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Résumé

Dans ce papier, nous étudions des marches aléatoires évoluant sur un

2
simplexe formé d'un nombre fini de quarts de plan Z__, ayant des

frontieres communes.Sous des hypotheses d'homogénéité spatiale et
de sauts bornés, on trouve les conditions explicites d'ergodicité et de
transience du processus ainsi construit. La méthode, déja utilisée
dans des travaux précédents, est basée sur le raccordement idoine de
fonctions de Lyapounov locales. Cette analyse est aussi d'importance

théorique pour la classification de marches aléatoires dans Z__, ainsi

que pour certains modeles de réseaux de files d'attente comportant

des interactions.
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Abstract

In this paper, we analyze random walks evolving in a region formed

by a finite number of quarter planes Zi having some boundaries in

common.Under assumptions involving essentially space homogene-
ity and boundedness of the jumps, it is possible to find the conditions
for ergodicity and transience. The method implies a pasting of local
Lyapounov functions, as done in earlier papers. This study is of

. e =
theoretical importance for the classification of random walks inZ__ .

It also can represent some queueing networks with interactions.
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Random walks in two dimensional
complexes

G.Fayolle, I.A. Ignatyuk, V.A. Malyshev, M.V. Menshikov

A 2-dimensional complex is a union of a finite number of quarter planes
Z? having some boundaries in common. An example can be the union of
all 2-dimensional faces of ZY. We consider maximally homogeneous random
walks on such complexes and obtain necessary and sufficient conditions for
ergodicity and transience up to some “non zero” assumptions which are of
measure 1 in the parameter space.

The main reason for studying this problem is that it is the step in advance
comparatively to the paper (1] towards obtaining classification of maximally
homogeneous random walks in Z¥ . In [1] the vector field was constructed
in terms of which a complete classification was obtained for N = 2,3 and
sufficient conditions for ergodicity and transience were derived for N > 3.
One of the main features of the vector fied in question that it was determin-
istic. Our advancement here is that certain vector fields appear which are
deterministic inside 2-dimensional faces, but give rise to random scattering
on 1-dimensional faces. This is the new phenomena which is common also for
ZY. We give explicit solution to our problem : in fact it reduces to finding
stationary probabilities for finite Markov chain with n states, where n is the
number of 2-dimensional faces in the simplex considered.

The paper is organized as follows.

After the main definitions and preliminary results in sections 1,2 we for-
mulate the main theorem 3 in section 3. The proof of the ergodicity condi-
tions using the method of pasting together local Lyapounov functions similar
to used in 1] is given in section 4. Transience is proved in section 5 by using a
simpler method for constructing more global Lyapounov functions. Possible
generalizations are briefly described in section 6.



1 Definitions and preliminary results

We call a two-dimensional complex T any union of finite number of copies of

R2+:

(Ri)i = {(z1,22)i:z; 20} , 1 =1,..,n.

def

We assume that all origins are identified, i.e. (0,0); = 0 for all . Some
pairs (7\5:), f\ﬁ},)l) of its one dimensional faces.

AW = {(21,0)i : 21 > 0}, AL = {(0,22); : 22 > 0}
can be identified as well. This means that the points of /~\§~}) and 7\;}3] lying
at the some distance from the origin are identified.
We shall consider discrete time homogeneous Markov chains £ = L7 with
state space T, the integer points of T', i.e. the union of all

(Z_Q*_),‘ = {(m;,zé)i :zj 2> 0integers } C (Ri),‘

taking into consideration the above identifications between them. We denote
the inner part of a generic 2-dimensional face by 7\(2), e.g

7\52) = {(z1,72)1 : T, 2 > 0} .
Introduce also AV, A - the closures of 7\(1), 7\(2), and A AR the sets
of integer points of AM and A® respectively.
Examples
1. T (or T) is called planar if any 1-dimensional face is identified with at

most one other 1-dimensional face. This means that 7' can be topolo-
gically imbedded into R?. The examples are :

(a) Zi,
(b) The union of 4 quadrants of Z?,

(c) the union of three 2-dimensional faces of Z3.



2. The union of all M@ 2-dimensional faces of Zf,N > 4, is the ex-
ample of non-planar complex

3. Tj is called strongly connected if it is not the union of two complexes
Ty and T; which have only 0 as a common point.

Let us note that in T any line has a length. Whence, T is the metric space
endowed with the distance p(a, 8), between a, 3 € T, equal to the minimal
length of a line between them.

We assume that one-step transition probabilites p,g(a — B) satisfy the fol-
lowing conditions :

A1l. Boundedness of jumps

(a) pag = 0 if a, B do not belong to the same A? ;
(b) pap = 0if p(a, B) > d for some fixed d < oo ;

c) pag = 0 if at least one component of the vector 8 — « is less than
B
-1.

A2. Simplest space homogeneity

Let o, a’ belong to the same (open) face A which can be 1 or 2-dimensional. If
AC AP (i.e. A =A@ or A is a one-dimensional face of /\(2)) and, moreover,

ﬂ'—a':ﬂ—a’
then

def A
Pag = Po'gt = Pg_o -

Thus, our Markov chain is uniquely specified by a finite number of parameters
py, with v € A such that A ¢ A,

We also shall make some assumptions 04, ...,0s, which we call “non-zero as-
sumptions” and which exclude from our consideration some hypersurfaces in
the parameters space (in particular they are of measure zero in the parameter
space). Some of these assumptions are made just for economy of space-time
but others are very essential. They will appear thercafter.

Assumption 0,
The Markov chain L7 is supposed to be irreducible and aperiodic.

3



Then e.g., this chain is ergodic iff any of its strongly connected component is
ergodic. Therefore, we shall consider only strongly connected complexes T'.
For any 2-dimensional face A and any a € A, we define the vectors M(a),
the one-step mean jumps from a. They are all equal to

My=) (B—-a)ps_, = M(a), Va e A .
BEA
If @ € A) = A then we define My = M(a) to be the collection of vectors
Ma A and M, s, for all A2 D A, where

My = Z(ﬂ - G)Pﬁ-a )

BeN

My o= Y. (B—a)ph_, -
BEA?)

If one can imbeed T into RY for some N, so that all A®) are orthogonal,
then M(a) for @ € A1) can be defined as the usual vector of mean jumps.

Theorem 1.1 If at least for one A = A®) the vector M, has both components
posttive then Lt is transient

Assumption 0,
For any A the vector M, can have no zero component.

Definition 1

Let A(Y) be 1-dimensional face and S(A(M)) be the set of all 2-dimensional
faces A® such that A ¢ A® ; S (AD) ¢ S(AD) be the set of all A
such that M, looks onto A1) i.e. its component perpendicular to A1) is
negative. Accordingly, S_(AM)) = S(AM)—S, (AN}, We call A® € S, (AD)
[resp. S_(A(")] an ingoing [resp. outgoing] face for Al

If S, (A1) = S(AM), then AV is called ergodic.

Definition 2
Let us consider a 1-dimensional face A(Y) and a point o € A, For any
2-dimensional A € S(A™"), let us consider the half-line C%,, which belongs



to A and is perpendicular to A1) at the point a. We call the following one
dimensional complex

Haw= U Cu

AES(A(1))

a hedgehog. For different a € A("), these hedgehogs are congruent in the
obvious sense. Let us consider the Markov chain £,u), with set of states
H ) (we call it the induced Markov chain for A(")) and one-step transition
probabilities which are the following projections

(1)
q;\g = Zpaﬂ' ’ a’ﬂ € HA(I) ’
ﬁl

where the summation is over all #’, such that ' belongs to the same face
as B and (if this face is A = A(®)) the straight line connecting B and ' is
perpendicular to C,’\‘(l). From the homogeneity conditions, it follows that the

induced chain for A(Y) does not depend on the choice of a € A(1).

Assumption 03
For any A1), the induced chain £,q is irreducible and aperiodic.

Then £,q) is ergodic iff A s ergodic. This explains the word. Let 7,)(h).
be the stationary probabilities of L.y, B € H .y, in the ergodic case.

Let us define, for any ergodic, A() a number v,q) - the “second vector field”
on 1-dimensional ergodic faces.

V) = Z T A (R)Praoy M(h) ,
hel (1

where Pr,u) means orthogonal projection of M(h) onto A, If A € AM),
this means

Pr,\u)ﬁ/[(h) = M,\(x),\(l) + Z Pr,\(x)]\/ A A(2)

A(2)
Theorem 1.2 If v,y > 0 for at least one ergodic AV, then L is transient.

Assumption 0,

vay # 0 for all A,

Now we want to show that the sign of v,n) is easily calculated

5}



Lemma 1.3

N M
Qi Maoy @
sgn v = sgn (Mym A+ Z Praoy[Maoy s+ M@ —2 &
AD:AMDCAD Qi) Ma

D,
where Qﬁg; is the projection of vector in A(® onto the axis of A®® other than
A

2 Random walks on hedgehogs

For a given hedgehog H ), we call C,’\‘((,?)) its bristle. A bristle C/’\‘((,z)) is called
ingoing if A1 is ingoing, i.e. if the following number (representing the mean
jump along the bristle)

(1)
MA(2) = Z (hl —h) q,/:h, , (2.1)
hl

which does not depend on the position of h € C,’\‘((,z)), is negative.

When A() is not ergodic, we shall define a “scattering” probability p,. (A1), A(2)),
for A® € S_(AM), which is the probability that the particle will go to infin-

ity along C,’\‘((f)) Under our simplest homogeneity assumptions, this definition
does not depend on the initial position, provided that this latter is either at

the origin of the hedgehog or on some ingoing bristle. Thus, we can assume
that it 1s at the origin 0 € H,(.

Computation of the scattering probabilities

Let us fix A, A®) and put guy = gfv’. It is clear that

Zhec:((f)’ qon p(h)

psc(A(l),A(2)) —

= 2.2
ZO;&heHA(,) qoh P(h) ( )

where p(h) = p,2)(h) is the probability that, starting from h, the particle on
the hedgehog will never return to 0. Formula (2.2) follows from the fact that

psc(/\(l)’ /\(2)) = const Z qoh P(h) )
h € C','\‘((xz))



where const does not depend on the outgoing A(®). We shall show now that

p(h) =1-(1-7)", (23)
where v = p(1) is the unique root inside the unit disc of the equation

Z ‘Ihh' 1— (24)

with h € C/’\‘((,))/{O} (e.g. we can take h = 1), and k' € C/’\‘((f))

The proof is easily obtained from the recursive relationship

p(h+1) = p(1) + {1 = p(1)]p(h)

and standard generating function method.

Proof of lemma 1.3

Let H,\(x) be a hedgehog such that all m,@) are negative, for all its bristles
C’/\(1)

Let
TA(2) = Z WA(x)(/l) .
heG"‘f)) &
We claim that
Ta _ QND Maya
mo Qhy My

To prove this, we note first that, for computing the above quantity, it
suffices to consider a modified random walk on the bristle C'/’\‘((,Q)), i.e. on Z},
after slightly “updating” the transmon probabilities. More exactly, we clcﬁne
Ghi = Qup, for all b, ' € CA“) , except for goo which is taken equal to

Go=1-= D dow-

a(2)
O£h'€C WD)

Then 7’}( ! does not depend on this modification and its value in the case of

Z! is a well-known result, yielding in particular exact ergodicity conditions
for random walks in Z2+. [The point 1s that, due to the homogeneity, it is not
necessary to compute the exact values of the w,ay(h) ‘s : only the drifts are
needed]. The proof is concluded. n



3 Formulation of the main result

Definition 3

For given T and L, we dcfine the following associated Markov chain M hav-
ing a finite number of states n =| T |, equal to the number of 2-dimensional
faces of T.[It is thus natural to denote these states by A®]. The one-step

transition probabilities p(/\fz), /\§~2)) of M are equal to

o o Psc(AD, AP, if AP € S (AM), AP € S_(AM)y,
pPINTLAT) =41, if /\52) = /\52) € S+ (AM) for some ergodic AV,
0, otherwise .

We do not exclude that the associated chain be reducible or periodic. Let
Ay, ..., A be irreducible classes of essential states. Let us consider some class
2 with | 2 |> 2. We define the following function f on %; :
If A® ¢ 2; and da2) 1s the angle between M,2) and the negative axis from
which M, goes away,

y4

M
Am

¢

=<V

Figure 1
then we put

FIND) = log tg ¢pm -

Heuristically, if we are c.g. on the x-axis of Al®) at a point (z,0) and we
move along the constant vector field M,z to a point (0,y) of the y-axis, then
exp f(A?) represents the dilatation cocflicient a = 31/—

— If ; is aperiodic and 7;(A(®) denotes its stationnary probabilities,
we define

M@)= Y m(A®)[(A®) . (3.1)

A2 e,



— If 9; is periodic, m;(A(®) is then taken to be the stationary proba-
bility in the aperiodic subclass containing A(?).

The vector M(%;) is defined by the same formula (3.1). Perhaps it will
be more convenient to normalize it, multiplying by N(2;)~' where N(%;) is
the number of aperiodic subclasses in ;.

Assumption 0s
Forallz, M(2,)#0

Our main result is the following

Theorem 3.1 Under the assumptions 0y,...,05 and if the assumptions of
theorems 1 and 2 are not fulfilled, then Lt is ergodic iff, for any %; with
| A; IZ 2:

M®) <0 . (3.2)

Corollary 3.1
If under the conditions of theorem 3 | 9; |= 1, for all i, then Lt is ergodic.

So theorems 1.1, 1.2 and 3.1 provide a complete classification, up to the
assumptions 0y, ..., 0s.

The practical computation of ergodicity conditions can be achieved ac-
cording to the following sequence :

1. Calculate the vectors of mean jumps ;
2. calculate sgn v, for all ergodic A using lemma 1 ;
3. calculate the scattering probabilities, using formulas (2.2)-(2.4) ;

4. calculate the stationary probabilities of the associated chain, which in
the general case give rise to a system of | T' | linear equations ;

5. use theorems 1 to 3.



4 Proof of Ergodicity in Theorem 3

Let us first consider the case when there is one essential class with at least
2 essential states. So, all 1-dimensional faces are not ergodic. We introduce
the following Markov process 7, on T : a particle moves along the constant
vector field M, (with velocity M,)) on any face A® c T. When it
reaches a 1-dimensional face 7\(1), it chooses with probability p(A(), /\52)) a
face /\52) € S_(AM) and continues its way along 7\52) and so on.

The process 7, is called ergodic if the mean time f, of reaching 0 starting
from a point z € T is finite (for all z).

Lemma 4.1 7, is ergodic if (3.2) holds.

Proof: It is a direct consequence of the following fact : if z is far enough from
0, then until reaching 0, n, visits a 2-dimensional face A(®) with a frequency
exponentially close to m7(A(®). (So  is the induced chain for 7, in some
sense). |

We should like (as in [1]) to usc f, as a Lyapounov function for L1 in the
following criterion for ergodicity [1] :

L7 is ergodic iff there exists a positive integer valued function m(«) and
€ > 0 such that

Zi»f:z @D g, — fo < —em(a), (4.1)

for « € T — Ty and some finite set Ty C T. Let ;35:[); be the transition

probabilities in ¢ steps of the process n, for o, 8 € T. For a and ¢ given, they
differ from zero only for a finite number of points 3.

Let us suppose M < 0. Then 7, is ergodic and so, for a not very close to the
origin,

=1+ zﬁg‘g
or

Zmeﬁ ~fa=—-1. (4.2)

10
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Let us note that f, has the following properties :

1. It is continuous everywhere except on the 1-dimensional chains where
scattering occurs ;

2. Cy |z | fe £Cy| x|, for some Cy, C; >0

Bad

For any 2-dimensional face A(2), the function f, has a linear decrecase
along any line parallel to M,(2) in the direction of M,(;.

4. Due to the space homogeneity, f; satisfies (4.1) with m(a) = 1 every-
where, except for neighbourhoods of 1-dimensional faces. More exactly
let us take some nonergodic 1-dimensional face AM and put for any

;\(2)
Do (p) = {a: @ € AD), p(a, AV) = p}

Then, if A® € S_(A),a € Doy (1), (4.1) can be not satisfied. For this
reason, we modify our Lyapounov functions as follows. Define

Fo_ fa,aé,D(Po),
f"‘{(cmnal,aev(po),

where

Do)=U U U Doamlp)

A(D) ADeS_(A(D)) p=0

and pg 1s a constant to be specified below.

Lemma 4.2 There exist po,m,8 > 0 such that (4.1) holds for the new Lya-
pounov function f, with

m, a € D(po+1),

m(a) =4 6| al, a €U Uraes, an) Pamraar(1)
1, in other cases

11



Proof

We choose § > 0 sufficiently small ; then we take po sufficiently large and
then m = m(po) sufficiently large. When m(a) = 1, it is easy to verify (4.1),
due to the linearity property 4.

Let us now take a point @ € D(po + 1). One can prove that starting from
« after m steps, we shall be outside D(py) with probability 1 — ¢;, where
€1 = €1(m) — 0 when m — oo, uniformly in a, with | a | > ao, for some ag
sufficiently large. This follows just from the transience of the corresponding
hedgehog.

It follows that (4.1) holds since, for large m, we can take €; arbitrarily small
with

f(8) = f(B) < Cao(l a | + md)
where 8 ¢ D(po) is the final point after m steps.

Let now a € Dy (1), A® € Sy (AD) and &(a) be the position of the
random walk starting from a.

Let A; € S_(A") . Let us denote 7y(a, A;) the point of RZ = A; which is the
unique point of A;, where process 7, is to be found at time t, after having
started from a.

Lemma 4.3 Lett =6 | a|. Then, for any €;, €3 > 0 sufficiently small, there
exists ag > 0 such that, for any | a |> ag and for any A; € S_(AD) |

| Prob {&(a) € A, 1 6da) = mlas A 1< sl @} = pA A 1< F (43)

where | =| S_(AM) ]

Proof

From the point a € Dara(1), we make first 2—@% | « | jumps. Then, for
| a | large enough, with the probability p; such that

€2
IP:_P(Aa/\x) | < 3]

we shall be in some point a; € A; satisfying

12



1 .
P(aiﬂh(aa /\l)) < 563 | a | .

After starting from «;, we perform the remaining (6 — ﬁi—ﬁ) | @ | jumps.
This will be in fact a translation invariant random walk in Z? and, using
Kolmogorov’s inequality, we prove that, for | a | large, it will never go out of
A; with probability 1 — %

But, moreover, by the Law of Large Numbers, its final point &(a;, a) will
satisfy the inequality

€3

1
EAM¢U—%GW+NU£5—§&;;B)HH)<§€3HH,
with probability 1 — %21
Putting together all these estimates, we get (4.3), concluding the proof of
lemma4.3. W

We can finish now the proof of lemma 4.2.

From (4.2), we have
;ﬁ%ﬁ—ﬁ=—ﬁ (4.4)
Comparing (4.1) and (4.4) yields
2. pi‘%fﬂ—fﬁg Poh fo = Jat A,
where

A<e(Cotl)|a|(1+d6)+elal . (4.5)

So for €, €3 small we get
< ~ 1
> phfo—fa<—58lal,

Concluding the proof of lemma 4.2 and the ergodicity part of theorem 3.1.
|

13



If there are several essential classes, we use the same Lyapounov function as
before inside 2-dimensional faces and in a vicinity of nonergodic 1-dimensional

faces. We define it in a neighbourhood of ergodic faces, exactly as it was done
in [1] for Z3.

5 Proof of the transience

First we shall terminate the proof of theorem 3.1.
Assume that, for the class 9;,

A'{(ﬁ;) >0. (51)

We shall prove then that Lr is transient. It will be, for notational conve-
nience, more convenient to consider the modified chain L1 instead of L,
with the following transition probabilities

PaB = Pap > ifO'?éQa

Poo=1, pp=0, B#0.

Thus it is sufficient to prove the non recurrence of £.

Let £,(c) be the position of the random walk corresponding to £, correspon-
ding to the initial condition e, i.e. £ (o) = o

Choosing a # 0 belonging to some AY), we define the following a sequence
of random times 0 = 70 < 71, < ... < 7, < ... by induction : 7, is the first
after 7,_; hitting time of 0 or some 1-dimensional face AL = A different
from the face AL, to which ¢,._, (@) belongs. Of course, if £, (a) =-0 for
some T, then ¥, = 7,, for m > n.

Let us consider the new Markov chain (,(a) = &, (@), (o(a) = a, the state
space of which is the union of all 1-dimensional faces JA(M) and 0. The
probability of sometimes hitting 0 are equal for &,(a) and (,(a). So it is
sufficient to prove the non-recurrence of (,(a).

Lemma 5.1 Let us consider two I-dimensional faces AV, /\21), and the cor-
responding 2-dimensional ones

14



AP € S (AD), AP € S_(AM) (S, (AY)
Then, for any € > 0, one can find Dy > 0 such that, for any § € A1) |

Dy

18]
(5.2)

| PLGB) € A, TG(B) I < 1B (tg 8,0 — ) = p(AT, AP) |<

Proof
Let us note first that, for any A{? € Sy (A1), we have

p(AD, A®Y) = p(AD A®). As the jumps are bounded, we have 7, > [J%l]
a.s. It follows (see lemma 1.1 [1]) that there exist 61,82, D2 > 0, such that,

for any B € A and any t € Z,,t < [J—g—l],

P{p(€(8), ") < 6:t} < Dy e™%".

We also have

| P{p(&(B), V) > §it, £(B) € NP} — p(AD,AD) | < Cae™,  (5.3)

for any t < Jjé—l, where (3 is a positive constant.
For any €,,0 <€ <1, and ¢t = [51]—6—1] ,

1 éu(B)~Bl<alB]. (5.4)

To prove (5.2), it is sufficient by (5.3), (5.4) to prove that, for £, (8) such
that

p(éh(ﬂ)’/\(l)) > 51 t ’

and for any €; > 0, there exists a constant Cy = Cy(e€;,€2) > 0 (not depending
on f3) such that

P{&(B) € AV, p(€n (B), Eu (B)+(mi—t1) M) > €2 | B/ p(Ee, (B), AV) > 8ita} < % :

(5.5)

15



To prove (5.5), we consider A(?) imbedded into Z? and the space homogeneous
r.w. &, t € Z,, on this Z?, with initial value

d) = Eh (ﬂ)
and one step transition probabilities
Plo,B)=patc,8+f)=ple,B),

for all o, 8 € A® | o, B € Z2.

Let 7/ be the first hitting time /\S" by €. We can choose T € Z, and ¢; > 0,
so that

e A 2 8t =81l B> 1 81

and

(€, /\gn) + TPryyMya + €3 | 8|

<IBl(1+ea)+TPryoy Myoy +e3| B]<0.

Let us note that, if

z{:-rf(%] I ét d) -M»t|<el|B],

then 7' < T and & € A® for all t < 7.
From this remark and Kolmogorov’s inequality, we get

P{ETI(B) 1 3/’(6"1(ﬁ)vﬁl + A{A@)(Tl - tl)) <€ I ﬂ | /5:,(,5)}

> P{ max | £.(8) - ég,(ﬂ) —(t=t)Ma» | < e | B /E,(B)} =

tefty, T

=P{max |§{ & —tM» | < e | B}

tefo,r’]
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> P{max | ¢ —&—tMy» | < e | B}

te(o,T)

CsT
>1- o,
3|8 |
for some constant C5 > 0.

The last step to derive (5.5) is now achieved by choosing T' such that
T < const | B |. Lemma 5.1 is proved. W

It follows from 5.1 that, for any sequence Ao, ..., A, € 9; of 2-dimensional
faces, for any o € AgNA;1 and any € > 0,n € Z,, there exist Cg = Cg(€,n)
not depending on a € Ag() A1, such that.

| P{¢k(@) € AN Aks1, | Ge(a) | 2 (tg dn, = €) | Gema(@) |, K =1,...,n}

Ce
= P(Ao, A)P(A1, A2)ep(Anct, An) | S Tal (5.6)
Let us choose € > 0, § > 0 and n € Z, so that, for any Aq € 2,
P (Ao, Ao) > 0
and
Z Z ®Y (Ao, AP log (tg day —€) >8>0 (5.7)
k=1 2

Due to (5.1), it is always possible to satisfy (5.7) since
1 n
il Zp(k)(/\o’/\(ﬂ) g (/\(2)) ,
n k=1

for any Ag, A®), whenever Ag is an essential state in the associated Markov
chain.

To prove the transience of (i(a), k € Z,, it is sufficient to prove the
transience of the chain nx = €ai(a), ¥ € Z4. We shall use Foster’s criterion

17



) recalled thereafter : if there exists a positive function f defined on the state
space X and a set A C X, such that

Siexpii fi<fi, VieX - A,
and

infiea fi > supjex_afi,
then the Markov chain is transient.

We define f on the state space of ;.

1 - ?) ™ ¢ g,

f(a) = log3Tal’ ifa#0 and a €A | for some A® € u; |
1, in the other cases.

Let us prove that, if | 7o | is sufficiently large, then

E(f(m)) < f(mo) - (5.8)
In fact, if f(no) = 1, then (5.8) evidently holds. Let

f(no) and no € AM) |

“log3 (0|

for some 1-dimensional face A1), Then, by (5.6),

1 Cs
E < Aoy Ar)eP(Anety An) - - + :
()< 2, 2o M2 M) o T TR g 6 =] T |
(5.9)
where Ag € S_(/\(l)), Ao € ;.
But, for | no | sufficiently large,
(log (3| no | [I(tg ¢a, —€))7' = (5.10)

j=1

S S
~log3|mo | log 3 | 7o |

(3" log (tg én, — )" <

i=1

18

-



1 T_1log (tg éa, — €) 1

< - )
og8Tml~ (og3lml? " (og3im?

From (5.9), (5.10), (5.7), we get

Co 1 8 L
E < + - +
() € o+ g7~ Toa 3T+ o 3Ty

Theorem 3.1 is proved. [

2)

Theorems 1.1 and 1.2 are in fact implicity contained in the results of [1]. We
shall briefly explain how they could be proved.
The proof of theorem 1.1 is based on the following criterion of transience :

Lemma 5.2 Assume that, for the irreducible Markov chain with state space
S, there exists a function f:S — R, such that

(i)  for somed >0,

| fa—fol>d = pap=0, o, BES;

(it)  Lppasfs—fa 2 €, for somee >0 and alla € Ac ={a: fo>C}#0
, for some C > 0.

Then the chain is transient.

Proof: Sec[1]. W
Let A®® be a two-dimensional face, with M, having both components

positive. Then we can construct a Lyapounov function f, taking it equal to
0 outside Al® and e-linear on A as in [2].
To prove theorem 1.2, we could use condition B’ and theorem 2.1 of [1].

6 Remarks and problems

Remark 1
In our case, we could have defined an associated Markov chain with a different
set of states : {A(1} instead of {A®} with transition probabilities

p(AD, A1) = p(A®, A

19



for any A® € S, (AM) and the unique A € S, (AM)NS_(AM), if such
/\{2) exists and 0 otherwise. In the more general case when condition la)
of boundedness of jumps does not take place, the situation becomes more
complicated : the scattering probabilities depend on the m(gom% bristle of
the hedgehog. Thus, the probabilities p(A(®), /\(2)) and p(A 2 can be
different for different A® AP € 5,(AM). But this case can be treated as
well by the same methods.

Remark 2

It is of interest to generalize our results to the ca.se when the simplexes of
our complex are not Z3, but angles in R? or in Z+ . Of special interest is
the situation when these angle in Z? are not commensurable with 7.

Remark 3

Our methods allow to get the classification of random walks in Z} under the
same “non zero” and homogeneity assumptions, when all vectors of mean
jumps inside all faces A with dim A > 3 have their coordinates negative.
Then ML, with dim A = 1 or 2, will become vectors derived from the
corresponding induced chains.

Remark 4

We want to show now that all our assumptions have Lebesgue measure 1 in
the parameter space. 0,,03 are fulfilled when all the p,s’s are positive. 0,
is satisfied except a for finite number of hyperplanes. 04,05 are not fulfilled
only when V,q) in lemma 1.3 is equal to zero.

20
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