
Complexity Analysis of Propositional Concurrent Programs
Using Domino Tiling

Hsu-Chun Yen

Dept. of Electrical Engineering
National Taiwan University

Taipei, Taiwan 10764, R.O.C.

Abstract

The complexities of the possible rendezvous and
the lockout problems for propositional concurrent pro-
gmms will be investigated an detail. W e develop a
unified strategy, based on domino tiling, to show that
the above two problems with respect to a variety of
propositional concurrent progmms are complete for a
broad spectrum of complexity classes, ranging from
NLOGSPACE, PTIME, NP, PSPACE to EXPTIME.
Our technique is novel in the sense that it demon-
strates how two seemingly unrelated models, namely
propositional concurrent programs and dominoes, can
be linked together in a natural and elegant fashion.

1 Introduction

Imagine that a system consisting of k concurrent
processes, each of which is a finite-state process of size
a t most n, is to be analyzed. Besides the obvious pa-
rameters, namely n and k, some implicit factors might
also have impact on the complexity of the given sys-
tem. Such factors include, for example, the process
structure (cyclic vs. acyclic), the interprocess com-
munication scheme (message passing vs. shared vari-
able), the scheduling scheme, the topological struc-
ture of interprocess communication (linear, treelike,
or ring-like), and the degree of symmetry (which can
be described by the number of types of processes).
In many applications, it is often desirable to know
exactly how the complexity of a problem varies when
one or more of the above parameters change. In other
words, our domain of interest consists of a family of
mutually related problems, rather than a single prob-
lem. Such attempts can be found, for example, in
[11,251.

In this paper, we will utilize a unified approach,

Namhee Pak

Misong Apt. 11-708
Pulgw ang-dong

Seoul 122, Korea

based on domino tiling, to establish a comprehen-
sive analysis of the possible rendezvous and the lock-
out problems for a variety of propositional concurrent
programs. The establishment of a communication be-
tween two programs is referred to as a rendezvous.
The possible rendezvous problem [21,22] (PR, for
short) is that of determining, given a propositional
concurrent program and a rendezvous, whether there
exists a computation realizing the rendezvous. The
lockout problem [13] (LO, for short) is to decide,
given a propositional concurrent program P, a propo-
sitional program T and a subset of states D (of T),
whether T is locked out from D in P. (T is said to
be locked out from D if no matter how T proceeds,
the remaining propositional programs in P can al-
ways prevent T from entering D.) What makes these
two problems interesting and important is that they
capture the essence of two fundamental properties,
namely, coopemtion and antagonism [ll], concerning
concurrent systems. PR is a cooperative property due
to the fact that all programs act cooperatively to re-
alize a rendezvous; whereas for LO, the distinguished
program and the remaining programs have conflict-
ing goals. Compared to previous results of similar
nature in [11,13,21], we base our work on a more gen-
eral model, study a broader class of problems, utilize
a new and novel approach, and obtain several new
results. (This will be elaborated later.) Our results
are summarized in Table 1.

A propositional program is a directed labeled graph
whose vertices and edges represent program states
and state tmnsitions, respectively. A propositional
concurrent program is a collection of propositional
programs for which inter-program communication is
achieved in a hand-shaking fashion using commands
of the forms C!m and C?m, where m E (0, l}, indi-
cating the transmission and reception of data m over
channel C. This model can be thought of as a general

253
0-8186-1060-3425/93 $03.00 0 1993 IEEE

framework within which programs are constructed us-
ing standard kinds of programming constructs (in-
cluding concurrency and rendezvous, for example)
from basic, uninterpreted, propositional program let-
ters. Each such atomic program denotes an arbitrary
binary relation on a universe of uninterpreted pro-
gram states. As we will see later that this model of
propositional concurrent programs is closely related
to that of the channel version of concurrent propo-
sitional dynamic logic (channel-CPDL, for brevity)
defined by Peleg in [17]. Aside from the connection
to channel-CPDL, our model also provides a general
framework for describing real-world concurrent pro-
gramming languages such as ADA.

class

P,,,,G

Prom c o n c i K n t v m m m I Comolexitu
prog. prog. strut- PR LO
size # ture

O(n) O(n) G Pspace-c Exptime-c

p n , l , G

PI,,,Q

P l , n , N L

O(n) O(1) G Nlog- Ptime-c

O(1) O(n) G Pspace-c Exptime-c

0(1) O(n) NL NP-c Pspace-c

space-c

Table 1: The complexity results of PR and LO. (G
and NL represent general programs and programs
without loops, respectively. X-c means X-complete.)
Notice that all the lower bounds hold even when the
structure of inter-program communication is tree-like.

A key contribution of this paper is the use of
domino tiling for proving lower bounds for a num-
ber of problems concerning propositional concurrent
programs. Domino tiling has its origins in a paper
by Wang [24] more than two decades ago. Since
then, it has been gaining more and more popular-
ity. The merit of domino tilings is that dominoes are
structurally simple and conceptually easy to visualize.
Furthermore, they represent a unified model for which
many important complexity classes can be defined
in a natural way. As a result, they provide proofs
which are easy to present and understand, compared
to those involving brute-force reductions from Turing
machines.

In summary, the contributions of this paper in-
clude the following:

0 To some extent, our results complement that
For channel-CPDL, of [17] in a nice fashion.

254

our results suggest that even though the validity
and satisfiability problems, in general, are unde-
cidable, there are certain interesting properties
which are decidable.

0 Our work augments that of [21] (by Taylor),
[U] (by Ladner), and [ll] (by Kanellakis and
Smolka). (More will be said about this in Sec-
tion 3.) Our work can be thought of as a gen-
eralization of that of [11,13,21] in that we give a
comprehensive analysis of PR and LO for a more
general model, namely, propositional concurrent
programs, with respect to the size, the number
of programs and the structural constraints.

We employ a
unified strategy by reducing various domino
tiling problems to the PR and LO for propo-
sitional concurrent programs in Pn,n,G, Pn,n,NL
and Pn,l,~. To our knowledge, with the excep-
tion of [26], domino tilings have never been used
to prove results for problems concerning concur-
rent systems, although they have been used suc-
cessfully for proving intractability and undecid-
ability for logic and graph problems. Because of
the regularity existing in domino tiling, our a p
proach (of reducing from domino tiling problems)
makes the proofs very easy to understand.

0 Our results also reveal the impact caused by the
program size and the number of programs in
the overall complexity (which was not addressed
in [13,21]). First, the complexities of PR and
LO remain the same for propositional concurrent
programs with a fixed program size as long as the
number of propositional programs is a variable.
However, if a propositional concurrent program
has a fixed number of propositional programs,
PR and LO can be determined in polynomial
time.

0 Our proof technique is novel.

2 Model of propositional concurrent
programs

A propositional progmm (PP, for short) P is a di-
rected labeled graph (S,T), where S (the set of ver-
tices) and T (the set of edges) represent the sets of
program states (or states, for short) and state tmnsi-
lions, respectively. For each propositional program,
one of its states is designated as the initial state. Each
transition is attached with a label, which represents
the associated atomic program. For example, tran-
sition p 5 q means that atomic program a can be

-."--.".. ~ , -

executed from state p to reach state q . A proposi-
tional concurrent program (P C P , for short) of concur-
rency k (k-PCP) is a k-tuple (P I , P2, ..., Pk), where
each Pi, 1 5 i 5 I C , is a propositional program. In
this model, there are two types of atomic programs,
namely, atomic internal programs and atomic com-
munication programs. Atomic internal programs rep-
resent those whose executions are independent of the
rest of the concurrent program. Atomic communica-
tion programs, on the other hand, allow one PP to
communicate with another through the utilization of
channels. Atomic communication programs are of the
form C!O (resp. C!1) and C?O (resp. C?1), indicat-
ing the transmission of data 0 (resp. 1) over channel
C and the reception of data 0 (resp. 1) over chan-
nel C, respectively. In a PCP, the communication
between PPs is synchronized based on the notion of
‘hand-shaking.’ If at any one time, two PPs A and B
are in states p and q, respectively, and p c* p’ and
q ‘Lm q’, m E {0,1), are two transitions from states
p and q , respectively, then PPs A and B can commu-
nicate with each other by exchanging message m over
channel C and simultaneously enter states p’ and q’,
respectively. Then each PP continues its operations
separately. The establishment of a such communica-
tion between PPs will be referred to as a rendezvous
throughout the rest of this paper. (The word ren-
dezvous is borrowed from the ADA language, which
use8 a similar hand-shaking mechanism for inter-task
communication .)

Given a k-PCP P=(Pl , P2, ..., Pk), a global state
c is a k-tuple (~ 1 ~ ~ 2 , . . - , c k) , where ci is a state of
Pi. Given two global states C = (C I , c 2 , . , cn) and
D = (d l , d2, . . . , d n) , D is said to follow C iff one of
the following two conditions holds:

1. 3, 1 5 i 5 n , such that ci 3 di is a transition
of Pi , for some atomic internal program ai, and
V j , j # i , c, = d j .

C’m
2. 3, j , i # j, 1 5 i, j 5 n such that (C j d j) E

Pi, (C j -+ d j) E Pj , for m E (0, l}, and Vk, k #
i and k # j , C k = dk.

C?m

An execution sequence in P is a sequence of global
states C1, C2, - , c k such that c1 is the first global
state and Cj+l follows Ci, 1 5 i <_ k - 1. Note that
the first global state of P is (r1, r2,. . . , rn), where ri
is the initial state of Pi.

A global state C is possible iff there exists an execu-
tion sequence reaching C. A rendezvous (C!m, C?m),
m E (0 , l) between PPs Pi and Pj is possible iff there

exists a possible global state C = (c1, c2, . . . , ck) such

In this paper, we will focus on the following two

C! m C?m that ci -+ di E Pi and cj -+ dj E Pj.

problems:

1. The possible rendezvous problem (PR, for short):
Given a PCP P and a rendezvous (e,a), is (e,a)
possible ?

2 . The lockout problem (LO, for short):
Given a PCP P, a PP T, and a subset of states
D (of r), is T, locked out from D in P ? (A PP
Ti is said to be locked out from a set of states
D if no matter how Ti proceeds, the rest of the
system can always prevent Ti from entering D.)

3 Related work

Before presenting our complexity results, we first
put our work into perspective by comparing our work
with that of similar nature appearing in the literature.

As presented in the framework of propositional
concurrent programs, our model is closely related to
that of propositional dynamic logic (P D L , for short),
which has its origins in [5] (cf. [7]). (See [5,7,12,18,19]
for related results.) From the standpoint of computa-
tional complexity, the validity and saiisfiability prob-
lems for PDL are complete for EXPTIME ([18,19]).

As an attempt to provide a framework within
which concurrency can be dealt with, the model of
PDL has been extended in [16] to encapsulate a new
type of program construct ‘n.’ Such an extended
PDL is called concurrent PDL (CPDL, for short).
Peleg [17] subsequently augmented CPDL to allow
communication among concurrent programs to be de-
scribed explicitly. According to the underlying notion
of communication, such an extended CPDL is divided
into two categories, namely channel and shared vari-
able versions of CPDL, denoted as channel-CPDL and
shared-CPDL, respectively. In channel-CPDL, com-
munication between parallel processes is by means of
channels. Two processes can communicate with each
other by transmitting (receiving) 0/1 along channel
C using commands C!O/C!l (C?O/C?l). As to the
complexity issues of CPDL with communication, the
validity problem for channel-CPDL is undecidable, so
is that for shared-CPDL.

In light of the above, our model is closely related to
that of the channel-CPDL. There are, however, sev-
eral key differences between our work and that of [17].
Most notably is that from the modeling standpoint,

255

concurrent programs in our model are described in-
dividually, as opposed to using a single integrated
global state graph in channel-CPDL. In our setting,
we are able to treat the number of concurrent pro-
grams, say I C , as a natural parameter, and subse-
quently, investigate how the degree of concurrency
(i.e., k) will affect the complexity of a problem. In
channel-CPDL, the degree of concurrency is implic-
itly embedded in the number of branches emanating
from the root of the global state graph, as the re-
sult of invoking ',' constructs. Viewing this, we feel
that making the parameter explicit (as in the case
of our model) might offer a better insight in under-
standing the role it plays in the overall complexity
of a problem. As far as complexity analysis is con-
cerned, our work complements the work of [17] by
demonstrating that certain interesting properties of
channel-CPDL are decidable, and, in fact, are com-
plete for a wide spectrum of complexity classes rang-
ing from NLOGSPACE to EXPTIME.

Since our model of propositional concurrent pro-
grams is a very general framework, our results pre-
sented in this paper can be applied to appropriate ver-
sions of concurrent models such as CCS, CSP, com-
munication finite-state machines, Statecharts, Petri
nets, and realistic concurrent languages (including
ADA). With respect to the ADA language, related
results can be found in [21]. .In [21], Taylor analyzed
the complexity of the possible rendezvous problem for
a number of subclasses of ADA programs on which
combinations of the following rules are imposed:

cooperative properties such as termination and po-
tential blocking is NP-complete. (The lower bound
holds even for networks of acyclic processes in which
processes are interconnected in a tree fashion or are
of constant size.) On the other hand, it becomes
PSPACEcomplete for deciding antagonistic proper-
ties such as LO, even for networks of acyclic processes
interconnected in a tree fashion. The above results
parallel that of ours for P n , n a & and P~,",NL in Ta-
ble l . Finally, our EXPTIMEcompleteness result of
LO for Pn,+ coincides with that in [13], in which
LO for systems of communicating sequential processes
was shown to be EXPTIMEcomplete.

4 Domino Tilings

A domino is a 1 x 1 unit square tile whose edges
are colored and whose orientation is fixed. We denote
by (left-color, right-color, bottom-color, top-color) a
domino type, representing dominoes whose left, right,
bottom, and top edges are colored left-color, right-
color, bottom-color and top-color, respectively. Pic-
torially, Figure 1 shows a domino of type (a,b,c,d).

Rule 1. No branches and loops within a task's con-
trol flow are allowed. Figure 1: Domino type (a,b,c,d)

Rule 2. No select statements are allowed. Given a domino type d , we use l e f t (d) , r ight (d) ,

Rule 3. Only one task may contain entry call state-
ments for a given entry.

Rule 4. Synchronization statements occurring on
the branches of an if statement may differ only
in order of occurrence.

It turns out that PR is NP-complete in most cases,
except for programs on which Rules 1, 2, and 3
are imposed (in this case, PR becomes solvable in
PTIME). In particular, Taylor's NP-completeness re-
sult for Ada programs without branches and loops co-
incides with our NP-completeness of PR for Pn,~,p~.
In a closely related work [l l] , Kanellakis and Smolka
investigated the complexity of cooperative and an-
tagonistic properties for networks of communicating
processes. They showed that the problem of deciding

top(d) and bottom(d) to denote the left, right,
top and bottom colors of d, respectively. For a
set of domino types T, we define CoIor(T) to be
{le f t (d) , r ight (d) , top(d) , bottom(d) I d E T}, i.e.,
the set of colors appearing in T. Assuming that
we have an infinite supply of copies of each domino
type, the domino problem, in the generic sense, is
that of determining whether a (finite or infinite)
grid region in the Cartesian plane can be tiled using
dominoes from T such that some specific constraints
are met. Let G(width , height) represent the region
{(z,y) I 0 5 t 5 width,O 5 y 5 height} , where
width and height are in N U{oo}. (For example,
G(oo,oo) represents the first quadrant.) A domino
system is a tuple (T , G (w i d t h , h e i g h t) , f) , where T
is a set of domino types, G(width ,he ight) is a re-
gion, and f: { 1 , 2 , - . . , w i d t h) x { 1 , 2 , - . . , h e i g h t) --.,

256

..-. -- . .

T is the tiling function. (For convenience, we use f i , j
to denote f (i , j) throughout the remainder of this
section.) f i , j can be thought of as the domino (in
the tiling defined by f) whose upper right-hand cor-
ner is located at coordinate (i , j) . A domino system
(T, G(wid th , height), f) is said to have a solution iff

TOR is to finish the tiling, while SABOTEUR will
try all he can to prevent this from happening.)

Four domino tiling problems to be used in this pa-
per are described as follows:

0 SQUARE TILING: Given a set of domino types
T and an N (in unary), determine whether an

1.

2.

3.

4.

5.

Vi , 1 5 i 5 width, bottom(fi,l) =‘White’,

v i , 1 5 i 5 width,tOp(fj,height) =‘White’, if
height < 00,

V j , 1 5 j 5 height, left(f l , j) =‘White’,

V j , 1
width < 00,

V i , j , 1 < i 5 width , 1 5 j 5 height, l e f t (f i , j) =

and
V i , j , l 5 i 5 width, l < j 5
height, bottom(f i , j) = top(f i , j - l) .

j 5 height,right(f , id*h,j) =‘White’, if

right (f i - 1 , j) ,

In words, (1) - (4) ensure that external edges are
colored ‘White’. (5) ensures that adjacent edges of
dominos have matching colors. The domino problem
is that of determining, given T and G, whether there
exists an f such that the domino system (T,G,f) has
a solution.

In the literature, various bounded domino prob-
lems have been shown to be complete for a wide spec-
trum of complexity classes, including NP, PSPACE,
EXPTIME, 2EXPTIME and more recently the en-
tire polynomial time hierarchy. As a consequence,
domino tiling has been shown to be very useful, as a
reduction tool, for proving lower bound results. (See
e.g., [1,3,4,6,8,9,14,15,20,23].) Among those domino
problems discussed in the literature, the .?&person
domino game, introduced by Chlebus [3], consists
of two players, CONSTRUCTOR and SABOTEUR,
taking turns to tile a finite region using a given set
of domino types. CONSTRUCTOR plays the first
move by placing a domino in the lower left-hand cor-
ner. SABOTEUR then selects a domino for the sec-
ond column and first row. Then CONSTRUCTOR
selects a domino for the third column and first row,
and so on. This sort of alternation continues until
either the region is completely tiled or neither player
is able to move. CONSTRUCTOR wins if the tiling
is successful; otherwise, SABOTEUR wins. (At any
time, if no legal move is available, then SABOTEUR
wins.) A 2-person domino game is said to have a win-
ning strategy for CONSTRUCTOR iff CONSTRUC-
TOR can always manage to win regardless of SABO-
TEUR’S counter-moves. (The goal of CONSTRUC-

N x N region can be tiled by dominoes from T.

0 RECTANGLE TILING: Given a set of domino
types T and an N (in unary), determine whether
there exists a K such that a region of size K x N
can be tiled by dominoes from T.

0 SQUARE TILING GAME: Given a set of
domino types T and an N (in unary), determine
whether there exists a winning strategy for CON-
STRUCTOR in tiling an N x N region using
dominoes from T.

0 RECTANGLE TILING GAME: Given a set of
domino types T and an N (in unary), determine
whether there exists a K such that CONSTRUC-
TOR has a winning strategy in tiling a rectangle
of size K x N using dominoes from T .

Throughout the rest of this
paper, we let N L O G S P A C E = N S P A C E (l o g n) ,

00 00

P = U D T Z M E (~ ’) , N P = U N T Z M E @) ,
i = l i = l

m

P S P A C E = U D S P A C E (n ’) , and E X P T I M E =

U DTZME(2”’) , where DTIME(T(n)) (respec-

iT:ely, NTZM E(T(n))) and DSP A C E (S(n)) (re-
spectively, N S P A C E (S (n))) denote the classes of
languages accepted in T (n) time and S(n) space, re-
spectively, by some deterministic (respectively, non-
deterministic) TMs. The reader is referred to [lo] for
more details.

The complexities of SQUARE TILING, RECT-
ANGLE TILING, SQUARE TILING GAME and
RECTANGLE TILING GAME are summarized in
Table 2 . See [3] and [26] for their proofs.

i=l
00

5 Complexity results

Recall that P2,Y, t , z , y E { l , n } and z E {G, N L } ,
denotes the class of O(y) PCPs, in which each PP is
of size at most O(z), and the structure of each PP is
z (where G and N L stand for ‘general’ and ‘no loop,’
respectively).

257

Domino problem

SQUARE TILING
RECTANGLE TILING

SQUARE TILING GAME
RECTANGLE TILING GAME

RECTANGLE TILING
with Fixed Width

RECTANGLE TILING GAME
with Fixed Width

Complexity I
NP-c

PSPACEc
PSPACEc

EXPTIMEc
NLOGSPACEc

PTIMEc

Table 2: Complexities of various domino tiling prob-
lems.

For ease of expression, throughout the rest of this
paper we will generalize the forms of the atomic com-
munication programs, namely C!a and C?a (where
a E { O , l }) , to allow message a to be a string of
Os and 1s. More precisely, C!a and C?a (where
a = ala2 ... an E {0,1}*) denote C!q, C!a2, ..., C!a,
and C?al, C?a2, ..., C?an, respectively. As we will see
later that in most cases, the intermediate states dur-
ing the course of the execution of C!a and C?a are
irrelevant; hence, they will be omitted.

Theorem 1 : PR is NP-complete for Pn,n,NL, even
when the structure of inter-program communication
is linear.

Proot
1) (Upper bound)
Without loss of generality, consider a possible ren-
dezvous (C!a,C?a), a E (0, l}, between PPs T,, and
Tj. Since loops are not allowed, any execution se-
quence realizing rendezvous (C!a,C?a) is of length at
most O(n2). Thus, PR for programs in Pn,n,NL can
be solved in NP.
2) (Lower bound)
This is shown by reducing an NP-complete problem,
namely the SQUARE TILING problem, to the PR.
We start with a simple example to demonstrate the
first few steps of the simulation so as to allow the
reader to have a better understanding of the proof.
Consider a simple example of tiling a 3x3 square as
shown in Figure 2(a). The corresponding simulation
(by a PCP) of the first row is depicted in Figure 2(b).
The action of placing the first domino is simulated
by PP TI. Upon reaching atomic program C1,2!r, 2'1
will become idle until T2 reaches C1,2?r; a rendezvous
is then established. The synchronization between T2
and T3 is carried out in a similar fashion. One can eas-
ily see that the mechanism used for enforcing a match-
ing color between two adjacent dominoes is by means

of rendezvous. Nodes are used for keeping track of
the color changes along the vertical direction during
the course of the simulation.

T1 c1.2!gi I I I I

I

T2 Ta

Figure 2: An example.

In the actual simulation, three kinds of PPs are
involved, namely a PP simulating the first column
of G, PPs simulating the intermediate columns of G,
and a PP simulating the last column of G. Each P P
is designed to simulate a particular column of G. In
tiling G, PPs work together in a cooperative manner
using dominoes from T. (In our previous example,
PP Ti (1 5 i 5 3) simulates the i-th column of G.)
During the course of the simulation, the following two
properties hold:

0 In each column, the top color of the up-most
domino will be kept in the current state of the
simulating PP.

0 The rule of which adjacent edges of dominoes
have matching colors is simulated by rendezvous
between PPs simulating adjacent columns of G.

For a PP simulating an intermediate column, if
we ignore the intermediate states of the generalized
atomic communication programs, three 'states' ap-
pearing in the order given below are used to mimic
the action of placing a domino of type (a, b, c , d) .

0 c 5 x cb d, where C and C' are the respective
channels and x is some intermediate state.

258

In the above sequence, states c and d record the top
colors of the current column before and after a domino
of type (a, b, c, d) is placed. C?a is to synchronize with
the preceding P P to ensure a matching color along the
common boundary of the two dominoes (simulated by
the PP and the preceding one). Finally, C’!b is used
so that the right color of the added domino, i.e., 6,
can be passed on to its right neighbor.

In the case of the first and the last PPs, only two
‘states’ are required to simulate the action of placing
a domino of type (w, b, c, d) and (a, w, c , d) , respec-
tively. (This is because the left and right boundaries
of G must always be ‘white.’) They are:

0 First PP: c 2 d .

0 Last PP: c c‘?o d .

Since we are dealing with P,,,,,,NL, each of the con-
structed PPs must be acyclic. This constraint can be
enforced by making a slight modification to the above
construction. Before doing this, we first explain why
the above construction is not quite satisfactory. Con-
sider the following scenario. Suppose in a column,
two dominoes belonging to two different rows have
the same top color, say p. If we do not distinguish
these two p’s from each other, then in the actual con-
struction only one state will be used to represent p;
this, in turn, will result in a loop, which is not allowed
in Pn,n,NL. An easy way to circumvent this difficulty
is to attach a number to each color, representing the
row number in which the color appears. In this way,
a unique state can then be used for each occurrence
of a color. In Figure 2, such row numbers are omitted
for the sake of simplicity.

Now we describe the detailed construction. Let
T = { d l , d2, * * , dm} be the set of domino types in
an instance of the SQUARE TILING and let N (in
unary notation) be the width and height of the grid
region to be tiled.
PP T I : G1 = (SI, F1) (with initial state r l) , where

r1 = l w ,

0 S1 = { lc I 1 5 1 5 N + 1, c E Color(T)} U

0 F1 contains

{Done 1 } 7

(1 + l)d, V l 5 1 5 N, if (w , b , c , d) E T , IC CLIb

and
(N + 1)w c2 Donel .

PP TN: GN = (S N , F N) (with initial state P N) ,

SN = { I C I 1 5 1 5 N + 1, c E Color(T)} U

where rN = l w ,

{Done N 1,

0 FN contains
C<la (I + l) d , V1 5 15 N, if (a,w,c,d) E T ,

and
(N + 1)W ‘$* Done”.

PP q: Gi = (Si, Fi) (with initial state Pi), 1 <
i < N, where ri = l w ,

0 Si = {IC I 1 5 1 5 N + 1, c E Color(T)} U
{ Di D0nei.I

0 Fi contains
C.?la Ci+i!lb I C -+ XI, XI -+ (1 + l)d, V1 5 1 5 N, if

(N + 1)w %? Di , and Di 4 Donei.
(0 , b, c, 4 E T ,

Ci+l! .

Note that in the above construction, the intermedi-
ate states needed to describe generalized atomic com-
munication programs are omitted simply for the sake
of simplicity.

Suppose the domino system has a solution. Then
adjacent edges of columns must have matching col-
ors, meaning that there exists an execution sequence
finishing each PP TI (1 5 i 5 N) successfully. Even-
tually, rendezvous (CN!*, CN?*) is possible. Suppose
rendezvous (CN!*,CN?*) is possible. Then there ex-
ists an execution sequence finishing each P P success-
fully. By our construction, this execution sequence
constitutes a solution of the domino system.

In general, a domino system consisting of domino
types T = { d l , 4,. .. ,dm} with respect to G(N, N)
can be simulated by a PCP with N PPs. Each P P con-
sists of O(m*N*log(mN)) states. (The log(”) fac-
tor comes from the number of the intermediate states
needed to encode a channel message.) So the con-
struction can be done in polynomial time. Thus, PR
for Pn,n,NL is NP-complete. It is worth pointing out
that in the above construction, P P Ti, 1 < i < N, in-
teracts only with Ti-1 and Z+1; hence, the structure
of inter-program communication is linear. II

The upper bound results of Theorems 2-8 are easy
to obtain. In what follows, we concentrate on the
lower bound proofs.

Theorem 2 : PR is PSPACE-complete f o r Pn,n,G,
even when the structure of inter-program communi-
cation is linear.

Proof The lower bound can be shown by reducing the
RECTANGLE TILING to the PR for Pn,n,G. Since
the proof is very similar in style to that of Theorem
1, in what follows we only point out the differences
and leave the details to the reader.

259

” . .,.. ..I ”

First notice that in the RECTANGLE TILING,
the height of the rectangle to be tiled is not known in
advance. In fact, this quantity can very well be expo-
nential in the size of the input in a successful tiling
; hence, the proof technique used in Theorem 1 does
not quite work. (Recall that in the previous construc-
tion, the number of nodes in a PP is proportional to
the height of the region to be tiled.) Since PPs in
Pn,n,G are allowed to be cyclic, we can slightly alter
the previous proof by removing the row number pre-
ceded a color in the representation of a node. That
is, each color will be simulated by a single node, even
when the color appears in two different rows. (Fb
call that in Theorem 1, different nodes are used if the
color appears in two different rows.) In this way, the
size of each PP can be limited to a polynomial (in the
size of the input). 0

Theorem 3 : LO is PSPACE-complete for P n , , , , ~ ~ ,
even when the structure of inter-program communica-
tion i s tree-like.

Proof sketch.
1) (Upper bound)
To determine whether a PP Ti of a PCp P in Pn,n,NL
is locked out from a set of states D (of Ti) or not, it
suffices to check whether P can always reach a state
C = (C ~ , C ~ , . - - , C , ,) , for some ci E D, even when the
remaining PPs are malicious against Ti. In a sense,
the execution of a such program resembles the behav-
ior of an alternating Turing machine. Consider the
graph representing all possible computations of PCP
P. Then all the states corresponding to PP Ti’s moves
can be thought of as existential states; the remaining
states can be thought of as universal states. Accept-
ing states are those whose i-th components (i.e., the
states of Ti) are in D. As a result, the computation of
P can be simulated by an alternating Turing machine.
Furthermore, such an alternating Turing machine ter-
minates in polynomial time due to the fact that PP
P is acyclic. Thus, the PSPACE upper bound follows
immediately from a well-known fact that PSPACE=
APTIME. The reader is referred to [2] for more about
alternating Turing machines and their related com-
plexity classes.
2) (Lower bound)
This is shown by reducing the 2-person SQUARE
TILING GAME (known to be PSPACE-complete) to
the LO. To simulate the tiling of an N x N square
area (where N is in unary notation), we use N + 2 PPs
E, A, and T,, 1 5 i 5 N, where E (respectively, A)
is used to simulate CONSTRUCTOR’S (respectively,
SABOTEUR’S) moves and T, is to keep track of the

current top edge color in column i. Without loss of
generality, assume that N is even. Compared to the
proof technique used in Theorem 1, the key difference
here is that each Ti does not select the next domino
directly; instead, the selection is performed by PPs E
and A in an alternate fashion. The key ideas are as
follows:

1. The action of putting a domino in column i , 1 5
i 5 N, is simulated by a rendezvous between
PPs T j and E (respectively, A), if i is an odd
(respectively, even) number.

2. As was the case in the proof of Theorem 1, PP
T j is used for keeping track of the color changes
along the vertical direction in the i-th column.

3. PPs E and A simulate the moves made by CON-
STRUCTOR and SABOTEUR, respectively.

For example, to simulate the first two moves made
by CONSTRUCTOR and SABOTEUR, respectively,
the following steps are involved:

1. PPs E and TI establish a rendezvous. (The selec-
tion is made by P P E, who is simulating CON-
STRUCTOR.)

2. The control, together with the right color of the
domino selected in the previous step, is then
passed on from E to PP A by means of a ren-
dezvous.

3. PP A then takes over. A will simulate the action
of placing the second domino by first ‘waking up’
PP 7’2; then executing an C ~ A ? W , for some color
w , to retrieve (from Tz) the bottom color w of
the domino to be tiled next; finally, establishing
a rendezvous with T2. (The last step corresponds
to the selection of a domino by SABOTEUR.)

4. PP A then passes the control, together with the
right color of the selected domino, back to E. (It
is worth pointing out that in the previous step,
if A cannot find a legal domino to tile, then A
(i.e., SABOTEUR) will surrender by sending a
‘win’ message to PP E.)

Since the construction closely parallels that of The-
orem 1, we therefore leave the remaining details to
the reader. Notice that in the above construction, the
structure of inter-program communication is tree-like.
0

Theorem 4 : LO is EXPTIME-complete for
Pn,,,,~, even when the structure of inter-progmm com-
munication i s tree-like.

260

._ . . , ~

Proof. The lower bound can be shown by reducing
from the 2-person RECTANGLE TILING GAME in
a way similar to that in Theorem 3. The details are
left to the reader. 0

We now turn our attention to PCPs with a fixed
number of PPs.

Theorem 5 : PR is NLOGSPACE-complete for
Pn,l,G, even when the structure of inter-program com-
munication is linear.

ProoJ We first show the problem to be in
NLOGSPACE. Given a PCP P in Pn,l,G, let k, a
fixed constant, be the number of programs in P. The
computation of P can be described by means of a
‘global state graph,’ in which each node represents a
global state of P. In this way, the problem of determin-
ing whether a rendezvous is possible can be equated
with that of deciding whether a global state enabling
the rendezvous is reachable in the global state graph.
However, the above global state graph should only be
treated conceptually, for it takes O(nk) space simply
to record a such graph. A straightforward nonde-
terministic search procedure (using k * logn space to
keep track of the contents of the current global state
during the course of the search) is sufficient to find a
global state enabling the given rendezvous, if a such
state exists. Hence, the NLOGSPACE upper bound
for the PR follows.

Using the same reduction technique as described in
Theorems 1 and 3, we can reduce the RECTANGLE
TILING with fixed width to the PR for P n , l , ~ . The
NLOGSPACE-hardness result follows. 0

Now consider the lockout problem.

Theorem 6 : LO as PTIME-complete for Pn,l,G,
even when the structure of inter-program communi-
cation is tree-like.

Proof. The upper bound can be proved along the
same line as that of Theorems 3 and 4. That is,
we can design an alternating Turing machine oper-
ating in k * logn space to determine whether a given
PP in a PCP in Pn,l,G can be locked out of a desig-
nated set of states by the rest of the program. (Here
k denotes the number of PPs.) It is well-known that
ALOGSPACE=PTIME; the upper bound follows im-
mediately.

The lower bound can be proved by reducing from
the 2-person RECTANGLE TILING GAME with
fixed width, which is known to be PTIME-complete
(see [as]). 0

In the rest of this section, we will show that the
program size (constant vs. variable) plays a negligi-
ble $e as far as the complexity of the PR is con-
cekned. In other words, even if we restrict ourselves
to PCPs with fixed size PPs only, the PR has the
same upper and lower bounds as that for programs
whose program size is a problem parameter. The re-
sult is somewhat surprising. This, in turn, reflects
an important fact that the complexity of the PR is
dominated by the number of PPs, rather than by the
size of each PP. Before proving the above result, we
require the following lemma:

Lemma 1 : With respect to the PR and LO, PCPs
in Pn,n,G and P n , n , ~ ~ can be simulated by PCPs in
Pl,n,G and P I , ~ , N L , respectively.

Proof. First consider the PR. Essentially, we want to
carry out a node-by-node transformation on the state
graph to replace each node (i.e., state) together with
its outgoing transitions (i.e., atomic programs) by a
PP of fixed size. The first step is to, given a P P of a
PCP in P n , n , ~ , construct an equivalent P P in which
each node has at most two incoming and two outgo-
ing transitions. (This can easily be accomplished by
introducing null statements at the juncture of each
branch. Note that in the worst case, the number of
nodes in the new P P is at most doubled.) Then the
transformation is quite straightforward.

We now turn our attention to the LO. First no-
tice that the above construction does not quite work
for the LO. This is mainly because for the LO, we are
dealing with a ‘one against the rest of the system’ sit-
uation. As a result, breaking a P P into several fixed-
sized PPs, as was done in the above construction,
does not preserve the flavor of ‘one against many.’
To overcome this difficulty, consider the following fix.
Let (P,T,D) be an instance of the LO, where P is a
PCP, T is a PP and D is the set of designated states
that T is trying to execute. We first utilize the pro-
cedure mentioned above to transform P into a group
P’ of fixed-sized PPs equivalent to P. Recall that in
our transformation, each P P in P’ corresponds to a
state for some PP in P. Let D’ be a subset of P‘ such
that each of D’ corresponds to a state in D. Now we
introduce an additional PP T’ with a single transition
C?O leading to state x; in addition, a transition C!O
is inserted to each P P in D’. Clearly, PP T‘ is locked
out from {z} in P’ iff T is locked out from D in P.
This completes the proof. 0

The following results follow directly from Lemma
1 and Theorems 1-4.

Theorem 7 : PR is NP-complete for Pl ,n ,Nt .

26 1

Theorem 8 : PR i s PSPACE-complete for P~,, , ,G.

Theorem 9 : LO is PSPACE-complete for P1,n,NL.

Theorem 10 : LO i s EXPTIME-complete for
P l , n , G *

6 Conclusion

We have utilized a unified approach, based on
domino tiling, to show that the possible rendezvous
and the lockout problems for a variety of propo-
sitional concurrent programs are complete for a
broad spectrum of complexity classes, ranging from
NLOGSPACE, PTIME, NP, PSPACE to EXPTIME.
(All of our complexity bounds are tight.) Aside from
the novel technique itself, our results fully explain the
role played by each of the parameters (such as the
number of programs, the program size, the structure
of interconnection, and the program structure) in the
complexities of the above two problems.

Acknowledgements

We would like to thank the referees for suggestions
which improved the content as well as the presenta-
tion of our results.

References

Berger, R. The undecidability of the domino problem.
Mem. Amer. Math. Soc., 66, 1966.

Chandra, A., Kozen, D. and Stockmeyer, L. Alterna-
tion. JACM, 28: 114-133, 1981.

Chlebus, B. Dominetiling games. Journal of Com-
puter and System Sciences, 32: 374-392, 1986.

Chlebus, B. Proving NP-completeness using bounded
tiling. J. Inf. Process. Cybern. EIK, 8: 479-484, 1987.

Fischer, M. and Ladner, R. Propositional dynamic
logic of regular programs. Journal of Computer and
System Sciences, 18:194-211, 1979.

Gradel, E. Domino games and complexity. SIAM J.
Computing, 19:787-804, 1990.

Harel, D. Dynamic logic. Handbook of Philosophi-
cal Logic (D. Gabbay and F. Guenthner, eds.), Reidel
Publishing Company, Dordrecht, 497-604, 1984.
Harel, D. Recurring dominoes: making the highly un-
decidable highly understandable. Annals of Discrete
Mathematics, 24: 51-72, 1985.

[9] Harel, D. Effective transformations on infinite trees,
with applications to high undecidability, dominoes,
and fairness. JACM, 33(1): 224-248, 1986.

[lo] Hopcroft, J. and Ullman, J. Introduction to
Automota Theory, Languages and Computation.
Addison-Wesley, Cambridge, MA, 1979.

On the analysis of
cooperation and antagonism in networks of communi-
cating processes. Algorithmico, 3: 421-450, 1988.

[12] Kozen, D. and Tiuryn, J. Logics of programs.
Handbook of Theoreticnl Computer Science (J. van
Leeuwen, ed.), Vol. B, Elsevier, Amsterdam, 789-840,
1990.

[13] Ladner, R. The complexity of problems in systems of
communicating sequential processes. Journal of Com-
puter and System Sciences 21: 179-194, 1980.

[14] Lewis, H. Complexity of solvable cases of the decision
problem for the predicate calculus. IEEE FOCS, pp.

Elements of the
Theory of Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

[16] Peleg, D. Concurrent dynamic logic. JA CM, 34: 450-
479, 1987.

[17] Peleg, D. Communication in concurrent dynamic
logic. Journal of Computer and System Sciences, 35:

[18] Pratt, V. Models of program logics. Proc. 20th Ann.
IEEE Symp. on Foundations of Computer Science, pp.

[19] Pratt, V. A near-optimal method for reasoning about
actions. Journal of Computer and System Sciences,

[20] Savlsberg, M. and van Emde Boas, P. Bounded tiling,
an alternative to satisfiability? Proc. 2nd Frege Con-
ference, Schwerin 1894, Mathematische Forschung,

[21] Taylor, R. Complexity of analyzing the synchroniza-
tion structure of concurrent programs. Acta Informat-
ica, 19: 57-84, 1983.

[22] Taylor, R. A general-purpose algorithm for analyzing
concurrent programs. Communications of the ACM

[23] van Emde Boas, P. Dominoes are forever. Proc. of
1st GTI Workshop (Poderborn), pp. 76-95, 1983.

[24] Wang, H. Proving theorems by pattern recognition
ii. Bell System Tech. J., 40: 1 4 , 1961.

[25] Yen, H. Communicating processes, scheduling, and
the complexity of nontermination. Mathematical Sys-
tems Theory, Vol. 23, pp. 33-59, 1990.

[26] Yen, H. A multiparameter analysis of domino tiling
with an application to concurrent systems. Theoretical
Computer Science, Vol. 98, No. 2, pp. 263-287, 1992.

[I11 Kanellakis, P. and Smolka, S.

35-47, 1978.
[15] Lewis, H. and Papadimitriou, C.

23-58, 1987.

115-122, 1979.

20~231-254, 1980.

pp. 354-363, 1984.

26(5): 362-376, 1983.

262

