A SIMPLE, FAST, AND EFFECTIVE LL(1)
ERROR REPAIR ALGORITHM

by

Charles N. Fischer and Jon Mauney

Computer Sciences Technical Report #901

December 1989






A Simple, Fast, and Effective LL(1) Error Repair Algorithm

Charles N. Fischer Jon Mauney
Computer Sciences Department Computer Science Department
University of Wisconsin—-Madison North Carolina State University

November 16, 1989

Abstract

Validation and locally least-cost repair are two simple and effective techniques for dealing with syntax
errors. We show how the two can be combined into an efficient and effective error-handler for use with
LL(1) parsers. Repairs are computed using an extension of the FMQ algorithm. Tables are created as
necessary, rather than precomputed, and possible repairs are kept in a priority queue. Empirical results
show that the repairs chosen with this strategy are of very high quality and that speed is quite acceptable.

1 Introduction

The problem of handling syntax errors during context-free parsing has been widely studied and many ap-
proaches have been published. None, however, has achieved widespread acceptance. The FMQ@ algorithm
[3], a locally least-cost repair method for use with LL(1) parsers, has several advantages. The algorithm
is very simple and efficient, it is based on a high-level model of least-cost repair, the error-handler can be
automatically generated from a context-free grammar, and the costs can easily be tuned to give good quality
repairs. FMQ suffers from two drawbacks. First, it depends on a fairly large precomputed table (39k bytes
for Pascal, 85k bytes for Ada). Second, there are many situations in which the locally least-cost model does
not produce acceptable repairs; most of these could be handled by adding a simple validation phase to the
repair algorithm, but FMQ is not directly amenable to validation.

We show how these two problems can be resolved by extending and generalizing the table used by FMQ
and computing on the fly only those elements of the table that are needed. The result is an error-repailr
scheme that is simple in concept, automatically generated, efficient, and which produces extremely good

repairs.
1.1 Validation

Validation is a popular adjunct to error-repair strategies. In validation, a repair is selected and instantiated,
and then the parser is tentatively restarted. If the parser is able to consume a sufficient portion of the program
following the error, then the repair is accepted. If however another error is detected during validation, the

the repair is rejected and another candidate is tried.



Validation can be very useful in choosing from a set of possible repairs. For example, suppose a parser

reads the following symbols in a statement:

=]k
An error will be announced when the % is read, and possible repairs include inserting any of the following
symbols between j and k:

+1G
A strictly local repair algorithm must chose among these, and other, possibilities solely on the basis of the
information presented so far. A cost-based repair algorithm can be tuned to choose the repair that is most
likely to correct the error, but poor repairs must result a certain percentage of the time. A validating repair
strategy, on the other hand, can take advantage of information gleaned from the prograin text following the
point of error. Continuing the example, suppose the entire line contains

i:=jkm]
A repair that inserts “+7, “(”, or “” between j and £ will fail to validate and be rejected, but the repair
that inserts “[” will be accepted.

Validation is not a panacea, and in fact brings up some difficult problems. If there are two distinct errors
near each other in a program then the second error may invalidate all attempted repairs to the first; the
validater reports only the detection of an error, not the ultimate cause of the error. Also, the question arises
of how far into the program to validate. A short validation may fail to gather sufficient information. In the
example above, after validating over the three symbols “k , m” both “(” and “[” are still viable repairs:
it is only when the fourth symbol, “]”, is seen that the best repair is known. On the other hand, a long
validation would be time-consuming and would provide no additional benefit in the majority of the cases
While we have investigated theoretical solutions to these problems [7, 6], a simpler, more practical approach
1s desirable.

A combination of least-cost repair with validation is attractive. The repair costs can be used to tune the
order in which candidate repairs are tried, putting the most plausible repairs first. Speed will be improved
because the most common errors will be repaired with very few validation attempts. In the case that
validation does not live up to its promise, either because of multiple errvors or because the validation region

is too small, costs can be used to choose the most plausible repair anyway.

1.2 Locally Least-Cost Repair

The least-cost repair algorithm of [3], known as the FMQ algorithm, is easily extended to include deletions as
well as insertions[1, pp 700-702]. The algorithm is efficient, but unfortunately it is ruthless about eliminating
from consideration any repairs that have no chance of being the least-cost repair. In a validation algorithm,
we will very likely need to examine the third-, fourth-, and fifth-best repairs, so we must extend the algorithm

to provide them.




{ Let X, ---X; be the LL(1) parse stack
a is the error symbol
insert is the string to be inserted as a repair
prefiz is a least-cost prefix derivable from the stack processed so far }
msert ;= 7;
prefiz 1= A;
for i := n downto 1 do
if Cost(prefiz) > Cost(insert) then {no cheaper repair is possible}
return(insert);
if Cost(prefiz E(X;,a)) < Cost(insert) then { a cheaper repair has been found}
insert := prefic E(X;,a);
prefic := prefiz S(X;);

return(insert);

Figure 1: Original FMQ repair algorithm

The heart of the repair algorithm is the original insert-only algorithm[3], and indeed the heart of that
algorithm is a single table. It is on this table that we will concentrate.

The FMQ algorithm relies on the fact that the LL(1) parsing stack contains a straightforward prediction
of the form of the remainder of the input. The parser announces error when the next input symbol does
not immediately fit with that prediction. The FMQ algorithm works by finding a position within the parse
stack at which the error-symbol can fit, and then inserting symbols that will bring the parser to that point.

I'MQ depends on two tables, S and E, defined as follows:
o S(A) =z € V{* such that A =" 2 and Cost(z) is minimized
e E(A,a) =z € V" such that A =~ zay and Cost(z) is minimized.

We will use A to denote the empty string, and ? will represent a special string that indicates no insertion

is possible. The original FMQ algorithm is shown in figure 1.

2 Extending the FMQ algorithm

The S table is merely used to satisfy symbols on the parse stack that are not directly involved with the
error-symbol. The E table, on the other hand, describes the ways the error symbol can be matched to the

stack. We extend the E table to include other than least-cost matches.
e E(A,a,k) ==z €V such that A =* zay and Cost(x) is the k-th lowest

We will call k the level of the E-table entry. Level 0 of the extended E-table is équivalent to the original
E-table.

In order to keep track of a variety of repair candidates, we maintain a priority queue. The queue is
initialized during a top-to-bottom scan of the stack as in the FMQ algorithm. The least-cost repait is then

removed from the queue and validated. If validation fails then the next-level E-table entry is computed



{ Let X, ---X; be the LL(1) parse stack
a is the error symbol}
for i := n downto 1 do { initialize }
if E(X;,a,0) # 7 then
add candidate (p,0) to the queue
with cost Cost(S(X,...X;41)) + Cost(E(X;, a,0))
repeat { search for repair }
remove next candidate (i, k) from queue
insert S(Xyop...Xi+1)E(X;,a, k) and validate
if validation fails then
add new candidate (7, k + 1) to queue
with cost Cost(S(Xn ... Xit1)) + Cost(E(Xi,a, k +1))
until success;

Figure 2: Extended FMQ algorithm with validation

and the resulting repair candidate added to the queue. The process repeats until a repair is successfully
validated. A candidate repair can be identified by a pair (p, k) where p is the stack position and £ is the
level of E table entry. The repair algorithm with validation is shown in figure 2.

As with the FMQ algorithin, it is easy to add deletions to the extended algorithm. A candidate is now
a triple, (p, k, d), where d is the number of symbols deleted. The cost of a candidate must of course include
the delete costs of the (potentially) deleted symbols, and the error-symbol used in the E-table lookup must
be the first remaining symbol after d symbols are deleted. Other than that, candidates are entered into the

queue, removed, and validated as described above.

3 Incremental Computation of the E Table

In the FMQ algorithm, it is expected that the E table is precomputed. It is not feasible to precompute the
extended E table, since for a given pair (A4, a) there will likely be an infinite number of possible prefixes
Even if the number of prefixes is limited, the table will be large and the majority of the entries will not he
used.

We will compute extended E-table entries on demand, caching values already computed to avoid unnec-
essary recomputation. We will assume the following objects have been precomputed and are available: D,
the set of productions, Cost(a), the cost of inserting the terminal a, and S(A), the least-cost terminal string
derivable from A.

A fundamental notion will be that of a rule, defined as the triple (p, 7, k). p is a production, i is a position
in p’s right hand side, and k is a level. A rule can also be represented in the following (more readable) form:
A — aB*B. A rule encodes a way of computing an E-table value. In particular, the rule 4 — aB*3 states
that E(A,a,i) may be equal to aE(B,a,k). In fact, E-table entries are represented as rules. When a string
of symbols is needed for a repair, it is easily derived from the rules and the S table. For purposes ol cost

computation, Cost(4 — aB*3) = Cost(a) + Cost(E(B,a,k)).




function ComputeEQ(A : V,; a: V;): Rule;
(* Compute Reachable = {Be V,jA="..-B-.-} *)
for each B in Reachable do
if E(B, a,0) is not computed then
Cost(E(B, a,0)) = oo;
for each production p = B — X;-.- X, do
for 1:= 1 to m do
if X; in (V, U {a}) then
Create a rule r = B — aX?3;
Link rinto 2 lists: LHS(B) and RHS(X;);
for each X in (V, U {a}) do
if E(X,a,0) is computed then
Push X onto a stack S;
while S # empty do
Pop X from S;
for each rule r= D — X8 in RHS(X) do
if Cost(r) < Cost(E(D, a,0)) then
E(D,a,0) := r
Push D onto §;
return E(4, q, 0);
end;

Figure 3: Computation of E(A,a,0)

We begin by considering how level 0 entries are computed. The algorithm ComputeEQ, shown in figure 3,
does this. First, a set Reachable of all non-terminals reachable from A (including A itself) is computed. Any
of these non-terminals may be involved in a derivation from A of the error symbol, a. For each non-terminal,
B, in Reachable whose E-table value is unknown, we prepare a set of rules by examining productions with 3
as the left-hand side. Rules are linked into two lists: LHS(B) and RHS(X). LHS(B) is simply all rules with
B as the left-hand side. This list contains all the rules that might be used to compute E(B,a,0). RIHUS(X)
contains all the rules that contain X as the selected right-hand side symbol. If the value of B(X,a,0) becomes
known, it can be propagated through this list of rules.

Finally, we stack a and those reachable non-terminals whose E-table value we know. Using the RHS
list, we update other E-table values. That is, if E(X,a,0) is known, and we have the rule D — o X%3, then
aE(X,a,0) is a candidate for E(D,a,0) (if its cost is less than that of values suggested by other rules) e
continue propagating new E-table values, until no new entries are found.

We next consider how to compute E(A,a,i) given that E(A,a,i-1) is already computed. We examine all
the rules on LHS(A) that may define E(A,a,i), looking for that rule that yields the cheapest value The
rule that was used to compute E(A,a,i-1) must be “incremented;” that is, the level value in the rule should
be increased by one. This guarantees that the value of E(A,a,i-1) is not incorrectly reused as B(A,ai). If
we increment a rule to (say) A — aB/*13, we check if E(B,a,j+1) is already computed. If it is, this rule
can be examined immediately to see if it contributes a cheaper E-table value. If E(B,a,j+1) is marked as

“being computed,” we disregard this rule since an E-table entry cannot be used as a component in its own



Function ComputeE(A : V,;; a : V;; Llevel): Rule;
if E(4,a,l—1) = ? then
return 7;
N = A; lev:= 1
repeat
Cost(E(N, a,lev)) := oo;
BeingComputed(N, lev) := true;
NezxtLev := ~1;
for each rule r = N — «B’f in LHS(N) do
if r = E(N,q,lev — 1) then {Increment rule}
if not BeingComputed(B, ) then
Replace r with N — «BI+13;
if E(B,a,j + 1) is computed then
if Cost(E(N, a, lev)) > Cost(r) then
E(N,a,lev) .= r;
else if not BeingComputed(B,j + 1) then
NeztN .= B;
NeztLev := j + 1,
Push(r, lev) onto stack S;
else if Cost(E(N, a,lev)) > Cost(r) then
E(N,a,lev) == r

N = NeziN;
lev := NeztLev,
until lev = —1;

while S # empty do
Pop (r = D — aB’ g, lev) from S,
if Cost(E(D, a,lev)) > Cost(r) then
E(D,a,lev) :=
end; {ComputeE}

Figure 4: Computation of E-table

computation. If E(B,a,j+1) is not yet computed, we push this rule onto a stack and mark E(B,a,j+1) as
a value to be computed as soon as all the rules on LHS(A) are examined. After these rules are examined,
LHS(B) is examined to compute the value of E(B,a,j+1). This process continues until all needed E-table
values are computed. Finally, stacked rules are examined to see if newly computed values can be used o

obtain cheaper E-table values. The complete algorithm is shown in figure 4.

The Problem of Redundant Suffixes

In our repair scheme, if a candidate repair fails to validate, we compute the next level E-table entry and
queue it for future consideration. It can happen that two E-table entries, of different levels, will lead (o
exactly the same parse-stack configuration when they are parsed. This means that if a repair based the

lower-level entry (which is considered first) fails to validate, so must a repair based on the higher level entry

As an example, consider

IdList — Id Tail




Tail — , Id Tail | A
E(Tail,Id,0) = “” and if ¢, Id” is parsed when Tail is the stack top, Tail will reappear as the stack top. Now
E(Tail,Id,1}) = “ Id ,” and if ¢ Id , [d” is parsed with Tail as the stack top, again Tail reappears.

Define the Suffiz of an E-table entry, denoted as Suf(E(A,a,1)), as the symbols that would replace A il
E(A,a,1)a were parsed with A as the stack top. Suf(E(A,a,i)) is easy to obtain from the rules used to define
E-table entries. In particular, if E(A,a,i) = A — aB7f, then Suf(E(A,q,i)) = Suf(E(B,a,j))B8. We will say
that E(A,a,j) has a redundant suffiz if Suf(E(A,a,j)) = Suf(E(A,a,i), where i < j. Experiments have shown
that in practice a very significant number of E-table entries have redundant suffixes (from 47% to 74% for
Pascal, from 32% to 60% for Ada). We therefore will suppress the computation and use of E-table entries
that have redundant suffixes; only entries that have distinct suffixes will lead to different parse configurations.

When a new entry, E(A,a,j) is computed, we could simply compare its suffix with all entries E(A,q,1) for
which i < j. In practice this is too slow, so we use the length of a suffix and a hash value based on the suffix
to quickly identify suffixes that can’t be equal. With these changes, we can define ComputeNonRedundantE,

as shown in figure 5.

4 Implementation Results

The incremental E-table computation and validating repair algorithm were coded in Pascal and added to an
LL(1) parser[1].

The parser and repair algorithm were applied to the suite of Pascal syntax errors collected by Ripley and
Druseikis[8]. The resulting repairs were judged as excellent if a human would make the same repair, good il
the repair is not excellent but still plausible and does not cause additional, spurious, ervors to be detected,
and poor if it is implausible or causes spurious error messages later in the program. Ve used a grammar
with tuned repair costs as used in previous experiments [2]. All repairs were validated for five tokens; if
no repair could validate within a reasonable cost threshold, then the candidate with the greatest validation
distance was chosen. The repairs were found to be excellent in about 54% of the test cases, good in 33%, and
poor in 13%. If we apply the weights that Ripley and Druseikis provide, adjusting the test cases for their
likelihood of occurring, then the figures improve to 66% Excellent, 27% Good, 8% Poor. In comparison, the
locally least-cost algorithm was found to make a Poor repair in 28% of the cases (using the same costs) [5],
the Berkeley Pascal compiler made poor repairs 20% of the time [4], and the much more powerful regionally
least-cost algorithm was estimated to make poor repairs 9% of the time[5].

The repair algorithm was implemented with an eye to efficiency, but could not be called “hand-optimized ”
The program was compiled with the Berkeley Pascal compiler and executed on a Microvax 3600 with Ultrix
3.0. On the Ripley/Druseikis test programs each repair required an average of 0.12 seconds CPU time. By
way of comparison, each line of Pascal source required 0.2 seconds to parse. The Ripley/Druseikis programs

are perhaps a poor test of speed, since they are so short. We also took a large Pascal program, 5290 lines,



function ComputeNonRedundantE(A4 : Vi, a : Vi; Llevel): Rule;
if E(A,a,l~1) =7 then
return 7;
repeat
N:= A lev:= [
repeat
if Redundant(E(N, a,lev)) then
PrevSoln := E(N, a,lev) {Recompute E(N,a,lev) }
else PrevSoln := E(N,a,lev —1) '
Cost(E(N, a, lev)) 1= oo;
BeingComputed(N, lev) := true;
NeztLev .= —1;
for each rule r = N — a B/ in LHS(N) do
if » = PrevSoln then
if Redundant(E(B, a, j)) then {force recomputation}
NeztN = B;
NeztLev := j,
Push(r, lev) onto stack S,
else if not BeingComputed(B, j) then
Replace r with N — o BIt1g;
if B(B,a,j-+ 1) is computed then
if Cost(E(N,«,lev)) > Cost{r) then
E(N,a,lev) = r;
else if not BeingComputed(B,j + 1) then
NeztN := B,
Nextlev:= j+ 1,
Push(r, lev) onto stack S;
else if Cost(E(N,a,lev)) > Cost(r) then
E(N,a,lev) = r

N := NeztN;
lev := NextLev;
until lev = —1;

while S # empty do
Pop (r = D — aB’f, lev) from S,
if Cost(E(D, a, lev)) > Cost(r) then
E(D,a,lev) = r;
until E(4,q,{) = 7 or not Redundant(E(4, ,!))
end; {ComputeNonRedundantE}

Figure 5: Computation of E-table without redundancy




and inserted 29 syntax errors by hand. On this test, simply parsing a line of source required 0.007 seconds
and the average repair took 0.08 seconds. Repairs are much faster in this case because the computed F table
entries are retained, and so subsequent repairs may not require addition E table computation. Also, in this
test there were no clustered errors, so validation was more successful. On the Ripley/Druseikis programs,
the average repair involved 6.47 validation attempts. On the large program, the average repair required only
1.5 validation attempts. Checking for redundant suffixes is currently a bottleneck; this could be improved

by a fancier hashing mechanism. Recoding key algorithms in C would also speed the error repair process.

5 Conclusions

Validation works very well with the least-cost repair algorithm. The quality of error repairs is significantly
improved; in fact, on the Ripley/Druseikis programs the repair/validation system produces repairs better
than any system previously published. The only errors that are not handled satisfactorily are major distur-
bances such as declarations in the wrong order (type before const) or comments with improper delimiters.
(It is generally acknowledged that these kinds of errors are beyond the capabilities of any conventional repair
algorithm, though they can be handled by adding “error productions” or by modifying the scanner)

The speed of the repair algorithm is quite good. We can reasonably expect to repair an error in about
the amount of time required to scan and parse ten error-free lines. No large E-table need be stored. The
incremental computation for a single repair will create the equivalent of just a few rows of the original
E-table. The implementer can then trade off time for space by saving the table for possible use in future

repairs, or discarding it.

References

[1] C. N. Fischer and R. J. LeBlanc. Crafting a Compiler. Benjamin-Cummings, Menlo Park, 1988

(2] C.N. Fischer, D. R. Milton, and J. Mauney. A locally least-cost LL(1) error-corrector. Technical Report
Tech. Report 371, University of Wisconsin-Madison, Aug. 1979.

[3] C. N. Fischer, D. R. Milton, and S. B. Quiring. Efficient LL(1) error correction and recovery using only
insertions. Acta Informatica, 13(2):141-154, 1980.

[4] S. L. Graham, C. B. Haley, and W. N. Joy. Practical LR error recovery. SIGPLAN Notices, 14(8):168-175,
1979.

[5] J. Mauney. Least-Cost Error Repair Using Extended Right Context. PhD thesis, University of Wisconsin-
Madison, 1983.

[6] J. Mauney and C. N. Fischer. A forward move algorithm for LL and LR parsets. SIGPLAN Notices,
17(6):79-87, June 1982.



