth 

of the branch and bound enumeration tree. 

The material below is divided into two subsections. The 

first subsection uses a simple example to illustrate the effect 

that the SBI procedure has on computational performance; and the 

second subsection reports the computational results for a series 

of randomly generated test problems. 

7.1 Example 

The four node, five arc MCCNF problem depicted in Figure 6 

and Table 2 is taken from Florian and Robillard (1971). To 

illustrate the effect of the SBI procedure, we first solved this 

simple problem using BBSTANDARD, then resolved it using BBSBI. 

The enumeration tree associated with BBSTANDARD for this 

problem is shown in Figure 7a. The node numbers in the tree 
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indicate the order in which the subprograms were solved. At node 

1 the linear programming relaxation of the original mixed 

integer program, MCCNF, was solved using a network simplex 

algorithm. The solution to this relaxation was 3 units of flow 

on arc ( 1 , 2) ; 3 on ( 1, 3 ) ; 0 on ( 2 , 3) ; 6 on ( 2 , 4) , ; and. 3 on 

(3,4). "Rounding" this solution produced an incumbent solution 

with an objective function value of zINC = 48.00. This incumbent 

solution was also the optimal solution to MCCNF. But, because 

the penalty lower bound was only zPENO = 46.05, subprogram 1 

could not be fathomed. Thus, using arc (1, 2) as the branching 

arc, two new subprograms-one with ( 1, 2) e ZERO and the other 

with (1,2) e ONE-were created and the process was repeated. 

In all, BBSTANDARD required the evaluation of three 

subprograms. [Note that subprograms 4 and 5 did not need 

evaluation because their stored penalty lower bound, zTWINO (see 

eq. (25)), exceeded zINc•J The CPU time for this algorithm was 

0.11 seconds and the maximum depth for its enumeration tree was 

three. 

In contrast, as shown in Figure 7b, the enumeration "tree" 

for BBSBI consisted solely of the root node representing the 

original mixed integer program, MCCNF. As with BBSTANDARD, LPo, 

the linear programming relaxation of this subprogram, was solved 

using a network simplex algorithm; the incumbent solution was 

obtained by "rounding-up" the relaxation solution; and the 

penalty lower bound was computed. However, in BBS BI the SBI 

procedure was then performed to generate tighter lower and upper 

flow bounds, { .R, i k} and { ui k} , and then program LP1 was solved. 
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This increased· the penalty lower bound to zPEN1 = 48. oo (which 

equals ZINC) so that the entire branch and bound enumeration tree 

was fathomed at the root node. 

Thus, for BBS BI, the maximum depth in the enumerati.on tree 

was one. Two relaxations, and 1 LP , , were solved, · but the 

solution to LP1 was trivial since the optimal solution to LPO was 

also optimal in LP1 . The total CPU time was 0.05 seconds. 

The dominance of BBSBI over BBSTANDARD, brought out in this 

example, is next examined in a series of computational tests. 

7.2 Computation Tests 

In order to evaluate the SBI procedure more fully, a series 

of test problems was solved with BBSTANDARD and BBSBI. Below, we 

describe how the problems were generated and comment on the 

results of these two branch and bound algorithms. 

• Problem Generation 

As summarized in Table 3, three sizes of MCCNF problems were 

considered, each consisting of five randomly generated test 

networks. All networks were complete; i.e., there was a directed 

arc between every pair of nodes. Remember that, because the arc 

cost functions for our problems were piecewise-linear-concave, 

each arc in the network corresponded to a binary decision 

variable in program MCCNF. Thus, it is reasonable to 

characterize a network with over 200 such arcs as a "large" 

problem. 
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·•. 

For each .arc i e ARC in each test problem, the marginal 

costs ai and bi were randomly sampled from a uniform distribution 

UNIFORM(0,100]. If ai > bi, then the values of ai and bi were 

interchanged. Also, for each arc i, the original flow bounds ii, 

mi, and ui were sampled from UNIFORM[0,100]. The values'of ii, 

mi, and ui were sorted so that ii ~ mi ~ ui. 

problem a node, denoted n, was randomly selected. 

For each test 

Then, for each 

node n e NODE - {n}, the demand/supply constant dn was sampled 

from UNIFORM[-10,+10]; and the demand/supply constant for node n 

was set such that the total demand and supply in the network 

summed to zero. 

• Results 

Each of the fifteen test problems identified in Table 3 was 

solved twice, first using BBSTANDARD, then using BBSBI. The 

results are shown in Tables 4 and 5. These tables show the 

average value and the range for the five test problems solved in 

each problem size. The results for BBSTANDARD and BBS BI are 

given; and the percent improvement of BBS BI over BBSTANDARD is 

reported. 

Table 4, giving the maximum depth in the branch and bound 

enumeration tree, indicates the relative in-core storage 

requirements for the test problems. In all cases, the SBI 

procedure reduced the storage requirements for the branch and 

bound algorithm. Comparing BBSBI with BBSTANDARD,_ there was, on 

average, more than a two-thirds improvement for small problems, 

and more than a one-third improvement for large ones. Thus, 
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although the amount of improvement decreased as the problem size 

increased, the overall reduction in in-core storage was still 

substantial. 

Table 5 reports the CPU time required to solve t~e test 

problems. Once again, the SBI procedure increased the efficiency 

of the branch and bound procedure. Moreover, this improvement 

increased as the problem size increased. Thus, comparing BBSBI 

with BBSTANDARD, there was, on average, more than a forty percent 

reduction in the time required to solve the large test problems. 

It should be pointed out, though, that for one test problem, 

problem 10, the CPU time for BBSBI was slightly greater than that 

for BBSTANDARD. For this particular test problem, BBSTANDARD 

required the evaluation of 65 subprograms whereas BBSBI required 

the evaluation of 27 families of subprograms. But, because in 

BBSBI each family consisted of an average of three subprograms, 

this problem had an overall solution time of 34 seconds using 

BBSBI (compared to 33 seconds using BBSTANDARD). Thus, we see 

from Table 5, that although the SBI procedure cannot be 

guaranteed to reduce computation time of the branch and bound 

procedure, it will, on average, have a significant impact. 

The next section concludes the paper. 
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8. CONCIBSIONS AND EXTENSIONS 

This paper has presented a new branch and bound algorithm 

for minimum concave cost network flow problems with piecewise-

linear arc cost functions. The distinctive feature of this 
. ·! 

algorithm is the incorporation of the simple bound improvement 

(SBI) method. As shown by the computational tests conducted in 

Section 7, the SBI procedure reduces both the CPU time and the 

in-core storage requirements of the branch and bound algorithm. 

In closing, three alternative implementations of the SBI 

procedure are worth noting. First, although the SBI procedure 

discussed in this paper was used in conjunction with Driebeek's 

(1966) penalty bounds, other penalty procedures (see, for 

example, Tomlin {1971) and Cabot and Erenguc {1986)) could also 

be used instead. In this case, the SBI procedure would produce 

tighter bounds for each subprogram evaluated in the branch and 

bou~d, but with somewhat increased computational effort. 

Second, when a subprogram was selected by backtracking in 

the candidate list in the branch and bound procedure described in 

this paper, the lower and upper flow bounds for arcs in set FREE 

were set to the values determined in the root node subprogram. 

In this manner, no additional storage requirement for the 

improved arc flow bounds was required. An alternative 

implementation of the branch and bound a;tgorithm would be to 

store the improved arc flow bounds along with each of the 

subprogram in the candidate list. Then, because the initial flow 

bounds of each subprogram would be tighter, less computational 

effort would be required for evaluating each subprogram, but at 

- 40 -



the cost of increased in-core storage. 

Finally, this paper has focused on the SBI procedure for 

network flow problems with piecewise-linear-concave arc cost 

functions. We point out, however, that the SBI procedure_ fs also 

applicable to problems with more general objective functions as 

well as to problems involving constraints other than network flow 

constraints (see Lamar (1989)). 
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