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Abstract

Given a finite set of points in a plane, a triangulation is a maximal set of non-
intersecting line segments connecting the points. The weight of a triangulation is the
sum of the Euclidean lengths of its line segments. (viven a set of points in a plane,
the minimum weight triangulation problem is to find a triangulation whose weight is
minimum. No polynomial time algorithm is known to solve this problem, and it is also
unknown whether the problem is NP-hard, The current best polynomial time approxi-
mation algorithm produces a triangulation that can be O(log n) times the weight of the
optimal triangulation. We propose an algorithm that triangulates a set P, of n points
in a plane in O(n®) time and that never does worse than the greedy triangulation. The.
algorithm produces an optimal triangulation if the points in P are the vertices of a
convex polygon. The algorithm has the flavor of a heuristic proposed by Lingas and
an analysis similar to his can be performed for our algorithm also, but experimental
results indicate that our algorithm performs much better than the heuristic of Lingas.
The results of experiments comparing the optimal triangulation with the performance
of our algorithm, the heuristic of Lingas, and the greedy algorithm lead us to conjec-
ture that the triangulations produced by our algorithm are within O(1) of an optimal
triangulation. We investigate issues of local optimality pertaining to known triangu-
lation algorithms and suggest an interesting new approach to studying triangulation
algorithms. We restate the minimum weight triangulation problem as a graph problem
and show the NP-hardness of a closely related graph problem. Finally, we show that
the constrained problem of computing the minirmum weight. triangulation, given a set
of points in a plane and encugh edges to form a triangulation, is NP-hard. These re-
sults are an advance towards a proof that the minimum weight triangulation problem
is NP-hard.
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1 Introduction

Let P={p; : i = 1,2,...,n} be a set of points in a plane, where each point p; has the
coordinates (z;,1;). To simplify our exposition, we assume that no three points in P are
collinear. Let (p;, pj) where ¢ # j denote the line segment with endpoints p; and pj. Let
E(P) denote the set of line segments with endpoints in P, given by E(P) = {(pi,p;) : i # i}
We often think of the points in P as vertices and the line segments in E(P) as edges of
a graph and define various graph problems related to the minimum weight triangulation
problem. Two line segments cross if they intersect at a point that is not a common endpoint,
A triangulation T(P) is a maximal set of mutually non-crossing line segments. Let CH (P)
denote the set of line segments bounding the convex hull of P, and let |S| denote the

cardinality of a set $. Then two properties of any triangulation T'(P) are the following.
L CH(PYCT(P)C E(P).
2 |T(P) =3(n-1)- |CH(P)|. As 3 < [C(P)| < n, we have 2n — 3 < IT(P)| < 3n—6.

The weight of a line segment (pi,pj), dencted by w(pi, p;), is the Euclidean distance between
p; and p; and is given by w(pi, p;) = ((mghmj)z-l-(yi—yj)z)l/z. The weight of a triangulation
T(P) is given by W(IT(P)) = E(Pi,Pj)ET(P) w(pi,p;). A minimum weight triangulation
of a planar set of points P is a triangulation of P that has minimum weight among all

triangulations. The minimum weight triangulation problem is

Given P = {p; : i = 1,2,...,n}, aset of n points in a plane, find a minimam

welght triangulation of P.

We shall denote an arbitrary minimum weight triangulation of P by MWT(P) and its
weight by W(MWT(P)). '

To illustrate these concepts, Figure 1 shows a minimum weight triangulation and an
arbitrary triangulation of a set of 10 points.

The minimum weight triangulation problem has applications in the numerical approx-
imation of bivariate data. Yoel; [24] suggests an approach called the polyhedron method
to calculate the value of a function J at any arbitrary point p, given the value of J at

irregularly spaced points pi, for i = 1,2, .. n. In this approach, the function surface is
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Figure 1: A minimum weight trian

gulation and an arbitrary triangulation for a set of 10
points.



approximated by a triangulation of the points p;, for { = L,2,...,n. The point p lies within
some face of the triangulation and J(p) can be approximated by the linear interpolation
of the three vertices of that face. A minimum weight triangulation has good numerical
properties and provides a close approximation of the function surface.

The complexity of the minimum weight triangulation problem has been open since 1975
when it was mentioned by Shamos and Hoey [18]. Since then, several algorithms have heen
proposed to solve this problem [12,16,18]. Nonre of these is known to produce even a constant
approximation of a minimum weight triangulation. On the other hand, though Lloyd [13]
and Lingas [11] have proved the NP-completeness of related problems, efforts to show the
minimum weight triangulation problem NP-hard have failed. In this paper we address
this problem from two directions. We propose an algorithm that produces triangulations
that are better approximations of a minimum weight triangulation than those produced by
previous algorithms and also prove new NP-hardness results for two generalizations of the
mimimum weight triangulation problem.

We present an algorithm, called the greedy spanning tree triangulation algorithm (in
brief, G-ST-T) that triangulates a set of n points in O(n®) time. G-ST-T has the flavor
of a heuristic by Lingas [12], which we shall eall the minimum spanning tree triangulation
algorithm (briefly, MST-T). Both G-ST-T and MST-T follow a two step paradigm. In the
first step, P is viewed as the vertices of a graph and E(P) as its edges. Each algorithm
choses a minimal subset E° (P) of pairwise non-crossing edges that span P. The choice of
this set is crucial, and G-ST-T and MST-T differ in this choice. In the second step, an
optimal triangulation containing #*( P} is obtained by using a dynamic programming algo-
rithm that is an extension of an algorithm due to Gilbert (5] that optimally triangulates the
interior of a simple polygon. If every point of P is in the convex hull, then both algorithms
optimally triangulate P. MST.T never produces a triangulation that has weight greater
than that of the Delaunay triangulation, while G-ST-T never produces a triangulation that
has weight greater than that of the greedy triangulation. This implies that the average case
performance analysis of greedy algorithm due to Lingas [11] also applies to our algorithm.
Experiments indicate that G-ST-T rarely produces a non-optimal triangulation and pro-

duces an optimal triangulation far more frequently than the greedy algorithm. Even when



G-ST-T fails to produce an optimal triangulation, its closeness to optimality is remarkable
and certainly much better than any current algorithim.

We advance the notion of the local optimality of a triangulation and determine the
local optimality of the known triangulation algorithms. Based on this notion, we suggest
an approach that may improve a non-optimal triangulation to be an optimal one.

We also present a formulation of the minimum weight triangulation problem as a graph
problem. This leads to a variety of graph theoretic problems whose sohition may have
a bearing on the status of the minimum welght triangﬁlation problem. We prove the
NP-hardness of one such problem. Our other NP-hardness result 1s motivated by the NP-
completeness result of Lloyd [13]. We show that given P, and E*(P), a subset of E(P)
that contains at least one.triangula,tion of P, the problem of finding a minimum weight
triangulation of P that is a subset of E?*(P) is NP-hard.

The paper is organized as follows. In Section 2, we survey previous work related to
the minimum weight triangulation problem. In Section 3, we discuss a dynamic program-
ming algorithm that optimally triangulates the interior of a convex polygon in O(n®) time.
We present an extension of this algorithm that optimaily triangulates more general planar
regions called “cells”. In Section 4, we present Lingas’ algorithm {MST-T) and our new
algorithm (G-ST-T). Both algorithms run in O(n®) time. Though neither always produces
an optimal triangulation, G-ST-T possesses properties that ensure that non-optimal trian-
gulations are extremely rare. This is supported by experiments that compare the minimum
weight triangulation with the performance of G-5T-T, MST-T, and the greedy triangula-
tion. These we present in Section 5. In Section 6, we mvestigate issues of local optimality
related to the known triangulation algorithms. In Section 7, we present a graph theoretic
formulation of the minimum weight triangulation problem and prove two new NP-hardness
results. The final section of the paper, Section 8, contains some open problems and conjec-

tures that arise from this work.

2 Previous approaches

Shamos and Hoey [18] first mention the minimum weight triangulation problem. They

present a divide and conquer algorithm to construct a Voronoi diagram of n points in a plane



m O(nlog n) time. This implies that the Delaunay triangulation, which is the planar dual of
the Voronoi diagram, can be constructed in O(nlogn) time. A greedy triangulation is one
that is produced by the greedy algorithm. The greedy algorithm always chooses the smallest
edge not yet chosen that does not cross any previously chosen edge. Goldman [6] presents
the most efficient known algorithm for producing a greedy triangulation; her algorithm
runs in O(n?logn) time and O(n) space. Shamos and Hoey [18] state that both the greedy
and the Delaunay triangulations are optimal and hence the Delaunay algorithm is a more
efficient way of computing a minimum weight triangulation than the greedy algorithm.
Lioyd [13] provides counterexamples to show that both the Delaunay triangulation and the
greedy triangulation are not always optimal. In fact, his counterexamples show that neither
triangulation is optimal even for a convex set of points.

The complexity of the minimum weight triangulation is one of only four problems that
remains open from Garey and Johnson’s [4] original list of twelve open problems. In fact,
there is no known polynomial time algorithm that produces a constant approximation of
the minimum weight triangulation, Attempts to show the minimum weight triangulation
problem NP-hard have resulted in two related NP-hardness resnlts. In the earliest result,
Lloyd [13] shows that given a set P of points in a plane and a subset F* of E(P), the
problem of determining whether E*(P} contains even one triangulation is NP-complete.
In a later result, Lingas [10] shows that the problem of determining the minimum weight
geometric triangulation of multi-connected polygons is N P-complete.

The greedy and the Delaunay triangulations have been studied closely as approximations
of minimum weight triangulation. That the greedy algorithm and the Delaunay algorithm
do not produce an optimal triangulation is shown by the examples in Figures 2 and 3
respectively. Both examples are due to Lloyd [13] and consist of a set of vertices of a
convex polygon. In the example of Figure 2 the greedy algorithm choses the Iine segments
BD and AD for the triangulation, while a better triangulation is given by line segments AC
and EC. In the example of Figure 3 the dashed lines constitute the Voronoj diagram and
the solid lines constitute the Delaunay triangulation. The Delaunay triangulation contains
line segment B while an optimal triangulation is obtained by chosing line segment. AC,

Let GT(P), DT(P), and MWT(P) denote a greedy triangulation, the Delaunay trian-
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A (0,0) E (160,0)

Figure 2: A counterexample to optimality of the greedy triangulation.

€(15,20)

B(0,0)

D{60,0)

A(15,-20)

Figure 3: A counterexample to optimality of the Delaunay triangulation,



gulation, and a minimum weight triangulation of P, respectively. A measure of how close
a triangulation T(P) is to a minimum weight triangulation is given by the ratio

W(T(P
RT(P)) = W(I\/[(W(T()})?)) '

Since neither the greedy triangulation nor the Delaunay triangulation is optimal, the worst-
case ratios R(GT(P)) and R(DT(P)) give an indication of how well these triangulations
approximate MWT(P). Levcopoulos [9] provides a lower bound for the greedy triangulation

by showing that, for each n, there exists an n-point set P, with the property that
R(GT(P)) = 0 (n}).

This result implies that sets of points can be constructed for which the greedy triangulation
is arbitrarily bad as compared to the minimum weight triangulation. Kirkpatrick [7] shows
that for any triangulation T(P), R(T(P)) = O(n). Hence for the greedy triangulation
there is a gap between the known upper bound of O(n) and the lower bound of Q(nlf‘?)
as demonstrated by Levcopoulos. Kirkpatrick [7] construets, for each n, an n-point set P,
with the property that

R(DT(P)) = 6(n).

This indicates that for certain sets of points, the Delaunay triangulation is as poor an
approximation as possible.

Plaisted and Hong [16] present a triangulation algorithm and show that the weight of the
triangulation that their algorithm produces is within O(log n) of the weight of the optimal
triangulation. Their implementation of the heuristic has a time complexity of O(n®). Smith
[19] improves on this by implementing the algorithm of Plaisted and Hong in O(n?log n)
time. The algorithm of Plaisted and Hong is in two steps. The first step takes as input a
set 7 and produces a set of line segments that partitions the convex hull of P into convex
polygons. The weight of the partition is the sum of the lengths of the convex hull and the
interior line segments. Plaisted and Hong show that the weight of this partition is within
a constant factor of the weight of an arbitrary partition of P into convex polygons. The
second step triangulates each of the convex polygons produced in the first step, using the

ring heuristic of Supowit (20]. The ring heuristic applied to a convex polygon produces a
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sequence of convex polygons Fo, Pr... Py, where Py is the input convex polygon, P is a
triangle, and P,y ; is obtained from F; by connecting alternate vertices of B;. The union
of these polygons is the triangulation that the ring heuristic produces. Since & — O(log n)
and since the weight of polygon Fiy; is no greater than the weight of the polygon F;, the
weight of the triangulation of an » point convex polygon produced by the ring heuristic is
O(log n) times the perimeter of the polygon. This leads to the result that if PHT(P) is
the triangulation produced by their algorithm, then R(PHT(P)) = O(logn). Plaisted and
Hong conjecture that in fact R(PHT(P)) = O(1). Olariu, Toida and Zubair [15] point out
that this conjecture is false if the second step is performed using the ring heuristic. But
this conjecture remains intact if the second step is performed using dynamic programming
to optimally triangulate each convex polygon, though the time complexity of this step and
hence of the whole algorithm is then O(n?).

Lingas [12] presents an algorithm (MST-T) for the minimum weight triangulation prob-
lem that takes O(n®) time. The heuristic generates a polygon whose vertices are all the
points in the input set. This polygon is the union of the convex hull and the minimum
weight forest that connects all the interjor points to the convex hull. The polygon is then
triangulated optimally by dynamic programming. Lingas derives an upper bound that

shows that
n x jump(P))
W(MWT(P))

where MST-T(P) is the triangulation produced by his heuristic for a set of points P, and

R(MST-T(P)) = 0 (log n -+

Jump(P) is the length of the longest line segment in the minimum weight spanning forest.
Since n x jump(P)/W(MWT(P)} can be as bad as ((n), this does not provide a non-trivial
worst case bound on the performance of this heuristic.

Using certain separator theorems, Smith [19] gives the first subexponential time algo-

rithm to compute a minimum weight triangulation.

3 A Special Case

A special case of the triangulation problem arises when the points are the vertices of a convex
polygon. A dynamic programming algorithm due to Gilbert [5] gives O(n3) time solution to

the problem. The algorithin can be described as follows. Let po,p1, - pn1i be the n vertices



of a convex polygon in counterclockwise order. Let Clp;, p;], where 0 i<j<npn- 1,
denote the cost of the interior edges of the minimum weight triangulation of the convex
polygon (p;, Pit1; .-+, pj}. The problem we wish to solve is that of determining C[p,, Pr+1]-

The following recurrence leads to a dynamic Programming solution
Clpi,pj] = oo {w(i, k) + w(k, j) + Clpi px] + Clpx, ;13-

Computing Clpi, p;] can be thought of as filling in the entries of an O(n?) size table. Each
computation of Clp;, p;] takes O(n) time and hence the entire algorithm runs in O(n>) time.

The problem of optimally triangulating a convex polygon in time less than O(n®) time
1s still open. Yao [22,23] presents a technique by which the time complexity of certain
dynamic programming algorithms is reduced from O(n?) to O(n?*). This technique requires
the monotonicity of certain bivariate functions. Define the bivariate function K (7,7} to

equal any value of £ ihat minimizes
w(i, k) + w(k, 5) + Clp;, pi] + Clok, pj],

under the restriction 7 < k& < j. The interpretation of i (,7) = k is that the line
segments (p;, p;) and (Pr,p;) occur in some optimal triangulation of the convex poly-
gon (p,;,p,-+1,...,pj). If K(i,7) is monotonic in tand j, ie., if K(i,j) < K(i,§ + 1)<
K(i+1,7+ 1}, then filling in the O(n?) entries of the cost table can be accomplished in
O(n?) time instead of O(n®) time. But counterexamples can easily be constructed to show
that K (%,7) is not monotonic in i and j for the minimum weight triangulation of convex

polygons, and hence Yao’s technique does not directly apply to this algorithm.

lem. This indicates that a more general problem, which does not involve any geometry,
can also be solved in O(n®) time. To state the problem we need some definitions. Let
P = {pg,pl,...,pn_l} and let E(P) = {(pi,pj) “Popi € Vi < 5} Two elements,
(pi,pj) € E(P) and (px,p1) € E(P) intersect if i < f « I<lok<i<]c J. To
each element in (i, p;) € E(P) we associate a positive real cost e((p:,p7)). The cost of a
subset E*(P) is e(E*(P)) = Z(p‘.,pj)eEs(P) ¢(pi, pj). The problem can then be stated as

Given P and E(P), find a maximal subset of (P} of minimum cost that consists

of pairwise non-intersecting elements.
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b :

Figure 4: A 12 point cell.

Though we only presented the special case of g convex polygon, Gilbert’s dynamic
Programming algorithm [5] optimally triangulates the interior of a simple polygon. We
extend this algorithm to triangulate a more general figure that we call a cell A cell is
any interior face of a straight line planar embedding of a graph. Any cell can be uniquely
represented by a sequence of vertices pg, py, . .. 1Pn~1 encountered if the boundary of the
cell is traversed m, say, a counterclockwise order. Note that the vertices in the sequernce
are not, in general, distinct and that there may be edges that are traversed twice. A cell
with the points labeled is shown in Figure 4. Tt can be represented completely by the
sequence 1,2,3,2,4,5,6,7, 8,9,10,11, 10, 9,12,9,8. For the purposes of the algorithm every
occurrence of the same point in the sequence is treated as being different. The dynamic
programming algorithm that optimally triangulates the interior of a cell is similar to the
one that optimally triangulates the interior of a convex polygon except that now the only
line segments that can be considered are those that do not cross any line segments of the
cell. This can be accomplished by assigning a weight of 400 to any line segment that crosses

a line segment of the cell. Hence, we have the proposition
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lation (OC T).

4 An improved triangulation algorithm

We propose an algorithm ( G-ST-T) that triangulates a set P — {p1,p2, ..., Prn} of points in
a plane in O(n®) time. G-ST_T has two distinct phases. In the first phase a spanning tree
of the graph (P, GT(P)) is chosen. How the Spanuning tree is chogen js explained later. The

obtained in the frst phase is optimally triangulated using the QCT algorithm. G-ST-T i
similar in structure to the algorithm (MST-T) Proposed by Lingas [12]. In fact, a similar
analysis applies to G-ST-T also, and we include MST-T in our experimental analysis,

To introduce the two phase paradigm that ig common to both MST-T and G-ST-T, we
first present the minimurp spanning tree triangulation algorithm.
Minimum spanning tree triangulation algorithm (MST-T)
Input : P = {p1,ps,... Do)
Output : A triangulation MST-T(P).

1. Compute the Delaunay triangulation DT(P).

2. To each line segment (p;, p;) € B(P) assign a cost ag follows.

0 if (pi,pj) € CH(P)
w(p;, Pj) otherwise

((pi, p;)) = {

Utilizing DT(P), compute 3 minimum spanning tree M § T(P) of (P, E(P)) using the

costz defined above,

Is in Af ST(P). Steps 1 and 2 can each be performed ip O(nlogn} time while step 3 can
be performed in O(n®) time. An example of a cel] Produced at the end of Step 2 in ihe

12



MST-T algorithm is shown in Figure 5. The dark line segments constitute the minimum
spanning tree chosen in step 2.

Lingas provides an upper bound on the performance of hig algorithm as compared to
the minimum weight triangulation. Let Af ST(P) be a minimum spanning tree of the graph
(P, E(P)). Let I(P) = MST(P) — CH(P) be the interior line segments of the minimum

1. ¥ crosses I, and

2. at least one of the two pieces of I between the crossing point and the endpoint of [

is not crossed by any other line segments in I{P).

The bound on the performance of MST-T follows from the following broposition that
Lingas[12] proves.

Proposition 4.1 (Lingas[lQ]) Let T(P) be a triangulation of P. There eztsts a triangula-
tion of the interior of the cell CH(P) y MST(P) of weight at most

D 6x [A(T(P), e)] x w(e) + (31og n + ) X W(T(P)) + (3logn + 2) x W(I(P)).
e€I(P)

algorithm
W(MST-T(P)) _ (n X jump(P) +lo n)
WMWT(P)) ~ " \WMmwi(py) Tlosn) -

Lingas gives an example for which nxjump(P)/W(MWT(P)) = (n) and yet the minimum
weight triangulation is exactly the same as the triangulation produced by the MST-T
algorithm. This shows that the bound is quite loose.

"The following propositions follow immediately from the MST-T algorithm.

Proposition 4.2 If P contains only vertices of 4 conveg polygon, then MST-T(P) is op-

timal,

Proposition 4.3 gy any set of points P, MST-T(P) is never worse than the Delaunay
triangulation of P, te., W(MST-T(P)) < W(DT(P)).
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(1,4.5)

A
()
OB
00 D (21,0)
LJ
c
(1,-4.5)

IAEl = ICE| = 10.06, [DE| = 10, IAC| = 9, IBE| = 11.

Figure 6: Counterexample to the MST-T algorithm.,

the optimal triangulation can be obtained by choosing edges AC, AE, CF and BE along
with the convex hul) edges.

The MST-T algorithm does not produce a non-optimal triangulation for any of the
counterexamples in the literature [7,9,13,14] that have been used to show either the greedy

briangulation or the Delaunay triangulation to be nor-optimal. This can be attributed

So far we have not, been able to say anything about the asymptotic behavior of the ratio

R(MST-T(P)). We conjecture that R(MST-T(P)) = O(1). This conjecture is motivated

by the observation that the effects of 5 “bad” minimum Spanning tree edge are loca].
There are many ways of choosing a spanning tree in the first phase of the paradigm.

The spanning tree chosen in the MST-T algorithm is one such choice. We now bresent an
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triangulations that are almost always optimal. The time complexity of this algorithm
remaing O(n3). We call this algorithm the greedy spanning tree triangulation algorithm.
Greedy spanning tree triangulation algorithm, (G-ST-T).
Input: p =~ {pi,pe,. .. 2P }.
Output : A triangulation G~ST—T(P).

1. Compute a greedy triangulation GT(P) of P and the convex hyij CH(P).

2. Compute a minimnm spanning tree GMST(P) of (P, GT(P)) using the following

assignment of costs to line segments

oo if (pi, p;) ¢ GT(P)
«(pipi)) = { 0 it (pi,p;) € CH(P)
w((p;, Pi)) otherwise

L. Preparata and Shamos [1 7] present ap algorithm that produces a greedy triangulation.
Their algorithm takes O(n?log n) time and O(n?) space. Goldman [6] presents a space

efficient greedy triangulation algorithm that runs i O(n?log n) time and O(n) space.

contains O(n) line Segments. This implies that the second step can be accomplished

in O(nlog n) time.
3. Asin the MST-T algorithm, the third step is performed in O(n®) time,

As before, the time complexity of the third step dominates ang the time complexity of the
algorithm is O(n?) time,

Like M-ST-T, G-ST.T produces optimal triangulations for all the counterexamples ip
the literature [?,9,13,14]. The following two Propositions follow quite directly from the
G-ST-T algorithm,



Proposition 4.4 If P contains only vertices of a conver polygon, then G-ST-T(P) is op-

fimal

Proposition 4.5 For any set of points P, G-ST-T(P) is never worse than the greedy
triangulation of P, i.e., W(G-ST-T(P)) < W(GT(P)).

Hence all upper bounds for the greedy triangulation also hold for triangulation produced by
the G-ST-T algorithm. In particular all results about the asymptotic behavior of R(GT(P))
(8] are true for R(G-ST-T(P)). While minimal counterexamples for the greedy and the
Delaunay triangulation require only five and four points respectively, any counterexample
to G-ST-T must contain at least six points. This follows from the following theorem. In
the proof we use the notation OABCD to denote a quadrilateral with points A, B, C, and

D in clockwise order.

Theorem 4.1 There exists no five point set P for which G-ST-T(P) is not optimal, i.e.,
Jor which R(G-ST-T(P)) # 1.

Proof: Let P be a set of five points. The configurations possible with five points are
1. C'H(P) contains three points.

2. CH(P) contains four points.

We need not consider the case where all five points lie on the convex hull because of
Proposition 4.4. The two cases are shown in Figure 7.

First consider Case 1. Line segment DE is in any triangulation T(P), because no
line segment crosses DE. Of the quadrilaterals that line segment DFE forms with the line
segments of the triangle ABC, only one can be convex. {In Figure 7(a) the 6 quadrilaterals
formed are OADEC, DAEDC, OCEDB, NCDEB, OBDEA, and OBEDA). Without
loss of generality, let the convex quadrilateral be OADEC. The diagonals AF and DC
of DADEC cross, and hence only one of them can be in any triangulation. None of the
remaining line segments mutually cross, and hence they are in every triangulation. Since
both the greedy triangulation and the minimum welght triangulation contain the smaller
of line segments AE and DC we have thai GT(P) = MWT(P), from which it follows that
G-ST-T(P) = MWT(P).
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D

Case1:3 points on the convex huil, Case2: 4 points on the convex huil,

Figure 7: The two possible configurations with 5 points.

greedy spanning tree triangulation is ne greater than the weight of the minimim weight

triangulation. O
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B:(217,256). [BG = 48.38, |BD| = 49,49,
D:(210,207). |BE]=48.30, BF| = 47.80,
E:(195,213). |GD|=51.74,
F:(179,227). |GE|=36.80, |FD| = 35.89.
G: (171,241).

Figure 8: Counterexample to the G-ST-T algorithm.

The G-ST-T algorithm produces an optimal triangulation if and only if the line segments
of the minimum spanning tree of the greedy triangulation are always in some particular
minimum weight triangulation. That this is not always the case can be seen from the
seven point counterexample in Figure 8. Here, GT(P) contains line segments BG, BD,
GF, FE, ED, GE and BE (among others). The minimum spanning tree chosen from
the line segmenis of GT(P) contains GF, FE, ED and BE (as well as two convex hull
line segments). The triangulation that the G-ST-T algorithm computes is the same as
the greedy triangulation. A slight improvement in the weight of the triangulation can be
obtained by choosing line segments FI) and BF instead of GE and BE. Examples for
which both the MST-T and the G-5T-T algorithms produce non-optimal triangulations
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an optimal triangulation for the example in Figure 6, while MST.T Produces an optimal-
triangulation for the example in Figyre 8, thus showing that G-ST-T and MST-T are not
comparable as the G-ST-T and the greedy algorithm are.

greedy_jump(P) = max{w(p;, p;) : (pi;p;) € GMST(P) - CH(P)}.
Then we have the following theorem.
Theorem 4.2 For any set of points P,

R(G-ST-T(P)) = o (n x greedy_jump(P)

5  Experimenta] results.

The greedy, MSIT-T, and G-ST-T algorithms were tested with sets of sizes 15, 20 and 25

Processes the line segments in increasing order by Iength. Pruning the search tree by
comparison to the smallest triangulation found so far yields a search capable of finding an

optimal triangulation for sets of up to 25 points.) Three kinds of Comparisons were made.
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Number of failures
Set Size Greedy| MST-T G-ST-T
15 44 5 1
20 61 i1 0
25 69 12 1
Total 174 28 2
Table 1

Average triangulation weight

Set Size || Optimal Greedy MST-T G-ST-T
15 298697.76 | 300873.34 299236.84 | 208697 76
20 349238.62 | 373288 .61 350176.36 | 349238 62
25 437233.88 | 479283.36 439846.97 | 43723388 [

Table 1 lists, for each set size, the number of times each algorithm fails to produce an
optimal triangulation for that set size. It should be noted that the G-ST-T algorithm fajled
to produce the optimal triangulation only twice in 1200 trials as compared to the greedy
algorithm which failed 174 times. The MST-T algorithm also doés quite well as compared
to the greedy algorithm, failing 28 times in 1200 trials. These results are evidence that
MST-T and G-ST-T rarely produce non-optimal triangulations,

Table 2 is a comparison of the average size of the triangulations produced by each
algorithm for each set size. G-ST-T faiis only once each for set size 15 and set size 25,
and never for set size 20. Even when the algorithm fails, the weights of the triangulations
produced by G-ST-T algorithm are very close to the minimum weight triangulation. Thege
results are evidence that in the average case G-ST-T and MST-T produce triangulations
that are within a small constant of approximation of the minimum weight triangulation.

Table 3 compares the worst case triangulation produced by each algorithm. For each
triangulation T(P) and for each set size, Table 3 shows the worst case ratio

W(T(P)) ~ W(MWT(P))
W(MWT(P))

= R(T(P)) — 1.
In view of these experimental results, we speculate that both MST-T and G-ST-T algo-
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than the other jg indicated. To Sinmarize, in 10g trials, the G-ST.T algorithm produced
a betier triangulation than the MST-T algorithm 2gg times, while the MST-T algorithm
produced g better triangulation than the G-ST.T algorithm only once. This is further
evidence of the Superiority of G-ST-T as 4 heuristic tq approximate 5 minimum weight

triangulation.

Throughout the paper we have beep calling » minimum weight triangulation “optimal”.

We now elaborate op the notion of optimality. Given a set of pointg p and g triangulation
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An example showing that the Delaunay triangulation ig not always locally optimal can
be found in Figure 3. In this eXample, 1BCDA is o convex quadrilatera] i the triangulation
that is not optimally triangulated.

An example showing that the MST.T algorithm does not always broduce 3 locally

optimal triangulation tan be found jp Figure 6. [p this eXample, DDAEC iq & convex



F (6.3227968,13)

€ (0.0001, -0.25)

Greedy triangulation

Q F (6.3227966,13)

IAC| = 0.25

IDE| = 2.1213203
[EF} = 7.2268714
IAD| = 8.1304103
ICD| = 8.3852728
IDF| = 9.284188
|AE| = 9.5

ICE| =9 75

|AB| = 10

ICBI = 10.003025
IBF[ = 13.510064
IBE| =13.703114
IDB! = 14.008926
IAF| = 14.456063
ICF| = 14.68124¢

C (0.0001, -0.25)

G-ST-T

Figure 9: Ap example to show that the G-ST-

T algorithm does not always produce locally
optimal triangulations,
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triangulation. In the output of G-ST-T AB is the diagonal of quadrilateral AEBC and
diagonal AR is longer than diagonal EC, 0O

easy to “repair® a G-ST-T triangulation to make it locally optimal by switching short
diagonals for long ones in convex quadrilaterals. Such 1 repair may yield a triangulation
that is not only locally optimal but Is, in fact, globally optimal. In the few examples
of non-optimal G-§T_T triangulations that we know about (see Figure 8 and Section 5),
there is always some convex k-gon, where 4 < k < 6, that is not optimaily triangulated;
replacing the triangulation of this k-gon with an optimal triangulation yields a globally
optimal triangulation for all these examples. We specnlate that it may be algorithmicaﬁy
mexpensive (i.e., polynomial time) to repair a G-ST.T triangulation to obtain a MWT, in

all average-case sense if not in 5 worst-case sense.

T NP-hardness results

In keeping with the notation of Garey and Johnson [4], the minimum weight, triangulation

problem can be formulated as a decision problem as follows.

MINIMUM WEIGHT TRIANGULATION (MwWT)
INSTANCE. A et P of points in a plane, a positive rational number &
QUESTION: Is there a triangulation of P whose weight is no more than &7

on [P| vertices. The lengths of the line segments in E(P) can be thought of as weights
associated with the edges of G. This graph G = (P, E(P)) made from the points and

line segments has an obvious straight line embedding in the plane. Lloyd [13] proves the
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Figure 10: A complete straight line graph and its crossing graph,

following problem related io MWT to be NP-complete. In keeping with Lloyd’s notation
we denote E(P) by E.

TRIANGULATION EXISTENCE (TRI)
INSTANCE: A set P of points in a plane, a set of line segments £/ C E.
QUESTION: Does £’ contain a triangulation of P?

This problem is shown to be NP-complete by a reduction from SAT.

In this section, we prove two other problems related to MW'T ta be.NP-complete: Flhpa - -y

first problem is gotten by first deriving a new graph from the straight line embedding of (3,
Let

C = {leie5) e E(P) x E(P) : ¢; and ej cross}

be the set of crossings in the embedding. Then G¢ = (E(P),C) is the crossing graph of (3.
Figure 10 illustrates a graph  and its crossing graph G°, The minimum weight trian-

gulation problem can be posed in terms of the crossing graph G¢ as follows:

Minimum Weight Triangulation, Optimization Version: Given a cross-
ing graph G°, where each vertex (line segment) is assigned a weight equal to
its Euclidean length, find a maximal independent vertex set of minimum total

weight.

By allowing the vertex weights to be arbitrary rational numbers and by restating the

problem as a decision problem, we obtain the following:
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RESTRICTED MINIMUM MAXIMAL INDEPENDENT SET (RMMI)
INSTANCE. A crossing graph G° = (E,C), positive rational weight w(e) for each ¢ € £ :
and a positive rational number k.

QUESTION: Is there a maximal independent set 7 in G¢ such that 37, w(e) < k.

This close relative of MWT is easily shown to be NP-complete. The proof of the following

theorem is essentially identical to a result of Anagnostou [2].

Theorem 7.1 RMMI is NP-complete.

Proof: Since the tota) weight of a set of vertices, each of which hag a rational weight,
is easily calculated in polynomial time, RMMT is clearly in NP. We show that RMMT is
NP-hard by exhibiting a reduection of TRI to RMMI. Let P and g coustitute an instance
of TRI. Let ¢ = (E,C) be the crossing graph associated with the set P. By definition,
E'CE. Assign weights to the vertices of £ as follows

w(e) = { 0 .ifeEE"; ’

1 feeE~ .
Let the instance of RMMI consist of G, w, and £ = (. There is a triangulation of P
.contained in E' if and only if G contains a maximal independent set of size 0. Hence, TRI

reduces to RMMI in polynomial time. We conclude that RMMI is N P-complete, a

If P is the set of vertices of a convex polygon, then the complete straight edge graph in-
duced by these vertices G = (P, E(#)) can be embedded in a circle with O(n?) chords while
maintaining all crossings. The crossing graph of G is, therefore, a circle graph with O(n?)
vertices. Buckingham (3] presents an algorithm to determine the maximal independent set
with the maximum weight in a weighted circle graph. The algorithm assumes the following
labeling of the endpoints of the chords. The labeling begins at an arbitrary point on the
circle and proceeds in the clockwise direction. The first endpoint encountered is labeled
1 and its paired endpoint is labeled 1. If ; chords are labeled, then the next endpoint
encountered ig labeled (i+1) and its paired endpoint Iabeled {i+1). This labeling can be

seen in Figure 11, Corresponding to such a labeling of the endpoints of the chords we can
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5

Figure 11: The labeling of the endpoints of the chords of a circle,

say that certain chords are contained in certain other chords. A chord (4,¢') is contained
in a chord (4,7") if, when traversing the circle in clockwise direction the order in which the
four endpoints occur is (4,4,7,4'). The algorithm presented in [Buc80] takes O(c+n) time,
where 7 is the number of vertices in the circle graph and ¢ is the number of instances of a
chord being strictly contained within another chord. This algorithm can be modified easily
to obtain an algorithm that determines the maximal independent set with the minimum
weight in O(c + n) time. It is clear that G has O(n?) chords and that ¢ — O(n®). Hence,
this can be thought of as an alternate O(n?) time algorithm that optimally triangulates a
set of points which are the vertices of a convex polygon. While this is not an improvement
over the existing best time complexity for this problem, this may provide insights into ways

to improve on this time complexity.

tivated by Lloyd’s (13] N P-completeness resuit for TRI, we propose the following general-
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ization of MW,

GENERALIZED MINIMUM WEIGHT TRIANGULATION (GMWT)
INSTANCE: A set P of points in a plane, a set of line segments £ C #, such that E'
contains a triangulation of P, a positive rational number £.

QUESTION: Is there a triangulation in £/ whose weight is no more than k7

Theorem 7.2 GMWT is NP-hard.

Proof: GMWT is shown to be NP-hard by a reduction from SAT. This reduction is a
modification of the reduction that Lloyd [13] uses to show TRI NP-complete and hence
after an overview we only mention the modifications to Lloyds proof.

Assume that we have clauses C1,Cy, ..., Cy each of which is a disjunction of literals
drawn from the variables £1,%2,...,%n. 'The building block of the construction is a switch
Sij corresponding to each clanse, literal pair. The instance of GMWT corresponding to
the instance of SAT is a rectangular array of switches called a network. The switches are
labeled as points with Cartesian coordinates with the indices of the variables on the x-axis

and the indices of the clauses on the y-axis. The switches are of three types:;
® switch Si; is positive if z; € Ci
® switch Sj; is negativeif 77 ¢ Cy; and
® switch S is neutral if o, ¢ C; and 77 ¢ C;.

In any triangulation of this network we can think of streams of current flowing in two
directions. A vertical stream of current flowing upwards represents the truth value of
variable while a horizontal stream of current flowing to the right represents the evaluation
of the truth value of a clause. For each variable z;, the same truth valye flows through
each switch Sj;, 1 < j < k. The construction forces the horizontal current flowing into each
switch Sy; to be false while the horizontal current flowing out of each switch Sn; can be true
or false. Lloyd’s construction forces the truth value flowing out of each switch Snj to be true;
our construction differs from his in this regard. A smaller triangulation corresponds to a

horizontal current that changes truth value to true while a larger triangulation corresponds
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to a truth value that remains false, Hence, the smallest triangulation corresponds to every

clause being satisfied.

1. Each of the squares in the corners of a switch is shrunk, keeping the coordinates of
points Fy, 9, Bz and E4 the same. The octagon at the center of the switch is shrunk
into a geometrically similar octagon that has the same center as the original octagon.
The shrinking continues until each of the switches seems to contain 5 points, 4 at each
of the corners of a square and 1 at the center. It can be verified that this shrinking

preserves the pairwise intersection of line segments.

2. The coordinates of the special points V"7 are changed from (100 .7, 100. (7= 1)+ 50)
to (z,100 - (5 — 1)+50). 2> 100 n is chosen such that point 177 1s “far enough”
from points 1 and gni - The notion of “far enough” is made precise later in the

proof. Let the length of edge (V™ "7} and edge (V”j,H”j) be d.

4. For each switch §% add the following edges to E
XY O, DY 1, 1 @i iy 1o
™, HY),@V, vy 1< <k
VARG N iy
Call the new set of edges F'.

Io complete the instance of GMWT we et

M:(1600-\/§+100)-n-k+350-k+100-n+2-d-k.
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The next step is to show that an instance of SAT is satisfiable if and only if an instance of
GMWT constructed in the above manner contains a triangulation whose weight is no more
than M,

If the given instance of SAT is satisfiable, then by Lioyd’s proof it follows that there
exists a triangulation T of V in E. A triangulation 7" of ¥ implies that the east-connected
point in switch % is either ct 7 or D?j . A triangulation 77 of V' can be constructed from

T as follows:

T'=T U {(X™ ), (X, g, (H™, "1 < j < k)
u {(an,C’?j)ll <j<kand Cf"jis exposed }
U {(xm, D;:‘j)[l <7<k and DMis exposed)

U (™, vt < < k).

We now compute the weight of 7’ and show that it is no greater than Af.
As Lloyd showed, in any triangulation of the network, a switch S¥ can he triangu-
lated in one of four ways, called A-triangulation, B-triangulation, C-triangulation and D-

triangulation. The ed ges In any triangulation of a switch are of four types. They are
L. corner edges : connect frame vertices to frame vertices in the same corner.
2. diagonal edges : connect frame vertices to frame vertices in the opposite corner.
3. half-diagonal edges : connect frame vertices to terminal vertices.
4. center edges : connect terminals.

The corner edges and the center ed ges have weights approximately equal to 0, while cach
diagonal edge has a weight approximately equal to 100 - +/2 and each half-diagonal edge
has weight approximately equal to 100/+/2. An A-triangulation and a D-triangulation of
a switch contain 26 half-diagonals and 3 diagonals. A B-triangulation or a C-triangulation
contain 24 half diagonals and 2 diagonals. Hence, the weight of an A-triangulation or
a D-triangulation is 1600 . v/2 and the weight of a B-triangulation or a C-triangulation is
1400 -4/9. Hence, the weight of the largest triangulation of a switch is 1600-4/2. The weight

of each inter-switch edge is approximately 100 and since X" can be made arbitrarily close
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is approximately 150. The weight of the convex hullof Vis 2. 5. 100+ 2% -100. The
weight of the set of edges {(V™7 V"UH))[I SJ<k}is(k—-1).100 and the weight of the
edges (V" "7} ang (vm, H"} is d cach. Hence the total weight of the triangulation 77 ig

given by

W) = 1600-\/§-n-k+100.(n_1)-(k—1)+150-k+200-n+
200-k+100-(k-1)+2.4.¢
= (1600-x/§+100).n.k+350-k+100-n+2-d-k.

Since W(7") = M » we have shown that if SAT js satisfiable then there exists g triangulation
T' of V' such that the weight of 77 is no more than M.

To show the only if part, we assume that E' contains a triangulation 77 of V' such
that the weight of 7 jg no more than M. In triangulation T’ if Blnj is exposed then since
there is no edge (ij,ij) tn E', the pentagon (I”j,Blnj,Q”j,H”j, 146 contéining Xxni
1s triangulated by the edges (@™, 1) (ij, an)',(an,Q”j),(X”j, H"3Y and (X, Vi),
The weight of the iterior edges of the triangulation of this bentagon is greater than 5. 4
and the weight of the triangulation of thig switch 1s 3. d 4 1350 . V2. The situation when
A’fj 1s exposed ig exactly the same. Hence, the weight of a triangulation 77 which contains

a switch S™ with A™ or BY exposed is greater than
1 1 p g

1400~\/§-(n-k—1)+100-(n—1)-(k—1)+100-k+200—n+
(k—1)-100+2-d-k+3-d+1350-\/§.

Let N denote the above number. By comparing M with N it can be seen that, if
3-d+1350 V2> 1600. /3. . 4

then N is greater than M. Hence, by choosing V77 «fyp enough” such that 4 satisfies the
above inequality, we ensure that if 7' has size no greater than M, then for al switches
5™ either vertex C s exposed or vertex Dy 7 is exposed. This implies that & contains a
triangulation 7" of |/ and by Lloyd’s proof this implies that the corresponding instance of
SAT is satisfiable. a
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GMWT is the closest problem to MWT that has been shown to be NP-hard. Additional
nsights may allow the above proof to be extended to MWT.

8 Conclusions and Conjectures

We have made progress in two directions towards determining the complexity of the mini-
mum weight triangulation problem. In the first direction, we present two algorithms, one of
which is due to Lingas (MST-T) [12] which experimentally perform much better than previ-
ous algorithms. While MST-T never performs worse than the Delaunay triangulation, our
algorithm (G-ST-T) never performs worse than the greedy triangulation. The bound proved
by Lingas in proposition 4.4 holds for G-ST-T provided greedy_jump(P) = O(Fump(P))
for any set of poinis P. We conjecture that this is true. Experimental results show that
our algorithm rarely produces non-optimal triangulations as compared to the greedy trian-
gulation and the triangulation produced by Lingas’ algorithm. Even when a non-optimal
triangulation is produced by our algorithm, it is very close in weight to the minimum weight
triangulation. Both algorithms also produce a minimum weight triangulation when P only

contains vertices of a convex polygon. These results lead us to the following conjecture

Conjecture 1: The MST-T and G-ST_T algorithms produce triangulations

that are within O(1) of the minimum weight triangulation in the worst case.

Our algorithm also is a specific instance of a general strategy of choosing a small subgraph
from the complete graph of line segments induced by a set of points P and then using
dynamic programmin g to optimally triangulate the interior of the straight line embedding of
the subgraph. This strategy can be applied to Plaisted and Hong’s triangulation algorithm
also, to produce a triangulation which is always within O(log n) of the optimal and pfobably
much better than the triangulation produced by their algorithm.

The OCT algorithm that we use in the G-ST-T algorithm, Pays no attention to the
geometry of the problem and hence solves a more general problem with the same time
complexity. We conjecture that using the geometry will improve the time complexity of
the OCT algorithm and hence also the time complexity of our algorithm. Even for special

cases of a convex polygon such as a semicircular polygon, the best known algorithm that
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optimally triangulates the interior of the polygon, still takes O(n3) time. Hence, it is ap
Open question whether there are some classes of convex polygons for which the dynamic
Programming algorithm can be improved from O(n®) time complexity.

There are many questiong regarding the time complexity of algorithms that produce a
greedy triangulation. Currently the best is an O(n?log n) time and O(n) space algorithm
by Goldman [6]. The greedy triangulation of g convex polygon can be computed in O(n?)
time and the greedy triangulation of a semicircular polygon can be computed in O(n log n)

time [11]. It is unknown whether these time complexities can be further improved. In

Hence, it might be possible to improve the time complexity of this step of our algorithm
further.

In the second direction, we Present two NP-hardness results. These results show two

of the minimum welght triangulation problem. Motivated by our results in both directions
we present two conjectures, which if true will determine the complexity of the minimum

weight triangulation problem completely,

Conjecture 2: The MWT problem is N P-hard.
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