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The joint queue length process in polling systems with and without switchover times is studied.
If the service discipline in each queue satisfies a certain property it is shown that the joint
queue length process at polling instants of a fixed queue is a multitype branching process
(MTBP) with immigration. In the case of polling models with switchover times, it turns out
that we are dealing with an MTBP with immigration in each state, whereas in the case of
polling models without switchover times we are dealing with an MTBP with immigration in
state zero. The theory of MTBP’s leads to expressions for the generating function of the joint
queue length process at polling instants. Sufficient conditions for ergodicity and moment
calculations are also given.
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1 INTRODUCTION

In this paper we consider continuous-time cyclic polling systems. The single server who
successively visits a number of different stations may or may not experience switchover times
when he switches between stations. We are particularly interested in the joint queue length
process in the different queues.

Polling systems have been considered in numerous papers (see the survey of Takagi [18]).
For example, a large number of service disciplines has been considered. Typical service
disciplines are exhaustive service (per visit the server continues to serve all customers at a
station until it empties), gated service (per visit the server serves only those customers at
a station which are found there upon his visit), and 1-limited service (per visit at most one
customer is served at a station).

When one overviews the literature, there is a striking distinction between polling models
with service disciplines that allow a rather simple analysis (including gated and exhaustive
service) and polling models with service disciplines (like 1-limited service) that defy any
exact analysis except for some special cases like completely symmetrical queues or like the
two-queue case. It turns out that an analytical method, called the buffer occupancy method,
does work for the first group of models, and does not work for the second group.

This paper is concerned with the question: Why is there such a sharp distinction be-
tween the two groups of models? We show that the theory of multitype branching processes
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(MTBP’s) with immigration plays a key role in answering this question. We shall demon-
strate that the number of customers at different queues on successive moments that the server
reaches a fixed queue, say queue 1, is an MTBP with immigration for the first group of mod-
els and is not an MTBP for the second group of models. This observation, in combination
with results about MTBP’s, immediately leads to an expression for the generating function
of the stationary joint distribution of the number of customers at different queues on these
moments for polling models with, e.g., exhaustive and gated service. Furthermore, it leads to
the same kind of result for some new polling models. So the main contribution of this paper
is the unification and generalization of some known results for models with exhaustive and
gated service to a general class of polling systems, by using the framework of MTBP’s.

The rest of this paper is organized as follows. In Section 2 we describe the model and the
service disciplines that are considered in this paper. Section 3 is devoted to MTBP’s. We
recall some known results for MTBP’s and prove a theorem for MTBP’s with immigration in
state zero. Section 4 contains the main theorems in this paper. It is shown that in our model
the number of customers at different queues on successive moments that a server reaches a
fixed queue is an MTBP with immigration. This leads to the expression for the generating
function of the stationary joint distribution of the number of customers at different queues on
these moments. Section 5 is concerned with the question : What are the ergodicity conditions
for our model ? In Section 6 we do some queue length moment calculations and the paper is
finished in Section 7 with conclusions and a list of possible extensions.

2 MODEL DESCRIPTION

We consider a system consisting of N infinite-buffer queues, @1, ...,Qx, and a single server.
The service time distribution at @Q; is B;(-) with first moment §; and with Laplace-Stieltjes
transform (LST) B;(-). The server moves among the queues in a cyclic order. We consider
both the model with switchover times and the model without switchover times. In the model
with switchover times, the server always switches, even when the system is empty. When
leaving @ ; and before moving to the next queue, the server incurs a switchover period whose
duration is a random variable §; with first moment o; and LST o¢;(-). In the model without
switchover times, when the system is empty the server stops switching and waits at a fixed
queue, say @, until there is a customer arrival. Customers arrive at the queues according
to independent Poisson processes with rate A;, j = 1,..., N. Furthermore, arrival processes,
service times and switchover times are independent. The service disciplines that we consider
in this paper satisfy the following property (see Fuhrmann [4]).

PROPERTY 1 If the server arrives at Q; to find k; customers there, then during the course of
the server’s visit, each of these k; customers will effectively be replaced in an i.i.d. manner
by a random population having probability generating function (p.g.f.) hi(si,...,sn), which
can be any N -dimensional p.g.f..

The exhaustive and gated service discipline both satisfy this property. In these cases the
functions h;(s1,...,sn) are given by

h,-(sl, oy SN) = 9{(2 AJ'(]. - s_,‘)) (1)

J#i



and

hi(s1,---,8N) = ﬂi(z Aj(1-s5)) (2)

respectively, where 6;(:) denotes the LST of a busy period in an M/G/1 queue with arrival
rate A; and service time distribution B;(-).

Also the more general service disciplines binomial-exhaustive (see Levy [7]) and binomial-
gated (see Levy [8]) satisfy property 1. The p.g.f.’s are given by

Ri(s1,. .. sn) = (1= pi)si + pifi (D A;(1 - s5)) (3)
i
and
hi(s1,..,88) = (1 - pi)s; +Piﬂi(z Aj(1 = s5)) (4)

respectively. Here the parameter p; is the probability that a customer, who is found in Q; at
the moment that the server reaches @Q);, is served.

Remark that we allow different service disciplines at different queues. Hence, also the
mixture of exhaustive and gated service disciplines, as described in Takagi [17], is contained
in our model.

In Section 4 we shall show that the numbers of customers at different queues on successive
moments that the server reaches @, for service disciplines that satisfy property 1, constitute
an MTBP with immigration. Essential in property 1 is that all k; customers are effectively
replaced in an i.¢.d. manner. For the 1-limited service discipline, if the server arrives at Q;
to find two customers there, one of the customers is replaced by a random population having
p-gf. Bi(3Z; X;(1 — s;)), while the other is replaced by a random population having p.g.f. s;.
Hence the 1-limited service discipline does not satisfy property 1. Also the Bernoulli service
discipline does not belong to the above described class of service policies. Recall that in
the Bernoulli service discipline after each service which does not leave Q; empty, the server
serves another customer with probability p; and moves to the next queue with probability
1 — p;. For this discipline obvious dependencies arise between the random populations that
effectively replace different customers.

The following service discipline, called Bernoulli-type, does satisfy property 1. When the
server reaches @); and finds k; customers, each of these customers is independently handled
in the following way. The customer is served and customers arriving during the busy period
generated by this customer are served according to a Bernoulli discipline with parameter p;,
0 < p; < 1. So, after each service which does not finish the busy period, the next customer
in the busy period is served with probability p; and the server stops serving the busy period
with probability 1 — p;. As far as we know this service discipline is new. It both generalizes
the gated service discipline (p; = 0) and the exhaustive service discipline (p; = 1).

LEMMA 1 For the Bernoulli-type service discipline the p.g.f. hi(s1,...,sn) is given by

. P o ST Gl ) . OV Y k) PN o N
hi(sl" : ')SN) - Qpiﬂ(g A.7(]‘ J))+ $; — pzﬂt(z:] AJ(I _ sj)) ( 4 @Piﬂ(gAJ(l J))):(s)
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where ®p, i(s) is the unique solution of
Bpii(s) = PiBi(s + Ai(1 — @p,4(s)))-

Proof: Define 9;(r,s) = E(e "Tis¥Xi), where T; is the length of a busy period generated
by a single customer and X; is the number of customers at the end of the busy period, in
an M/G/1 vacation model with Bernoulli schedule with arrival intensity );, service time
distribution B;(-) and Bernoulli parameter p;. Then

hi(sl, ceey SN) = ’l,b,(z /\j(l - 8_7‘),8,'),
J#i

and the result follows from Theorem 1 of Ramaswamy and Servi [12].

3 MULTITYPE BRANCHING PROCESSES

We start this section with recalling some terminology and stating some results about multi-
type branching processes (see Athreya and Ney [1]). Assume we have a finite number N of
particle types. To define the particle production we need N generating functions, each in N
variables,

f(i)(sl,...,sN)z Z p(i)(jl,...,jN)s{‘---s%’,", i=1,...,N, (6)

J1yeeaJN20

where p()(jy,...,jn) is the probability that a type ¢ particle produces j; particles of type
1, j2 of type 2,..., jn of type N, respectively. Let m;; be the expected number of type j
offspring of a single type ¢ particle, i.e. m;; = %’%(1, .o 1).

An essential role is played by the mean matrix M = (m;; : 4,5 = 1,..., N). The matrix
M is called primitive, if there is an n such that all entries of the matrix M™ are strictly
positive. As a consequence of the Perron-Frobenius theorem (see Seneta [14]), for a non-
negative primitive matrix M there exists a positive real eigenvalue ., of M such that
|A] < Amae for all other eigenvalues A of M.

As mentioned before, we shall prove in Section 4 that for our model (with, in particular,
the service disciplines satisfying property 1) the number of customers at different queues on
successive moments that the server reaches Q, is an MTBP with immigration. It turns out
that, in the case with switchover times, we are dealing with an MTBP with immigration
in each state. When there are no switchover times, we are dealing with an MTBP with
immigration in state zero. In the following two subsections we pay attention to these two
types of immigration.

3.1 Multitype branching processes with immigration in each state

Consider the multitype branching process with an independent immigration component in
each state. So in addition to the generating functions f(")(sl, ...ySN),i = 1,..., N, repre-
senting the offspring distributions, an additional generating function g(s;, .. .,8N) is given,
representing the immigration distribution, i.e.

9(s1,...,8N) = Z q(j1, .-, Jn)sP - - s, (7
jl""'jNZo
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where ¢(j1,...,jn) is the probability that a group of immigrants consists of j; particles of
type 1, j2 of type 2, ..., jn of type N, respectively.
Define the functions f,(s1,...,sn) inductively by

{fo(sl,...,slv) = (81,...,SN) (8)
fn(s1,...,8N) =(f(l)(fn—l(sla---asN))""af(N)(fn—l(sli'"’SN)))'

The following theorem is due to Quine [11].

THEOREM 1 Let Z, = (Z,(,l), ceey Z,(IN)) be a multitype branching process with immigration in
each state with offspring generating functions f)(sy,...,sn), i =1,..., N and immigration
generating function g(s1,...,8n). Let the mean matriz M corresponding to the branching
process be primitive and its mazimal eigenvalue A q; < 1. Assume the Markov chain Z, is
irreducible and aperiodic. Then a necessary and sufficient condition for the existence of a

stationary distribution «(ji,...,jN) for the process Z,, is
Z Q(jla“ij)log(jl+"'+jN)<00. (9)
jl:'"erZO
J1+-+in>0
When this condition is satisfied, the generating function P(s1,...,sn) of the distribution
7(j1,-..,JN) satisfies
e <]
P(s1,...,sn) = [[ 9(Fa(s15---,5n)). (10)
n=0

Proof: See Quine [11]. The formula (10) is derived by iteration of

P(s1,...,8n) = g(s1,...,8N)P(f1(51,--.,SN))- (11)

We shall use (11) in Section 6 for moment calculations.

3.2 Multitype branching processes with immigration in state zero

In this subsection we consider the same process as in the previous subsection except that
there is immigration only in state zero and not in every state. We shall prove (see also
Resing [13]) the following multitype version of a theorem of Pakes[10]:

THEOREM 2 Let Z,, = (Z,(,l), ceey Z,(tN)) be a multitype branching process with immigration at

state zero with offspring generating functions f)(sy,...,sn), i =1,..., N and immigration

generating function g(si,...,sn). Let the mean matriz M corresponding to the branching

process be primitive and its mazimal eigenvalue Apyqp < 1. Assume the Markov chain Z, is

irreducible and aperiodic, and finally assume Zg = (0,...,0). Then a necessary and sufficient

condition for the ezxistence of a stationary distribution w(ji1,...,jN) for the process Z,, is
J1y-eaJN20

J1+-+3iN>0
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When this condition is satisfied, the generating function P(sq,...,38N) of the distribution
7(j1,-..,JN) satisfies

P(s1,...,sny)=1-=(0,...,0) i(l = 9(fn(s1,.--,8N))), (13)
n=0
where
70,0, 0) = [+ (1= g0, O (14)

Proof: Because of the assumption that Z, is aperiodic and irreducible all states of the
Markov chain are equivalent. Hence we restrict our attention to the state (0,...,0). Let T
be the recurrence time of state zero. We need the following lemma.

LEMMA 2 Forn > 1 we have Pr(T > n) =1 — g(fn-1), where fn_1 := fn_1(0,...,0).

Proof: Let Y, be the multitype branching process with the same offspring generating
function as Z,. Furthermore Yy = (0,...,0) and only at time zero there is an immigration,
with generating function g(s1,...,sny). Then the process Y, has the same recurrence time
of state zero as the process Z,, and the generating function of Y, equals g( fn—1(s1,...,n)).
Hence Pr(T > n) = Pr(Y, #0) = 1 — g(fa-1)-

Now we can continue the proof of Theorem 2. We conclude that the Markov chain Z,
is recurrent from the fact that for multitype branching processes with A, < 1, we have
fn(s1,.-.,88) — (1,...,1) (see Athreya and Ney [1]) and hence Pr(T > n) — 0.

The expected recurrence time of state zero equals

i nPr(T =n) = i Pr(T>n)=1+ i(l — 9(fa-1)), (15)

n=0

and hence Z, is positive recurrent with 7(0,...,0) = [1+3 52 ,(1—g(fn))] L if S (1—g(fn)) <
0. See Kaplan [6] for the proof that this condition is equivalent with condition (12). In fact
Kaplan concludes that if (12) is satisfied > (1 — g(fn(s1,...,8n))) < oo for all (sq,...,sN)
with0<s;<1,2=1,...,N.

It only remains to prove equation (13). Define the transition probabilities

Pil,...,iN;jl,...,jN = Pr(Z‘n-{-l = (jl) .. '1jN)lZn = (il) oo 77:N))
and define
Ril,...,iN(slj R ] 3N) = Z pily---liN;jl)-"les{I T sjl\lrv'
J1ye-ndN20
Then
Pil,...,iN(*sl’ .. °’5N) = g(sh v "SN)I[(iI) . "iN) = (0) . ')0)]
F[FD(s1, .oy sn)E - [F ™81,y sn) N1 (31, - - ., in) # (O, . . ., 0)].

Now we use



Tt i = E: TiyresinPis, . inidr i
i

to conclude

P(slv"’sN) = Z 7".'1'1.---..1'N3:1,1 3;\1;’
jl""’jN

_ E: 2: . pe . gt N
- 7";1 1-"11‘Np"l 1o TN3J1 v--v]Nsl sN
J1yeensdN U yeesiN

= Z Wil,...,iN-Ril,...,iN(sla sy SN)

Byl
= P(fl(sla . -,SN)) + W(Oa .. -10)[g(51a .. -asN) - 1] (16)
Iteration of this equation, together with f,(s1,...,s5) —» 1 and

S (g(fn(s1,---,8N)) — 1) < o0, yields (13).

4 POLLING SYSTEMS AND MULTITYPE BRANCHING PROCESSES

The following two theorems are the main results in the paper.
Define the time point ¢, as the time point that the server reaches @J; for the n-th time.

THEOREM 3 Consider a polling system with switchover times S; with LST oj(-). Assume
that the service discipline at Q; satisfies property 1 with p.g.f. hj(s1,...,sn), 7 =1,...,N.
Then the numbers of customers in the different queues at time points t,, constitute a multitype
branching process with immigration in each state, where the offspring generating functions
fO(s1,---,8n), i=1,..., N, are given by

f(i)('sl)' . 'asN) = hi(slv' . '>3‘i’f(i+1)(817' . 'asN)P . ',f(N)(sla' . °"SN)) (17)

and the immigration generating function g(s1,...,SN) is given by

N 1 N
9(s1,-. ) = [[ O M@ = s) + 30 M1 = FB(sy,. ., 58))). (18)
=1 k=1 k=141

Proof: Let t, and t,4; be two consecutive time points that the server reaches Q. Let c4
be a customer in the system at time ¢,,. The customers who arrive during the service of ¢4, if
ca is served in (t,,%n4+1), are called the first generation offspring of c¢4. The customers, who
arrive during the service of those customers of the first generation offspring who are served
in (tn,tnt1), are called the second generation offspring of ¢4, etc. The set of all customers
who belong to the offspring of ¢4, including cg4, is called the ancestral line of ¢4. Those
customers in the ancestral line of ¢4 who are still in the system at time t,,; are called
effective replacants of c4.

The notion of ancestral lines is taken from Fuhrmann and Cooper [5]. Note however that
we restrict the ancestral line to a finite interval (¢,,t,4+1). If, for example, c4 is not served
in (tn,tn+1) then both the ancestral line and the set of effective replacants of ¢4 only consist
of cy.

Let cp be a customer who arrives during a switching interval between ¢,, and t,4;. Similar
as above, we define the ancestral line and the effective replacants of cp.



The total collection of customers in the different queues at time t,,; consists of the effective
replacants of customers in the system at time ¢, and the effective replacants of customers
who arrive during a switching interval. From the fact that all arrival processes are Poisson
processes and the fact that all service disciplines satisfy property 1, it follows immediately
that we are dealing with a multitype branching process with immigration in each state. Here
the offspring of a type j customer corresponds to the effective replacants of a ¢4 customer
from @; and the immigration corresponds to the effective replacants of all the cg customers.

Next we shall calculate the offspring generating functions. By definition f(V)(s;,...,sx) =
hn(s1,...,8n). Assume we have calculated f(*¥)(sq, .. sy)fork=1i+1,...,N. Then we
will calculate f(i)(sl, ...,SN) by conditioning on the number of customers in the ancestral
line present at the moment that the server leaves Q;. With the notation

p(2) = Pr { collection of effective replacants of a c4 customer from
Q; consists of i, customers in Q, k =1,...,N},
q(j) = Pr{ collection of customers in the ancestral line at time that server
leaves @Q; consists of j, customersin Qk, k=1,...,N},
p(ilj) = Pr { collection of effective replacants of a c4 customer from
Q; consists of 7}, customersin Qg, k=1,...,N |
collection of customers in the ancestral line at time that server

leaves @); consists of jj customersin Qk, k=1,...,N},

we have

f(i)(3l,-°-)3N) = Z p(i)s;‘ ...8;\?’
11,..0IN20
= Z si‘ U 4 Z q(l)P(ZIl)
i1,..iN 20 0<jx <ig k=1,...3
0<gk41,k=i+1,..,.N

= Z g(j)sd .. .s¥ > p(ij)si ...s::"'j‘s::f;‘l‘ s
TN 20 2k k=10

1 20,k=:4+1,...,N

= 2 d@st o SFFE sy ) [f N (1, s
J14IN20

= hi(sla ooey8q, f(i+1)(31, e ,SN), ey f(N)(Sl, .o .,SN)).

To calculate the immigration generating function g(si,...,sn), let us first consider the
generating function g;(s1,...,sn) of the immigration consisting of effective replacants of
those cp customers who arrive during the switching interval from Q; to Q;,;.

Introduce the notation

p(i) = Pr { collection of effective replacants of cp customers arriving during switch
from @Q; consists of i customers in Qx, k=1,...,N},

Pr { collection of arrivals during switch from

=
~~~
.
N
I



Q; consists of ji customersin Q, k=1,...,N},

p(ilj) = Pr { collection of effective replacants of cp customers arriving during switch
from Q; consists of 7 customersin Q, k=1,..., N |
collection of arrivals during switch from

Q; consists of j customersin Qg, k=1,...,N}.

Conditioning on the total number of arrivals to the different queues during this switching
interval, we find

gi(s1,...,5N) = Z ﬁ(i)si‘...sﬁ{,’

i100min >0
Y s Y )
i1y AN20 0< ik <ig,k=1,....i
Osjh+1,k=‘i+1,...,N
. . © (A ¢)% Ant)IN
Y dlsy Y (7 CHO2 e CIO vt ayatig)
11,..iN>0 0<5k ig,k=1,...53

05jk+1 ,k=i+1,...,N

= Z / ——(Al.t,) : e~ Mt .. —(/\IYt)' Ne")"""’dS'i(lt)-.‘;{1 Lo.8T
jtradn>070 J1: JN:
[FE (1, psw)litt - [fN)(sy, .., s3) 1Y

i N
= a‘i(z Ae(l—s) + Z Ak(l— f(k)(sl,...,sN))).
k=1

k=1+1

The total immigration generating function g(si, ..., sn) follows of course from

N
9(81,-..,8N) = Hg,-(sl,...,sN). (19)
=1
This completes the proof of Theorem 3.

For the case without switchover times, define the time point t,, similar as above. When
the system is empty at t,, the server stops, waits until the first customer arrival after ¢, and
then starts serving this customer.

THEOREM 4 Consider a polling system without switchover times. Assume that the service
discipline at Q; satisfies property 1 with p.g.f. hj(s1,...,sn), 7 =1,...,N. Then the num-
bers of customers in the different queues at time pointst, constitute a multitype branching pro-
cess with tmmagration in state zero, where the offspring generating functions f(i)(sl, “++,SN),
t=1,...,N are given by

FD(s1,..r8n) = hi(s1, -85, FC (81, .oy 8n), oo, F )50, .., 8)) (20)
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and the immigration generating function g(s1,...,sn) is given by

N
Aj (i
9(s,-.rn) = 3 (s, 0), (21)

i=1
where X := TN \;.

Proof: The proof is similar to the proof of Theorem 3. However, there are no cp customers,
because there are no switching intervals. The only immigration is due to customers who arrive
at an empty system. With probability A;/A such a customer arrives at @; and hence the
immigration generating function in state zero is given by

N ).
g1, o) = 3 LD (o1, sw), (22)

Jj=1
Combination of Theorem 1 and Theorem 3 in the case with switchover times and combi-
nation of Theorem 2 and Theorem 4 in the case without switchover times gives us explicit

expressions for the stationary joint distribution of the number of customers in the different
queues at moments that the server reaches Q;.

5 ERGoDICITY

From Theorem 1 and Theorem 2 we conclude that, both in the case of MTBP’s with immigra-
tion in each state and in the case of MTBP’s with immigration in state zero, the conditions

1. Amee < 1,
2. > a(,.-in)log(i + -+ in) < oo,
jlv'"leZO
J1+-+iN>0

are sufficient for ergodicity.

In the following we shall prove that for polling systems with Bernoulli-type service discipline
(and hence in particular with gated or exhaustive service discipline) the condition Az < 1
is equivalent to the condition p < 1, where p = Z;v:l A;B;.

From the formula

F(s1,...,88) = hi(s, .. o 85, O sy, ... VSN )y e ey S5y, . .ySN)),
one easily finds the relation (with m;; := %%(;-)—(1, ...,1) and h;; := g%(l, .., 1))

N
mi; = hi -1 < i+ D haemyg.
k=141
Now we need the following three lemma’s. Let H = (h;;). In the sequel relations between

vectors have to be read coordinatewise, i.e. for example for two vectors z and y, £ < y means
z;<y;foralli=1,...,N.

LEMMA 3 For the Bernoulli-type service discipline we have
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1. p<l1= HB<B,
2. p=1= HpB =4,
3. p>1=HpB>p.

Proof: For the Bernoulli-type service we have, if p; # 0, (cf. Lemma 1)

(1 Pt,i(o)) Jﬂ;.) 7‘#]’

1

hi = 1- i - pi.(l - me‘(O)),

B %)

where p; := A;3;. Hence

> ®p; 1(0) 1—p;
Sk = (LT +1- =0 - 5,008

i=1 J#i *

= (4! ""'(0)( )8

and the lemma follows.

If p; =0, then
B .,
hij = _1—1_;)1:7 2 75 7,
hi = 0,
and hence

N
Z hi;B; = ZPJ’ (23)
i=1 TP

and the lemma follows.

LEMMA 4 For a vector 8 > 0, we have
1. HB< B = MB< B,
2. HB =B = MB =5,
3. HB> P => Mg > 8.

Proof: We prove 1, the proofs of 2 and 3 are similar. From 29’:1 my;B; = Ef’:l hn;B; we
conclude E;v___l mpy;B; < Bn. Furthermore we have

Emuﬂg = Z thﬂJ + Z hzk Z kaIBJ (24)
7=1 k=i+1 7j=1

and hence Ef,-\_’__l mp;B; < B for k =i+ 1,..., N implies Zf’zl m;;B; < B;. The lemma now
follows from an induction-like argument.
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LEMMA 5 (SUBINVARIANCE THEOREM) Let 8 > 0 be a vector and M be a non-negative irre-
ducible matriz with Perron Frobenius eigenvalue Apno.. Then

1. MB< B = Amaz <1,
2. MB=0 = Apae =1,
8. MB > = Amaz > 1.

Proof: See Seneta [14], Theorem 1.6 and Exercise 1.17.

THEOREM 5 For polling systems with Bernoulli-type service discipline we have Amaz <1 &
p<1

Proof: Follows from a combination of the Lemma’s 3, 4, and 5. The only difficulty that
arises is that for the exhaustive service discipline (p; = 0) the matrix M is not irreducible
(m;n = 0 for all 7). Hence we can not apply the subinvariance theorem directly to M.
However we can apply the subinvariance theorem to O, the (N — 1) X (N — 1) matrix with
Oi; = M;j for 1 <i,j < N —1, and it is easily checked that the maximal eigenvalue of O is
equal to the maximal eigenvalue of M.

Let us now look at the second condition

> q(,...,in)log(di + -+ + in) < oo. (25)
jlv"'thZO
J1+-+InN>0

In the case of polling systems without switchover times we have

N N
. Ny . Aj
> q(11,~--,JN)(J1+---+JN)=Zy’zmﬂ&00- (26)
=1 k=1

jl:-"'jNZO

In the case of polling systems with switchover times we have

N j N N
oo gl ain)G o+ in) = D00+ DD A D mik)ay < oo. (27)

jl:---:jNZo ij=1 i=1 =541 k=
Because

Z q(jh"')jN)log(jl+"'+jN)< Z q(]lr-’jN)(jl'l'"+.7N)’(28)

. i1 yeerd N 20
Jl ,"',]NZO Jl 'JN—

J1t+-+iN>0

condition 2 is always satisfied if we assume that all switchover times have finite first moment.
In fact condition 2 weakens the assumption of a finite first moment of all switchover times.
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6 MOMENT CALCULATIONS

The formulas (11) and (16) can be used for moment calculations. For example for the first
moments in the case of an MTBP with immigration in each state we find

)

EZM) 5x(1,...,1)

: = (I- M) : (29)
EZWM) 2L(1,...,1)

and in the case of an MTBP with immigration in state zero we find

EZ(M) 22(1,...,1)

: =7(0,...,0)(I - M)™? : (30)
EZ(M) 29.(1,...,1)

SN

We can use these formulas to get an explicit expression for the expected queue lengths at
moments that the server reaches Q; in polling systems with Bernoulli-type service discipline.
From
N
mi; = hij - 1[5 < i+ Y himgg,
k=141

we conclude
mij = Z hiyiy -+ hiy_yip,
(il )"‘ril)esij
with

Sij = {(#1,--,u):1>2,1< 1; S N,ip =14, = 4,43 <ip < ...<4_1,%-1 > j}

Furthermore
N b N
9(s1,--ysn) = [T M@ = sk) + S5 (1 = 7B (sa, .., 88)) (31)
=1 k=1 k=1i+1

in the case with switchover times, and

N
g(sl,...,sN)zny()(sl,...,sN) (32)
=1
in the case without switchover times. Hence
ag N N N
Es—j(l,...,l)z AJ'ZO‘,'-}-E Z a',-)\kmkj (33)
=3 1=1 k=141

in the case with switchover times, and
—(1,...,1 =§ —my; 4
63_7' ( ) port A m‘] (3 )

in the case without switchover times. All these formulas together give us explicit expressions
for the first moments.
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7 CONCLUSIONS AND EXTENSIONS

In this paper we show that the joint queue length process in the different queues of a polling
system with Poisson arrivals, at time points that the server reaches a fixed queue, is a
multitype branching process with immigration. This enables us to find an explicit expression
for the generating function of the joint queue length process. The service discipline has to
satisfy a certain property, recently introduced by Fuhrmann[4]. The analysis leads to known
results for exhaustive and gated service disciplines, but also to new results for other service
disciplines. For example, for binomial-exhaustive, binomial-gated and a mixture of gated and
exhaustive service disciplines until now only expressions for moments were given.
The analysis presented in this paper can easily be extended to the following cases:

models with Poisson batch arrivals (see Levy and Sidi [9]).
models with customer branching and customer routing (see Sidi and Levy [15]).

polling systems with fixed polling tables instead of cyclic polling systems (see Baker
and Rubin [2]).

models with globally gated service (see Boxma, Levy and Yechiali [3]).

discrete time polling systems (see Takagi [16]).

Acknowledgement: The author likes to thank O.J. Boxma for valuable discussions re-
lated to this paper.
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