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We consider a production system consisting of several fabrication lines feeding an assembly 
station where both fabrication and assembly lines consist of multiple machine exponential 
workstations and the CONWIP (CONstant Work-In-Process) mechanism is used to regulate 
work releases. We model this system as an assembly-like queue and develop approximations 
for the throughput and average number of jobs in queue. These approximations use an estimate 
of the time that jobs from each line spend waiting for jobs from other lines before being 
assembled. We use our approximations to gain insight into the related problems of capacity 
allocation, bottleneck placement and WIP setting. 
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1. I n t r o d u c t i o n  

Assembly-like queues arise in a variety of practical situations, primarily in man-  
ufacturing systems but  also in models of  data flow through computer  systems 
(Dennis [9]). Despite the enormous number of  practical applications of these sys- 
tems, little work has been done on these queues due to their analytical intractabil- 
ity. The vast majority of  queueing network models (e.g., QNA, by Whitt  [32]) do 
not  handle assemblies. Those that do consider assemblies model  the lines feeding 
assembly as single machines, an assumption that severely limits their applicability 
to most  manufacturing systems (Ammar [1], Bhat [4], Bonomi [6], Hopp  and Simon 
[16], Lipper and Sengupta [18]). Analysis of  more realistic systems has been limited 
to simulation studies. For  instance, Baker et al. [2,3] have used simulation to ana- 
lyze the behavior of assembly systems and allocate work optimally in these systems. 

�9 J.C. Baltzer AG, Science Publishers 



136 L Duenyas, W.J. Hopp / Throughput o fan assembly system 

While valuable, simulation can be tedious for optimization purpose (e.g., for set- 
ting optimal WIP levels or lead times). 

An issue that complicates the modeling of assembly systems is that assembly- 
like queues are unstable unless some feedback mechanism is used to link release to 
outputs (Harrison [14]). In manufacturing systems, the most common method for 
controlling releases is MRP. Recently, in the wake of the success of Japanese firms, 
pull systems, such as kanban, have gained popularity (Monden [19], Ohno [20]). 
However, while some analytic models of pull systems have been developed (e.g., 
Duenyas et al. [10], Bitran and Chang [5], Wang and Wang [31]), design and control 
of such systems remains as much an art as a science. The goal of this paper is to 
expand the analytic capability for treating pull systems by addressing the issues of 
assemblies. 

A particular pull system that has the dual advantage of being more broadly 
applicable and analytically tractable than kanban is CONWlP (CONstant Work- 
In-Process) (Spearman et al. [28,29]). In a CONWIP system the total amount of 
work is held constant by authorizing production of a new unit only when an output 
occurs. This can be accomplished with cards (kanbans), such that all jobs must 
have cards attached to them. Each time a job is completed, its card is removed and 
sent to the front of the line to authorize the start of another job. Alternatively, elec- 
tronic signals can be used in place of cards, so that the WIP level in the line is mon- 
itored and a new job is started whenever the WIP level falls below a specified 
level. Note that under the CONWIP mechanism only the first machine in a produc- 
tion line is governed by the pull mechanism; jobs are pushed between machines else- 
where in the line and all inter-machine buffers are assumed infinite. 

In an assembly system operating under CONWlP, which is illustrated in fig. 1, 
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Fig. 1. CONWIP assembly system. 
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completion of an assembly sends a card (electronic signal) to the front of each fabri- 
cation line authorizing the start of a new job. Because the number of cards (WIP 
levels) in each fabrication may differ, the jobs authorized to start at the time an 
assembly is completed may not be destined for the same assembly. However, 
because jobs are only started when assemblies are completed, CONWlP serves to 
pace the fabrication lines to assembly. Furthermore, because it prevents "WlP 
explosions," CONWlP achieves many of the benefits claimed for kanban (e.g., 
short cycle times and predictable behavior) (see Spearman and Zazanis [30]). 

In this paper, we have chosen to focus on CONWIP because it is a practical 
release mechanism, facilitates analysis, and provides a first step toward rationaliz- 
ing the design and analysis ofpuU assembly systems. Our results are directly applic- 
able to the problems of the optimal allocation of capacity and WlP in a CONWIP 
system. The general qualitative insights may extend to assembly systems operating 
under other control policies (e.g., kanban). A comparative study of alternate con- 
trol methods for assembly systems is an attractive area for further research, but is 
beyond the scope of this paper. 

Since this paper represents a first-cut at the problem, we will frequently make 
the simplifying assumption that the processing times are exponentially distributed. 
In fact, the exponential distribution has been argued to be a good approximation 
in some real-world production systems (Solberg [25], Solberg and Nof [26]). How- 
ever, in recognition of the fact that this exponential assumption is not valid in all 
production systems, we examine the effect of different (stochastically ordered) dis- 
tributions on the throughput and optimal card counts. These results provide 
insights for extending our analysis to non-exponential assembly systems. 

The remainder of this paper is organized as follows. Section 2 introduces our 
notation and problem formulation. In section 3, we derive an upper bound for 
throughput in an assembly system. We use this upper bound to derive an approxi- 
mation for the throughput and show how this yields an approximation for the aver- 
age number in queue at assembly and fabrication machines in section 4. In section 
5, we test our throughput approximation. In section 6, we show how our through- 
put approximation can be used to address two design problems. 

2. Problem formulation 

We consider k production lines with my exponential machines (servers) and nj 
jobs (customers) at each lines j as shown in fig. 1. At each line j, jobs start at 
machine (j, 1) and after being served at machine (j,/) move to machine (j, i + 1). 
Service times at machine (j,/) are independent and exponentially distributed with 
mean. A -l(J,i). For the purpose of this paper, we will" consider" all jobs to be identical. In 
practice, however, we have used this type of single product model for a multi-pro- 
duct system in which all products share common routings and a distinct (mix-inde- 
pendent) bottleneck exists. In this case, we can "standardize" the products 
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according to their processing times at the bottleneck (e.g., a job that requires twice 
the standard amount of processing time at the bottleneck is counted as two units 
of WlP). While this is clearly an approximation, our experience has shown it to be a 
useful one for rough-cut analysis. 

After completing work at machine (j, my), a job joins the assembly queue. If 
there is at least one job from each line in the assembly queue, then the assembly 
operation begins. Assembly times are independent and exponentially distributed 
with mean A~ 1. An output occurs when service at the assembly is completed. Under 
the CONWIP protocol, this sends a signal to machines (j, 1),j = 1. . .  k, to add a 
new job to their queues. We begin observing the output process at time t = 0 and 
define Nt as the number of outputs until time t. We are interested in finding the 
throughput for the system, 0 = l i m t ~  Nt/t. By Little's law, the problem is equiva- 
lent to finding the average cycle time (flowtime, round-trip time) for any one of 
the lines. 

Ifnj --- 1 for each line j, the times between outputs are i.i.d. For this special, but 
not very realistic, case the problem is greatly simplified. We let Y(:,O denote the 
(random) service time of a job at machine i in linej. Since every time a unit is com- 
pleted at the assembly machine, work is begun on machine 1 of each line on a new 
unit and the assembly machine can begin work only when the jobs from each line 
have reached it, the expected cycle time is the sum of the assembly time plus the 
maximum expected time to go through each line. Hence, the expected cycle time 
can be expressed as 

E [max ~ Y( :,i) J i=1 +A~I (2.1) 

and we are left only with the cumbersome, but tractable, task of calculating the 
expected value of the maximum of sums of exponentials. 

For values ofny greater than 1, the interoutput times are not iid, nor are the cycle 
times. For those cases, one way of getting an exact solution for the throughput is 
by solving the underlying Markov chain. However, for any realistically sized pro- 
blem, that approach is impractical due to the enormous number of states in the 
Markov chain. Computational difficulties will be particularly acute if the decision 
maker wishes to use the throughput expression in an algorithm for optimizing 
WlP levels. To provide a practical alternative, we develop an approximation for 
the throughput. 

3. An upper bound for throughput 

Let {FIFA/n} denote the assembly shown in fig. 1. Successive service times of 
machine i in line j are iid random variables with cumulative distribution function 
(cdf) Fji, and F is a two-dimensional array containing the cdf's F]i. Service times at 
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the assembly are iid random variables with cdf FA. There are nj jobs at each line j,  
and n is an array containing the nj values. Let O{F/FA/n} denote the steady-state 
average throughput of {F/Fa/n}.  We use ~<st to mean "stochastically less than," 
and ~icx as "increasing convex ordering" as defined in [22]. When we write 

st ( ~ icx) we mean that the proposition holds under either ordering. 

PROPOSITION 1 
Suppose F and P are two arrays ofcdf's such that either 

(a) 

FA 

for a given (j ' ,  i'), or 
(b) 

Fji<st(~<,cx)pj~ for (j, i) = ( j ' , i ' ) ,  

Fji = ~'i for ( j ,  i) # ( j ' ,  i ' ) ,  

Fji = Fji for all (j, i).  

Then, O{F/&/n} >~O{.~'/FA/n} . 

Proof 
The proof is similar to that oflemma 1 in Hopp and Simon [16] and is omitted. 

Now, let {Fr/FA/nr} denote a closed tandem queueing network that consists of 
machines (r, 1) , . . . ,  (r, rnr) in sequence with the assembly machine at the end 
(where the assembly machine does not "assemble" but, instead, processes single 
jobs with processing times distributed as FA. In this case, jobs start at machine 
(r, 1), move to (r, i + 1) after (r, i) and to the assembly machine after (r, mr). After 
completing work as the assembly, jobs return to machine (r, 1). Let O{Fr/FA/nr} 
denote the throughput of this system. Then, we have 

COROLLARY1 

O{FIFA} <<. minO{F, lYAIn,}. 
r 

Proof 
Fix r. Consider the system {F/FAIn}, where F is the same as F except for 

~'[j', i'] = I , j '  ~ r, where I is the unit step function at zero. Clearly, since I <~ StF for 
any cdf F of a positive random variable, by proposition 1 we have O{F/F.~/n} 
<<.O{F/FA/n}. We can apply proposition 1 in this way repeatedly by replacing 
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machines in all the lines except line r with machines that have processing cdfs I. 
This leads to the system {Fr/FA/nr}, so O{F/FA/n} ~ O{Fr/FA/nr} and thus the cor- 
ollary follows. [] 

Notice that neither proposition 1 nor corollary 1 requires exponential proces- 
sing times. We let {A/AA/n} represent the system in fig. 1 with exponential distribu- 
tions for processing times where A is an array containing the processing rates. 
Then from corollary 1, we have 

O{A/AA/n} <<. minO{Ar/AA/nr}. 
F 

Let U = mint O{A~/Aa/nr}. By corollary 1, U is an upper bound on O{A/AA/n}. 
Since all processing times are exponential, it is straightforward to compute U by 
mean-value analysis [21]. 

In addition to providing the basis for an upper bound on the throughput of an 
exponential assembly system, proposition 1 provides useful qualitative results. 
First, it states that speeding up any machine (in the sense of replacing its processing 
time distribution with a stochastically smaller distribution) causes throughput to 
increase. Second, the result for the ~< icx ordering implies that the throughput of the 
assembly system where all the machines have exponential distributions is a lower 
bound on the throughput of a system with machines that have IFR distributions 
and the same mean processing times [27]. 

These results could eliminate unnecessary simulations from consideration. For 
instance, suppose we have simulated the assembly system with a given machine 
assigned normal processing times. Since decreasing the mean of a normal distribu- 
tion results in a stochastically smaller distribution, we know that the original simu- 
lated throughput is a lower bound on the throughput that will result if the mean 
processing time of the machine is reduced. 

We next present an approximation for the throughput that utilizes the upper 
bound, U. Our approach will also lead us to an approximation of the average num- 
ber in queue at assembly and at each fabrication machine. 

4. Approximations for throughput and queue lengths 

A job in line r is delayed at assembly if, when it is that particular job's turn to 
be served by the assembly machine, there is not at least one job from all other lines. 
When this occurs, the job in line r has to wait for the other jobs to arrive. Our 
approximation is based upon estimating the expected waiting time that this job 
experiences. We start by developing our approximation for an assembly system 
with two lines, and then generalize it to more than two lines. 

Consider an assembly system with two lines. Let W1 be the amount of time that 
a job from line 1 has to wait at assembly for a job from line 2. To calculate EW1, we 
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condition on the position of the jobs in line 2. Let Ni be the number of jobs in line 
2, machine i. Then we have 

E 1: ) EW1 = Z E WIINi>O, Z Np=O P(Ni>O, Z N p = 0  . (4.1) 
i--- 1 p=i+ 1 \ p=i+ 1 

For example, if Nm2+l > 0, then this means that there is a job from line 2 already 
waiting at assembly, and hence the expected waiting time is 0. In general, we have 

m2+l ] rn2 
E WIINi>O, Z Np=O ---~Z/~;1. (4.2) 

p=i+l p=l 

The calculation of the probabilities in (4.1) is not as easy, however, since we do 
not know the distribution of jobs in the network. Hence, we approximate these by 
supposing that, while jobs in line 1 have to wait for jobs in line 2 for their assembly 
operation, jobs in line 2 are independent of jobs in line 1 and start their assembly 
operation regardless of whether or not there are jobs from line 1 in assembly. This 
makes line 2 a regular closed queueing network and we can easily calculate the 
probabilities in (4.1) using Buzen's coefficients as follows: 

[Ni m2+1 ] G(n2, i) - G(n2, i - 1 )  
P >0, y ~  Np = 0  - G(-n~,m22T 1) ' (4.3) 

p=i+l 

where 
m 

G(n,m) = Z 1-I A;ui ' 
(NI,...,Nm) eZ(n,m) i=1 

( m } 
Z(n,m) = ( N 1 , . . . , N m ) :  = n . 

i=I 

Since it is difficult to characterize the convolution of the distribution of the time a 
job from line 1 spends waiting for a job from line 2 and its processing time distribu- 
tion, we make the further approximation that it takes an exponentially distributed 
time with mean A~I + EW1. We let 

qo~i = 1 / (~1  + EW/) (4.4) 

and describe the new network by {)q/~oA1/nl }. Notice, however, that just as jobs 
from line 1 wait for jobs from line 2, the reverse is true as well. Hence, to capture the 
effect that both lines have on each other, we propose starting with {N1/,~A/nl }, cal- 
culating EWE and using {)~2/cP~2/n2} to calculate EW1 and continuing in this man- 
ner until the throughput converges. The final issue that we have to resolve here is 
the choice of line 1 and line 2. We let line 1 be the line that sets U, that is let 
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h = argminr O{Ar/Aa/n~}. We renumber line h as line 1 since that line is actually 
"closest" to the throughput of the network. We can now present a 

PROCEDURE FOR COMPUTING 0ap (2 LINES) 
1. Let h = argminr0{Ar/,~A/n~}. Renumber line h as line 1. Let 

O1 = minOr{Ar/Aa/nr}.Let~oal = hA. 
2. Compute EWE using (4.1) and {A1/qOA1/nl }. Compute qaa2 using (4.4). 
3. Compute EW1 using (4.1) and {A2/~a2/n2}. Compute qOA1 using (4.4). 
4. Oap = O{A1/~al/nl}. If [Oap - 011 <6 for some prespecified 6 then step. Else, let 

01 ~- Oap, go to 2. 

PROPOSITION 
The above procedure will converge to a finite value. 

Proof 
It is enough to show that 0a, decreases at each iteration of the procedure and 

that Oap > 0. Denote by Ewi2 and EWe, respectively the EW1 and EWE value gener- 
ated by the algorithm in the ith iteration. We start with EW1 = 0 in the first itera- 
tion in step 1, and compute EWe. Next, we compute EW 1 in step 3. We note that 
the higher EWe, the lower EW~ +1 generated in step 2, since the more we add to the 
processing time of the assembly station, the more likely it is that jobs will be in 
front of the assembly station and hence the less the expected waiting time for a job 
there. Using this argument recursively, EW~ +1 >_.EW~ and therefore Oap is decreas- 
ing in each step. To show that Oap does not decrease to 0, we note that Oap = 0 
implies EWa = ~ ,  but that would in turn imply EWE = 0, which in the next step 
would generate a finite EW1 value. Hence, since 0ap is decreasing in each iteration 
and the final Oap is not 0, it is converging to a positive value. [] 

We can use a similar approach to derive an approximation for assembly systems 
with more than two lines. In this case, if there are k lines in the system, all k lines 
should have one job at the assembly machine for the assembly operation to begin. 
We again make the assumption that lines 2 , . . . ,  k are independent closed queueing 
networks to calculate EW1. To illustrate the nature of the calculations involved, 
consider an example consisting of a 3-line assembly system with 2 machines in line 2 
and 1 machine in line 3 feeding into the assembly machine. (Since we are calculat- 
ing how long jobs from line I wait at assembly, the number of jobs in line 1 does not 
matter.) We let Nji denote the number of jobs in l inej  machine i, and let Yy/denote 
the (random) processing time of a job in linej machine i. Then, 

E[ W1] =E[ Wx]N23 > 0, N32 > 0]P(N23 > 0, N32 > 0) 

+ E[WlINzz>O, Nz3 = 0, N32>0] 



I. Duenyas, W.J. Hopp / Throughput of an assembly system 143 

P(N22>O, N23 = 0,N32 > 0 )  -q- E[WlIN22 -q- N23 = 0, N32 >0] 

P(N22 + N23 = 0, N32 >0) + E[W11N23 >0, N32 = 0]P(N23 >0,  N32 = 0) 

+ E[W11N22 >0, N23 = 0, N32 --- 0]P(N22 >0, N23 = 0, N32 = 0) 

+ e[w11N22 + N23 -- 0, N32 = 0]P(N22 + N23 -- 0, N32 = 0). (4.5) 

Calculating the first five conditional expectations in (4.5) is straightforward and 
yields 

E[W11N23 >0,N32 >0] = 0, 

E[WlIN22 >O, N23 = 0,N32>0] = 1/A22, 

E[W11N22--kN23 = 0, N3z>0] = 1/A21 + 1A22, 

E[W11N23 >0,N32 = 0] = l/A31, 

A22 + A31 1 
E[W1 [N22 > 0, N23 = 0, N3z = 0] - /~22/~31 /~22 -[- )~31 

The fifth expectation term involves the maximum of two exponentials. The sixth 
term however, requires computing the expectation of the maximum of sums of 
exponentials; that is 

E[W1 INz2 + N23 = 0, N32 = 0] = E[max( Y21 + Y22, ]"31)]- (4.6) 

While (4.6) is not difficult to compute, the expectation of the maximum of sums of 
exponentials in a larger network becomes more complicated. In general, we would be 
faced with terms line E[maxje {2,...,k} (~-~'~i~b Yji)], where bj represents the location of 
the job closest to assembly in fabrication linej. I fk  and mj,j  = 2 , . . . ,  k are large, this 
could be very tedious. For this reason, we approximate these expectations by repla- 
cing sums of exponentials with an exponential that has the equivalent mean. For 
example, in(4.6), we replace I121 + Y22 bY anexp~ distributedrand~ 
able Z with m e a n  (,~21 -[-/~22)//~21,~22. Calculating the probabilities in (4.5) is the 
same way as in (4.3), but since there are k - 1 closed queueing networks in this case, 
we calculate the probability for each one and multiply. We can now state the 

PROCEDURE FOR COMPUTING Oap (k LINES) 
1. Let h = argminr O{Ar/AA/nr}. Renumber line h as line 1. Let 01 = mint 0{Ar/ 

Aa/n~}. Renumber the other lines from 2 , . . . ,  k arbitrarily. For i = 2 , . . . ,  k let 
~oAi = A~. 

2. For i = 2 , . . . ,  kcompute EWi using {A~/qoA~/nr}, r = 1 , . . . ,  k, r ~ i. 
3. Update qoAi for i = 2 , . . . ,  kusing (4.4). 
4. Compute EW1 using (A~/qoAr/n~}, r ---- 2 , . . . ,  k. 
5. Update ~A1 using (4.4). 
6. Oap = 0 ( ) ~ l / / q O A 1 / / n l  } .  If[0ap - -  011 <6then  stop. Else, 01 • Oap. Go to2. 
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We can use Oap to get an approximation for the cycle time in each line. Letting 
ci denote the cycle time of a job in line 1, by using Little's Law, we have 

ni 
ci = b--~ap " (4.7) 

We can also use the above procedure to estimate the mean number of jobs at 
each station. To do this, note that we are approximating each line r by the closed 
queueing network {Ar/~Ar/nr} generated in the last iteration of the above algo- 
rithm. Hence, we can obtain approximate values for the mean number  of jobs in 
each line using standard results for closed queueing networks and the closed queue- 
ing networks generated in the last iteration of the procedure. 

The procedure we have outlined above can easily be generalized to problems 
with multiple servers. In this case, we have k production lines with m: stations. Each 
station (j, i) has z(j,/) identical machines. Since we can still calculate the steady- 
state distributions of jobs in closed queueing networks with multiple servers [7], we 
can use a procedure entirely analogous to that above to treat the multi-machine 
workstat ion case. 

5. C o m p u t a t i o n a l  results 

The real test of  any approximation is how well it works over a range of cases. 
To test the method  described above, we generate a variety of problems with 2 and 3 
lines and compare the throughput  of the system from simulation, Os, with our 
approximation results. The cases summarized in table 1 are representative of the 
range of scenarios that could be observed in practice. These include cases with 
balanced and unbalanced fabrication lines, fast and slow assembly operations, and 
single and multiple machines, For each case, we examine the accuracy of the 
throughput  approximation for a variety of WIP allocations. 

In example 1, we consider a perfectly balanced system with two lines with 4 work- 
stations in each line. The workstations and the assembly operation have single 
machines with mean processing times of 2. We made use of  a MOR-DS [8] program 
to simulate this system for different WIP allocations. For  each case, we simulated 
the system for 6000 time units 20 times and we recorded the throughput  each time. 

Table 1 
Description of examples. 

Example Number of Location of Single or multiple 
fabrication lines bottleneck machine workstations 

1 2 balanced single 
2-4 2 assembly single 
5-9 2 fabrication single 
l 0 2 fabrication multiple 
11 3 fabrication single 
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Table 2 
Results for example 1. 

nl n2 Os Oap %err Ol n a naalj n f nfp 

2 2 0.144 0.140 -2.7 0.142 0.97 1.00 0.26 0.25 
3 3 0.189 0.187 -1.0 0.190 0.68 0.71 0.58 0.57 
4 4 0.226 0.222 -1.8 0.228 1.31 1.29 0.67 0.67 
5 5 0.254 0.252 -0.8 0.258 1.57 1.58 0.86 0.86 

10 10 0.338 0.338 0.0 0.344 2.91 2.97 1.77 1.76 
12 12 0.357 0.358 0.2 0.363 3.63 3.52 2.09 2.12 
2 6 0.166 0.164 -1.2 0.164 0.40 0.43 0.40 0.39 

The average of  these values gave us Os. Each simulation run (20 values) lasted 
abou t  10 minutes on a 386 machine, while the computa t ion  involved in our approx- 
imation took  negligible time (less than 1 second for each of  the examples consid- 
ered). The simulation results and our approximation are reported in table 2. We  
report  bo th  the value of  Oap computed to an accuracy of  0.001 and also the value of  
01, the value of  the approximat ion after a single iteration�9 As shown in table 1, the 
value of  01 and the value of  Oap were very close in all the cases; in fact it rarely took  
more  than 4 iterations to obtain an accuracy level o f  0.001. As observed in table 1, 
the approximat ion  Oap behaved very well and the accuracy was within 2%. 

We also tested our approximat ion of  mean number  of  jobs  at each station. Since 
all fabricat ion machines are identical, the mean queue length at each fabricat ion 
machine is the same. We denote the value of  the mean number  in front o f  assembly 
and all fabrication machines, obtained by  simulation, as n a and nfs, and similarly 
those obtained by approximat ion as na a and n fp  Note  that  it is more  difficult to 
est imate the mean number  m front o f  assembly since a small error m estimating the 
mean number  of  jobs  in each of  the fabrication machines will lead to a large error 
in estimating mean number  in front of  assembly. Hence, it is not  surprising that  the 
queue length approximat ion performed better for fabrication than assembly. 
Despi te  this, the results were very good as it can be seen in table 2. 

In examples 2 through 4, we considered systems where the assembly machine 
was the bottleneck. For  the same fabrication lines, we varied the mean processing 

Table 3 
Results for example 2. 

nl n2 0~ 0ap %err 01 n~ ngp ~ ~p 

2 2 0.156 0.153 -1.9 0.154 0.90 0.90 0.37 0.37 
3 3 0.198 0.197 -0.5 0.198 1.39 1.36 0.54 0.55 
5 5 0.251 0.252 0.3 0.253 2.37 2.37 0.88 0.88 
2 4 0.175 0.169 -3.4 0.170 0.72 0.77 0.43 0.41 
3 5 0.215 0.211 -1.9 0.211 1.17 1.21 0.61 0.60 
4 6 0.243 0.240 -1.2 0.241 1.61 1.69 0.80 0.77 
7 8 0.291 0.287 -1.4 0.287 3.37 3.43 1.21 1.19 
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Table 4 
Results for example 3. 

nl n2 Os Oap ~ el n~ n~p n~ n{p 

2 2 0.138 0.139 0.7 0.139 0.95 1.00 0.35 0.33 
3 3 0.174 0.176 1.1 0.176 1.59 1.58 0.47 0.47 
5 5 0,215 0.217 0.9 0.217 2.91 2.89 0.70 0.70 
3 5 0.186 0.186 0.0 0.186 1.45 1.47 0.52 0.51 
4 6 0.243 0.240 -1.2 0.241 1.61 1.69 0.80 0.77 

time at the assembly machine to test the effect on the approximation. In each of 
the examples, we considered a system with 2 lines. Each line had 3 stations and each 
workstation had a single machine with mean processing times of 2. In examples 2, 
3 and 4 the assembly machine had a mean processing time of 3, 4, and 6, respec- 
tively. The simulation estimates and our approximations for the various WlP allo- 
cations are shown in tables 3, 4 and 5. The throughput approximation erred both 
high and low but consistently gave results within 4% of the simulation value. The 
queue length approximations also erred high and low. Both approximations 
became better as the assembly machine became a more distinct bottleneck, and in 
example 4, there was barely any difference between the approximated and simu- 
lated throughputs. The value of the approximation after 1 iteration was almost the 
same as the value of the approximation to an accuracy of 0.001 

In examples 5 through 7, we considered systems where the assembly machine 
was faster than any of the other machines. That is, we varied the processing time at 
assembly in the opposite direction of examples 2 through 4. The fabrication 
machines were the same as in examples 2 through 4. The mean processing times at 
assembly were 1.5, 0.9, and 0.1 respectively for examples 5, 6 and 7. The approxima- 
tion had a slightly harder time in these cases, but the difference between the approx- 
imation and the simulation results for throughput were still with 4%. 
Approximations of queue lengths were also somewhat worse than those in exam- 
ples 2 through 4. We can explain this degradation as follows. The amount of time 
that a job spends at assembly has two components, the (known) processing time 
and the (estimated) waiting time. The reason that the approximations seem to get 

Table 5 
Results for example 4. 

nl n2 Os Oap %err Ol n a nap n f nfp 

2 2 0,116 0.116 0,0 0,116 1.20 1.19 0,27 0.27 
3 3 0.140 0.140 0.0 0.141 1.95 1.91 0.35 0.36 
5 5 0.161 0.161 0.0 0.161 3.61 3.62 0.46 0,46 
2 4 0.125 0.124 -0.8 0.124 1.13 1.20 0.29 0,27 
3 5 0.148 0.145 -2.0 0.145 1.84 1.87 0.39 0,38 
4 6 0.157 0.156 -0.6 0.156 2.70 2.71 0.43 0.43 
7 8 0.163 0.162 -0.7 0.162 5.53 5.52 0.49 0.49 
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Table 6 
Results for example 5. 
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n, n2 Os Oa, %err 01 n a n~p n f nf, 

2 2 0.179 0.175 -2.2 0.181 0.70 0.72 0.43 0.43 
3 3 0.233 0.229 -1.7 0.237 1.07 1.00 0.64 0.67 
5 5 0.300 0.300 0.0 0.310 1.53 1.52 1.16 1.16 
2 4 0.206 0.199 -3.4 0.201 0.44 0.51 0.52 0.50 
3 5 0.257 0.249 -3.1 0.253 0.67 0.75 0.78 0.75 
4 6 0.290 0.286 -1.4 0.290 1.00 0.99 1.00 1.00 
7 8 0.349 0.350 0.3 0.357 1.83 1.74 1.72 1.75 

worse  at the mean processing time at assembly decreases seems to be due to the 
fact that  the est imated par t  becomes a larger por t ion of  the total time, and hence 
the accuracy of  the approximations slightly worsens. 

In order to observe the effects of  having unbalanced lines, and lines with differ- 
ent numbers  of  machines on our approximation,  we took  the system in example 7 
and decreased the number  of  machines in line 2. In example 8, line 1 had 3 machines 
and line 2 had 2 machines with mean processing time of  2. The mean processing 
time at the assembly machine was 0.1. Example 9 was the same as example 8 except 
that  line 2 had only 1 machine with mean processing time of  2. The results are dis- 
p layed in tables 9 and 10. Unbalancing the lines resulted in the throughput  approx- 
imation working very well with the highest error less than 3%. The queue length 
approximat ion  also worked  well in the unbalanced case. 

We  also examined the performance of  the throughput  approximat ion for sys- 
tems with multiple machines and more  than 2 lines. Example 10 represents a multi- 
machine system with unbalanced fabrication lines and an assembly machine faster 
than the fabricat ion bottleneck. In this example, line 1 has 5 stations and line 2 
has 4 stations. (We use the word  "s ta t ions"  here because multiple machines exist.) 
The processing times (number of  machines) for line 1 are: 1.7 (1), 3 (2), 5 (3), 2 (1), 
1.5 (1) and for line 2 : 6  (3), 5 (2), 2 (i),  1.4 (1). The assembly station consists o f  a 
single machine with a mean processing time of  2. The results in table 11 show that, 
despite the introduct ion of  multiple machines, the throughput  approximat ion was 
still consistently within 4% of  simulation. Interestingly, the approximat ion gave 

Table 7 
Results for example 6. 

nl n2 Os Oap %err 01 ns a naap n f nfp 

2 2 0.190 0.186 -2.1 0.193 0.59 0.64 0.47 0.45 
2 3 0.212 0.203 -4.2 0.207 0.39 0.50 0.54 0.50 
3 3 0.244 0.242 -0.8 0.253 0.82 0.85 0.73 0.72 
5 5 0.320 0.315 -1.6 0.329 1.26 1.20 1.25 1.27 
3 5 0.269 0.265 -1.5 0.269 0.48 0.56 0.84 0.81 
3 4 0.264 0.257 -2.6 0.263 0.62 0.56 0.79 0.81 
5 7 0.332 0.330 -0.6 0.336 0.87 0.82 1.38 1.39 
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Table 8 
Results for example 7. 

nl n2 Os 0ap %err 01 n~ n~p n f nfap 

2 2 0.205 0.198 -3.4 0.212 0.45 0.52 0.52 0.49 
3 3 0.262 0.258 -1.5 0.275 0.64 0.65 0.79 0.78 
5 5 0.322 0.330 2.4 0.348 0.93 0.83 1.36 1.39 
2 4 0.237 0.228 -3.8 0.233 0.14 0.21 0.62 0.60 
3 5 0.283 0.282 -0.4 0.289 0.26 0.30 0.91 0.90 
4 6 0.316 0.319 0.9 0.325 0.38 0.35 1.21 1.22 
7 8 0.365 0.378 3.6 0.385 1.91 1.94 1.70 1.69 

bet ter  results after only one iteration and got worse with more  iterations in this 
case. 

Next,  we considered an example with 3 lines. This example had unbalanced fab- 
rication lines and the (not so pronounced) bott leneck in fabrication. For  this exam- 
ple, line 1 had 4 machines with mean processing times 3.43, 2.87, 3.74, 2.77, line 2 
had 3 machines with mean processing times 2.83, 3.05, 2.14 and line 3 had 3 
machines with processing times 2.52, 1.03 and 3.58. The assembly machine had a 
mean processing time of  3.66. The results for example 11, given in table 12, show 
that  despite the fact that  we had 3 lines, the throughput  approximat ion worked  
very well and the results were still within 4% of  the simulation values. 

These eleven examples are representative of  our experience that  our approxima- 
tions behave well for multi-machine and single machine systems. In all cases, the 
max imum error of  the throughput  approximation was about  4%. The queue length 
approximations,  particularly for the mean number  of  jobs  at assembly, were some- 
what  worse than this but  clearly respectable. Whenever  a capacity or W I P  imbal- 
ance introduces a distinct bottleneck, the approximations seem to work  extremely 
well. However ,  in balanced cases, the approximations also worked  well. As a final 
accuracy check we computed  the s tandard deviation of  the simulation means. In 
every case we tried, the throughput  approximation was easily within two s tandard 
deviations of  the mean. 

Table 9 
Results for example 8. 

nl n2 0, 0ap %err 01 n~ n~p n, / nfp 

2 2 0.227 0.221 -2.6 0.226 0.23 0.31 0.59 0.56 
3 3 0.280 0.280 0.0 0.286 0.35 0.34 0.88 0.88 
5 5 0.339 0.348 2.7 0.352 0.49 0.32 1.50 1.56 
3 5 0.290 0.292 0.7 0.293 0.13 0.15 0.96 0.95 
4 6 0.326 0.328 0.6 0.328 0.16 0.16 1.28 1.28 
7 8 0.378 0.385 1.8 0.386 0.47 0.21 2.18 2.26 
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Table 10 
Results for example 9. 
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nl n2 Os Oap %err 01 n a n,ap n f nfap 

2 2 0.242 0.238 -1.7 0.240 0.09 0.13 0.64 0.62 
3 3 0.293 0.293 0.0 0.294 0.12 0.13 0.96 0.96 
5 5 0.352 0.354 0.5 0.355 0.14 0.11 1.62 1.63 
2 4 0.248 0.245 - 1.2 0.245 0.03 0.05 0.66 0.65 
3 5 0.296 0.296 0.0 0.297 0.04 0.06 0.99 0.99 
4 6 0.329 0.331 0.6 0.331 0.06 0.07 1.31 1.31 
7 8 0.388 0.388 0.0 0.388 0.16 0.09 2.28 2.30 

6. D e s i g n  considerations 

The pr imary uses of  the throughput  approximat ion developed above would  be 
to help design new product ion lines and reconfigure existing lines. The two major  
controls available to the decision-maker are: (1) the capacities o f  the work  stations 
which are determined by the rate at which they produce and the number  o f  
machines at each station and (2) the W l P  levels (card counts) in each fabricat ion 
line. By using the approximat ion developed here, the decision-maker could make  
fast rough-cut  comparisons of  the impact o f  different capacity a n d / o r  W I P  place- 
ment  strategies. By quickly ruling out  many  combinations,  the decision-maker 
could use simulation for detailed consideration of  only a few promising alterna- 
tives. We illustrate below how our approximat ion can be used in these problems.  

Capacity allocation 
A major  control  available to a decision-maker in many  manufactur ing systems 

is the capacities of  work  stations. This problem has been addressed for serial lines in 
many  papers and we refer the reader to Baker et al. [3] for a literature review. One 
way  to approach the capacity allocation problem is to maximize throughput  sub- 
ject  to a budget  constraint.  I f  we assume that  the cost of  capacity at fabrication sta- 
tion ij (assembly station A) is a function of  mean processing time, which we 

Table 11 
Results for example 10. 

nl n2 Os Oap %err 01 

5 4 0.202 0.196 -3.0 0.199 
6 4 0.206 0.202 -1.9 0.203 
3 3 0.149 0.143 -4.0 0.148 
4 3 0.161 0.156 -3.1 0.158 
4 5 0.206 0.198 -3.8 0.203 
3 4 0.164 0.158 -3.6 0.161 
4 4 0.190 0.184 -3.2 0.190 
5 6 0.238 0.230 -3.4 0.237 
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Table 12 
Results for example 11. 

nl n2 n3 O, Oap %err 01 

3 4 5 0.129 0.125 -3.1 0.125 
4 4 4 0.146 0.142 -2.7 0.144 
3 2 2 0.110 0.109 -0.9 0.113 
5 3 4 0.151 0.150 -0.7 0.154 
3 3 3 0.124 0.119 -4.0 0.123 
2 7 4 0.100 0.099 - 1.0 0.099 
4 5 3 0.142 0.144 1.4 0.145 
5 5 5 0.162 0.160 -1.2 0.161 

denote by ci/(1/Aij) (cA (1/AA)), then we can use our approximation as the basis for 
a formulat ion of the capacity allocation problem. 

One reasonable formulation would try to maximize throughput  subject to a bud- 
getary constraint, where the decision variables are the capacities at each station 
and  the WlP  levels. This implies a nested algorithm, which chooses feasible capa- 
city configurations and then optimizes the WlP levels for that  configuration. In 
order for this procedure to make sense, we must define the WIP setting problem 
precisely. We will address this question separately below, after considering the 
issue of  where the bottleneck should be placed. 

Bot t leneek  p lacement  
In the general case, where capacity costs different amounts  at different worksta- 

tions, we cannot say much about the placement of the bottleneck other than that  
it depends on the capacity costs. However, in situations where capacity costs are 
uniform, which might  occur where capacity additions are made by adding workers, 
we can make more precise observations. Under  these conditions, we can address 
the question of  whether it is preferable to place the bottleneck in fabrication or 
assembly. 

We begin by using our approximation to show that in a simple example consist- 
ing of an assembly machine fed by two single machine fabrication lines, exchan- 
ging the bottleneck at assembly with a faster fabrication machine causes 
throughput  to increase. To do this, we define processing times Pl, P2 and P3 such 
tha tp l  ~<P2 ~<P3. We start with the line configured such that the machine with pro- 
cessing time pl is in the first fabrication line, the machine with processing time P2 
is in the second fabrication line, and the machine with processing time P3 is at 
assembly. We suppose that the first fabrication line has nl jobs and the second fab- 
rication line has nz jobs. 

Without  loss of generality, we assume that the throughput  of the closed queue- 
ing network consisting of  n2 jobs, and processing times Pz and P3 is less than the 
throughput  of  the closed queueing network consisting of nl jobs, and processing 
t imespl  andp3. We let G(n l ,p l , p2 )  denote Buzen's coefficient for a closed queueing 
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network with 2 machines, nl jobs and processing times pl and p2. In this case, our 
approximation would approximate the assembly system by a dosed queueing net- 
workwithprocessingtimesp2 andp3 + p~1+l /G(nl,pl,p3 + p~2+l /G(n2,P2,P3) ). 

Now if we consider the assembly system where the machines with processing 
times of p2 and P3 are interchanged, our approximation would approximate this 
system by a closed queueing network with 2 machines, nl jobs and processing times 
P3 a ndp2  + p ~ l + l / G ( n l , P l  ,P2 + p~2+l/G(n2,P2,P3)).  

To show that the throughput is higher in the second case, we first note that 
n2+l G n n2+l G n P 2 + P 3  n/ 1 ( 2,P2,P3)=P3+P2 / ( 2,P2,P3).Hence, i fwele t6=p~l+l  /G(nl, 

2+ Pl,P3 +P2 /G(n2,P2,P3)), we are comparing the throughput of two closed queue- 
ing networks, one with processing times P2 and p3 + 6 and the other with proces- 
sing times p3 and p2 + 6. It is straightforward to show by induction that the 
throughput of the closed queueing networks with processing times P3 and P2 + 6 is 
higher. 

Because we are using an approximation, the above result does not prove that 
exchanging the bottleneck at assembly with a faster fabrication machine increases 
throughput. However, by using simulation we verified that this result does seem to 
hold for simple systems, such as that considered above, and for more complicated 
systems. In fact, the increase in throughput can be substantial, as we illustrate in the 
following example. 

Consider a two-line assembly system with five machines in each line. The 
machines in the first line have mean processing times of 1.7, 2.1, 1.3, 0.6 and 2.5 and 
the machines in the second line have mean processing times of 0.8, 1.4, 3.0, 1.0, 
and 1.1. The assembly machine has a processing time of 3.5. We also consider the 
system identical to this one except that the assembly machine is switched with the 
machine which has a processing time of 0.8. We denote the throughput of the first 
system by 01 and the throughput of the second system by 02. In table 13, we display 
the throughput for the two systems under different WIP levels. Notice that the dif- 
ference in throughput between the two systems is as high as 21.9% 

Setting WIP levels 
An important problem in the control of a pull manufacturing system is setting 

work-in-process (WlP) levels (card counts). The card counts affect the rate at 
which goods are produced in a pull system. Early pull systems set card counts by 

Table 13 
Bottleneck in assembly vs fabrication. 

nl n2 O1 02 %dif 

2 2 0.128 0.138 7.8 
3 3 0.167 0.179 7.2 
3 4 0.176 0.197 11.9 
2 3 0.139 0.161 15.8 
2 4 0.141 0.172 21.9 
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trial and error [13,24]. Recent research has sought quantitative models for assist- 
ing in the WIP setting process. Bitran and Chang [5] developed a mathematical pro- 
gramming approach to determine the number of cards for a deterministic kanban 
system. Wang and Wang [31] used a Markov process approach to compute card 
counts for a kanban system with exponential machines. Duenyas, Hopp and Spear- 
man [10] developed a method for setting quota and card counts for a single fabrica- 
tion line operating under the CONWlP protocol. 

For the purpose of WlP setting, we will assume that the firm can sell all it can 
make (i.e., its master production schedule is always filled). This assumption will be 
realistic in many cases where demand is large relative to plant capacity. It may 
also be valid where the firm has made a strategic decision to limit capacity (e.g., by 
controlling the number of shifts or machine capacities) below the level of demand. 

Under the sell-all-you-can-make assumption, we state an objective function by 
assuming that every unit produced generates a revenue of p, and a periodic unit 
holding cost for WIP, hi, is associated with each line i. The periodic profit as a func- 
tion of the card count vector, n, is denoted by 7r(n) and can be written as 

k 
7r(n) = pO{ A / Aa/n}  - Z hini . (6.1) 

i=1 

The optimal card count can be found by searching over different values ofn. 
While this approach is mathematically tractable, it may not be realistic. The rea- 

son is that frequently actual holding costs are a less important disincentive to high 
WIP than are the long, uncompetitive cycle times produced by high WlP levels. If 
the firm has long cycle times, then the probability of an order being cancelled or 
changed increases, which translates into decreased revenue or increased costs to the 
firm. One could address this issue by introducing a non-linear penalty for holding 
costs, but then the question would arise as to how to set this penalty function. 

Hence, it may make more sense to set up the problem in terms of maximizing 
throughput subject to an overall cycle time constraint. Notice that this need not 
imply that the cycle times for different lines have to be the same. If, for example, the 
cost of material in a certain line is much higher than the cost of material in the other 
lines, it may be more desirable to have a shorter cycle time for that line. Our pro- 
blem can now be stated as maximizing the throughput subject to the constraint that 
average cycle times for line i are not to exceed di. We must choose the card count 
ni so as to achieve this. We let ci{F/F,4/n}  denote the cycle time for line i in system 
{ F / F A / n } .  The following proposition enables us to restrict the set of WIP values 
we must consider. 

PROPOSITION 2 
Suppose n and h are two arrays such that for a given i ~, 

ni > hi for i = {, 

ni = hi otherwise. 
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Then O{F/FA/n} >>, O{F/Fa/h} and forj  = 1, . . . ,  k, j  ~ i ~, 

cj{F/FA/n} <~cj{F/FA/h}. 
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/'roof 
The proof is similar to the proof of proposition 1. [] 

Proposition 2 indicates that if the cycle time for line j is greater than dj, then 
decreasing the number of jobs in other lines (lines i = 1, . . . ,  k, i ~ j),  will not make 
cj feasible. We now present an 

ALGORITHM FOR COMPUTING OPTIMAL CARD COUNTS 
1. For i ---- 1 , . . . ,  k, let ni be the highest value such that 

2. Compute Oal, using the previously given procedure and ci, i = 1 , . . . ,  k, using 
(4.7). 

3. If for i = 1 , . . . ,  k, ci <~ di then stop, the current n is optimal. Else, for each i such 
that ci > di let ni = ni - -  1. Go to step 2. 

We use proposition 2 in step 3 of the algorithm. Suppose ci is infeasible, then by 
proposition 2, decreasing the number of jobs in other lines will only make ci more 
infeasible. We can not increase the number of jobs in other lines, since that will 
make the cycle times of those lines infeasible, hence the only solution is to decrease ni. 
Since throughput is increasing in the number of jobs in any line, by proposition 2, 
the first feasible solution that the algorithm finds will also necessarily be optimal. 

One question that we would like to answer is whether the optimal card counts 
that we obtain from the above card count setting algorithm are of any value to us if 
the processing time distributions are not exponential. The following result shows 
that if we solve the card count setting problem with exponential processing times, 
then the results that we obtain will be a lower bound for a system consisting of sta- 
tions which have processing times that are stochastically less than the exponential. 

PROPOSITION 3 
Let {F/FA/n} denote an assembly system as in fig. 1. Let N = (N1, N2, . . . ,  Nk) 

be a vector of optimal card counts obtained for this system. Let { U / F ] / n }  denote 
another assembly system such that this system has the same number of lines and 
machines as {F/FA/n }, but Fj' ~< "tFji ( or Fj~. ~< ;CXFji) for allj  and i and F] <~ St FA. Let 
N / be the vector of optimal card counts for {U/F] /n} .  Then, for all 
j =  I , . . . , k ,  Nj.>~Nj. 

Proof 
It follows from proposition 1 that O{F/FA/n} <<, O{F'/F]/n} for all n. Hence, 

O{F/FA/N} <~O{F'/Ff4/N }. By Little's law, N will be feasible for {F'/Ff4/N }. To 
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show that Nj~>Nj,j = 1 , . . . , k ,  suppose not, i.e., suppose that for some line 
}, Nj. < ~ .  Let N" be defined such that 

Nj.' : Nj for a l l j  r  

Nj.' = Nj forj = ) .  

Then, O{F/Fa/N"} >>.O(F/Fa/N'} since for all j = 1 , . . . ,  k; Ny ~>Nj.^Since N' is 
optimal and hence feasible, and N" is the same as N' except for the line j ,  using pro- 
position 2, we find that for all j =  1 , . . . , k , j r  we have cj{F'/F]/N"} 
<~ cj{F'/F]/N'} <~di. Similarly, since N~' = N~, and Nj' ~>Nj for all other j ,  we have 
c){F'/F]/N"} <~c){F'/F'A/N } <~di. Th(as, N h is feasible and results in higher 
throughput than N ~, but this is a contradiction since it was assumed that N ~ was the 
optimal solution. Hence the result has been proven. [] 

Proposition 3 can be used along with the procedure developed above to decrease 
the number of simulations that have to be performed for setting card counts for sys- 
tems with general processing time distributions. For example, suppose we have 
managed to find the optimal card count distribution for a system with normal pro- 
cessing times (e.g., by simulation). Then, since decreasing the mean of the normal 
results in a stochastically smaller distribution, proposition 3 implies that the counts 
in this optimal vector represents a lower bound on the optimal counts that will 
result if any processing time mean is decreased. Also, proposition 3 implies that the 
optimal card count for systems where all the processing times are exponential is a 
lower bound on systems where all the processing times are IFR with the same 
mean. To see this, we note, as in Spearman [27], that IFR implies NBUE (new bet- 
ter than used in expectation) and that if Fji(Fji) is NBUE (exponential) with mean 
A]~l then Fji >~icx_Fji. 

7. Conclusions and further research 

In this paper, we derived approximations of the throughput and average num- 
ber of jobs in queue for an assembly-like queueing system. These approximations 
can be used as the basis of a decision support system which, in conjunction with 
simulation, aids the user in the configuration of fabrication/assembly lines. We 
demonstrated how the throughput approximation can be utilized in decisions con- 
cerning capacity and WlP levels. 

In the course of our analysis, we have made several qualitative observations 
about the behavior of assembly systems. Briefly, these can be summarized as fol- 
lows. 

1. Throughput is a non-decreasing function of machine speed. Specifically, if pro- 
cessing time distributions are replaced by stochastically smaller distributions, 
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throughput goes up. The throughput of an assembly system with exponential 
processing times is a lower bound on the throughput of an assembly system with 
IFR processing times with the same mean processing times. 

2. A bottleneck at assembly limits throughput more than an equivalent bottleneck 
in fabrication. Exchanging (in terms of capacity, not functionality) the bottle- 
neck at assembly with a faster fabrication machine increases throughput. 

3. In the problem of allocating card counts to fabrication lines to achieve maxi- 
mum throughput subject to cycle time constraints, faster machines (i.e., in the 
sense of having stochastically smaller processing times) allow greater WIP and 
therefore higher throughput. The optimal card count for an assembly system 
with exponential processing times is a lower bound for an assembly system with 
IFR processing times with the same mean processing times. 

In conclusion, this paper provides a potentially useful first cut at developing ana- 
lytical modeling support for assembly systems, but there is much work to be done. 
Further research should include characterizing cycle time variance and the var- 
iance of the cumulative output until a fixed time t of assembly-like queueing sys- 
tems (e.g., in the vein of [11]). These results would provide the basis for more 
general production quota and WIP setting models. Further work should also 
address assembly-like queues with more general processing time distributions. 
While the exponential distribution is a good approximation for systems with high 
variability, it may not be a good characterization when this assumption is violated, 
for instance in the case of automatic machinery. In that case, a model with determi- 
nistic processing times and random failures may be more appropriate, as in [10]. 
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