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Probability Modelling Across the Continents

1. Academic Background

I was born at Calicut, Kerala State, India and attended high school and (two-
year) intermediate college there. 1 wanted to study mathematics, but in those
days there was supposed to be no future for arts and science graduates, so |
applied for admission to an engineering college. Asit turned out, I failed to get
this admission, and so I joined the Loyola College of Arts and Science, Madras,
where I studied for a bachelor’s degree (with honours) in mathematics.

The programme at this college consisted of courses in pure mathematics
(analysis, algebra and geometry) and applied mathematics (statics, dynamics
and astronomy); in addition I took two optional papers—potential theory
and complex analysis. A strong feature of the programme was the inter-
connection between various branches of mathematics that the instructors
stressed constantly. A typical example was the manner in which the proof of
the following statement in astronomy:

“The equation of time vanishes four times a year”
was reduced analytically to that of the statement in geometry:
“From a point within the ellipse, four normals can be drawn to it.”’

The professor of mathematics at the college was Fr C. Racine, a young
energetic Jesuit priest who had recently arrived from France with new (for the
1940s) mathematics. He taught analysis out of the book by De la Vallée
Poussin. This course and the one on complex variables (based on the book by
Goursat) were an important part of my training in mathematics.

Mathematics in India at that time (but probably much less now) was
influenced by British mathematics, and consisted mainly of classical pure and
applied mathematics with emphasis.on problem solving. However, the training
in mathematics that I received taught me to appreciate fully its conceptual
foundations and to use its techniques skillfully and wisely. In addition I
developed a perspective on the discipline of mathematics that has moulded my
attitude towards the craft of probability modelling.

After receiving my BA (Hons.) degreein 1946 1 taught mathematics for two
years at colleges affiliated with the University of Bombay. I found teaching
interesting enough, but the position itself did not hold many prospects.
Therefore when in August 1948 the University of Bombay opened its post-
graduate department of statistics, I gave up my position and enrolled in that
programme. The curriculum included courses in topics such as statistical
inference, multivariate analysis, experimental designs and sample surveys, but
was rather weak in probability theory. Some training in the handling of
statistical data was also a part of the programme. I was truly impressed with
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the vastness of the conceptual framework of mathematical statistics, but
probability theory was going to be my chosen field of interest.

I received the MA degree in 1950 and worked as lecturer in mathematics
and statistics at Gauhati University, Assam State, for two years and then as
reader in statistics and head of the Department of Statistics at Karnatak
University, Karnataka State.

2. Visits to England and Australia

During my tenure at Karnatak (1955) T was awarded a British Council
scholarship for higher studies and went to work with Maurice Bartlett at the
University of Manchester, England. It turned out that my choice of university
was perhaps not ideal, as Bartlett’s probability proved to be too heuristic for
my taste. However, that year Joe Gani came to Manchester as a Nuffield
Fellow from Australia and I started to do research on the probability theory of
dams under his direction. During the limited duration of my scholarship I was
able to fulfill the requirements of the M.Sc. degree at Manchester.

The statistics courses taught at Manchester did not contain any material
that was new to me, but I did take a couple of mathematics courses, one of
which was on functional analysis and Markov processes taught by Harry
Reuter. I enjoyed this course immensely and it influenced my later work on
Wiener—Hopf factorization. Also I became acquainted with David Kendall
who expressed interest in my work on the theory of dams.

My own academic temperament had much in common with Joe Gani’s,
and our early student-advisor relationship rapidly developed into successful
research collaboration (at the University of Western Australia which I visited
during the 1957 academic year) and also led to a close personal friendship.

I returned to my position at Karnatak University in 1958. The Department
of Statistics that I had started in 1952 continued to expand, and a modest
attempt was made to start a Ph.D. programme. My research continued on an
_active basis. However, circumstances forced me to leave my position in 1961
and accept the position of reader in mathematical statistics at the University
of Western Australia.

In 1961 there was still only moderate activity in the area of probability in
Australia; however, since then a group of very fine probabilists and statis-
ticians has emerged. The group in Western Australia, started earlier by Joe
Gani, was very active in terms of research publications and graduate students.
This activity continued under my tenure as reader. I completed work on two
books—on queueing theory [21] and stochastic processes [22]. Also I became
acquainted with Pat Moran, who pioneered the probability theory of dams.
The academic climate in Australia was indeed to my liking, but unfortunately
the political climate of those times was not favourable to my continued stay in
that country.
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3. Migration to the USA; Some Reflections on my Career

I came to the USA in 1964 as a visiting associate professor of statistics at
Michigan State University. This was my first experience of American acad-
eme, and it was not an entirely happy one. Since 1965 I have been at Cornell
University—as associate professor in 1965—7 and as professor since 1967. In
1972 my wife, our two daughters and T became naturalized U.S. citizens, and it
looks as though my wanderings have come to an end.

The applied probability group at Cornell is a part of the School of Oper-
ations Research and Industrial Engineering, which is a unit of the College of
Engineering. I have tried to develop this subject area according to my philo-
sophical inclinations. My experience is that the environment provided by the
engineering college is not entirely conducive to the growth of applied proba-
bility to its full stature. I am completing my twentieth year at Cornell, and this
is perhaps an opportune time to reflect a little over some aspects of my career.

The scientific community is a truly international one, sharing its concerns
over matters of mutual interest and participating in cooperative ventures such
as conferences and journals. Membership of this vast international com-
munity is one of the privileges of our profession. This is an aspect that I have
enjoyed most in my career; it has been my objective to play my part in
international activities in the domain of probability.

Teaching and research are important parts of an academic career. I like
teaching, but derive less satisfaction from it here in the USA, than I have in
Australia and India. I have had excellent rapport with my research students,
many of whom have become my close f} riends and associates. My own research
has been in the area of what I have designated as stochastic storage processes
[23]. This area was in its developing stage when I started my research career,
and my contributions to it have brought me immense enjoyment.

In this section I describe my views on various aspects of the craft of
probability modelling in general, and the modelling of queues and storage
systems in particular. My views have evolved through various stages, being
influenced by my experiences in India, England, Australia, and the USA, and
are therefore somewhat personal. In particular, I have found that in most
parts of the world academics consider themselves to be members of an élite
class, enjoying social if not financial privileges. I am ill-at-ease with this
notion, and would not claim for myself any special status. In a society where
jealousy is almost institutionalized I consider myself an uncompetitive person.

4. Mathematical Models

Let me begin with some comments on mathematical modelling. The term
“mathematical model” is used to describe a quantitative approach to various
phenomena. Such models abound in classical physics and applied mathematics
(in the British sense of the term). They are all deterministic; the physicists were
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apparently slow in recognizing the role of chance in model-building. The
paper by Kac [9] contains interesting references to some of the controversies
that raged between the classical and modern physicists. Neyman [18] in his ad-
dress over 25 years ago to the American Statistical Association drew statis-
ticians’ attention to the role of indeterminism in science and the consequent
demands on them. To make the perspective somewhat broader, one might
perhaps also emphasize the concept of stochastic control in this connection.

Probability models may be characterized as mathematical models that
involve a random element. An older term is statistical, used in connection with
statistical physics and related areas. At the early stages of development of
mathematical statistics considerable attention was paid to fitting curves to
observed data. (Kendall’s book [14]) contains several examples of this.) Even
that may be viewed as probability modelling, but the curve-fitting was carried
out rather uncritically, with no attempt to explain the possible a priori reasons
why a certain curve and not some other might have been fitted to the data.
Probability modelling in the current sense of the term emerged during what
Neyman [18] calls the era of dynamic indeterminism, starting with Mendelism,
statistical mechanics, epidemiology and other areas, and now extending to all
branches of the natural, physical and social sciences.

5. The Scope of Applied Probability

The subject areas that probabilists seek to model are diverse, and each has its
own technical background. Applied probabilists, on the other hand, are
usually trained in mathematics, probability and in some cases, statistics. Their
intended audience consists of theoretical experts in their various areas, or
practitioners (the consumers of applied probability). This is very different
from the classical situation when the boundaries across disciplines such as
mathematics and physics were not rigidly drawn. Probability modelling con-
sists of the following important steps:

(i) Describe the phenomenon under investigation in fairly non-mathe-
matical terms.

(i) Set up reasonable hypotheses (assumptions) to translate the above
description into mathematical (probabilistic) terms. This constitutes the pro-
bability model.

* (iii) Ask appropriate questions concerning the phenomenon, and formu-
late these questions in terms of the stochastic process that arises from the
model. '

(iv) Test the appropriateness of the assumptions made in (ii). This involves
the testing of the model.

(v) Communicate the results of the investigation to the scientist or the
practitioner who first proposed the problem, and to the wider audience of all
applied probabilists.

The ideal environment for applied probabilists’ work is provided by
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organizations such as the scientific and industrial research organizations of
Australia, India and the United Kingdom, and Bell Laboratories and IBM in
the USA. The environment provided by a university for collaborative research
between probabilists and biologists (for example) has its limitations. In any
case, whether or not an applied probabilist is able to perform his chosen task
successfully in terms of the steps (i)—(v) described above will depend entirely
on his environment.

First and foremost an applied probabilist has to understand the subject
matter of his study thoroughly and grasp its technical nature, with a view to
explaining the problem to a wide audience. Unfortunately the very important
step (i) above is neglected by several authors, who begin their analysis of the
model with a rather uncritical mathematical description of the situation and
thereby raise questions concerning the genuineness of the model itself. In all
branches of applied mathematics the practitioner is usually prepared to allow
the mathematician considerable latitude in introducing sophistication in his
modelling effort for the sake of mathematical maneuvrability, but it is essen-
tial that the real-life features of the situation should be carefully described in
step (i) before introducing the necessary sophistication in step (ii).

A probability model gives rise to a stochastic process and the analysis of the
model reduces to solution of problems within the theoretical framework of
this process. Thus in his pioneering papers on queueing theory, Kendall [12,
13] uses discrete-time Markov chains, while in his recent book on the subject
Brémaud [3] uses martingale dynamics. It very frequently happens that in
order to carry out step (iii) described above, namely to answer questions
concerning the phenomenon under investigation, the applied probabilist ex-
pands his theoretical framework considerably, and discovers new properties
of known processes or even finds a new class of stochastic processes. Thus the
work of Lindley [15] and Smith [31] on queueing theory opened up new vistas
on random walks (fluctuation theory, Wiener—Hopf factorization, etc.).

Incorporating a large number of real-life factors into a model usually
makes it complex to the extent that the existing theory of stochastic processes
becomes inapplicable. In such situations computer simulations of the model
might be the only recourse and might lead to broad tentative conclusions.

The questions asked of the model are in the first instance solved by cal-
culating the system characteristics, and at an advanced level involve statistical
inference, design, and control. The analytical techniques used by applied
probabilists are drawn from several branches of mathematics such as real and
complex analysis, linear algebra, functional analysis and even mathematical
programming and game theory. Thus Rouché’s theorem has many uses in
applied probability, and properties of linear operators in Banach spaces are
also needed. For problems that defy analytical treatment, computers are being
used fairly extensively. Exactly which of these techniques should be used
depends on the problem in hand, and to indulge in a concerted effort to
discredit any one set of techniques amounts to an anti-intellectual activity.

Except perhaps in a few classes of probability models, real-life data are
hard to obtain, and testing of models as suggested in step (iv) above is not
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always possible. The theory of statistical inference for stochastic processes has
made great advances in recent years (see Basawa and Prakasa Rao [1]), and
should prove useful to applied probabilists.

6. Communication Problems in Applied Probability

Initially, applied probabilists published the results of their research in math-
ematics and statistics journals; this was very natural, as their academic back-
ground was in these subject areas. It is doubtful whether the readership of
these journals was the authors’ intended audience, and in any case the journals
became increasingly reluctant to publish papers on applied probability. The
founding of the Journal of Applied Probability in 1964 and Advances in Applied
Probability in 1969 by Joe Gani was a most timely and welcome development,
and these two journals have since provided a major venue for the publication
of applied probability research.

In the USA the main concerns of applied probabilists were the directions in
which the field of applied probability was developing, and the status of
applied probabilists in the general scientific community. Efforts to address
these problems led to the starting of a series of conferences on stochastic
processes and their applications (SPA) in 1971, and to a journal of the same
title in 1973. The committee that was set up to plan the conferences was
affiliated in 1975 with the International Statistical Institute’s Bernoulli
Society for Mathematical Statistics and Probability as a subject area commit-
tee. The journal Stochastic Processes and Their A pplications, published by the
North-Holland Publishing Company, became an official publication of the
Bernoulli Society in 1980. In [25] and [26] I have recorded brief histories of
these developments, with which it was my privilege to be associated from the
very beginning.

7. The Status of Applied Probabilists

Some applied probabilists seem to feel that they do not always get the recogni-
tion they deserve for their work. Itis tempting to blame this on the continuing
reluctance of classical scientists to recognize the role of chance in physical and
natural phenomena. However, there are other, more valid reasons. It is
possible that an applied probabilist is viewed as a technician, a problem-
solver, rather than as a scientist in his own right. This is clearly a mistaken
view. It is true that a considerable part of an applied probabilist’s work
consists of problem-solving, and I believe this amounts to a significant contri-
bution, of importance to all parties involved. However, applied probabilists
are also basically probabilists; they are inclined to ask whether the results
obtained in specific models have implications concerning a larger class of
stochastic processes, and very often find that they do. Thus they are able to
make significant contributions to the theory of stochastic processes, which
entitle them to the status of scientists in their own right.
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Are applied probabilists trying to “reach the moon without learning
Newton'’s laws of gravitation? The early applied probabilists emerged from
among mathematicians and statisticians with a good background in pure and
applied mathematics and mathematical statistics. It was appropriate at that
time to designate them as probabilists. In recent times most applied probabi-
lists have been graduates of departments of operations research or of math-
ematical sciences. Their training includes mathematical programming, game
theory and combinatorics (which perhaps constitute modern applied math-
ematics), besides probability and statistics. This training is broader in the
sense that it is appropriate to the needs of current times, but it may perhaps
lack depth in mathematics, probability and statistics. Is a person with this
background an applied probabilist per se, or rather an applied mathematician
specializing in probability models?

In the 1950s and early 1960s when applied probability was emerging, it was
subject to the criticism of pure mathematicians and mathematical statis-
ticians, who did not fully appreciate the significance of the new discipline.
Against this criticism the small community of applied probabilists built a
common defence, and the applied probability journals which started their
publication at this time provided them with a strong sense of identity. This
professional camaraderie was, however, shortlived. As the community grew
larger the differences in the academic backgrounds of its members (as ex-
plained above) became more evident, and resulted in disparities in their
approach to the craft of probability modelling. Trends and fashions emerged,
as is so common in other branches of science—the very same factors that
applied probabilists had earlier felt they were victims of. Thus events have
completed a full cycle.

In the USA financial support from the national research agencies for
research projects on applied probability has not been forthcoming to the
extent that this area deserves. One cannot blame the agencies for this defici-
ency, because they do not have an accurate perception of the role of applied
probability in the general domain of scientific endeavour, and it would be
futile to look to them for any leadership in this matter. In my opinion the
factors responsible for this lack of support are the continuing reluctance of
mathematicians and statisticians to give applied probability its due place, and
the prevailing attitudes of applied probabilists themselves in making some
areas of research less fashionable than others. This competition for financial
support is of course an essential feature of- American scientific effort; one
might take some comfort from the fact that the quality of the research ac-
complished is not always positively correlated with the extent of support
received from the research agencies.

The social unrest of the late 1960s and the 1970s in the USA and the
resulting challenge to mathematicians (and other scientists) made consider-
able impact on their subject areas, specifically prompting a heightened aware-
ness of real-life problems. Thus mathematicians have become increasingly
interested in problems of biology, operations research, economics and other
subject areas. The availability of high-speed computers has made problem-
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solving a less tedious and perhaps even an interesting exercise. In the broad
spectrum of applied science, applied probability has a well-deserved place;
perhaps it is not as large as applied probabilists in their pioneering enthusiasm
once claimed for it, but it is undoubtedly a significant place.

8. Probability Modelling of Queueing and Storage Systems

In his pioneering survey paper, Kendall [12] stated that the theory of queues
has a special appeal for the mathematician interested in stochastic processes.
The truth of Kendall’s statement has been borne out by the developments of
the last 34 years, and queueing theory continues to fascinate mathematicians
at least as a source of convenient examples for various concepts of stochastic
processes. It provides motivation to applied probabilists to seek new direc-
tions for their research, and poses problems of inference and control to
operations researchers. Indeed the richness of structure of queueing systems is
shared by only a few other areas of applied probability.

The stochastic processes arising from simple queueing models (those with
Poisson arrivals and service times having exponential density) turn out to be
birth-and-death processes, and the standard properties of these processes are
used to answer questions concerning these systems. In somewhat more ad-
vanced models (such as those with group arrivals or bulk service), the pro-
cesses are still Markovian, but not of the birth-and-death type. Their analysis
is still standard, attention being concentrated on the limit behaviour of the pro-
cesses. When non-Markovian processes were encountered, dire warnings were
at first issued as to the complications that occur in their analysis, and later,
two remedies for the situation were offered. One remedy is A. K. Erlang’s
method of phases for the system M/E,/1, where one is asked to investigate
Q, (1), the number of service phases present in the system, there being k for
each arrival; it turns out that the process {Q,(#)} is Markovian, while the
queue-length process {Q(#)} is not. However, Erlang’s method resuits in loss
of information on Q(¢), and it is in fact quite unnecessary to use it. The
appropriate procedure for the M/E,/l system is to consider {Q(7), R(?)},
where R(?) is 0 if the system is empty, and the residual number of phases of the
customer being served otherwise. This two-dimensional process is Mar-
kovian, and its analysis is no more difficult than that of Q,(1). A second
remedy for the non-Markovian situation is the technique of imbedding pro-
posed by Kendall [12, 13]. Here, instead of the given continuous-time process
one investigates a suitable Markov chain imbedded in it. I used to think that
the concept of imbedding had retarded the progress of queueing theory by at
least 10 years, because attention was diverted from continuous-time non-
Markovian processes (such as point processes and martingales). However, my
more recent experience has convinced me that imbedded chains are perhaps
the natural processes to observe in control procedures, where controls are
usually (but not always) imposed at certain special points of time, such as
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arrival or departure epochs. The end of this Markovian era is marked by the
appearance of the important paper by Takacs [35] on the virtual waiting time
in the system M/G/1.

More general queueing systems in which the independence assumptions on
interarrival times and service times are suitably weakened give rise to Markov
renewal processes. However, no significant results seem to emerge from this
class of models, qualitatively different from those of the standard models.

Early investigations of the general single-server queueing systems were
concerned with the waiting time of an arriving customer (as opposed to virtual
waiting time). In the pioneering paper of Lindley [15] the basic process is again
a (discrete-time) Markov chain, and its limit distribution is of main interest.
Here Wiener—Hopf techniques were used by Smith [31]ina non-probabilistic
context, and later by Spitzer [32], [33] in a probabilistic context. This led to
the surprising discovery of the close connections between queueing problems
and random walks. In particular, it turned out that the problems concerning
the waiting time and accumulated idle time reduce to those concerning the
maximum and minimum functionals of the associated random walk. Combi-
natorial techniques used in random walks became a standard tool of queueing
theory, and were used by Bhat [2] to investigate bulk queueing systems.

The continuous-time analogue of the random walk is of course a process
with stationary independent increments (Levy process). However, the fact
that Lévy processes are basic to queueing models was not easily recognized.
The compound Poisson process lurking behind the virtual waiting-time pro-
cess {W(f);t >0} of the M/G/1 system was used by Reich [28], [29] to
formulate his integral equation for W(¢), and I obtained the distribution of
the busy period of that system by recognizingitasa first-passage time for this
compound Poisson process [19]. The theory of dams, which reached a vigor-
ous state of development about this time, gave considerable impetus to the
study of continuous-time stochastic processes arising in queues. In particular
it led to appropriate formulations of single-server queueing models with static
and dynamic priorities (Hooke and Prabhu [8], Goldberg [7]) and also to a
new approach to the insurance risk problem (Prabhu [20]). Unification of the
theories of queues, dams and insurance risk was also achieved, and it became
evident that it would be appropriate to include all of these models under the
broad title of stochastic storage models, characterized by inputs constituting
Lévy processes. In [24] I presented a comprehensive treatment of these models.

The probability theory of dams had a modest beginning, with Moran’s [17]
discrete-time, finite-capacity model with additive inputs. Models with corre-
lated inputs were proposed by Lloyd [16]. Continuous-time models with
inputs forming a Lévy process were first investigated by Gani and myself
[6]. This area of probability models developed very rapidly. In particular a
study of continuous-time storage models with Markovian inputs was under-
taken by Cinlar [4]. Insurance risk models with claims occurring in a Markov
renewal process have recently received considerable attention from European
actuaries.
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My research on queueing problems within the framework of random walks
and on continuous-time dam models motivated my interest in the fluctuation-
theoretic aspects of Lévy processes. This led to the theory of ladder pheno-
mena (Rubinovitch [30]) and Wiener—Hopf factorization for Lévy processes
(Prabhu [23]), for Markov additive processes (Kaspi [10]) and for Markov
processes (Prabhu [27]). This was a most rewarding experience, and it con-
firmed my belief that applied probability research can indeed lead to signifi-
cant contributions to the theory of stochastic processes.

In other work on continuous-time storage models the net input process is
assumed to be a Brownian motion. Now since the net input equals gross input
minus amount demanded, both quantities being nonnegative, it is clear that
the net input process is necessarily of bounded variation with probability 1,
and so it cannot be Brownian. I therefore question the validity of such models.
In the Brownian setting, control problems in storage reduce to familiar
problems in stochastic control theory and other problems reduce to those
involving entrance or exit times for the Brownian motion (in one or more
dimensions) into or from certain regions. These problems are difficult, and
presumably they are interesting and even important. However, it would be
more honest to formulate them directly as problems on Brownian motion,
rather than as problems arising from genuine storage models.

Research on queueing networks started along conventional lines, using the
standard theory of Markov processes, most of the work being motivated by
computer applications. This subject area has become increasingly important,
and more advanced concepts and techniques such as time-reversibility and
properties of Poisson flows have been used (see, for example, Kelly [11]). The
other newly emerged areas of research use the theory of point processes and
martingales (Brémaud [3], Franken et al. [5]) and concepts of stochastic
ordering (Stoyan [34]).

A due concern with the practical applications of queueing and storage
models has forced applied probabilists to come to grips with the complexities
of the stochastic processes arising from the models, and their labours have
been amply rewarded. These models have indeed made significant contri-
butions to the general theory of stochastic processes in terms of concepts and
techniques; I am happy to have been among the contributors.
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