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Abstract 

Given a .finite number of empty . / M / 1  queues, let customers arrive according to an arbitrary 
arrival process and be served at each queue exactly once, in some fixed order. The process of 
departing customers from the network has the same law, whatever the order in which the 
queues are visited. This remarkable result, due to R. Weber [4], is given a simple probabilistic 
proof. 
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1. Introduction 

Given a finite number of empty . / M / 1  queues, let customers arrive according 
to a n  arbitrary arrival process, and be served at each queue exactly once, in some 
fixed order, i.e., once they finish service at the first server they joint  the queue at 
the next, and so on till they leave the system. By an arrival process we mean the 
counting process associated with an a.s. strictly increasing sequence of times 

0 ~ < A a  ~<A2~< . . .  

and a sequence of a.s. finite, positive integer valued random variables 

N1, N 2 , . . .  

giving the number  of arrivals at the respective times. Note  that the process may 
be explosive. In [4], R. Weber proved the remarkable fact that whatever the order 
in which the queues are met, the law of the departure process is the same. Here 
we give a simple probabilistic proof of this result. 
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Consider an initially empty tandem connection of two exponential servers in 
series, and a deterministic sequence of arrivals at times 0 < t 1 < t 2 < . . . ,  the 
number of customers arriving at t k being ng. Each arriving customer joins the 
first queue, moves to the second queue after being served, and finally leaves the 
system after being served in the second queue. We let 0 < T 1 < T 2 < .. .  be the 
successive departure times from the system and (Dr) the associated counting 
process. Let X t denote the number of customers in the first queue at time t and 
Yt the number in the second. Let P denote the probability law of the process 
(Xt,Yt) when the service rates are/.1 in the first server and/*2 in the second, and 
/3 the law when the service rates are/ .2 in the first server and/ .1  in the second. 

To establish Weber's result, it suffices to show that the law of the departure 
process (Dr) is the same under P and /3. Indeed, it follows that, for an arbitrary 
arrival process, the law of the departure process from an initially empty connec- 
tion of two exponential servers in series is independent of the order in which the 
servers are met. If a finite number of empty exponential servers are in series, for 
an arbitrary arrival process, we may interchange a pair of successive servers 
without changing the law of the departure process. Note that any permutat ion of 
the servers can be generated by such interchanges. 

2. Main result and proof 

Let ((7,) be the filtration generated by (Dr). Let (hi) be the right continuous 
version of the stochastic intensity of (Dt) under P, i.e., the unique right 
continuous process adapted to (Gt) such that (D t - fdh s ds)  is a (P, Gt) local 
martingale. We define (ht) similarly, but with respect to (/3, Gt). Since a point  
process is uniquely determined by its intensity, to show that (Dr) has the same 
law under P and /3, it suffices to show that, for every t >/0, 

ht = h ,  a . s .  

The term "almost surely" is unambiguous, because P and /3 are mutually 
absolutely continuous. Let 

and 

lit(x, y ) & P [ X t = x ,  Yt=yiGt] ,  

(+(x, y)  ~=/3[X t = x, Yt =ylGt]. 
If right continuous versions can be chosen for lit and (,, then, for each t >~ O, 

ht =/*2P[Yt > l lGt] = t'2 Y'~ lit(x, y) ,  (2.1a) 
y>~l 
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and 

~,=/~a/3[Yt>~ IlG/] =#1 ~ ( t (x ,  y) .  (2.1b) 
y>~l 

Consider the Markov process ( ( X t, Yt ), t ~ [ t k, t k + l ) ). The filtering theory, [1], 
allows us to write the following equations for the evolution of a right continuous 
version of ~t, (vector notation for ~t(x, y)), on [t~, tk+l)): 

~t = ~tQD + ~tht for t 4= Tj., j = 1, 2 . . . .  , (2.2a) 

~,_a~ 
~t = h----~_ when t =  Tj. for some j =  1, 2 . . . . .  (2.2b) 

Here 

QD(a, r )  & Q(a,  f l ) l ( f l ~  a +  (0, - 1 ) ) ,  

QD(a, iS) & Q(a,  f l ) l ( f l = a  + (0, - 1 ) ) ,  

and Q is the infinitesimal generator of ( (X  t, Yt), t ~ [tk, tk+l) ) under P. Simi- 
larly, equations parallel to (2.2a) and (2.2b) can be written for (t in terms of Q, 
the infinitesimal generator of ((X t, Yt), t ~ It k, tk+l) ) u n d e r / 3  

A heuristic understanding of (2.2a) can be obtained by writing 

~ t + , ( f l ) l ( D t + , = D , ) = e [ ( x t + , ,  Y t+, )=f l lGt+,] l (Dt+,=Dt)  

= e [ ( x t + , ,  Yt+~)=fl]Gt, D,+,=Dt]I(Dt+,----D,) 
So 

EP[(x,+., r,§ (x,, r , ) : . ,  D,+.:D, IG,] 

P[Dt+,=DtlG,]  

= (1 - h : )  -1 E ~ , ( ~ ) Q ~ ( ~ ,  B ) ,  + o ( , )  
ot 

on (Dr+ , = Dr), from which (2.2a) follows upon letting ~ ~ 0. (2.2b) can be 
heuristically understood as giving ~t by putting ~t_ through the transition 
probability matrix at a jump corresponding to a depaJ:ture. (This transition 
matrix is QD normalized by its row sums.) 

For n >/0, N >i n, let 

St(n , N )  & E ~t( x, Y). (2.3) 
x + y = N  

y~n  

Similarly define ~ (n ,  N). The crucial observation is the following 
Claim: For any n >I 0, N >t n, we have 

St(n, N )=( l~ l / l~2 )n~(n ,  N )  

for all t >1 O, a.s. 
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REMARK 
To motivate the claim, note that if Weber's result is true, the total number of 

customers in the system is the same in law, so we must have St(0, N)  = ~(0, N). 
Further, we must have S/(1, N ) =  (~l//X2)~(1, N)  to get the same intensity of 
departures in the two situations. Finally, the claimed identity holds for the 
corresponding partial sums of the stationary distribution when each system is 
stable with the same Poisson input. 

Proof 

First note that, for k = 1, 2, . . . ,  

claim holds upto t k- = claim holds upto t k . 

Indeed, the arrivals at t k do not change the number of customers in the tail 
queue, and there are a.s. no jumps at t k. Clearly the claim holds upto t 1. Thus it 
suffices to prove that 

claim holds at t k =~ claim holds upto (tk+l) . 

Writing (2.2a) explicitly gives 

~t(x, y )= lx l~ t ( x  + X, y - 1 ) l ( y > O ) - I h ~ t ( x ,  y ) l ( x  > 0) 

-/~2~t(x, y ) l ( y > O ) + h t ~ t ( x ,  y) .  (2.4) 

From (2.3) and (2.4) and elementary manipulations, we get the following: 

S,(n, N ) =  IzxSt(n-  1, N )  - (l~l + I.t2)St(n, N )  + htS,(n,  N )  

( n > 0 ,  N>~n) (2.5a) 

St(0, N ) =  -bt2St(1, N ) +  hiS,(0, N ) ( N > ~  1) (2.5b) 

o)= h,S,(0, 0). (2.5c) 
Equations (2.5 a-c) hold for t ~[tk,  tk+l), t 4= Tj, j = 1, 2, . . . .  At the depar- 

ture times of the tail queue we have, from (2.1b) and (2.2), 

St(n N )  = St-(n + 1, N + 1)~ 2 (2.6) 
' ht_ 

Now, we define the functions 

"it(n , N )  & (~2/l~a)"St(n, N ) ,  (2.7) 

and 

~/t&/~l E r N) .  (2.8) 
N>~I 
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Using the definitions (2.7) and (2.8), it is then easy to see that/]t and Tt(n, N)  
satisfy the following equations, for t ~ [t k, t k+ 1), t 4= Tj, j = 1, 2 , . . . ,  
From (2.5a), for n >/0, N >1 n, 

,~t(n, N )  = /*z,rt(n- l ,  N )  - (/*~ + /*2)'rt(n, N )  + /]t'rt(n, N ). (2.9a) 

From (2.5b), for N >/1, 

4t(0 , N ) =  -/*lq't(l, N)+/]tl"t(O, N ) .  (2.9b) 

From eq. (2.5c), 

Tt(0, 0 )=  /]t'/'t(0, 0). (2.9C) 

Further, from (2.6), if t = Tj for some j = 1, 2, . . . ,  n >/0, N >/n, 

1"t(n , N ) =  "rt-(n + 1, U + 1)/* 1 (2.10) 
/It- 

But (2.8), (2.9 a-c) and (2.10) are also satisfied by ht and ~ (n ,  N)  for 
t ~ [t k, tk+l), [replacing /]t and ~'t(n, N )  respectively], as can be seen by writing 
equations parallel to (2.5 a-c) and (2.6), under /3. This establishes the 
claim. [] 
COROLLARY 

]'l t = htVt >/0 a.s. 

Proof 

This follows from (2.1a) and (2.1b) and the claim. [] 
This establishes Weber's result. The probabilistic nature of our reasoning is 

partly hidden in the proof of the filtering formulas, [1], a reading of which is 
suggested to convince the reader that the proof is not merely a sleight of hand 
with differential equations. 

Since the preparation of the original version of this paper, two other proofs of 
Weber's result, using entirely different techniques, have appeared in the literature 
[2,31. 
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