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An Intermittently Served Discrete Time Queue with

Applications to Meteor Scatter Communications

Etude d’une file d’attente a temps discret avec interruptions

Peter J.B. King
Heriot- Watt, University Edinburgh, EH1 2JH, Scotland

Isi Mitrani !
ATST Bell Laboratories, Murray Hill, NJ 07974

Philippe Robert 2
INRIA, 78158 Le Chesnay, France

Abstract

A discrete time single server queue with service interruptions is analyzed in the steady-state under
general assumptions. The main motivation for the study is the performance evaluation of a com-
munication protocol using ionized layers created by meteors. The analysis yields the joint distri-
bution of the queue size and the remaining duration of the current operative or inoperative
period. The solution takes a particularly simple form in the case where the operative periods have
a rational generating function.

Résumé -

Nous étudions une file d’attente a temps discret avec interruptions sous des hypothéses
générales. La principale motivation de cette étude est I’ évaluation d’un protocole de communica-
tion simple utilisant les couches ionisées de P’atmosphére créees par les météores. Les interrup-
tions de transmission interviennent lorsque la densité de matiére ionisée est en dessous d’une
valeur critique. Sous des hypothéses probabilistes nous obtenons la loi jointe du nombre de mes-
sages en attente de transmission et de la durée résiduelle de la période d’activité ou de non
activité. La solution a une expression particulidrement simple dans le cas ou les périodes
d’activité ont une fonction génératrice rationnelle. '

1 On leave of absence from the University of Newcatle upon Tyne, NE1 7RU, England
2 On short term visits to the University of Newcastle upon Tyne and AT&T Bell Laboratories.
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i. Introduction

A rather unusﬁal approach to packet radio communications has started
attracting attention in recent years. It is based on a phenomenon called ‘meteor
scatter’. Meteors passing through the upper reaches of the atmosphere (at heights
of 100-150 km) create ionized layers which act as reflecting mirrors for VHF
signals. Two stations at a distance greater than that of the direct VHF range can

use these layers to communicate with each other, as illustrated in figure 1.

Figure 1.

We shall refer to the periods during which a suitable reflecting layer is
available, or unavailable, as ‘operative’ and ‘inoperative’ periods, respectively.
This emphasizes the analogy which exists between a medium such as meteor
scatter, and a server that breaks down from time to time. In the ‘meteor server’
case, the operative periods last for about 0.5 seconds, and the inoperative ones for

about 10 seconds. For a more detailed discussion of this phenomenon see, for

example, [2,8].



Consider two stations which transmit at different frequencies, so that a
message from A to B, and one from B to A, can be sent at the same time without
interference. During inoperative periods, both stations continue to send a probing
signal to each other. As soon as A receives B’s probing signal, it knows that an
operative period is under way, and can start sending packets of information. Each
of those packets is acknowledged by B. When the acknowledgements stop
arriving, station A realizes that the operative period has terminated and stops
sending packets. However, a certain number of packets that were en route
between A and the ionized layer when the latter disappeared, are lost and have to

be resent during the next operative period. Along with the probing signal that A

receives at the beginning of a new operative period is also an indication of the last

packet successfully received by B.
The situation is completely symmetrical with respect to station B.

Our aim is to study the steady-state behavior of this protocol and evaluate its
performance. To that end, we shall construct and analyze a discrete-time model of
the system. Models of similar type (apart from the assumption concerning the
wasted portion of an operative period) have been studied by Bruneel [3,4]. Our
approach involves the analysis of a two-dimensional Markov chain. We obtain,
under very general assumptions, the steady-state joint distribution of the number
of packets awaiting transmission at a station and the remaining duration of the
current operative or inoperative period. The numerical implementation of the

solution is discussed.



It should be pointed out that the applicability of the model is by no means
restricted to the meteor scatter problem. Discrete-time queues with server

interruptions occur often in computing and communications.

2. The model

The time axis is divided into slots of length 1, a slot being the time required to
send a single packet. From the viewpoint of one of the stations, say staiion A,
those slots belong to alternating operative and inoperative periods (an operative
period starts with the reception of a probing signal from B, and ends when B’s
acknowledgements cease; because of propagation delays, that period does not
coincide with the actpal presence of an ionized layer). Packets sent during an
operative period are received successfully and correctly, except if they are sent
during the last M slots of the period; in that case, they are lost. The time slots are

illustrated in figure 2.
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Figure 2.



Let £, be the number of packets submitted for transmission at station A during
slot n (£, can also be thought of as the length of the message submitted in slot n).
That random variable is independent of n, of the system state, and of past history.

It has some arbitrary distribution, with generating function a(z):

a(z) = S azt, | (1
i=0
where a; = P(§, = i); i = 0,1, .... There is no bound on the number of packets

that may be queued, awaiting transmission. The queue is served in FIFO order.

The length of an operative period (measured in number of slots) is denoted by
m. Consecutive operative periods have independent and identically distributed

lengths, with generating function b(z):

b(z) = i bzt . (2)

i=1

where b; = P(m =1i); i =1,2,.... The length of an inoperative period is
denoted by {. Initially, these periods will be assumed geometrically distributed,
with mean 1/q slots. Thus, every slot of an inoperative period is followed by a
new operative period with probability g. This amounts to assuming that the
meteors arrive in a Poisson stream, which is not unreasonable. The generating

function corresponding to that distribution, w(z), is equal to

_ gz ~
w(z) = =<7 3

However, the geometric assumption is not essential for the analysis. This is

demonstrated in section 5, where { may have an arbitrary distribution.



The state of the system at the beginning of the n’th slot is described by a pair
of iﬁtegers, X, Yn), Where X, is the number of packets queued' for transmission
at station A and Y, is the number of slots remaining in the current operative
period, or O if the current period is inoperative. The above assumptions ensure
that (X,,, Y,) is a Markov chain. In one slot, the packet queue size increases by
the number of new arrivals, and decreases by 1 if a packet is transmitted
successfully. The remaining portion of an operative period decreases by 1
throughout the life of that period, stays at 0 during the ensuing inoperative period
and jumps to the size of the next operative period when the latter starts. Thus,

the evolution of the system state is described by the following two relations:

Xn+1 = Xn + gn - I(Xn > O)I(Yn > M)

Yotr = (Yn = DIF, > 0) + nl(Y, = 0)I(S), (4)
where I(e) is the indicator function of the evente: I(e) = 1 if e occurs and )

I(e) = 0if it does not. The event § occurs when a new operative period starts.

We are interested in the joint steady-state distribution, p;;, of the packet queue

size and the residual operative period:

pij = }.u?c PX, =i, Y, =}) (5)
To establish the condition for existence of equilibrium, note that the average

length of an ‘operatiye.-inoperative’ cycle is E(q) + —2-, and that, in each such

cycle, the average number of slots during which packets can be transmitted is

El(m — M)*], where (v — M)* = max(n — M, 0). Hence, the maximum

throughput that can be achieved is equal to E[(n — MY*1/{E(m) + -:;] packets



per slot. Consequently, it is easily seen that the system is stable if, and only if,
the average number of arrivals per slot is less than that quantity:

B < Ela =]

1 (6)
E(m) + —
(m) "

This condition will be assumed to hold.

Relations (4) imply that the probabilities p;; satisfy the following set of balance

equations:

i
Py = 2 api+i-kj+1 + abjpi-k0l + apo,j+1; i 20, j =M,

k=0
i .
pij = agPi-kj+1 + g@bpi-i,0l; i 20, 0<j<M,
k=0
i -
Pio = 3 api-x,1 + (1 = @)pi—k,0); i =0. ¢))
k=0

Introducing the generating functions

gix) = 3 pyx',
B

equations (7) can be written as

8i+1(X) = po j+1

gj(x) = a(x) + gbjgo(x) + poj+1|s J=M

8i(x) = a(x)[gj+1(x) + gbjgo(x)]; 0<j <M
go(x) = a(x)[g1(x) + (1 — q)go(x)] (8)
Tr2s2 relatione in turn, can be replaced by a single equation involving the

bivariate y:.icrating function



Gxy) =3 3 pjx'yl =3 gi(x)y/ .
i=0j=0 Jj=0

Multiplying (8) by y/ and summing, we get, after some algebra,
[xy —a(®)]G(x, y) )
M . M
=a@x)jx — 1) | Y gix)y! + y R — go(x) + xygo(X)[1 — g + gb ()]t .
j=1
where A(y) is the generating function of the remaining number of useful slots in
an operative period, when the packet queue is empty:

h) = 3 popy’™
j=M+1

In the right-hand side of (9) there are, apparently, M + 2 unknown functions:
h(y) and g;(x), for j = 0,1, ..., M. However, M of the latter can be expressed in
terms of go(x) by using (8), for 0 < j < M. Then G(x,y) would be given in

terms of just two unknown flnctions of one variable each, go(x) and h(y).

The following observation will allow us to determine the unknowns: if x and y

are such that
(i) |x|=1and |[y| =1 (sothat G(x, y) is finite), and

(i) xy —a(x) =0,
then the right-hand side of (9) must vanish. This yields an equation which, after

eliminating gj(x), forj=1,2,..., M, can be written as



‘—1% w(a@)axM h(y) = (10)

M-1 . .
{w(a(x» [2 a(x)’b; + a(x)"b (y)] - 1}go(x>; xl=1, yI=1, x=a,

j=1

i

where w(z) is given by (3) and b"(z) is the generating function of (q — M)*:

b*(2) = P bjzj-M.
j=M

In the next section it will be shown that there are indeed points for which (10)
holds. Moreover, that equation will supply enough information to enable us to

determine both A (y) and gq(x).

3. Analysis of the functional equation (10)

We begin by examining the region of validity of (10), i.e., the set of points

such that |x| =<1, |[y| =1 and xy = a(x). Note first that if x is on the unit

circle, |x| =1, then y = aix) is in the wunit disk. This is because
ly| = a_ix)_ = la(x)| = 1. Thus, the mapping y(x) = aix) takes the unit

circle of the x-plane onto some closed contour, C,, which lies entirely in the unit
disk of the y-plane. That contour touches the unit circle at the point y(1) = 1,

and, in general, only there (figure 3a).

On the other hand, if y is on, or outside the unit circle, Iy | = 1, then there is
exactly one x in the unit disk such that xy = a(x). This is seen by applying
Rouche’s theorem to the difference xy — a(x). When |x| =1 we have

la(x)| = |xy|, with equality only for x = 1 and y = 1. Since x — a(x) increases



ét x =1 (because a’(1l) < 1), the circle can be deformed slightly around the
point 1, so that the inequality becomes strict everywhere. Hehce, xy — a(x) has
the same number of roots in the unit disk as xy, i.e. exactly one root. Denote that
root by x(y). The exterior of the unit disk of the y-plane is thus mapped by x(y)
onto the interior of some closed contour, C,, which lies entirely in the unit disk of

the x-plane and touches the corresponding unit circle at the single point x(1) = 1

(figure 3b).

- pl
Jpene x- plone.
y(x) F

-

x(y) K

(a) (b)

S

Figure 3.

The above arguments imply that when x is between the unit circle and C, (the

a(x)
x

shaded region in figure 3b), y(x) = is between the unit circle and Cy (the

shaded region in figure 3a). For such pairs (x, y(x)), equation (10) holds.
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Now, let us rewrite (10) in the form

h(y)—cb()e(—")—x—, v =a), Coan
where
_ q80(x)
o) = e a T
and

e(x) = w(a(x)) E a(x)’b + a(x )Mb [a(x)]]

j=1

Note that ¢(x) is analytic in the entire unit disk. This is because, according to

(10), every zero of w(a(x))a(x)¥ ~! is a zero of go(x) with the same multiplicity.
plicity

To determine the unknown functions, we start by considering equation (11) for

y on the unit circle, |y | = 1, and x = x(y) on the curve C,. The idea is to obtain

a factorization of type Wiener-Hopf for the fraction +y(y) = ——L—e(lx(_)z(;)l

(appearing in the right-hand side of (11)), on the unit circle. This takes the form

YO) = VTGV WTO) vyl =1, (12)
where Y*(y) is a function analytic in the interior of the unit disk, |y| <1,

continuous on the circle |y | = 1, and having no zeros for |y | =< 1, except perhaps

ly| > 1, continuous on the circle |y| = 1, does not vanish for |y| =1 and

approaches a non-zero constant when |y | - c.

General formulae for ¥ (y) and ¢~ (y) are given in the appendix. A simple

solution under a mildly restrictive assumption will be presented in the next section.
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Here we shall assume that the factorization (12) is given, and proceed to

determine the functions A (y) and gq(x).

Substituting (12) into (11) we get

+
hO) = o) L. |y =
U ()

or

hG)_ _ SGEON . i (13)
T o) |y |

From the definition of Y*(y) and from the fact that h(y) is a generating
function, it follows that the left-hand side of (13) is analytic for ly] < 1.
Similarly from the definition of ¢~ (y) and from the fact that ¢(x) is analytic
inside the unit disk (x(y) is inside C, when |y | > 1), it follows that the right-
hand side of (13) is analytic for |y| > 1 and is bounded by a constant at infinity.
The equation itself, which is valid on the circle |y | = 1, shows that the two sides
are analytic continuations of each other. Therefore, together they define a

function, x(y), which is bounded and analytic in the whole plane:

( h(y) .
f =1
N a4 "
v~ )

\

However, according to Liouville’s theorem, x(y) must be equal to some

constant, D. Then the first part of (14) yields

h) =Dy (); ly|=1. (15)



.12 -

Similarly, the second part of (14) implies that

dGx()) =Dy~ (); Iyl =1,

or

go(x) = %w(a(x» aM 1" (), (16)
where x is in the interior of, or on C, (figure 3).

It is shown in the appendix that y*(y) and ¥~ (y) contain a linear factor with
unknown coefficients, (co + ¢;y). Thus, in order to specify the solution
completely, two constants need to be determined, Dcg and Dc,. The first of these
is zero, since h(0) = O (by the definition following equation (9)). The second is

obtained from the normalizing condition, G(1,1) = 1.

Note that both h(y) and go(x) can be continued outside the domains associated
with (15) and (16), if desired. For instance (16), together with the functional
equation (10), defines h(y) for [y | > 1. Similarly, (15) and (10) define go(x)
outside the contour C,. For the purpose of calculating system performance

measures, such continuations are not necessary.

It should be clear to anyone who reads the appendix, that the formulae given
there do not lend themselves easily to numerical implementation. However, at the
price of a very slight loss of generality, one can obtain a much more direct

solution which is readily implementable.
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4. Solution in the case when b"(y) is rational

Assume that the generating function of (y — M)* is a ratio of two arbitrary

polynomials:

b'(y) = %—% . (17

This is not a serious restriction from the practical point of view.

Now the solution of the factorization problem (12) can be found rather simply.

We look for ¢* (y) in the form of a ratio

Fep = PO) 8
MORS vt (18)

where P(y) is some as yet unspecified polynomial. This form ensures that y* (y)
is analytic for |y| <1, since R(y), being the denominator of a generating
function, cannot have any zeros in the unit disk. To meet the remaining
requirements for ¢*(y), the polynomial P(y) must also have no zeros in that

region, except at y = O, where h(y) vanishes.
Having chosen the form of Y* (y), that of Y7 (y) is indicated by (12):

V@) PO = x()] (19)
YO) Re(x() — 1]

) =

We shall now determine P(y) from the requirements that Y~ (y) is analytic
outside the unit disk, does not vanish there, and tends to a constant when
ly | = . Consider the denominator in (19):

ROe(x) = 1] = w(a(x) RO) 3 a@xybj + a2 - R, (20)

M-1
i=1
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‘where x = x(y) is in the interior of C, when |y| > 1. Note first that when

ly | = e, the right-hand side of (20) is on the order of y9¢, where d is the larger of
the degrees of Q(y) and R(y). Therefore, in order that {~(y) has a finite and
non-zero value at y = o, the polynomial P(y) must be of degree d. Next, we

have the following.
Lemma.

The function R(y(x))[e(x) — 1] has a single zero at x = 1 and d — 1 other

zeros in the interior of C,.
Prodof.
The fact that e(1) = 1 is easily verified by direct substitution. For x # 1,

x € Cy, it can be seen that |e(x)| <1 (]y(x)| = "—i’—‘)—

=1 on C,). Also, the

ergodicity condition (6) implies that e’(l) < 0. Therefore, if C; is deformed
sufficientfy slightly in the vicinity of x = 1, by making it pass to the right of that
point instead of through it, then the inequality le(x)| < 1 would hold on the

entire contour.

One consequence of the above is that the variation of the argument of
e(x) — 1, as x traverses the (modified) contour C,, is 0. Hence, e(x) — 1 has as

many zeros inside C, as it has poles. The same statement can be made for
R(y(x)) =R [g_%_)_] (the latter has a pole of order deg(R) at x = 0). On the

a(x)
X

other hand, a glance at (20), with y = , shows that R(y(x))[e(x) — 1] has a
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" pole of order d at x = 0, Therefore, it has d zeros inside C,, including the one at

x = 1. All those points are, in fact, zeros of the function e(x) — 1.

An immediate corollary of this lemma is that, considered as a function of y,
the denominator in (19) has a zero at Yy =1 and d — 1 other zeros,
Y1:¥2s .-+ Ya-1, which lie outside the unit disk. The zero at y = 1 is neutralized
by the factor [1 — x(y)] in the numerator, since x(1) = 1. We are thus led to the
conclusion that in order for Yy~ (y) to be analytic for [¥] > 1, the polynomial P (y)

must vanish at each of the points y; (i =1,2,...,d — 1). Remembering that

P(O) = 0, we can write

POY=cayy =30 =y2) & = ys_1), (21
where c¢; is an unknown constant. But we already know that the solution for
¥*(y) and ¥~ (y) that fits our problem is unique up to a constant. Therefore,
h(y) and go(x) are obtained by substituting (21), (18) and (19) into (15) and (16),

and determining the unknown constant Dc, from the normalizing condition.

5. General distribution of the inoperative periods

The restriction that the inoperative periods of the server should be
geometrically distributed can be removed quite easily. Suppose that the length of
an inoperative period, {, has some arbitrary distribution, w; = P =),
i=1,2,..., and 'generéting function w(z):

w(z) = 5: w,-zi
i=1

The system state can now be described by a triple, (8, X, ¥), where 8 is 1 if the
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'current slot is part of an operative period and O otherwise; X is the number of
packets present; Y is the remaining number of slots in the current period (operative
or inoperative). We can assume, without loss of generality, that M = 0. The
wasted portions of the operative periods can be included in the subsequent

inoperative ones, since the latter can have a general distribution.
Denote the steady-state distribution of (3, X, Y) by

p, ) =P =k X=i,Y=j); k=0,1, i,j=0,1,...
These probabilities satisfy the following set of balance equations:

i i
Pris )= 3 ampili+1—m j+1) +ap;©,j+1) +b; 3 anpoli—m,1)
0

m= m=0
i i
Poli, j) = 3 amwpoli—m, j+ 1) +w; | 3 aup(i+1—m, 1)+ a;p;(0, 1)
m=0 m=0

i,j=0,1,... . (22)

Introducing the two generating functions

gy =3 3 pl, px'y"t k=0,1 (23)
i=0 j=1 '

(22) can be transformed into two equations:

[xy —a(x)1gi(x, y) =

Yoo Yo e 0 w1\ N N T (.. O\ _ — Y= MM 77 A
MxEOgolx, O+ (x— D18, ) — (81, O -1 —x)g,10, 01} . (29

xly — a(x)]golx, y)'=a(x){W(y)[gx(x, 0) — (1 —x)g1(0, 0)] — xgo(x, 0)} . (25)

Al 4
“\A 1
Equation (25) can be wused to express both go(x,0) and the term
(g1(x,0) — (i —x)g(0,0)] in terms of go(x, I). This is done by setting

y =a(x) and then y =1 in (25), and solving. Substituting the resulting
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expressions into (24) yields

by —a(x)]g1(x, y) = alx}{(x — 1)£,(0,y) (26)

_ x[1 — a(x)]
a(x)[1 = w(a(x))]

l1- w(a(x))b(y)] go(x, D)} .

This equation is very similar to (9). In particular, the kernel, [xy - a(x)], is
the same. The two unknown functions are now g,(0,y), which plays the role of
h(y), and go(x, 1), which plays the role of go(x). In the region where |x| =<1,
ly| = 1 and xy = a(x), the right-hand side of (26) vanishes, which provides a

relation between the unknown functions:

Xy =a(x).

1—ax )1 N
y81(0,y) = L 28 [W(a("”b(” 1}

1 - w(ax)) 1 -x
(27)

Equation (27) is of the same type as (11), with obvious analogues for ¢$(x) and
e(x). Its analysis proceeds as described in section 3. The special case when b(y)

is a rational function is treated as in section 4.

6. Numerical solution

We shall outline here the implementation of the solution presented in section 4.
The first step is to find the d — 1 roots, x;,xs,..., Xg-1, of the eduation
e(x) = 1 = 0 in the interior of the contour C,. Note that the root x = 1 is not
included in that number. An efficient method for determining numerically the

zeros of analytic and meromorphic functions is described in [1,5,7].

The values y; appearing in (21) are obtained from
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yy - ) o d-1. (28)

X

The remaining unknown constant, Dc; is obtained ffom the condition
G(1,1) = 1. Setting y=1 in (9) and then letting x -1 gives, after an
application of L’'Hospital’s rule,
_§0 gih)+h()=1-a’(1)=1-E(®). (29)
j=
The first term in the left-hand side of (29) is equal to the probability that either an
inoperative period, or the last M-slot portion of an operative period is in progress.

That probability is given by

1 4
M+ =
_ qg _ _1+qM
P(Y,,. = M) I T+ gE(m) (30)
E(m) + 7

Combining (29) and (30) with (15), (18) and (21) yields an equation which

determines the constant;:

DP(ly=R() |1 - E¢y - ——FaM | 1
(1) =R(1) ® T+ gE(m) (31)

The two unknown functions, k(y) and go(x) are now completely determined by

(15), (16), (18) and (19).

Suppose that the performance measure of interest is the average number of
packets queued for transmission, E(X). This is obtained by differentiating G (x, 1)
with respect to x at x = 1. Again one has to apply L'Hospital’s rule (twice) in
order ‘to resolve the indeterminacy. The average response time for a packet, W, is

~iven by Little’s result: W = E(X)/E (§).
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The above solution procedure was implemented for several special cases of the
model. The generating fimction of the arriving packets was taken as
a(x) = (1 — a) + ax. In other words, a single packet arrives in a slot with
probability a. The distribution of the operative periods is assumed to be an m-fold

convolution of a geometric distribution:

In figure 4, the average packet queue size, E(X), is plotted against the arrival

rate, o, for m = 1,2 and 3. The average length of the operative periods,

E(q) = -’-:—, is held constant throughout. Also, the number of wasted slots, M, is

always 1.

The above assumptions imply that d = m. When m = 1, the normalizing
equation suffices to determine the single unknown constant. When m = 2, there
are two unknown constants and one (real) zero of e(x) — 1 inside the unit circle.
When m = 3, two extra equations are provided by the two (complex conjugate)
zeros of e(x) — 1. More precisely, those two equations are provided by the real

and the imaginary parts of one of the points.

Note that the effect of increasing m, while keeping E(v) fixed, is to decrease
the variance of the opérative periods. As expected, this leads to lower average

queue sizes.
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APPENDIX

The problem of finding the two functions U* (y) and $~(y) is referred in the
literature as the ‘homogeneous Riemann boundary value problem’ on the unit
circle (see, for example, [6]). The existence and number of solutions depend on
the ‘index’ of the function y(y). This last quantity is defined as the variation of
the argument of +y(y), as y traverses the unit circle in anticlockwise direction,
measured in units of 2mw. Alternatively, it is equal to the number of zeros minus

the number of poles of «y(y) inside the unit circle.

To evaluate the index in our dase, we shall deform the unit circle in the vicinity
of point 1, by making it pass slightly to the left of that point instead of through it.
Then, as y traverses the deformed circle, x(y) describes a contour which coincides
with C,, except that it passes slightly to the right of point 1 instead of through it.
Then, as we saw in the proof of the lemma in section 4, the variation of the

argument of e(x(y)) — 11is 0.

The index of y(y) on the deformed circle can be calculated as follows:

ind [y(y)] = ind [%] = ind[e(x(y)) = 1] = ind[1 = x()]

l
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(the index of 1 — x(y) is —1 because that function has no zeros and one pole
inside the contour: x(y) is outside C, when |y| <1 and |x(y)] = « when
y = 0). Moreover, since a deformation of the contour which does not pass

through any zeros or poles leaves the index unchanged, and since the point 1 is



ﬂeither a zero nor a pole of y(y), we can assert that (Al) holds also on the unit

circle.

When the index is 1, the boundary problem has a solution which depends on
two constants. It is given in terms of the piecewise analytic function I'(y), defined

by the Cauchy integral

reoy = L In[y()] = In(s)
TG) = 5 Cf pper L (A2)

where C; is the unit circle. Let I'*(y) be the part of I'(y) inside the unit circle
and I'” (y) be the part outside. Then the solution has the form (see [6])

- . + -
WO = (co + 1) eT 5 YT = [%y-] 7O (A3)

To find the limits of I'(y) as y approaches a point on the unit circle from the
inside or outside (e.g., in order to evaluate y¥ (1)), one uses the formulae of

Sokhotski-Plemel;j:

o) = B0+ g7 [ ds =1, g
]
L") = -3 B0 + 5 f f(_”y ds; Iyl =1, (A5)
T C, :

where B(y) = In(y(y)) — In(y); the singular integrals in (A4) and (AS) are taken

in the sense of principal value.
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