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Abstract. A bottom-up finite state tree transducer (FST) M is called k-valued 
iff for every input tree there are at most k different output trees. M is called 
finite-valued iff it is k-valued for some k. We show that it is decidable for every 
k whether or not a given FST M is k-valued. We give an effective characteriza- 
tion of all finite-valued FSTs and derive a (sharp) upper bound for the 
valuedness provided it is finite. We decompose a finite-valued FST M into a 
finite number of single-valued FSTs. This enables us to prove: it is decidable 
whether or not the translation of an FST M is included in the translation of 
a finite-valued FST M'. We also consider these questions for size-valuedness. 

Introduction 

A bottom-up finite state tree transducer (here FST for short) is a finite state device 
which produces its output tree while consuming a given input tree in a bottom-up 
fashion. Since multiple occurrences of variables in patterns are allowed an FST is 
able to generate several identical copies of images of subtrees. Since some variables 
can be missing, the image of a correctly parsed subtree may be dropped again. 

In compiler construction finite state transducers are an important tool for 
manipulating abstract syntax trees. For example, consider the code generation 
phase. The different possible target code sequences for an abstract syntax tree t 
correspond to the different outputs s possibly produced by an FST [GS2]. A good 
survey on tree automata theory and its applications may be found in [GS1]. 

Formally, FSTs can be viewed as one possible generalization of non- 
deterministic generalized sequential machines (NGSMs). Therefore, the natural 
question arises whether or not results about NGSMs can be extended to FSTs. 
In this paper we investigate finite-valuedness and the equivalence problem for 
FSTs. 
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Two FSTs are called equivalent iff they define the same translation. It is well 
known that the equivalence problem for NGSMs is undecidable. However, in 1986 
Culik II and Karhum~iki proved that the equivalence problem is decidable at least 
for finite-valued NGSMs [CK]. They employed the (confirmed) Ehrenfeucht 
conjecture for proving their procedure to be recursive; therefore, no estimation of 
its complexity is known. In 1988 Weber came up with a totally different decision 
procedure (running in double exponential time) which was based on a careful 
structural analysis of finite-valued NGSMs [W2]. In 1989 Weber showed that the 
equivalence problem was decidable even for NGSMs having finite length-degree 
[W33. 

Knowledge about finite-valuedness and the equivalence problem for finite tree 
transducers is comparatively poor. In 1978 Zachar showed that equivalence was 
decidable for deterministic FSTs [Z]. In 1980 Engelfriet exhibited a nice gen- 
eralization (T1) of a word lemma by Schiitzenberger [Sc] to trees which allows 
the decision whether or not a given FST is single-valued [En]. Note that any 
algorithm which decides single-valuedness can be used to decide equivalence of 
single-valued FSTs. For the sake of completeness we also mention the (stronger) 
result of Esik [Es] which showed that single-valuedness is decidable for top-down 
FSTs as well. Also, as a special case of this Courcelle and Franchi-Zannettacchi 
exhibited an interesting method to decide whether or not two deterministic 
top-down transducers are equivalent [CF]. 

We proceed in the spirit of [W43, [W23, and [En]. In fact, it turns out 
that most of the proofs deal with sizes of output trees (thus generalizing the 
notion of "length" for words). Therefore, in parallel with a theory of finite-valued 
FSTs, we develop a theory of FSTs where the sets of output sizes have bounded 
cardinalities. 

We start with an investigation of the combinatorics of trees. Employing 
Ramsey's theory we generalize Engelfriet's property (T1) (Theorem 1.5). This 
enables us to prove: for every k it is decidable in nondeterministic polynomial 
time whether a given FST is not k-valued (Theorem 2.2). Moreover, we consider 
polynomials with rational coefficients of degree at most 1. Surprisingly, they have 
similar cancellation and factorization properties as trees. Therefore, analogous 
considerations allow us to prove: for every k it is decidable in polynomial space 
whether or not an FST is/c-size-valued (Theorem 2.3). 

In Section 3 we exhibit two necessary conditions (F1) and (F2) for an FST to 
be finite-valued. At least two-thirds of the proof consists in proving that the size 
versions (S1) and ($2) of (F1) and (F2) are necessary conditions for an FST to be 
finite size-valued. 

In Section 4 we prove that the necessary conditions (F1) and (F2) for 
finite-valuedness ((S1) and ($2) for finite size-valuedness) are decidable (Theorem 
4.1). This is done by proving that they only have to be verified for input trees up 
to a fixed depth. 

In Section 5 we prove that the necessary conditions (F1) and (F2) ((S1) and 
($2)) of Section 3 are also sufficient to derive an upper bound for the valuedness 
of an FST (size-valuedness of an FST). Property (F1) subsumes the criteria for 
NGSMs to be finite-valued given in [WS], [W1], and [W4]. Due to the more 
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complicated structure of trees this generalization is by no means obvious. Property 
(F2) has no analogue for NGSMs. From the characterization of finite-valuedness 
we obtain the following results (Theorems 5.4, 5.5, and 5.7): 

(1) It can be decided in nondeterministic polynomial time whether an FST 
M is infinite-valued. 

(2) If M is finite-valued, then its valuedness is bounded by 2 2~l~l) for some 
polynomial P independent of M. 

The upper bound in (2) is sharp in the following sense: there are finite-valued 
FSTs M' of arbitrarily large size such that their valuedness is at least 2 2z(IM'l) for 
some polynomial P'. 

Corresponding results also hold for size-valuedness. Here we find: 

(1') It can be decided in polynomial space whether or not an FST M is finite 
size-valued. 

(2') If M is finite size-valued, then its size-valuedness is bounded by 
2 2clMl']~ for some constant c > 0 independent of M (L denotes the 
maximal number of successors of a node of an input tree). 

Finally, Section 6 shows that the ideas of rw2]  for NGSMs can be extended to 
FSTs. We employ the precise knowledge about the structure of finite-valued FSTs 
of Section 5 to decompose a finite-valued FST into a finite number of single-valued 
FSTs (Theorem 6.2). The decomposition is based on a classification of accepting 
computations such that the following holds: if two accepting computations for the 
same input tree t admit the same specification y, then they produce the same 
output. Secondly, we observe that an FST can decide "on-line" whether or not a 
simulated accepting computation admits some specification ~. By employing again 
our generalization of Engelfriet's property (T1) we finally derive the following result 
(Theorem 6.4): It can be decided for an FST M and a finite-valued FST M' in 
nondeterministic time 2 22v~ whether the translation of M is not included in 
the translation of M'. Again, a corresponding result for size-valuedness holds as 
well. We conclude with open problems. 

1. Trees and Polynomials 

In this section we give basic definitions and state some fundamental properties 
about trees. Especially, we generalize Engelfriet's property (T1) of [En] into two 
directions. For  this we employ a proposition taken from Ramsey Theory which 
is presented in the Appendix. One generalization of Engelfriet's property (T1) 
enables us to decide whether or not a given FST is k-valued; the second 
generalization is used in Section 6 to show that it can be decided whether or not 
the translation defined by an FST is included in the union of the translations of 
a finite number of single-valued FSTs. 

In a second subsection we consider the same questions for polynomials of 
degree at most 1. 
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A ranked alphabet or signature is a pair (E, p), where E is a finite alphabet 
and p: E ~ No is a function mapping symbols to their rank (N denotes the set of 
positive integers and N o the set of nonnegative integers). Usually, if p is understood 
we write E for short and define Ej :=  p - l ( j ) .  The maximal j such that Ej r ~ is 
also called the rank of E. Tz denotes the free Z-algebra of (finite ordered E-labeled) 
trees, i.e., T~ is the smallest set T satisfying (i) E o g T and (ii) if a �9 Zm and 
t l , . . . ,  tin�9 T, then a ( t l , . . . ,  t,,)e T. Note: (i) can be viewed as the subcase of (ii) 
where m = 0. 

The depth of a tree t �9 Tz, depth(t), is defined by depth(t):= 0 if t �9 E o, and 
depth(t).= 1 + max{depth(t0 . . . . .  depth(t,,)} if t = a ( t l , . . . ,  tm) for m > 0. 

The set of nodes of (or occurrences in) t, O(t) is the subset of N* defined by 

O ( t ) : = { e } ~  ~) j . O ( t j )  where t = a ( t  1 . . . .  , t , ,)  for m > 0 ;  
j = l  

especially, the empty string e is the root of t. 
O(t) is partially ordered by the prefix relation and totally ordered with respect 

to the lexicographical ordering. 
t defines maps t(_): O(t) ~ Z and t / :  O(t) ~ Tz mapping each node o of t to 

its label or the subtree of t  with root o, respectively. We have, for t = a (q  . . . . .  t,,), {o ,fo  ifo  
t(o):= and t/o~= 

tj(o') if o = j"  o', tj/o' if o = j"  o'. 

For  every subset N of E define the N-s i ze  ItlN of t = a (q  . . . . .  tin) by Itt~.'= 
1 + F~':  lltjlN i f a e N  and ItlN = ~ '= l l t~ lN i f aq~N.  I f N  = E, we drop the index. 

Let X denote a set of variables of rank 0. Then define T~(X) := T~,~ x- (Clearly, 
Tz c_ Tz(X).) We use this different notation in order to indicate those variables 
which are to be substituted, t �9 T~(X) is called X-proper  iff every x �9 X occurs in 
t exactly once. If X is understood, we call t simply proper. 

Every map 0: X--* T~(X) can be extended to a map 0: T~(X)~ T~(X). For  
t �9 Try(X), tO is obtained from t by replacing all the occurrences of variables x s X 
with xO. 0 is called an X-subs t i tu t ion  or just substi tution if X is understood. We 
write 0 to the right of the argument in accordance with the prefix notation of 
trees. I f X  = {x~, . . . ,  xm} and x~O = t,, we denote tO by t [ t l , . . . ,  t j .  We also write 
t t 1 instead of t[ t l] .  

The set T~(xx) .'= T~({Xl}) is a monoid with respect to substitution (the neutral 
element is x0.  T~(xt) is not a free monoid. Especially, t i t2 = tl if tl does not contain 
an occurrence of x 1. 

Propositions 1.1-1.4 (mainly taken from [En]) state basic properties of T~(x 1). 

Proposition 1.1. Assume  Sl, S2, tl, t 2, t'l, t~ �9 Tz(Xl). 

(i) Bot tom Cancellation. Assume  t 1 ~ t'l. Then  s l t t  = s2t I and slt'l = s2t'l 
implies s I = sE. 

(ii) Top  Cancellation. Assume  x l  occurs in sl. Then  s l t l  = si t2 implies t l  = t2. 
(iii) Factorization.  Assume  ti ~ t~for i = 1, 2. Then sit1 = s2t2 and si t '  1 = s2t' 2 

implies s i r  = s2 or sl = s2r for  some r �9 Tz(xl). 
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A n  immediate consequence o f  assertion (iii) is: 

(iv) Assume  t i ~ t'ifor i = 1, 2 and ls i ]z = Is 2 Is. Then  s i t  I = SEt 2 and slt'l = s2t' 2 

implies s 1 = s 2. 

P r o o f  o f  (iii). Fi r s twe  define a relation < _ Tz(xl) x T~(xl). Fo r  s, t �9 T~(xl), s < t 
iff O(s) ~ O(t) and, u �9 O(s), s(o) v~ x l  implies s(o) = t(o). Intuitively this means 
that  s is a "prefix" of  t, i.e., s is obtained from t by changing certain subtrees (not 
necessarily all the same) into xl.  Thus, t = sr implies s < t but  no t  vice versa. We 
prove the following fact: 

(*) Assume s l, s2, t �9 T~(X1) where s 1 < t and s 2 ~ t. If  not  s i < s2, then 
30 �9 O(sl) c~ O(s2), sl(o ) ~ xi,  and s2(o) = xi.  

Assume 

s2(o ) = x 1 implies sl(o ) = x l, Vo �9 O(sl) c~ O(s2). (1) 

In order  to prove fact (,) it suffices to deduce from (1) that  sl < s2. Since si < t 
for i = 1, 2 we have 

sl(o) ~ x l  and s2(o) ~ x l  implies sl(o) = s2(o), 

Vo �9 O(si) c~ O(s2). (2) 

F r o m  (1) and (2) it follows that  sl - s2 already holds provided O(sl) - O(s2) (and 
hence O(sl) = O(sl) n O(s2)). To  prove that  O(sl) - O(s2) we assume for a con- 
tradict ion that  si contains a node  o r O(s2). Then 0 = 020' where 02 is the maxi-  
mal prefix of  o in O ( s i ) n  O(s2) and o ' S  e. Since o � 9  O(t)\O(s2), s2(02)= Xr  By 
assumpt ion (1) this implies that  sl(02) = x l  as well and hence o' = e which is a 
contradiction.  

Using fact (.) we are able to prove assertion (iii). Fo r  a contradict ion assume 
ti ~ t~ for i = 1, 2, s l t l  = s2t2, and sit'~ = s2t'2, but  assertion (iii) does not  hold, 
i.e., there is no  r �9 T~(xl) such that  s i r  = s2 or  si = s2r. We distinguish three cases. 

Case 1: sl _< s2. Then  O ( s l ) ~  O(s2) and 301, 02 �9 O(sl), s l / o i  = sl /02 = xl,  and 
S2/O 1 = r i ~ S2/O 2 = r 2. Define t = s i t  1. Then tl = t /o l  = t i t  2 and t 1 = t / o  2 = 

r2t2, and therefore r i t  E = r 2 t 2. Analogously,  we find tit'2 -- r 2 t' 2. Hence, by bo t t om 
cancellation rl = r E in contradict ion to our  assumption.  

Case 2 : s 2  < si. This case is analogous  to Case 1 with the role of  1 and 2 
exchanged. 

Case 3: Nei ther  sl  < s2 nor s2 < si .  By fact (,), 301, 02 �9 O(sl) n O(s2), sl/01 = Xl 

and s2/ol  = rl  ~ xl  and s2/02 = x l  and s l /02 = rE V ~ Xl. 
s l t  1 = s 2 t  2 implies tl = rl t2  and t 2 = r2t i. Hence, tl = r l r 2 t i  and so t~ = r lr  2. 

Similar considerat ions for t'l show that  t~ = r l r  2. Hence, tl = t~, which is a 
contradict ion.  This finishes the proof.  [ ]  

In  case the second factors contain  variables as well, bo th  bo t t om cancellation 
and factorizat ion have a much  simpler form. In  fact, the same cancellation and 
factorizat ion rules hold as for the free monoid .  We find: 
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Corollary 1.2. A s s u m e  s l ,  s2, t l ,  t 2 E Tz(xl) con ta in  a t  least  one  occurrence  o f  x l .  

(i) B o t t o m  Cance l la t ion .  s i t  ~ = s 2 t  1 impl ies  s 1 = s 2. 

(ii) T o p  Cance l la t ion .  s i t  1 = s i t  2 impl ies  t 1 = t 2 .  

(iii) Fac tor i za t i on .  s i t  1 = s 2 t 2 impl ies  s i r  = s 2 or  s i = s2r  f o r  some  r ~ Tz(x O. 

P r o o f  o f ( i ) .  If  s i t  1 -~ s2 t l ,  then s l q t '  = s 2 t l t '  for every tree t' e T~(xl). Since tl 
contains  an occurrence of x~, t ~ t ' r  t~ whenever  t ' r  x~. Hence,  we can apply  
b o t t o m  cancellat ion according to Propos i t ion  1.1(i) and  obta in  s~ = s2 according 
to the assertion. 

The p roo f  of assert ion (iii) is analogous.  [ ]  

Engelfriet employs  the propert ies  stated in Propos i t ion  1.1 to derive a p roper ty  
(T2) which in turn is used to prove  the general izat ion (T1) of  Schii tzenberger 's  
lemma.  Since [En]  does not  contain full proofs  of  these proper t ies  we present  them 
in greater  detail. In  parallel,  we state the cor responding  propert ies  for trees tha t  
contain at  least one occurrence of  a variable. 

Proposition 1.3 (Engelfriet 's P rope r ty  (T2)). 

(i) A s s u m e  si, ti, ui,  vi, w i e  T~(x0, i -  1, 2, and  e i ther  u 1 or  u 2 con ta ins  xa, 
v 1 ~ w 1 and  v2 v ~ w2.  T h e n  

UlV 1 ~ U2/) 2 ) 

UlW 1 ~ U2W 2 

U l t  1 = u2t  2 implies s l t  I = s 2 t  2. 

SlY 1 = S2V 2 

S1W 1 = S 2 W  2 

(ii) A s s u m e  s i, ti, u~, v i e Tz(xl), i = 1, 2, and every  tree con ta ins  a t  least  one 

occurrence  o f  x r  T h e n  

UlD 1 ~ U2V2~ 

Ul t l  u2t2 ( 

S l Y  1 S2V 2 . )  

implies s i t1  = s 2 t 2 .  

P r o o f  o f ( i ) .  First  assume bo th  ul and u 2 contain  x v  By factorization,  the first 
two equat ions  give u~r = u2 or ul = u2r. Withou t  loss of generality, assume 
u l r  = u2. Replacing u2 in the first three equat ions of  the assumpt ion  with u l r  and 
applying top  cancellat ion we find v 1 = rv 2, w l  = rw2,  and t a = r t  2. Replacing va 
and wl in the last two equat ions  with rv 2 and rw  z,  respectively, and  applying 
b o t t o m  cancellat ion we ob ta in  s i r  = s2. Hence  we can conclude: s l t~  = s l r t  2 = s2 t2 

which is wha t  we wanted  to prove.  
N o w  assume ul does not  contain  xl .  Then  u~v~ = u l w l  = ua, and hence 

u2v2 = u2w2  = ua. I f  u2 conta ined x~, then top  cancellat ion would  yield v 2 = w 2. 
Since v2 # w2 by assumpt ion,  u2 cannot  conta in  xl  and assert ion (i) trivially holds. 
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The proof of (ii) is analogous employing the simpler cancellation properties 
according to Corollary 1.2. []  

Proposition 1.4 (Engelfriet's Property (T1)). 

(i) A s s u m e  t i, t~ ~ Tz(Xl),  i = O, 1, 2, 3, 4. 

t o ' "  t i -  1 t j . . .  t 4 = t 'o"" t'i- 1 t~ . . .  t'4 f o r  all 0 < i < j < 4 

! ! ! ! t 
impl ies  t o t l t 2 t a t  4 = t o t l t 2 t a t  4. 

(ii) A s s u m e  ti, t ~  T~(x O, i = O, 1, 2, 3, and  every  tree con ta ins  at  least  one 

occurrence  o f  x l .  T h e n  

t o ' "  t i -  x t~""  t a = t 'o"" t~_ 1 t ) ' . "  t'a f o r  all 0 < i < j < 3 

impl ies  t o t 1 t 2 t 3 = t'o t'l t'2 t'3 . 

Due to the simpler cancellation and factorization properties of trees containing 
variable occurrences, in (ii) only a subdivision into four factors is needed (as 
opposed to five in the general case). 

In [En] Proposition 1.40) is stated with the additional assumption that 
to t2 t4  = t'ot'2 t'4. However, it is not used in the proof. Removing this assumption 
enables us to prove a powerful extension of this proposition. 

P r o o f  o f  P r o p o s i t i o n  1.40). 

C a s e  1: t o or t'o con ta ins  x 1, t 4 v ~ ta t  4, and  t'4 v ~ t'at'4. We know 

= tot4 ,  to t4 ' , 

to(t3 t4) = t'o(t'3 t'4), 

to(t2 t3 t4) = t'o(t'2 t'a t~), 

( to t l ) t4  = (t'ot'l)t'4, 

(t o t l ) ( t  a t 4) = (t'o t'l)(t'3 t'4). 

Proposition 1.3(i) implies (to tl)(t2 t3 t4) = (t 'o t'O(t'2 t'3 t'4) which proves the assertion. 

C a s e  2: t o and  t'o do not  con ta in  x 1. The assertion trivially holds. 

C a s e  3: Ei ther  t o or t'o con ta ins  x I bu t  t 4 = ta t  4. It follows that t'ot'4 = t'ot'3t'4. 
Assume t~ contains x x. Then t~ = t'at'4 by top cancellation. Now the assertion 

t v P ! . follows from the fact that t o t l t 2 t  4 = t o t l t 2 t  4. 

! v t t t t ! t t 

t o t l t 2 t a t  4 = t o t l t 2 t  4 = t o t l t z t  4 = t o t ~ t z t 3 t  4. 
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If tb does not  contain xx, then 

! t r t t t 
t o t l t 2 t 3 t 4  = t o 

t t t t 

= tot~t2t4 

= t o t l t 2 t  4 

= t o t l t 2 t 3 t  4. 

Case 4: Either  t o or t'o contains x~ but t'4 = t'3t'4. This is analogous to Case 3. 
The p roof  of s tatement (ii) is omitted. [ ]  

Theorem 1.5. Le t  K,  N e N and t~, ie  T~(xl) fo r  ~ = 1 . . . .  , K and i = 0 . . . . .  N .  

(i) Assume N > 3 " ( K  2 - K ) !  and for  every O < i < j < N there are 

x' ~ {1 . . . . .  K }  with x < x' such that  

tr 

tu, 0 "'" t~ , i_  l t~ , j"  " t K , N  : t x , , 0  " .  tx , , i_  l t x , , j  ' ' '  tx ' ,N.  

Then t~o,O. "t~o,N = t~ , ,o" ' tx~ ,n  for  some Xo < x l  in {1 . . . .  , K}. 
(ii) Assume N > 3 �9 (2K)!, to, o . . . . .  to, N is another group o f  trees in Tz(x O, and 

for  every 0 < i < j < N some x e {1 . . . . .  K }  exis ts  such that  

to, o ' ' '  to, i _ t t o , j ' "  to, N = t~ ,  o ' ' "  tx, i_ l t~ , j  "'" t~,N. 

Then to, o " " to,n = t~o,O" " t~o,n for  some ~c o ~ {1, . . . ,  K}. 

P r o o f  The p roof  of s tatement  (i) relies on Proposi t ion A from Ramsey Theory  
which for reasons of self-containedness is presented in the Appendix. For  
N ~ ,  let [N]  2 denote  the set { { i , j } l l < i < j < N } .  Consider  the set of 
"colors"  C := {{x, x'}[1 < x < x' < K}. By assumption,  a k-coloring p: [N]  2 ~ C 
exists where k = ~ C  = �89  - 1) such that, for i < j ,  p({i , j})  = {to, to'} implies 

tx, 0 ' ' "  tg, i _ l t ~ , j  "'" tx ,N = t x , .O . ' '  tK , , i_ l t~ , , j  "'" tx, ,N. 
According to Proposi t ion  A for m = 4 and k = �89  - 1), 1 < ~c o < K1 < K 

and 0 < il < "'" < i4 < N exist such that, for any two i < j from {ix, i2, i3, i4}, 

t~o, 0 " " " tKo, i -  1 tKo, j "  " " t~o, PC : tK 1, 0 " " " tK~, i -  1 tKl,  j "  " " tKl,  N '  

Proposi t ion 1.4(i) applied to 

t . 

t o : ~  tno, O ' " t x o ,  i l -  1, t o . =  tx~,o " ' tKbi~-- l ,  

t l  : ~  tK0,11 " ' " tK0, i 2 - 1 '  

t 2  :~-~- t~0 ,  i2" " " tK0, i3 -- 1 ,  

t l  : =  t ~ : l ,  i l  " " " tK1  ' i 2 - -  1 '  

t . 
t 2 " :  t ~ , i 2 " ' "  t K . 6 - 1 ,  

t 3  : ~  t~co, i3 " " " t~co, i 4 -  1, 

t 4 : =  t~o , i  o " . .  t ~o , N  , 

t . 
t 3  " :  t K l , i  3 " " t K l , i  4 -  1 ,  

t . 
t 4 . =  t~l,i 4 "'t~q,N , 

yields assertion (i). 
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The proof of assertion (ii) is analogous with a set of colors C :=  {1 . . . .  , K}. 
[] 

Theorem 1.5(ii) generalizes Engelfriet's property (T1) in the same sense that 
Weber's Lemma 2 of [W2] generalizes Schiitzenberger's lemma. Note that the 
lower bounds for N in the theorem can be stated more precisely as the Ramsey 
numbers R(4; �89 - 1)) and R(4; K), respectively. We stated the results (i) and 
(ii) slightly weaker but more explicit (with respect to numbers) since we apply them 
to estimate the complexities of algorithms. 

As another application of Ramsey Theory we have: 

Proposition 1.6. Assume Sl, s 2 ~ Tz(Xl) are different and m > O. Then some N e 
exist such that, for all pairwise different t l , . . . ,  ts  e T~(xt), an m-element subset 
J _ {1 . . . . .  N}  and i ~ {1, 2} exist such that the trees tjs~,j e J, are pairwise different. 

Proof. For every j ~ j '  we have, by Proposition 1.10), tjs I ~ tjs 1 or tjs 2 ~ tj, s 2. 
Therefore, a 2-coloring p: IN] 2 ~ {1, 2} exists such that p({j,j '}) = i implies tjs~. 
Now, the assertion follows from Proposition A for k = 2 (and varying m). [] 

For trees in T~(X) the size is more adequately described by a polynomial. Let 
Q(1)[ X] "= ~ + ~x~x •" x denote the set of polynomials of degree at most 1 in 
variables from X with coefficients in Q. We define a map co: T~(X) ~ Q(1)[X] by 

09(0:= Itl~+ ~ Itl~x~'x, 
x~X 

i.e., the constant is the Z-size of t, whereas the coefficient of x is just the number 
of occurrences of x in t. Note that w(t) e ~(ol)[X]. 

As for substitutions, maps O:X-- .Q(1)[X]  can be extended to maps 
Q(1)[X] --* Q(X)[x]. For f e O(1)[X], fO is defined by function composition, i.e., 
fO is the function obtained from f by first applying the functions xO and then 
applying f to the results. As for trees, we call 0 an X-substitution or substitution, 
if X is understood. If X = {Xx . . . .  , xm) and xiO = fi we denote fO by f [ f l  . . . . .  fro] 
and write f f l  for f [ f l ] .  

Similar to Tz(xl), Q(1)[Xl] = Qtl)[{xl} ] forms a monoid where the product 
is defined by 

(nl + dlXl) ' (n2 + d2Xl):= nl + dl (dzxl  + n2) = (nl + din2) + dld2Xl, 

and the unity is X l- 
co commutes with substitution. Especially, 0~: T~(xl) ~ Q(~)l-Xl] is a monoid 

morphism, i.e., co(st) = o~(s)og(t) for all s, t e T~(x 1). Hence the following proposition 
holds: 

Proposition 1.7. 

(i) I f  for j = 1 , . . . ,  k, t j e  Tz(xl) and r = nj + djxl ,  then 

( - O ( t l ' ' ' t k )  = n 1 "]- d i n  2 q- "'" + ( d l - . - d j _ l ) n j - I - . . .  

+ ( d l  "'" dk- l)nk +(d l" ' "  dk)" X1 
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(ii) I f  t e T~(xO and co(t) = n + dx 1, then 

k - 1  
co(t k) = n '  ~, d j + dk" x l .  

j = 0  

With the only exception being Proposition 1.1(iv), statements 1.1-1.6 remain 
valid for Q(~)[xl] as well. We refer to them as 1.1S-1.6S, respectively. The 
occurrence of x~ in a polynomial f now means that the coefficient of X l is different 
from 0. In this case even f is invertible. As an example, we state the version of 
Proposition 1.1 for polynomials. 

Proposition 1.1S. Assume sl, s2, tl, t2, t l ,  t2 ff •(1)[X1] where si = nl + d ix1 .  

(i) B o t t o m  Cancellation. Assume tl  ~ t'l. Then  s i t  1 = s 2 t  1 and s~t'~ = s2 t '  1 

implies sx = s2. 
(ii) Top Cancellation. Assume x l  occurs in s a, i.e., d 1 ~ O. Then  s~t 1 = s l t  2 

implies t~ = t 2. 

(iii) Factorizat ion.  Assume  t i ~ t'i f o r  i = 1, 2. Then s~t 1 = s2t 2 and Slt'l = s2t'2 

implies s i r  = s2 or sl = s2r f o r  some r e Q(1)[xl]. 

P r o o f  o f  (iii). 

Case 1" dl  = 0 and d 2 = 0. Then s~ = s 2. 

Case 2: d 1 ~ 0 o r  d 2 =/=0. Without loss of generality d 1 # 0. Define s~-l:= 
d 1 1 x 1  --k ( - d l l n l )  and r : =  S l l S 2  . Then sxr = s 2. [] 

Note that we in fact proved a somewhat stronger version of (iii), namely that 
already sit1 = s2t2 implies s l r  = s2 or s~ = s2 r for some r e  Qtl)[x~]. However, 
we only need the version stated in Proposition 1.1S(iii). 

In fact, statements 1.2-1.6 are valid for any monoid in which Proposition 
1.1(i)-(iii) holds (where "x~ occurs in s" should be read as "3t, st ~ s") with the 
same proofs as above. 

2. Bottom-Up Finite State Tree Transducers 

In this section we introduce bottom-up FSTs. We define the notion of a computa- 
tion of a tree transducer quite carefully in order to get precise terminology for the 
composition and decomposition of subcomputations. A major difficulty when 
dealing with bottom-up transducers is that during a computation we may 
substitute a tree sj produced by some subcomputation for a variable xj not 
occurring in the corresponding output pattern. Thus, sj is dropped and will not 
be part of the final output. We introduce FSTs which only drop a special symbol 
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L. We show that every FST M can be modified to have this property without 
changing the translation of M (Proposition 2.1). Moreover,  applying Theorems 
1.5 and 1.5S, we prove that it can be decided whether or not an FST is k-valued 
or k-size-valued (Theorems 2.2 and 2.3). 

For  the following, X denotes the fixed denumerable set {xi[i ~ ~} of variables 
and X,, = {xl . . . . .  Xm}. 

A bot tom-up F S T  is a 5-tuple M = (Q, Z, A, 5, Qv) where: 

Q is a finite set of states. 
QF ~- Q is the set of f inal  states. 
Z is the signature of input trees. 
A is the signature of output trees. 
6, the set of  transitions of M, is a finite subset of U,,_>o Q x Z m x TA(X,,) x Qm. 

The tree s in a transition (q, a, s, q l " " q m ) E  5 is also called the output  pat tern 
of this transition. The transitions in 6 n {q} x Z x TA(X ) x Q* are called q- 
transitions. 

M is called f ini te  tree au tomaton  (abbreviated FTA) if, for every transition 
(q, a, s, q l" ' "  q,,) in 6, the output pattern s equals a ( x l , . . . ,  x,,). 

Let t = a(tl  . . . .  , tin) E T~ , ( X k )  and q, ql ,  . . . , qk ~ Q. A (q, ql " " " qk)-computation r 
of M for t starts at variables x~ in the states qi, i t  {1 . . . .  , k} and consists of 
(Pj, q l" ' "  qk)-computations of M for the subtrees tj, j E {1, . . . ,  m}, together with a 
transition (q, a, s, p~ . . .  Pro) ~ 6 for the root. Note  that in our notation the resulting 
state of ~0 at the root of t is written to the left whereas the starting states for the 
variables are written to the right thus suggesting a bot tom-up computat ion to 
proceed from the right to the left. This order is chosen according to our (linear) 
description of trees in Section 1: in t = a(ta . . . . .  t~), the label a of the root stands 
to the left of the subtrees tj. 

Formally, a (q, q l" '"  q~)-computation of M for t is a tree ~0 in T~(Xk) with the 
following properties: 

(i) If t = x j, then q = qj and q~ = xj .  
(ii) If t = a ( t  1 . . . . .  t,,), then ~o =z(q~ 1 . . . .  ,~p,,) for some transition z - -  

(q, a, s, Pl"" "Pro) and (pj, ql""" qk)'compu tations r for t~. 

A (q, e)-computation is also called a q-computation. A q-computation is called 
accepting iff q e QF. 

Let t ~ Tz(Xk) , o ~ O(t), and let ~0 be a (q, qx""  qk)-comp utation of M for t. The 
subcomputat ion of ~0 for the subtree t/o of t with root o is defined as q~/o. Assume 
t = to[t 1 . . . . .  t k ] .  Assume ~o o is a (q, p l ' " p k ) - c o m p u t a t i o n  for to, and ~oj are 
(pi, q l " " q , , ) - c o m p u t a t i o n s  for tj, j =  1 . . . . .  k. Then q~:= ~00[q~l,...,tpk ] is a 
(q, q l " "  q,,)-computation of M for t. Conversely, if to contains exactly one occur- 
rence of any x~ (i.e., is Xk-proper), then every (q, ql . . -q , , ) -computat ion ~o for 
to[t~ . . . . .  tk] can be uniquely decomposed into a (q, px ' "pk) -computa t ion  ~o o for 
to, and (p j, ql  . . . q,,)-computations q~j for ti, j = 1 , . . . ,  m (for suitable states p j), such 
that q~ = ~oo[~o 1 . . . .  , ~0k]. 
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The output T(q~) produced by a (q, ql-"qk)-computat ion r is defined as 
follows. If q~ = xj, then T(q~) := xj. If q0 = z(q~a, . . . ,  q~k) where z = (q, a, s, ql" '"  q,,), 
then T(cp):= s[T(~00, . . . ,  T(~0m)]. As an abbreviation, we define f~(q~):= co(T(q~)). 

For  convenience (and in abuse of the symbol 6) we write (q, t, s, ql" '"  qk) E t~ 
iff there is a (q, q~'--qk)-computation q~ of M for t with T(q~) -= s. 

TM(t):= { T(~o) l q~ accepting computation of M for t} denotes the set of outputs 
of M for t; flu(t).'= {f~(q~)l q~ accepting computation of M for t} denotes the set of 
output sizes of M for t; valM(t) := ~: TM( 0 denotes the number of different outputs 
of M for t; svalM(t ) := #ef~M(t) denotes the number of different output sizes of M 
for t; L(M):= (t e T~[ there is an accepting computation of M for t} is the lanouage 
accepted by M; T(M):= {(t, s)l t E L(M), s ~ TM(t) } is the translation defined by M 
(note: for an ETA M, T(M)= {(t, t)lt ~ L(M)}); ~(M):-- {(t, s)lt~ L(M), s~ f~t(t)} 
is the size translation defined by M; val(M):= sup{valM(t)lt ~ T~} is the valued- 
ness of M; and, finally, sval(M)'.=sup{svalM(t)lt~Tz} is the size-valuedness 
of M. 

M is called: 

�9 single-valued if val(M) < 1, 
�9 k-valued if val(M) < k, 
�9 finite-valued if val(M) < 0% and 
�9 infinite-valued if val(M) = ~ .  

Analogously, we define the notions single-size-valued, k-size-valued, finite-size- 
valued, and infinite-size-valued. 

For measuring the computational costs of our algorithms relative to the size 
of an input transducer, we assume that E and A are fixed in advance and therefore 
have constant cardinalities and ranks. Throughout  this paper the rank of Z is 
denoted by L. Moreover, we assume that every symbol can be stored in one 
memory cell of a Random Access Machine (with uniform cost measure). Thus, we 
define the size of M, [M I, by 

IM[ = ~ (m + Isl + 2). 
( q , a , s ,  q l  "" "qrn)~6 

As a special convention we introduce a new symbol I of rank 0 (i.e., A_ r A) and 
define A• := A u {d_}. We extend the notion of an FST M = (Q, z,  A, 6, QF) by 
extending A to A• and allowing • as an output pattern of transitions, i.e., for 
every transition (q, a, s, ql"" "qm) of M, either s ~ TA(X,,) or s = • We only consider 
FSTs M where an output tree _1_ is always substituted for a variable which does 
not occur in the corresponding output pattern. Therefore, _1_ does not occur as 
the leaf of an output tree s # L, i.e., the output of every (q, qa""  qk)-computation 
q~ of M either equals I or is in Ta(Xk). The map 09 is extended to trees t in Tal(Xk ) 
by o9(t):= I tla -I- 2~= l i t  [{xj}'xj, i.e., we give • size 0. Clearly, this modified map o9 
still computes with substitution. 

An FST M = (Q, Z, A• 6, QF) is called reduced if: 
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(i) For  every q E Q an accepting computation tp of M and a node o in q~ exist 
such that ~0(o) is a q-transition. 

(ii) There is a subset U(M) ~ Q such that, for every transition (q, a, s, ql" '"  q,,) 
E fi, the following holds: 
if q q~ U(M), then s ~ _1_ and (q~ ~ U(M) iff xj does not occur in s), and 
if q ~ U(M), then s = L and qj ~ U(M) for all j. 

The states in U(M) are exactly those which are used by subcomputations q~ with 
T(q~) = 3_. If a computation has reached some state not in U(M) we can be sure 
that the output for the corresponding subcomputation is part of the final output. 

Proposition 2.1. For every F S T  M = (Q, Z, A, 6, QF) there is an F S T  M ,  = 
(Qr, Z, A_t, fir, Qr, F) with the following properties: 

(i) M r is reduced. 
(ii) T(Mr)=  T(M). 

M r can be constructed from M in polynomial time. 

Proof (Sketch). Define ~t  = (Q, Z, A,t, 3, (~F) where Q.'= Q x {0, 1}, QF := 
QF x {1}, and 3 is defined as follows. Assume (q, a, s, q l" ' 'qm)~ 6. 

Then ((q, 0),  a, • (ql ,  0 ) " .  (qm, 0)) and ((q, 1), a, s, (ql ,  e l ) " "  (qm, e,,)) are 
in 3 where e j :=  1 if xj occurs in s, and e j :=  0 otherwise. 

Then, T(M) = T()C4) and/~r satisfies (ii) of the definition of reducedness with 
U()~) = Q x {0}. Now eliminate superfluous states and transitions. [] 

Proposition 2.1 can be used to decide in polynomial time whether or not L(M) 
is empty. The next theorem shows that it can be decided in nondeterministic 
polynomial time whether M is not (k - 1)-valued. In the proof reducedness is not 
needed. 

Theorem 2.2. Assume k > 1 is a f ixed constant and M an F S T  with n states. 

(i) val(M) >_ k iff there is a tree t of depth at most 3. (k 2 - k)!" n k such that 
valM(t ) > k. 

(ii) I t  can be decided in nondeterministic polynomial time whether val(M) >__ k. 

Proof (i) Define N. '= 3 "(k 2 - -  k)!. Assume t~ Tz is a tree of minimal size such 
that there are accepting computations qh, . . - ,  ~0k of M for t with T(~0~) # T(~0~,) 
for x ~ x'. For  a contradiction assume depth( t )> N" n k. Then there are states 
P l , ' " , P k e  Q, a factorization of t = t o ' " t N  into proper trees t i e  T~(xl) and 
corresponding factorizations q~ = q~, o""  q~, N such that q~,j are (p~, p~)-computa- 
tions for all x = ! . . . . .  k and j -- 1 , . . . ,  N - 1. Define s,,~ := T(q~,j), x = 1 , . . . ,  k, 
j = 0 . . . . .  N. By the minimality of t, 

V O < i < j < _ N ,  3tr 

S t ,  0 " " .  S t ,  i _  l S r , j "  . . S t ,  N -~- S r , , O ' "  . S r , , i  - l S r ' , j "  . .  S r , , N  , 
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By Theorem 1.5(i), this implies 

T(~o~o) = S~o,O'"S~o,N = S~,.o'"S~,,N = T(q~,) for some 1 < Xo < xl < k, 

a contradiction. 
(ii) The first observation is that it suffices to consider only paths of outputs 

of accepting computations. Paths in a tree s over some alphabet F start at the 
root of s and lead to some node o. They are denoted by words over the alphabet 
B(F) := {(a, j) la �9 F, 0 <_ j <_ p(a)}. The first components of the letters give the labels 
of the nodes on the path w, whereas the second components contain the direction 
in which w may proceed. Label (a, 0) indicates the endpoint of a path. For  s e Tr(X ) 
we distinguish between sets bj(s), j > 0, of paths of s leading to nodes labeled with 
xj and the set bo(S) of paths of s leading to some node not labeled with some a ~ F. 
Formally, we define: 

�9 If s = x j, �9 X, then, for j > 0, 

b j ( s ) . . = { ~  } ifj  = j ' ,  
otherwise. 

�9 I f  s = a(s l , . . . ,  sk), then 

k 

bo(s).'= {(a, 0)} u U (a, 
~c=1 

and 

k 

bj(s):= U 
K = I  

(a, ~:)'bj(s~) for j > 0. 

Let w = (aDjO'"(a, , jr)(a,O)~B(F)* and o = J l " " J , .  If webo(s), then, in fact, 
o �9 O(s) and s(o) = a. Thus, path w of s leads to node o. Observe that there is at 
most one path of s leading to o �9 O(s). We have: 

(1) For  all trees sl, sz e Tr, sl --/= s2 iff paths w i �9 bo(si), i = i, 2, exist leading 
to some node o �9 O(sO n O(s2) such that wt # w2. 

Observation (1) follows from the fact that Sl ~ s2 iff some o e O(sl) c~ O(s2) exists 
with sl(o) # s2(o). 

Our  second observation is that the paths of the output produced by some 
computat ion q~ are in fact produced by the paths of q~. For  n �9 bj(q~), the set B(n) 
of paths produced by ~c is defined by B(n):= {e} if rc = e, and B(n):= b~(u)- B(n') 
if rr = (z, x). n' where z = (q, a, u, ql .. " qk). 

We prove: 

(2) bj(T(~o)) = U{B0r)[rr e bj(q~)} for every computat ion q~ and j _> 0. 

For  a proof  consider some computat ion ~p. The sets bi(T(q))) inductively can be 
obtained as follows: 
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�9 I f  ~o = xy �9 X,  then, for j > 0, 

b~(r(tp)) = otherwise. 

�9 If  q> = z(~01 . . . . .  q~k) for z = (q, a, u, q l ' "  qk) �9 6, then 

k 

bo(T( o)) = bo(U) u U 
K = I  

and 

k 

= U for j > 0. 

F r o m  this, observa t ion  (2) follows by induct ion on the depth  of r 
F o r  q �9 Q, let Mq denote  the F S T  M q : =  (Q, E, A, 6, {q}). 

Claim. val(M) > k if and  only if M has p roper ty  (k-val): 

(k-val) m < L .  k(k - 1). N "  n k, some proper  t �9 T~(Xm), and (qt,,), pray).., p~))_ 
computa t ions  ff~, x = 1, . . . ,  k, of  M for t exist such that  the following 
hold: 
(a) [tl < _ L . k ( k -  1 ) ' N . n  k. 
(b) q(~) �9 QF for all ~:. 
(c) N{L(Mp~,)[x = 1 . . . . .  k} r ~Z~ for all # e  {1 . . . . .  m}. 
(d) F o r  every 1 < xl  < x z  < k, paths  rc lebo(~O,  and wieB(ni),  

i = 1, 2, exist tha t  lead to the same node  o but  where Wl r w2. 

I t  is easy to const ruct  a nondeterminis t ic  po lynomia l - t ime  a lgor i thm which tests 
whether  M has p rope r ty  (k-val). Therefore,  it remains  to prove  the claim. Direct ion 
" ~ "  follows f rom observa t ions  (1) and (2). 

F o r  a p roof  of  the remaining impl icat ion assume val(M) > k. By s ta tement  (i) 
of  the theorem,  we know tha t  some tree s �9 T x of  depth  at  mos t  N .  n k and accepting 
computa t ions  cp 1 . . . . .  cp k of  M for s exist such that  T(~o~,) ~ T(cp~) for all x 1 ~ x2. 
Assume x x < K 2. According to observa t ion  (1), pa ths  w ~162 bo(T(cp~,)), i = 1, 2, 
exist tha t  lead to the same node  but  are different. By observa t ion  (2), pa ths  
n <~) ~bo(~P~,) exist such tha t  w ~) �9  ~ ~ Assume rr ~) lead to nodes  

K l , g 2  /gl 9 lg 2 ~ Ir K2/" /s ~2 

o~,  ~ �9 O(qo 0 = O(s). Let O denote  the set of  all these nodes. We construct  t as the 
smallest  tree tha t  contains  all pa ths  of  s leading to some o �9 O. Thus,  t is ob ta ined  
by removing  all subtrees f rom s whose roots  are not  prefixes of any  o �9 O. 

Formal ly ,  let R denote  the set of  all nodes r �9 O(s) minimal  with respect to 
the prefix ordering tha t  are not  prefixes of  some o �9 O. Let  r~ . . . . .  r s  be an 
enumera t ion  of the nodes  in R. By construct ion,  m < L . k ( k  - 1)- N .  n k. N o w  t is 
obta ined  f rom s by replacing the subtrees with roots  rj with x~, j = 1 , . . . ,  m. 
According to the definition of R, t is well defined and  Xm-proper.  t gives us the 
decompos i t ion  s = t [s l  . . . . .  ss]  where  s i :=  s/rj .  Let cp~ = ~k~[cp~. 1 . . . . .  q)r,m'] be the 
cor responding  decompos i t ion  of cp~. Then  m, t together  with ~k~, ~c = 1 . . . .  , k, 
satisfy condi t ions (a}-(d) of  (k-val). This  finishes the proof.  [ ]  
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A corresponding result holds for k-size-valuedness, but the complexity of the 
proposed decision procedure is worse. This is due to the fact that size is a "global" 
property of trees. Therefore, there is no (at least no obvious) way to decide equality 
of the output sizes produced by two computations for a tree t of polynomial 
depth--by  looking just at a polynomial number of nodes of t. 

Theorem 2.3. Assume k > 1 is a f i xed  constant and M is an F S T  with n states. 

(i) sval(M) >_ k iff  there is a tree t o f  depth less than 3. (k 2 - k)!" n k such that 
svalu(t) _> k. 

(ii) I t  can be decided in polynomial space whether or not sval(M) > k. 

Proof. The following nondeterministic procedure possible_size computes for a 
given state q the output size f~(~0) of a guessed q-computation q~: 

function possible_size(q: state): rational; 
begin 

guess m ~ {0 . . . . .  L}; 
var A: array [1 . .m]  of rational; 
guess (q, a, s, ql "'" qm) ~ 3; 
for i := 1 tO m do 

A[i] := possible_size(q/); 
return e;(s)[A[l] ,  . . . ,  A[m]]  

end; 

Assmr~e the guessed computation is a q-computation q~ of M for t. 
Using the standard stack-based implementation of recursion, the RAM needs 

a stack size proportional to L.  depth(t) where every stack item contains a pair of 
a state p and the output size of a subcomputation ~o' of ~0. We have 

f~(~o') _< l t I" [M[depth(t)+ 1 ~ (L" I MI) depth~t) + 1. 

Hence, every integer intermediately computed by our RAM has bit length 
O(log(L. [Ml) 'depth(0).  Therefore, the Turing machine space to compute a 
possible output space for t is polynomial in [M[ and depth(t). 

Accordingly, for every constant k > 1, we can construct a Turing machine 
which returns the output sizes of k > 1 accepting computations for a common 
input tree t which uses space polynomial in [M[ and depth(t). 

Since it suffices to consider input trees of polynomial depth we can construct 
a polynomially space-bounded Turing machine that guesses accepting computa- 
tions cp ~ . . . . .  cp k of M for a common (guessed) tree t of polynomial depth, computes 
the values f~(cpl ) . . . . .  fl(~0k), and verifies whether these are pairwise different. []  

Assume M is a reduced FST. The following notion is crucial in the case 
distinctions of Sections 3 and 4. State q ~ Q is called unique-sized iff f~(~Ol) = f~(~o2) 
for all q-computations ~ol, ~o2. Define Const(M)..= {q ~ Q[q is unique-sized}. The 
states in Const(M) are relevant in what follows since at least two different output 
sizes are necessary to apply bottom cancellation or factorization according to 
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Proposition 1.1S. Observe that, since M is reduced, q e U(M) implies f~(~o) = 0 for 
every q-computation ~o of M. Therefore, U(M) ~ Const(M). 

The following proposition summarizes simple properties of the states in 
Const(M). 

Proposition 2.4. Assume p is unique-sized. Then the following holds: 

(1) I f  there is a proper (p, q)-computation, then q is unique-sized as well. 
(2) For every proper (p, p)-computation q~ one o f  the following two possibilities 

holds: 
�9 f~(q~) = 0 and hence T(~o) = _1_, or 
�9 f~(q~) = x l  and hence T(q~) = xl .  

3. Necessary Conditions for Finite (Size-) Valuedness 

In this section we introduce three necessary conditions (F0)-(F2) for an FST M 
to be finite-valued. Property (F0) is implied by Property (F1). We also introduce 
the corresponding necessary conditions (S0)-($2) for an FST to be finite size- 
valued. 

In order to prove that Property (F0) is necessary for val(M) < oo and that 
Properties (S1) and ($2) are necessary for sval(M) < ~ we introduce (technical) 
Properties (F0'), (SI'), and ($2'), respectively. The relations among these properties 
are as follows: 

�9 For i = 1, 2, M has Property (Si) iff M has Properties (SO) and (Si'). 
�9 For i = 0, 1, 2, M has Property (Fi) iff M has Properties (F0') and (SO. 

(F0'), (SO), and (SI') Correspond to (IV2), (IV3) and OV1) of the conference version 
of IW4], respectively. Thus, Property (F0) subsumes Criteria (IV2) and (IV3), and 
(F1) subsumes all three Criteria) Our additional Property ($2) (or F2)) has no 
analogue in the word case. 

For Sections 3-5 assume M = (Q, E, A• 3, QF) is a reduced FST with 
T(M)  ~ T~ x Ta (see Proposition 2.1). 

Property (F0). M has Property (F0) for proper t e T~(xl) iff 

(p, t, Sl, p), (p, t, S2, q), (q, t, sa, q)e 5 

implies 

sis2 = s2sa. (F0) 

By the assumptions of Property (F0), Uk, j := S~S2 s k - j -  ~ is the output produced by 
some (p, q)-computation of M for t k for every 1 < j < k. Intuitively, the commuta- 
tion relation (F0) means that the output Sl for one copy of t produced in the 
p-loop can be shifted to the output s3 produced for t in the q-loop. Hence, 
Uk, j = Uk, j, for every 1 < j, j '  _< k. 

1 In the journal version of his paper, Weber modified his criteria in the spirit of ours. 
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Property (F0.0) is obtained from Property (F0) by replacing conclusion (F0) 
with 

{• xd  e {• x,}. (vo.o) 

It is implied by Property (F0) as can be seen as follows. Without loss of generality, 
we may assume that t ~ x 1. First assume s2 contains an occurrence of x~. Then 
by reducedness of M, also s~ and s3 contain occurrences of x~. Thus, (F0.0) takes 
the form 

s l = x l  iff s 3 = x r  

If s 1 = X1, then (F0) implies that s 2 = $2S3, and hence x 1 = S 3 by top cancellation. 
If, on the contrary, s3 = x:, then (F0) implies that s~s2 = sz ,  and hence s~ = xl  
by bottom cancellation. 

Therefore, assume s 2 does not contain an occurrence of xl. Then q ~  U ( M )  

since M is reduced. It follows that s 3 = _1_. Equation (F0) yields that s i s  2 = s 2. If 
Sl does not contain an occurrence of x~, then by the reducedness of M ,  p ~ U(M) .  

Hence since t # xx, s 1 = .J-. If Sl contains x1, s 2 is a subtree of s i s  2. Therefore, 
(F0) can only hold if s 1 = Xr 

Property (F1). M has Property (F1) for proper t ~ Tz(x0 ill', for every factorization 
t = t l t 2 t 3 ,  with proper tl, t 2, t a E T~(x0, 

(P, tl, six, P0, (Pl, t2, S12, Pl), (Pl, t3, S13, P), 

(P, tl, S2D Pa), (P2, t2, s22, P2), (P2, t3, S23, q), 

(q, tl, s31, Pa), (P3, t2, s32, P3), (P3, t3, $33, q)ff 6 

implies 

SllS12S13S21S23 ~ S21S22S23S31S33. (F1) 

Property (F1) is less intuitive. It is obtained from (F0) by considering a product 
t l t a  and the corresponding factorizations of the (p, p)-, (p, q)-, and (q, q)-computa- 
tions according to Property (F0). Into these three computations one inserts 
pi-loops for some proper t 2. Now commutation relation (F1) says that while 
shifting the output for t~t 3 from the p-loop to the q-loop, the output of the pl-loop 
for t 2 can be shifted to the output of the p2-100p for t2. 

Property (F2). M has Property (F2) for proper t ~ T~(xO iff, for every factorization 
t = t l [ x  1, t2t3] with proper t 1 e T~(X2), proper t 2 E Tz(Xl), and t3 ~ T~, 

(P, tl, Sll, PPl), (Pl, t2, $12, Pl), (Pl, t3, S13, ~)' 

(P, tl, S21, qP2), (P2, t2, S22, P2), (P2, t3, S23, ~3), 

(q, tl, S31, qP3), (P3, t2, $32, P3), (P3, /73, S33, /~) ~ ~ 
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implies 

Sll[S21[X1, S23], Sl2S13] = S21[S31[X1, S33], S22S23]" (F2) 

The basic structure of Property (F2) is again the same as for (F0). However, 
we now consider a tree t l[x ~, t3] for some {xl, x2}-proper h- Similar to commuta- 
tion relation (F1), commutation relation (F2) says that while shifting the output 
for tl[x~, t3] from the p-loop to the q-loop, the output of the pl-lOop for t2 inserted 
into the p-loop can be shifted to the output of the p2-100p for t2 inserted into the 
(p, q)-computation for t l[xl ,  t3]. 

For i = 0, 1, 2, Properties (SO and (S0.0) are obtained from Property (Fi) and 
(F0.0) by applying co to the output trees in the conclusions (Fi) (resp. (F0.0)). Since 
~o(s) = 0 iff s = _L and ~o(s) = x I iff s = xl we have: 

Fact O. 

(i) M has Property (F0.0) for t iff M has Property (S0.0) for t. 
(ii) For i = 0, 1, 2, if M has Property (Fi) for t, then M also has Property (Si) 

for t. 

In what follows whenever we do not specify the tree for which a property 
holds we mean that it holds for all xl-proper trees. 

Also, M has Property (F0) for t provided M has Property (F1) for t with 
t = tlta t3 where t z = Xl. Hence, if M has Property (F1), then M also has Property 
(F0). Analogously, if M has Property (S1), then M also has Property (SO). 

Now we state the main theorem of this section. 

Theorem 3.1. Assume M is a reduced FST. Then the followin9 hold: 

(i) I f  sval(M) < o0, then M has Properties (S1) and ($2). 
(ii) I f  val(M) < oe, then M has Properties (F1) and (F2). 

In order to prove Theorem 3.1, we start by considering Property (SO). Then, 
we introduce Properties (F0'), (SI'), and ($2') which are closely related to (F0), (S1), 
and ($2), respectively, but are technically more adequate. 

Proposition 3.2. I f  sval(M) < oe, then M has Property (S0). 

Proof Assume t eZl~(X1) is proper, p, q eQ, and (p,t, sl, p), (p,t, s2, q), 
(q, t, s a, q) ~ tS. We show 

og(s l s2) = co(s2 s3). (1) 

Define e)(si) = ni + d i .x  1 for i = 1, 2, 3. Equation (1) is equivalent to (2) and (3): 

nl + (dl - 1)n2 = d2n3, (2) 

did  2 = d2d 3. (3) 
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Since M is reduced, (q, t', s', e) ~ 6 for some trees t' and s' where co(s') = n 4. Define 
oJo c k - J  - 1  t Uk, j:= olozo3 , j = 0 . . . .  , k -- 1. Then (p, t k, Uk,j, q) and (p, tkt ', Uk.j$ , ,S) ~ t~ 

for all j. First  assume p ~ U(M). Then  q e U(M) since M is reduced. Hence,  
sl = s2 = s3 = • and cO(SxS2) = 0 = co(s2s3). N o w  assume pC U(M), i.e., dl > 0. If  
q~Const (M) ,  then Co(sk-J-ls ') ----CO(S'). By Propos i t ion  2.4, cO(Sa)e{0, xl},  i.e., 
n a --- 0 and d a e (0, 1}. Hence,  the r ight-hand side of  (2) equals 0. Moreover ,  

(.O(Uk, jS '  ) = 0 ) ( ~ $ 2  St) = n 1 . ~,1S~ d] + d~" In z + d2n4] 

by Propos i t ion  1.7. Therefore,  

CO(Uk,j+ lS') -- CO(Uk,jS') = d~ " [nl + (n2 + d2n4)" (dl - 1)]. 

If  n I + (//2 + d2r /4 )"  ( d l  - 1) > 0, then all CO(Uk,jS' ) are distinct and  tkt ' has at  least 
k ou tpu t  sizes; since k can be chosen arbi t rar i ly  and M is reduced, this implies 
that  sval(M) is infinite. Consequent ly,  nl + (n2 q- dEn4)'(dl - 1) -- 0 f rom which 
we deduce tha t  nl = 0 and  d 1 = 1 because s2, s' # I .  Hence,  the left-hand side of  
(2) equals 0 as well. To  prove  (3), recall that  d a ~ {0, 1}. If  d 3 = 1, then dxd 2 = 
d 2 -~ d2d 3. I f d  3 --- 0, then q ~ U(M). Therefore,  d E = 0 since M is reduced. I t  follows 
that  did 2 = 0 = d2d3, and (3) holds as well. 

N o w  assume q r Const(M). Hence  especially, q ~ U(M) and so de > 0 for i = 
I, 2, 3. By Propos i t ion  1.7, ~o(uk,j) = Ak, j q- Bk, j" X 1 with 

j - 1  k - - j - 2  
Ak , j=  nl Z d] + n2d ~ + n3d'ild2 Z d~ 

i=0  i = 0  

and 

Bk,j = d~d2d',3-j- 1. 

First  assume dl ~ d3. Then,  for every k, all the Bk,j and hence all the values (~(Uk,j), 
j = 0 . . . .  , k - 1, are distinct. Since q 6 Const(M), we have (q, ti, vi, ~) ~ 3 for i = 
1, 2 and  suitable trees t i such that  co(v1)~ c~(v2). Therefore,  we can apply  
Propos i t ion  1.6S and find that,  for every m, some k > 1 and i ~ {1, 2} exist such 
tha t  tkti has at  least m p -computa t ions  with pairwise different ou tpu t  sizes. Thus,  
sval(M) cannot  be finite. Therefore,  d 1 = d3 =: d and  (3) holds. F o r  Ak.j we find 

j - 1  k-2 
Ak , j=  nl ~ d i + n2d j + n3d2 ~ dk 

i=O i= j  

Hence,  

A k , j +  1 - -  Ak ,  j = dJ[nl + n 2 ( d  - 1) - n 3 d 2 ] .  

If  nl + n2(d - 1) - n a d  2 ~ 0, then, for every k, all the values Ak, j and hence 
all CO(Uk, j), j = 0 , . . . ,  k -  1, are distinct which as above  allows us to construct  
a contradic t ion to sval(M) < 00. Therefore,  nl + n2(d - 1) - nad 2 -- 0 which 
gives (2). [ ]  

The  next p roper ty  is crucial to " r ecove r"  Proper t ies  (Fi) f rom Proper t ies  (Si). 
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Proper ty  (F0'). M has Proper ty  (F0') for p roper  t e Tz(xl) iff 

(p, t, s 1, p), (p, t, s 2, q), (p, t, s 3, q), (q, t, s 4, q) ~ ~, 

sl r 1 7 7  Xl} and co(s2) = co(s3) implies s2 = sa. 

M has Proper ty  (F0') iff M has Proper ty  (F0') for all x l -p roper  trees t. 

Proposition 3.3. I f  val(M) < oo, then M has Property (F0'). 

Proof  Assume val(M) < oo, and let t ~ Tz(xl) be proper,  (p, t, sl, p), (p, t, S2, q), 
(p, t, s3, q), (q, t, s4, q) e 6, S l r  {•  Xl}, and co(s2) = co(s3). We show s2 = sa. 

Since val(M) < oo, M has Proper ty  (SO) by Proposi t ion  3.2 and hence also 
(F0.0) by Fact  0. Therefore,  sa r {_!_, xl} implies s4 r {L, Xa}. Hence, since M is 
reduced, si contains at least one occurrence of xl  for all i = 1, 2, 3, 4. Also, since 
M is reduced, trees t' ~ Tz and s' e TA exist with (q, t', s', e) e 6. Define s := s4s'. Since 
s , r  { l ,  x l ) ,  s # s'. No te  that  (q, tt', s, e)~6.  For  k _> 1 consider Uk.j:= SJls2 Sk-j-1, 
j = 0 . . . . .  k - 1. Then  (p, t k, Uk.j ,  q) E t~ for all j. Assume, for every k, that  all the 
outputs  UR.j, j = 0 . . . . .  k -- 1, are distinct. Then, by Proposi t ion  1.6, for every m 
some k exists such that  at least m p-computa t ions  exist either for tk t  ' o r  for t k§  l t '  

which produce  pairwise different ou tpu t  values. Since v a l ( M ) <  oo, this is a 
contradict ion.  Therefore,  k > 1 and 0 _ Jl < J2 < k exist such that  UR,Sl ---- Uk,j2. By 
top and bo t tom cancellat ion we find 

~s2 = s 2 ~ ,  (1) 

where j = J 2 - - J l .  By induct ion on n this implies s~"s2 = s2sJ4 " for all n~  ~.  By 
Corol lary 1.2(iii), ei ther sEr = sJl n or s 2 = sJlnr for some suitable tree r. Since s 1 is 
p roper  but  different f rom xl ,  we have I s~" Iz -> jn. Hence, for sufficiently large n, st" 
cannot  be a prefix of s2. Therefore,  

3n  1 •n ~ n 1 3r,  s2r = si n. (2) 

Analogously,  we find some j '  such that  

3n 2 Vn > n2 Sr', s3r' = sSl '". (3) 

Choosing in (2) and (3) a sufficiently large c o m m o n  multiple of j and j '  as an 
exponent  of sl we conclude that  szr = s3r' for p roper  trees r, r '~ Ta(x~). Hence by 
Corol lary  1.2(ii) and Proposi t ion 1.1(iv), s 2 = s a. [ ]  

Proposition 3.4. 

(i) Assume t e T~(xl) is proper. I f  M has Property (F0) for t, then M has 
Property (F0') for t. 

(ii) Assume M has Property (F0'). Then, for i = O, 1, 2, M has Property (SO/ff  
M has Property (F/). 

Proof  The p roof  of  assertion (i) is analogous to the p roof  of Proposi t ion  3.3: 
just observe that  sis2 = s2s3 implies that  ~s2 = s2~  for all j. 
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(ii) If M has Property (Fi), then certainly also Property (Si). Conversely, 
assume M has Property (SO) and (F0'). Assume t E T~(x 0 is proper and (p, t, s 1, p), 
(p, t, s2, q), (q, t, s 3, q) ~ 3. 

We show sis2 = SzS3. By Fact 0, M has Property (F0.0). Therefore, assume 
Sx r {• x1}. Certainly, (p, tt, sis1,  p), (p, tt, s i s2 ,  q), (p, tt, s2s 3, q), (q, tt, s3s3, q) ff 
where sis1 (s {J_, 11}. Since M has Property (SO), co(sis2) = co(s2s3). Since M has 
Property (F0') for tt, s is2 = s2s3--which we wanted to prove. 

For proofs of the assertion with i = 1 or 2, we only treat the case where 
s~2 e {• xl}. The remaining parts of the proofs are analogous to the proof for 
i =  0. So assume M has Property ($1). Especially, M also has Property (S0.0) 
and therefore also Property (F0.0). Let t = txt2t 3 ~ X 1 for x~-proper trees t~, 
i = 1, 2, 3, let 

(P, tl, Sll, Pl), (Pl, t2, S12, Pl), (Pl, t3, S13, P), 

(P, tl, S21, P2), (P2, t2, S22, P2), (P2, t3, S23, q), 

(q, tl, S31, P3), (P3, t2, $32, P3), (P3, t3, S33, q ) ~ ,  

and assume SllS12s13 ~ {-~, Xl}. First assume $11s12s13 ~ "  -.[-. Then both p and q 
are from U(M).  Therefore, s21s22s23s31s33 = _1_ as well, and the conclusion 
according to Property (F1) holds. Now assume s l l s12s13 = x l .  Then, especially, 
s12 = xl. If also s22 ~ {• xl}, then SzlSz2Sz3S31S33 = s21s23s31s33 , and the conclu- 
sion of (F1) follows since M has Property (F0.0) for t l t3 .  For a contradiction 
assume s22 r {_1_, xl} , i.e., c0(s22 ) r {0, xl}. Denote o)(s 0 by glj. Let g21 = nl + d l x l ,  

g22 = n2 + d 2 x l ,  and g23931933 = na + d3xl. Since M has Property (S1) for t l t ~ t  a, 
we have, for every k > 0, 

911913 g21g23 = gllg]2g13 g21g23 = g21g~2g23 g31g33 =AR + B k ' X l ,  

where 

k-1 
Ak = nl + din2" ~ d~ + dldkzn3. 

i=0 

It follows that 

0 = A k - Ak_  1 = dlnzdk2 -1  + d ld~- l (d2  - 1)'n 3. 

g21 contains an occurrence of xl. Therefore, d l r  0. Hence, n 2 = 0 and d 2 ~ {0, 1} 
in contradiction to our assumption. 

Now assume M has Property ($2). Especially, M has Property (S0.0) and 
therefore also Property (F0.0)---at least for all trees containing a symbol a ~ 2; of 
rank > 1. Let t = q [ x  1, tzt3] for Xz-proper tree t 1 and xl-proper tree t 2. Let 

(P, tl, Sll, PPl), (Pl, t2, s12, Pl), (Pl, t3, s13, g), 

(P, tl, s21, qP2), (P2, t2, s22, P2), (P2, t3, s23, e), 

(q, tl, s31, qP3), (P3, t2, s32, Pa), (P3, t3, s33, g) ff (~, 
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and assume s l l [ x l ,  s 1 2 s 1 3 ] ~ { •  First assume s l l [ x l ,  slzs13 ] = • Then 
both p and q are from U(M). Therefore, sz l[s31[xl ,  s33], SzzS23] = • as well, and 
the conclusion according to Property (F1) holds. Now assume sl l [xl ,  s12s13] = xl. 
Then, especially, s12 = A_. Again, if also s22 E {L ,  x l ) ,  then 

$21[$31[X1, 833], S22S23] = S21[$31[X1, s33], sz3], 

and the conclusion of (F1) follows since M has Property (F0.0) for t l [ x  1, t3]. For  
a contradiction assume s22 ~ {_L, xt}, i.e., c0(s22)~ {0, xl}. Denote co(sij) by go- Let 
021 = nt + d l x l  + ex2,022 = n2 + d2xl ,  023 = n3, and 031[xl,  g33] = n4 + d4xl .  
Since M has Property (S1) for t l [Xl ,  t~t3], we have, for every k > 0, 

g11['g21[X1,023"1, g13] = gll[g21[Xl,  g23], gk2013] = g21[O31[X1, 033], 022023]k 

= g21gk22g23 g31933 = Ak + Bk" xl,  

where 

k-1 
Ak = nl + din4 + en2" ~ d{ + eden 3. 

i=0 

It follows that 

0 = A k - Ak_ 1 = en2d~ -1 + ed~-l(dz - 1). n 3. 

gzl  contains an occurrence of x2. Therefore, e r 0. Hence, n2 = 0 and d 2 ~ (0, 1} 
in contradiction to our assumption. []  

Property (S1). M has Property (SI') for proper tree t e T~(x0 iff, for every 
factorization t = t~t2t3, t i proper, 

(P, tl, Sll, Pl), (Pl, t2, $12, Pl), (Pl, t3, S13, P), 

(P, tl, S21, P2), (P2, t2, S22, P2), (P2, t3, S23, q), 

(q, tl,  SaD P3), (P3, t2, S32, Pa), (P3, t3, s33, q)~ c~, 

with co(sis ) = Oij implies: 

(i) If q E Const(M), then g12, g22 ~ {0, xl}. 
(ii) If q r Const(M), then 

gl lg12gl l  I = g21g22g21. (Sl') 

Recall that if q is not unique-sized, then the output sizes produced by 
proper (q, q)- or (p, q)-computations depend on x 1. Hence, by reducedness of M, 
gl i and g21 depend on x 1 as well. Therefore, the inverses occurring in ($1') indeed 
exist. Observe that gi3 or g3j do not occur in ($1'). 
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Fact 1. Assume A, B~Q(1)[xl]  where A = a  o + a  1 . x l  and B = b  o + b  1 . x  1. 
Then: 

(1) B - a A  = ( 1 / b O ' [ - b o  + ao] + (al/bl)" xl .  
(2) B A B -  1 = bl" ao + bo" (1 - ax) + a 1 �9 X 1. 

Fact 2. 

(i) 

(ii) 

Assume q r Const(M): 

Then (SI') is equivalent to 

[g21g22g23]-1. [galglzgl3] = [-g21g23]-l" ]-gllg13]. ($1") 

I f  gil = ai + ei" x l  and g~2 = ni + di" x~, then (SI') is equivalent to the two 
equations: 

(dl - 1)[a2 - a l l  = ezn2 - exnl 

and 

dl = d2. 

Proof By top and bot tom cancellation, (SI") is equivalent to 

(g2 Ig22) - 1. gl lg12 = g2~gl 1, 

which is equivalent to (SI'). This proves (i). 
The proof of (ii) follows by simple calculations from Fact 1. []  

Proposition 3.5. 

(i) Assume t ~ T~(xl) is proper: 
I f  M has Property (Sl') for tt, then M has Property (S0) for t. 
I f  M has Property (SO) for t and tlt3 whenever t = txtzt3 for proper h,  t2, 
t 3, then M has Property (S1) for t i f f M  has Property (SI') for  t. 

(ii) I f  sval(M) < oQ, then M has Property (SI'). 

Proof (i) Assume (p, t, sl, p), (p, t, s2, q), (q, t, s 3, q) ~ 6 and let gi := o(sl) for i = 
1, 2, 3. Consider the decomposition tt = tatzt a where ta := x~ and t2:= t 3 : =  t. If 
q ~ Const(M), then the conclusion of (SI') gives g~, g3 e {0, xl} in accordance with 
(SO). If q ~ Const(M), then the conclusion of (SI') gives x l g l x ;  1 = g2g3g21. Since 
xi-1 = xl this implies the conclusion of (SO) also in this case. 

For the second part of (i) we show that the conclusion according to (S1) is 
equivalent to the conclusion according to (SI'). Assume p, Pl, q, sis are chosen 
according to the assumptions of Properties (SI') and (S1) and gq.= o(s 0.  

By assumption, M has Property (SO) for t~t 3 and t l tzt3.  Therefore, 

gllg13 g12923 = g21g23 g31g33, (1) 

g11glzg13 g21g22g23 = g2xg22g23 g3tg32933. (2) 
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First assume q ~ Const(M). Then g31g32933 E {0,  X1} by Proposition 2.4. From (2) 
we conclude (by the reducedness of M) that also gllg12913 ~ {0, X1}. Hence (again 
by the reducedness of M), especially, g 12 e {0, x 1 }. If g11912 gl 3 = 0, then p ~ U(M),  
and the assertion follows from the reducedness of M. If g l lg l zg13  = 11, then 
911 = 91z = 913 = Xr The conclusion of ($1) has the form 

921923 = g21022g23" 

This is (by the reducedness of M) equivalent to 

022 ~ {0, X1} 

according to (SI'). 
Now, assume q r Const(M). Then all 91s are invertible, and we have 

(911912913) 921923 = (021022023) 931033 

iff 

iff 

(glxg12g;x 1) g11g13g21923 = (g21022g211) g21g23931g33 

g l l g l E g ; ~  = gz lgu2g;~  

provided (1) holds. 
The last equation is the conclusion according to ($1'). 
(ii) Again assume p, Pi, q, si~ are chosen according to the assumptions of 

Property (SI') and Ors:= co(sis). 
For  k , j  > O, define t (s) : =  t i t  �89 t 3 and iCk) : =  ttk)ttk- 1).. .  tto). Define v~ ). :=  SilSi2Si3 

i = 1 , 2 , 3 ,  and Uk.j:=V~ k ) ' ' ' v~  +1)''~)''~ 1) .. . . .  ~3t0), 0 _ < j _ < k - 1 .  We have 
(p ,~tk) ,uk .s ,q)e6  for all j. For  convenience, we write hl s) for co(v~)), i.e., 

h~ ~ = 9ilgi2gi3. 
First assume q e Const(M). Then CO($31332S33 ) ~ {0, X1} by Proposition 2.4, and 

CO(SllS12S13) ~ {0, X1) by Proposition 3.2. If p c  U(M), then sis = l for all i , j  since 
M is reduced. Therefore, 9is = co(sO = 0 for all i,j, and the assertion trivially holds. 
If p q~ U(M),  then 011912913 = XI" Especially, 912 -- xl. Since M is reduced, t 'E T~ 
and s t  TA u {• exist with (q, t', s, e)e6.  Assume g2~ = a~ + b, "x, and co(s) = m. 
Then we have 

j - 1  
co(Uk, jS ) = co(I)~)S) = a 1 -k b la  2 E b~ -Jr blbi2" [a3 + b3m ]. 

i=o 

Therefore, 

CO(Uk, s+ lS ) -- CO(Uk, sS ) = b l b { ' [ a  2 + (a 3 + b3m) . (b  2 - 1)] > 0. 

If this is greater than 0, then all CO(Uk,iS) are distinct which gives a contradiction to 
sval(M) < oo. Hence, bib  �89 �9 [a2 + (a3 + barn)" (b2 - 1)] = 0. Then two cases can 
occur. Either bib  2 = 0 which implies P2 ~ U(M), then 922 = 0 in accordance with 
Property ($1'), or bib2 > 0, then [ a  2 -F (a  3 -F barn)" (b2 - 1)] = 0. We deduce that 
a 2 = 0. Hence 922 ~ {0, x1} and the conclusion of ($1') holds. 
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N o w  assume q r Const(M). Then  all g~ are invertible. Applying Propos i t ion  
3.2 to t (j), we obtain  

hO) t,o t, tJ) t,o) 1 r~2 ~ r~2 ~3 

for all j. Moreover ,  we have 

CO(Uk, j+ 1) = hi k) ' '"  "'l/a(J+2)/~(J+"2 1)t,O)...,,3 h~ ~ 
la(k) . . . la(j + 2 ) t  la(j + 1)/,t(j)'d,~(j- 1).,./~(0) 
s~l t~l t,t~2 '~3 1'~3 rt3 �9 

Since hl j+ 1)=  (gilai2g~l 1)h} j), we conclude 

hO+ 1)~,(j) 2 ,,a = w2~v22v211! b(J)  l~(J) '~2 w~3 

= (g2~g22021) h(1J)h~ ~ by (1) 
- -  d l a ( J  + 1)h(J) 
- -  : X ~ l  ~ 2  

where 

A = ( 9 2 1 9 2 2 9 2 1 1 ) ( 9 1 1 9 1 2 9 1 1 1 )  - 1 

Substi tut ing this into (2) we find 

og(Uk, j+ 1) = (Bk, jAB~))O(Uk, j )  

(1) 

(2) 

(3) 

for Bk, j = htl k) ' '  " h~ + 2) which is a po lynomia l  f rom Ntol)[Xl]. 
I f A  = xl ,  then the conclusion of (SI ')  holds. Hence  for a contradict ion,  assume 

A # xl.  Let  A = a o + al  �9 xl  and co(uk, j) = Uk, j + ~ , j "  X 1. 

Case 1: a l  # 1. Then ~.~ = a{ -1"  ~ ,o  by Fac t  1 and  (3). It  follows that  all the 
ou tpu t  sizes co(uk,j) are different. Since q 6 Const(M) we deduce f rom Propos i t ion  
1.6S that  sval(M) = oo in contradic t ion to our  assumpt ion.  

Case 2: a 1 = 1. Since A # x 1 this implies that  ao # 0. Let Bk, jABk,  1 --- bk, j + x 1. 
Then by Fac t  1 and (3), Uk, j+l  = bk,j + U k j .  I f ao  < 0, then, by Fact  1, all bk, j < 0. 
Analogously,  i fao > 0, then all b k j  > 0. I t  follows that  all the U k j ,  j = 0 . . . . .  k - 1, 
are different. Therefore,  sval(M) = oo in contradic t ion to our  assumpt ion.  [ ]  

Proper ty  ($2). M has P rope r ty  ($2') for p roper  t ~ T~(x 0 iff, for every decomposi -  
t ion t = t l [ x l ,  t2t 3] with p roper  q E T~(X2), prope r  t2 ~ Tz(x0, and t 3 ~ T~, 

(P, t l ,  S l l ,  PPO, ( P l ,  t2,  S12, P l ) ,  (P l ,  t3,  S13, g), 

(P, q, s21, qP2), (P2,  t2,  S22, P 2 ) ,  (P2,  t3,  S23, /3), 

(q, /71, S31, q P 3 ) ,  (P3,  rE, 832, P3), (P3,  t3,  S33, E) E ~  

with co(si~) = glj implies 

a111-X1, q12a13]  - -  a l l [ X 1 , 9 1 3 ]  = g21[X1, a 2 2 a 2 3 ]  - a21 [x1 ,  a23] .  (S2') 
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Fact 3. 

(i) Provided q ~ Const(M), ($2') is equivalent to 

g11[xl,  g12gla]g l l [x l ,  g13] -1 = g21[xl,  g22~]23"]g21[-X1, g23] -1. (S2") 

(ii) Assume 

co(s~l) = ai + elx l  + f ix2 .  

m(s~2) = ni + dix l ,  

o9(s~3) = bi, i = 1, 2. 

Then ($2') takes the form 

f l n l  + (dl - 1)f ib 1 = f2n2 + (d2 - 1)f2b 2. 

In proofs we mainly refer to the version of ($2') given under (ii). Especially 
note that this version does not depend on a~ or ei. Assertion (i) is used in Section 
5 in the proof of the (technical) Proposition 5.3. 

Proposition 3.6. 

(i) Assume t e T~(xl) is proper, and M has Property (SO) for  t l[Xl ,  t3] whenever 
t = t l [ x  1, t2t3] for  proper tl e Tz(X2), proper t2 e T~(xx), and t 3 E T~. Then 
M has Property  ($2) for  t i f f  M has Property  ($2') for  t. 

(ii) I f  sval(M) < oo, then M has Property ($2'). 

Proof. Assume p, pi, q, t~, and s~s are chosen according to the assumptions of 
Properties ($2') and ($2). We show that the conclusion according to ($2) is 
equivalent to the conclusion according to ($2'). 

Define gij:= 09(sij), and gil := ai + eix l  n u f i x2 ,  gi2 = ni + diXl, gi3 ~- bi for 
i =  1,2, 3. 

(i) Property (SO) for t l [ x l ,  t3] implies 

al + el la2 + e2xl  + fzb2] + f ib1 = a2 + e2[a3 + e3x l  + fab3] + f262 �9 (1) 

The conclusion in ($2) is 

al + el[a2 + e2xl  + f262] + f l [ n l  + dlbx] 

= a2 q" e2['a 3 + e3x 1 q- fab3] q- f21-n2 + d2b2-]. (2) 

Subtracting (1) from (2) yields 

A[n~ + (d~ - 1)" b~'! = f~[n2 + (d2 - 1)" b23, 

which is the conclusion of ($2'). 
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(ii) Since M is reduced, t e T~ and s t  T A u {_1_} exist with (q, t, s, e)E6. Let 
m :=  o(s). Fo r  j, k > 0, define t ~ := tx[x l ,  tJ2t3], and {~k):= t(k)t(k-1).., t(o). Define 
1 ) ~ ) : = S i l [ X l ,  SJi'2Si3], i = 1,  2, 3, with h!J):=Oil[Xl, gJizgi3] = co(v~ j)) and I l k , j : =  

vtk) . . . . .  tJ+l)"~0"tJ-1)"'V~30) for 0 < j < k - 1 .  Then (p, 7r q) E6 for all 1 Vl u2  ~3 

j ~ { O , . . . , k -  1}. 
First assume q ~ Const(M). Then, by Proposi t ion  2.4, s31[xl,  s3zsa3] ~ {.t_, x l} .  

Hence, by Proposi t ion 3.2, 911[xl,  912913] ~ {0, xx}. If p c  U(M), then 911 = 
g12 = 921 = 022 = 0 by the reducedness of M, and the conclusion of ($2') trivially 
holds. Therefore, assume p r U(M). Since 911[xx, g12913] = x l ,  g12#13 = 0 = 913 
by the reducedness of M, and the left-hand side of ($2') equals 0. Moreover ,  

(D(Uk,jS) = O)(1)(~)S) ~-- a 2 + e2m + f2n2 . ZJi -1  di2 + f2b2 �9 dJz. 

Consequently,  

09(Uk, j+ tS) -- Og(Uk, jS ) = f2dJz[n2 + bz(d 2 - 1)] _> 0. 

If this is different from 0 it follows that  09(Uk,jS) are distinct for all j = 0 . . . . .  k - 1, 
which gives us a contradict ion to sval(M) < ~ .  Therefore, f2dJ2[n2 + bz(dz - 1)] 
= 0. If f2dJ2 = 0, then (by the reducedness of  M) P2 ~ U(M). Hence f2 = 0, which 
implies that  the r ight-hand side of ($2') equals 0 as well. Iff2dJ2 > 0, then rt 2 + b 2 " 

(d2 - 1) = 0, which again implies that  the r ight-hand side of ($2') equals 0. Hence, 
the conclusion of Proper ty  ($2') holds. 

N o w  assume q r Const(M). Then  all h! j) are invertible. Applying Proposi t ion  
3.2 to t t j) we obtain 

hO)t,~J) /ao)/a(J) i " 2  = *'2 *~3" (1 )  

Moreover ,  we have 

O)(Uk, j +  1) = "l/n(k)... "l/~(J+ 2)/a(J + t , 2  1)/a(J)..,,3 ' "3la(0) 

l,,(k ) . . . la(j + 2 ) A (J') la(j + 1)/a( j) /a( j-  1) 
= " 1  " 1  ~ " 1  " 2  ,,a ""hg~ 
= (Bk,jAO3Bk.))r.O(Ug, j) (2) 

for some invertible Bkd e Ntol)[xl] where 

A~J~ = h~ + 1%J)Eh~]- l [h~J+ ' ] - I  
h ( J +  1)Vl,(J)'l - 1/,,(j)vh(J + 1 

= "2 L'*2 J "1 L"I 1)]- by (1). 

First we show, by induct ion on j, 

gj+ 1~ gi2gi3 di" [gi2gi3 gi3]. (3) i2 ~ i 3  - -  ~ -  - -  

By definition, (3) holds for j = 0. Assume j > 0, and (3) holds for j - 1. Then  

gj+ 1 .  g12 0,3 = ni + d, " g12g,3 - n, d, . g l ;  10,3 i2 ~4i3 - -  

= di" [gl ,Oi3 - g l f  10i3] 

= d i " d~- 1 .  [ g i 2 g i 3  - -  g i 3 ]  by t h e  i n d u c t i o n  hypothesis, 

which proves (3). 
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We conclude that  

j + l  x 1 h~J+l)[h~)] -1 = g i l [x l ,  g,2 gi3-]gil[ 1, giag,3J- 
f / "  r ~ J +  l a  

L~ i2  Ui3 - -  gi2gi3-I "q- Xl 
= fi" di" [giEgia - gl3] + Xl by  (3). (4) 

Hence,  

A ~ = a ~ + x l  

where 

aU~ - f2" d�89 [ g 2 2 g 2 3  - -  g23"1 - -  f l "  d~" [ g 1 2 g 1 3  - -  g13]"  (5) 

Using  (5) and  Fac t  1, (2) can be rewrit ten as 

(D(Uk,j+ 1) = bk, j" a O) + CO(Uk,.i+ 1) (6) 

for some bk,j ~ N. We distinguish between the different possibilities for di, i = 1, 2. 

Case  1: dl = 0. Then  Pl ~ U(M).  Hence,  fa = 0 and, therefore, 

f l "  [912913 - 913] = 0 and aU) = f2" d�89 [922923 - 923]. 

If  a u) = 0, then the conclusion Of ($2') is satisfied. Therefore,  assume a u) ~ O. 
I f  a u) > 0, then CO(Uk, j+ 1) -- CO(Uk,~) > 0 for all j. Analogously,  if a u) < 0, then 
CO(Uk,j+O- CO(Uk,j)< 0 for all j. In  bo th  cases all the ou tpu t  sizes CO(Uk,i), 
j = 0 . . . .  , k -  1, are distinct. Since q r Const (M) this gives a contradic t ion to 
sval(M) < o0. 

Case 2 : d 2  = 0. This case is ana logous  to Case 1 with the role of  d 1 and d 2 
exchanged.  

Case 3: dl ~ 0 r d2. We consider three subcases. 

Case 3.1: dl = d2 =:d.  Then  

aU) = dJ" I f 2  " ( g22923  - -  g23)  - -  f l  " ( g 1 2 9 1 3  - -  gla)]" 

If  a u) = 0, then f2 " ( g 2 2 9 2 3  - -  g 2 3 )  - -  f l "  ( g 1 2 g 1 3  - -  g 1 3 )  = 0 ,  and the conclusion of 
($2') is satisfied, whereas  a u) r 0 gives a contradic t ion as in Case 1. 

Case 3.2: dz > dl > 0. Especially, d z > 1. Define c : =  dl /de .  Then  

aU) = d~ " I f 2  " ( g 2 2 9 2 3  - -  g 2 3 )  - -  cJ'fl " ( g 1 2 g 1 3  - -  g 1 3 ) ] "  

Since 0 < c < 1, some Jo ~ N exists such that,  for all j > Jo, 

[c ' i 'A  "(glzg13 - g13)31 < 1. 

Assume g22gz3 - gz3 = 0. Then  gee e {0, 11}, which is impossible  since d e > 1. 
Therefore,  gz2g2a - g23 > 1. I t  follows tha t  a u) > 0 at least for a l l j  > Jo -  Hence,  
for all k > Jo, CO(UR,~§ 1) -- CO(Uk,j) > 0 whenever  Jo < J < k. Therefore,  the ou tpu t  
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sizes co(uk,~), j e {Jo, . . . ,  k}, are distinct. Since we can choose k arbitrarily large, 
this gives a contradiction to sval(M) < ~ .  

Case 3.3: d 1 > d 2 > 0. Here the argumentation is analogous to Case 3.2 where 
we considered d2 > dl. We derive that some Jl ~ ~ exist such that, for all k > Jl, 
e~(Uk, j+O--OO(Uk,j) < 0  for Jl <_j<k;  which again gives a contradiction to 
sval(M) < ~ .  This finishes the proof. [] 

Proof of  Theorem 3.1. Assume sval(M) < 0o. By Proposition 3.2, M has Property 
(SO). By Propositions 3.5(ii) and 3.6(ii), M has Properties (SI') and ($2'). Therefore; 
by Propositions 3.5(i) and 3.6(i), M has Propoerty (S1) and ($2) as well. This proves 
statement (i). 

Now assume val(M) < ~ .  Especially, sval(M) < ~ .  Therefore, by statement 
(i), M has Properties (S1) and ($2). Since by Proposition 3.3 M also has Property 
(F0'), we conclude with Proposition 3.4 that M has Properties (F1) and (F2) as 
well. This proves (ii). []  

4. Decidability 

The main theorem of this section (Theorem 4.1) states that it can be decided 
whether or not a reduced FST M has Properties (S1) and ($2) or Properties (F1) 
and (F2) and gives upper complexity bounds. In order to prove this result we 
show that M has the corresponding pair of properties provided M has these 
properties for all trees up to a depth polynomial in the size of M (Proposition 4.2). 

Theorem 4.1. Assume M is a reduced FST. 

(i) It can be decided in polynomial space whether or not M has Properties ($1) 
and ($2). 

(ii) It can be decided in nondeterministic polynomial time whether M does not 
have Properties (F1) and (F2). 

Assume n = # Q is the number of states of M. The crucial step in proving 
Theorem 4.1 is given by the following proposition: 

Proposition 4.2. 

(i) I f  M has Property (S1') for all proper t ~ T~(xl) up to depth 4n 3 and Property 
($2'), then M has Property (SI'). 

(ii) I f  M has Property ($2') for all proper t ~ Tz(xl) up to depth 6n 3, then M 
has Property ($2'). 

(iii) Assume M has Properties (SI') and ($2'). I f  M has Property (F0') for all 
proper trees t ~ T~(xa) up to depth 6n 4, then M has Property (F0'). 
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Proof o f  Theorem 4.1. Assume M has Properties ($1) and ($2) for trees up to 
depth 6n 3. Then, especially, M has Property (SO) for all trees up to depth 6n 3. 
Hence, by Propositions 3.5(i) and 3.6(i), M has Properties (SI') and ($2') for all 
trees up to depth 6n 3. Applying first statement (ii) and then statement (i) of 
Proposition 4.2, we deduce that M has Properties (SI') and ($2') and also (by 
Proposition 3.5(i) again) Property (SO). Consequently, by Propositions 3.5(i) and 
3.60) (now in reverse direction), M has Properties (S1) and ($2). This proves 
statement (i) of Theorem 4.1. 

Assume M additionally has Property (F0) for all trees up to depth 6n 4. By 
Proposition 3.4, M also has Property (F0') for all trees up to depth 6n 4. Therefore, 
by Propositions 4.2(iii), M has Property (F0'), and hence, by Proposition 3.4(ii), 
Properties (F/) where i = 0, 1, 2. We conclude: if M has Properties (F1) and (F2) 
for all trees up to depth 6n 4, then M has Properties (F1) and (F2). (ii) follows from 
this. []  

Proof  o f  Proposition 4.2. (i) For a contradiction, assume the proper tree t e Tz(xl) 
is of minimal E-size such that t = tlt2t3 for proper trees t~ and 

(P, t l '  Sll, Pl), (Pl, t2, S12, Pl), (Pl, t3, S13, P), 

(P ,  t l '  S21, P2), (P2, t2, S22, P2), (P2, t3, S23, q), 

(q, t l '  S31, P3), (P3, t2, S32, P3), (P3, ta, S33, q ) ~  

for certain states p, p~, q ~ Q and output trees si~ e TA(xl) such that the conclusion 
of (SI') does not hold. Moreover, assume that the decomposition of t is chosen 
such that t2 is of minimal E-size. By assumption, depth(t) > 4n 3. 

First assume q e Const(M). In this case the conclusion of (SI') is c0(s12), 
co(sz2) e {0, xl}, which is independent of sil and si3. Hence, the conclusion holds 
for t = tlt2t 3 provided it holds for t'lt2t' 3 where t'l and t~ are fixed proper input 
trees for which (p, p~)-, (p, P2)-, (q, pa)-computations and (Pl, P)-, (P2, q)-, and 
(P3, q)-computations respectively exist. If these computations exist, then the 
conclusion also holds for trees t'~ and t~ of depth at most 2n 3 where the paths to 
the leafs labeled x~ have length at most n 3. 

Hence if depth(t) > 4n 3, one of the following two cases must occur. 

Case 1: The path in t 2 to the leaf x~ has length > n 3. Hence, t 2 =-/,/IU2U3 for 
proper u~ s T~(x~) with u2 ~ xl  ~ ulu3 such that 

(Pi, ul ,ri l ,  qi), (qi, I/2, ri2, qi), (qi, u3, ri3, Pi)E ~, i = 1, 2, 3, 

for some states q~ and decompositions si2 = rilri2ri3. The E-sizes of both u 2 and 
ulu3 are strictly less than It 2[I:. The latter implies that M has Property ($1') for 
t' .'= tlulu3 t3. Hence, co(r, rl3) e {0, xl} and therefore both co(ril) and co(ri3) ~ {0, xl} 
for i = 1, 2. By minimality of t 2 in the decomposition of t, the conclusion ($1') 
holds for t = t l tEt  3 '  ' ' where tit :,~- t l U l ,  t2' : =  /'/2, and t 3' := Uat 3. We conclude that 
co(ri2) e {0, xl} for i = 1, 2 as well. Together, we find co(si2 ) = 09(rilri2ri3)e {0, x~) 
for i = 1, 2, in contradiction to our assumption. 
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Case  2: t 2 contains  a s u b t r e e f r o m  T~ o f  depth > n 3. Then t 2 = U l [ X 1 , / / 2 / 2 3 ]  for 
proper  ui where u2 ~ x l  such that  

(Pi, ul, r . ,  Piqi), (qi, u2, ri2, qi), (ql, ua, ri3, e) ~ ~, i = 1, 2, 3, 

for certain states qi and decomposi t ions si2 = r i i [ x l ,  ri2ri3]. Since lu i [x~ ,  u3] Iz < 
It2 [z, minimality of t implies that  Proper ty  (SI') holds for t' = t l u l  It3, u3]. Whence, 
o~(rn[xl ,  ria]) ~ {0, Xl} ,  i = 1, 2. This means that  x2 does not  occur in ~o(rll) or in 
09(r21). It follows that  ~o(ril[Xl, ri2ri3]) = og(ril[xl, r~3]). Therefore,  the conclusion 
(SI') for t holds as well, contradict ing our  assumption. 

Thus, the conclusion of Proper ty  ($1') holds for every t provided q ~ Const(M). 
It remains to consider q ~ Const(M). Assume the sizes of the outputs  sis in the 
assumption of  P roper ty  (SI') are given by 

co(sil) = ai + ei" x l ,  

(D(Si2) = n i --}- di"  x1 ,  i = 1, 2. 

Since the assertions of Proper ty  (Sl') are independent  of t 3, a similar argument-  
at ion as above shows that  without  loss of generality we may assume that  
depth(ta) < 2n 3 and the path  in t3 to leaf x l  has length at most  n a. The remainder  of 
the p roof  is a case analysis according to different possibilities for t 1 and t2 in the 
factorization of t. 

Case 1: t 1 is too "large."  

Case  1.1: The  path in t 1 to the lea f  x l  has length > n 3. Then t I = //1//2/./3 for 
proper  trees u~ where u2 ~ x l  v ~ u~u3 such that  

(p, ui, r l l ,  qi), (ql , / /2,  rl2, qi), (ql, u3, r13, Pl), 

(P, Ul,  r21, q2), (q2,  /12, r22 ,  q2), (q2,  //3, rEa,  Pc), 

(q, Ui, r31, q3), (q3, /'/2, r32, q3), (q3, /'/3, 733, P3) E~ 

for certain states qi and decomposi t ions sil = rilri2ri3 where 09(riv) = air + ei~" xl.  
Consider  the trees t' := u l u a t 2 t  3 and t" := u l u 2 u 3 t  3. Since u 2 # xl ,  It'l~ < Iris. 

The conclusion (SI') trivially holds if t 2 = x 1. Therefore,  t2 # xl  and hence 
It"lz < It[z as well. Whence, by minimali ty of  t, M has Proper ty  (SI') both  for 
t' = (ulu3)t2t  3 and t" = ulu2(uat3). This gives us the following four equat ions (see 
Fact  2(ii)): 

dl = d2, (1) 

(di - -  1) [a21  Jr e21a23 - -  all  - -  e l l a l a ]  = e 2 1 e 2 3 n 2  - -  e l l e i a n l ,  (2) 

e12 = e22, (3) 

(el2 - 1)[azl - a l l ]  = e21a22 - e l l a l 2 .  (4) 
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Therefore, 

(d i - l ) - ( a  z - al) - [eEn 2 - e ln l ]  

= (dl - 1)[a21 + e21a22 + eEleE2a23 - a l l  - e t l a i2  - e t l e l 2 a i 3 ]  

- -  [ e21e22e23n  2 - -  e l t e x 2 e l a n i ]  

(4=) (dl - 1)[e12a21 + e21e22a23 - e l z a i l  - e l le12a13] 

- - [ e 2 i e 2 2 e 2 3 n  2 - -  e l l e l 2 e l a n i ]  

(3) 
= elE(d 1 - 1)[a21 + eEla23 - a l l  - e i i a l3  ] - e12[e21eE3n 2 - e i i e i 3 n i ]  

~ 0 .  

Hence, M has Proper ty  ($1') for t, contradict ing our  assumption.  

Case 1.2: t i contains a subtree f r o m  T~ o f  depth > n ~. Then tt = u l [ x l ,  u2u3] for 
proper  trees u~ where u2 ~ xl  such that  

(P, t / l ,  r l l ,  P l ,  qt), (P, u2, r12, q l ) ,  (q, /13, r13,  e), 

(P, Ul, r21, P2q2),  (q2, u2, r22,  q2), (q2,  U3, r23,  e), 

(q, ul, r3i, Paq3), (q3, u2, r32, q3), (q3, u3, r33, e)Et$ 

for certain states ql and factorizations sii = r i i [x l ,  riEri3] with 

og(ril) = an  + ei" x i  + fil  "x2, 

o~(ri2) = ai2 + d~ ' x i ,  

o~(ri3) = a~3 for i = 1, 2. 

By minimality of t, M has Proper ty  (SI') for t' :=  ul[ t2 t3 ,  ua]. This gives us 

dt = d2,  (1) 

(dl - 1)[a21 + f21a23  - -  a l l  - f l l a 1 3 ]  -~ e 2 n 2  - e in l .  (2) 

Moreover ,  by assumption,  M has Proper ty  ($2') for t" :=  u~[t 3, u2u3] with factors 
ul[ t3,  x2], u2, and u3. We deduce 

f l l a i 2  + (d'l - 1)f l ia l3  = f21a22 + (d~ - 1)f21a23. (3) 

I t  follows that  

(dl - 1) ' (a2 - al) 

= ( d l  - -  1)[a21 + f21a22 + f 2 i d ' 2 a 2 3  - a l  I - f l l a i 2  - f l ld~a l3  "] 

(3) (dl - 1)[a2i + f21a23 -- a l l  -- f l l a l 3 ]  
(2) 
=- e 2 n 2  - -  e l n  1. 

Hence, M has Proper ty  (SI') for t, in contradict ion to our  assumption.  
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Case 2: t 2 is too "large." 

Case 2.1: The path in t 2 to the leafx  1 has length > n 3. T h e n  t 2 = ulu2u 3 for  p r o p e r  
t rees  u~ wi th  u2 ~ x l  such  t h a t  

(Pi, Ul, ril, qi), (q~, u2, ri2, qi), (qi, u3, ri3, Pi) ~ 3, for  i = 1, 2, 3, 

for  ce r t a in  s ta tes  q / a n d  d e c o m p o s i t i o n s  s/z = rnr~2r/a w h e r e  co(r/0 = n/~ + d/~- xa. 
By m i n i m a l i t y  of  t, M has  P r o p e r t y  ($1') for  t' : =  tluxu 3 t 3. By m i n i m a l i t y  of  

t 2, M a l l ows  for  the  c o n c l u s i o n  ($1') for  the  f a c t o r i z a t i o n  t = t'lt'zt'a w h e r e  
t'l : =  tsul, t'2 : =  u2, a n d  t~ : =  uat a. There fore ,  

dstdt3 = d21dz3, (1) 

(d~ids3 - 1)[a 2 - a l ]  = eE[n2x + d2snEa] - e l [n l l  + dlln13], (2) 

d12 = d22, (3) 

(ds2 - 1)[a 2 q- e2nzl - a s - e lnH]  = e2dzln22 - e lds ln l2 .  (4) 

F r o m  (1) a n d  (3) we o b t a i n  

d~ = dlsd t2dl3  = d21dzzd2a .= d 2. 

M o r e o v e r ,  

(dl  - 1 ) ' ( a2  - a s ) -  [ezn2 - e tnt]  

= (dttd12d13 - 1)[a2 - ax] - e2[n2s + d21n22 + d2td22n2a] 

+ e l [n l s  + dHn12 + dltd12nx3] 

~2__) (d12 - 1)[a2 - a l ]  - e2[(1 - d12)n2s + dzln22 + d2t(d22 - d t2)n2a]  

+ e t [ (1  - dt2)nls + dtlns2] 

t3) (ds2 - 1)[a2 - a s ]  - e2[(1 - d12)n2s + d2tn22] 

+ e l i ( 1  - dl2)ntt  + dllnx2] 

~ 0 .  

Hence ,  M a l lows  for  the  c o n c l u s i o n  (SI ' )  a l so  for  the  f a c t o r i z a t i o n  t = tlt2t3, in 
c o n t r a d i c t i o n  to  o u r  a s s u m p t i o n .  

Case 2.2: t 2 contains a subtreefrom T~ o f  depth > n a. T h e n  t 2 = u~[xt, u2u3] for  
p r o p e r  u~ w h e r e  u2 r x t  such  t h a t  

(Pi, Ut, rn ,  Piqi), (qi, U2, ri2, qi), (qi, U3, ria, e)~ 0 for  i = 1, 2, 3 

for  ce r t a in  s ta tes  q~ a n d  d e c o m p o s i t i o n s  s~2 = r~t[x t, r~2r/3 ] where  

co(rlt) = nil + di" x l  + fi" x2, 

09(ri2 ) = hi2 q- di2. X 1, 

co(r/3 ) = ni3 for  i = 1, 2. 
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By minimali ty of t, M has Proper ty  (SI') for t' := tlUl[t3, u3]. Therefore,  

d 1 = d2, (1) 

(d 1 - 1)[-a 2 - -  a l l  = e2[n21 -F f 2 n 2 3 ]  - -  e i[n l l  + f i n i a l .  (2) 

By assumption,  M has Proper ty  ($2') for t = t'l[x 1, t'2t'3] where t'l := t lul[t3,  x2], 
t~ := u z, and t~ := u 3. This gives us 

e l f ln i2  + e l f l (d l2  -- 1)nl3 = e2f2n22 + e2f2(d22 - 1)n23. (3) 

Therefore,  

e2n 2 - eln 1 = e2[n2i + f 2 n 2 2  -t- f E d 2 2 n 2 3 ]  - -  e l [n l i  + f l n l 2  + fld12n13] 

(3__) ez[nzl + f2n23] _ e l [ n i l  q- f ln13] 

(2)= (dl -- 1)[a2 -- a l l .  

Together  with (1), we deduce that  M has Proper ty  ($1') also for t, in contradict ion 
to our  assumption.  

(ii) Assume M has Proper ty  ($2') for all p roper  trees up to depth 6n ~ but  not  
for all trees. Then  there is a p roper  tree t = tl[X l, tEt3] of minimal E-size, states 
p, q, p~, and sij as in the assumption of Proper ty  ($2') with 

(D(Sil) = ai + ei" x l  + fi" x2, 

co(sJ = ni + d~" xl ,  

(-0(Si3) = bl, i -- 1, 2, 

such that  the conclusion of ($2') does not  hold, i.e., 

f i "  [ni  + (dl - 1 ) ' b l ]  # f2" [n2 + ( d 2 -  1) 'b2].  

Moreover ,  assume that  the factorization t = t i [x l ,  t2t3] of t is chosen such that  
t 2 is of minimal  E-size. By assumption,  depth(t) > 6n 3. We have to distinguish 
between the following cases: 

Case 1: t i is too "large." 

Case 1.1: tl  contains a subtreefrom T~ of depth > n 3. Then t I = Ul[X1, X2, U2U3] 
for proper  u I e T~(X3), p roper  u 2 e T~(xl), and u3 e T~ with u2 # Xl such that  

(P, 1ll, r l l ,  PPlql), (ql, t/2, r12, ql), (ql, u3, r13, e), 

(P, Ul, r21, qP2q2), (q2, u2, r22, q2), (q2, u3, r2a, e), 

(q, ul, r3i, qPaq3), (qa, u2, ra2, q3), (q3, u3, raa, e )e6  

for certain states qi and decomposi t ions  sa  = r a [ x t ,  x2, riEri3]. 
Consider  t ' . '= u l [x l ,  t2t3, ua]. Since It'l~ < Itl~, M has Proper ty  ($2') for t'. 

co(ra[xl,  x2, ri3]) only differs f rom co(sil) in the constant .  Since this constant  does 
not  occur  in the conclusion ($2'), the conclusion holds for t as well, in contradict ion 
to our  assumption.  
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Case 1.2: The common prefix of  the paths in t 1 to x~ and xz has length > 2n 3. 
Then tl = ulu2u3ua[xl ,  x2] for proper ul, u2, u3 ~ T~(Xl) and proper u4~ T~(X2) 
with u2, ua # x~ such that 

(P, Ul, rl l ,  ql), (ql, u2, r12, ql), (ql, /'/3, r13, ql), (ql, u4, r14, PPl), 

(P, Ul, r21, q2), (q2, U2, r22, q2), (q2, u3, r23, q2), (q2, u4, rag, qP2), 

(q, ul, r31, q3), (q3, u2, ra2, q3), (q3, ua, raa, q3), (q3, u4, r3., qp3)~-6 

for certain states q~ and decompositions s .  = ri~r~Er~3r~4. 
Assume co(riO = ai~ + f~ .  x 1, v = 1, 2, 3, and co(ri. ) = ai4 + e~" x 1 + f l .  "x2. 

Especially, fi = f .  "f/2 "f/3 "f/4. By minimality of t, the conclusion of ($2') holds for 
UlU4[Xl, t2t3], UlR2U4[X1, t2t3], and for UlU3U4[X1, tEt3]. This gives us 

A I A . .  A~ -- A ~ A .  " A2, (1) 

f l i f 1 2 f x 4  "A, = f2,f22 f24 "A2, (2) 

f H f ~ 3 f ~ ,  " A1 = f2 , f23f24 " A2 (3) 

for At := ni + (di - 1)" b~. First assume either both sides in (2) or in (3) equal 0. 
Then both sides in the conclusion of ($2') for t equal 0 as well, in contradiction 
to our assumption. Therefore, assume all the numbers f~ and A/in (2) and (3) are 
different from 0. Powers of a prime can be viewed as members of the free monoid 
1". It follows that we can apply Schtitzenberger's lemma (see Proposition 1.4(ii)S) 
to (1), (2), and (3) which gives us 

f l  " A1 = f ~ f 1 2 f ,  af~,  " A~ = f2~f22f23f2 ,  " A2 = f2 " A2, 

in contradiction to our assumption. 

Case 1.3: t 1 contains a proper subtree from T~(x2) in which the path to the leaf x 2 
has length > 2n 3. Then tx = Ul[Xl, u2uau,  x2] for proper ul ~ T~(X2) and u2, 
u3 ~ T~(Xl) with u2, u 3 # xl such that 

(p, ul, r11, Pql), (ql, u2, r12, ql), (ql, u3, r13, ql), (ql, u , ,  r l , ,  Pl), 

(p, ul, r21, qq2), (q2, u2, r22, q2), (q2, u3, r23, q2), (q2, u, ,  r2,, P2), 

(q, ul, r31, qq3), (q3, u2, r32, q3), (q3, u3, r33, q3), (q3, u, ,  r34, p3)~5 

for certain states qi and decompositions si~ = r , [ x l ,  ri2r~sr~ax:]. 
The argumentation is similar to Case 1.2. Assume 

co(r/l) ~- ail + ei" Xl + f~l " X2, 

and co(ri0 = a~ + f/~- xl for r = 2, 3, 4. Then, especially, f~ = f ,  "f/2" f~3 "f~,. By 
minimality of t, the conclusion of ($2') holds for u~[Xs, u ,  t2t3], u~[x~, u2u,  tzt3], 
and for u~[x~, u3u,  t2ta]. This again gives us (1), (2), and (3), and then the same 
argument as in Case 1.2 shows that f~- A~ = f2" A2. 
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Case 1.4: t 1 contains a proper subtree from Tz(xl) in which the path to the leaf x 1 
has length > n 3. Then  tl  = ul[u2u3, x2] for p rope r  Ul, u2, u3 e T~(x0 with u 2 r 
x t  such tha t  

(p, ui, r l i ,  qlPa), (ql, u2, r l2,  ql), (ql, u3, rl3, P), 

(p, ul, r21, q2P2), (q2, u2, r22, qz), (q2, u3, r23, q), 

(q, ul, r31, qaP3), (qa, u2, r3z, q3), (q3, u3, r33, q)e  6 

for certain states q~ and  decomposi t ions  sil = ra[r~zr~3, xz]. 
By minimal i ty  of  t, M has Property ($2') for t' = ux[u 3, tzt3]. By definition, 

co(ril[ri3,xz]) = a~ + e~'xl  + f ~ ' x 2  for certain a~, e'i, and f~ where f ' i  = f i .  
Whence,  ($2') for t' implies ($2') for t, in contradic t ion to our  assumpt ion.  

Case 2 : t 2  is too "laroe." 

Case 2.1: The path in t 2 to the leaf x x has length > n 3. Then  t 2 = uluzu  3 for 
p rope r  ux, u2, u3 e T~(x~) with u2 # x l  ~ ulua such that  

(Pi, Ul, ril, qi), (qi, u2, ri2, qi), (qi, u3, ri3, Pi)E 6, for i = 1, 2, 3, 

for certain states qi and decompos i t ions  s~2 =rixri2r~a. Assume co(r~v)= 
nlv + di~" xa for i = 1, 2 and v --- 1, 2, 3. 

By minimal i ty  of  t, M has P rope r ty  ($2') for t' = t i [x  1, uluat3]. Whence 

f l n l l  -F f l d l l n l a  + f l (d l l d l3  - 1)b 1 

= f2n21 -]- f2d21n23 -k f2(d21d23 - 1)b 2. (1) 

Moreover ,  by  minimal i ty  of  t2, we find that  M allows for conclusion ($2') for t 
t ~ t �9 t factored t = q[x~,  t'zt'3] where tx := tx[x~, u~x2], t2 .= u2, and t3 := u3t3. Whence  

f ld l ln12  + f ld l l (d12 - 1)[n13 + d l3b l ]  

= f2d21nz2 + fEd2~(d22 - 1)[n23 + d2abz]. (2) 

Therefore,  

f2" In2 + (d2 - 1)b2] - f l  "In1 + (dl - 1)bl] 

= f2[n21 + d21n22 -~- d21d22n23 ] -b f2(dEld22d23 - 1)b 2 

- f l [ n i i  + d i ln l2  + dlid12n13] - A(dl ld12d13 - 1)bx 

(22 f2n2 1 "-}- f2d21n23 + A(d21d23 - 1)b 2 

- f ~ n l ~  - f ld~ln l3  " f ~ ( d l l d ~ 3  - 1)b~ 

~ 0 ,  

which implies that  M also allows for conclusion ($2') for t factored t = t t [x~,  t 2 t3] , 
in cont radic t ion  to our  assumpt ion .  
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Case 2.2: t2 contains a s u b t r e e f r o m  T z o f  depth > n 3. Then t 2 -- u lEx l ,  u2u3] for 
proper  u 1 ~ Tz(X2), proper  u2 ~ T~(xl), and u3 e Tz with u 2 ~ x 1 such that  

(pi, ul, ril, Plqi), (ql, u2, r~2, ql), (ql, u3, ri3, e)~ c~, for i = 1, 2, 3, 

for certain states q~ and decomposi t ions si2 = ril [x l, r~2 r~33. Assume 

a~(ril) = nil + di" x l  + f~"  x2,  

co(ri2) = ni2 + d ~ ' x l ,  

~o(ri3) = ni3 for i = 1, 2. 

By minimality of  t, M has Proper ty  ($2') for t' :=  h [ x l ,  u l [ t3 ,  u3]]. Whence 

f l [ n l l  + f ' ln13]  + f l ( d j  - 1)bl = f2[n21 + f~n23]  + f2(d2 - 1)b2. (1) 

By minimality of  tz ,  we m a y  assume that M allows for the conclusion ($2') for t 
with respect to the factorization t = t ' j[x 1, t'2, t'3] where t'~ :=  t l [ xa ,  u l [ t  3, x2]],  
t~ :=  u 2, and t~ :=  u 3. This gives us 

f l f ' l n ~ 2  + f l f ' l ( d ' l  - 1)n13 = f a f ' 2 n z 2  + f2f'2(d'2 - 1)naa. (2) 

Therefore, 

f z ' [ n 2  + (d2 - 1)b2] - f~ '  [nl + (d~ - 1)bl] 

= f2[n21 + f '2n22 + f'2d'2n23] + f2(d2 - 1)b2 

- f l [ n l l  + f ' ln12  + f ' ld ' ln13] - f l ( d  1 - 1)b 1 

(z__) f2[n2i  + f~n23]  + f2(d 2 _ 1)b2 _ f i [ n i l  + f , n ~ 3  ] _ f l (d  i _ 1)bl 
o) 
~--0. 

Whence, M allows for the conclusion ($2') also for t with respect to factorization 
t = t~[x i ,  t2t3], in contradict ion to our  assumption.  

Case 3: t 3 has depth > n a. Then t3 = UlU2U3 for proper  Ul, Uz e Tz(xl) and u3 e T z 
with u 2 ~ x~ such that  

(Pi, ul ,  ril, ql), (qi, u2, ri2, q~), (qi, u3, ri3, 8) ~ 

for i = 1, 2, 3, states ql, q2, q3 ~ Q, and decomposi t ions si3 = riir~2ria. 
We may  assume that  t 2 r x I because otherwise the conclusion of(ST) trivially 

holds. Therefore, by minimality of  t, M has Proper ty  ($2') bo th  for 

t' = t l [x~ ,  t2ulu3]  

factorized in the obvious way and for t" = t~[x~, u~u2u3] with factors t~[Xl,  u~x2], 
u2, and u a. Assuming m(ri0 = b~ + d~" x~ for v = 1, 2, 3 we deduce 

f~-[n~ + (d~ - 1).(bl~ + dl~b~a)] = f2" In2 + (d2 - 1)'(b2~ + d21b23)], (1) 

f~ "d l l "  [b12 + (d12 - 1) 'b~a]  = f2" d21[b22 + (d22 - 1)" b23]- (2) 
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Using (1) and (2) we find 

f l "  [nl + (dl - 1 ) 'b i ]  

= f l "  [nl + (dl - 1)" (bll + dllb12 q- d l ld12b13 ) ]  

= f i "  [nl + (dl - 1)" (bil + dilbl3)]  + f l d i l "  [bl2 + (dl2 - 1)bla)] 

= f2" [n2 + (d2 - 1) "(bE1 + d21b23)] + f2dEi �9 [bEE + (d22 -- 1)b23)] 

= f2" [n2 + ( d 2 -  1)'b2], 

in contradiction to our assumption. 
(iii). Before we prove Proposit ion 4.2(iii), we consider two auxiliary facts which 

show that  we can eliminate subcomputat ions in a controlled way without  changing 
equality in the outputs produced. 

Fact  4. A s s u m e  M has  P r o p e r t y  ($1'). Given s ta t e s  p, q, q l ,  q2, qa, q 4 e Q ,  

d e c o m p o s i t i o n s  t = 1/lU21/3 for proper  t rees  u~, and  s i = r i l r i zr ia ,  i = 1, 2, 3, 4, such  

t ha t  

(P, ul, r l l ,  ql), (ql, u2, r12, ql), (ql, u3, r la,  P), 

(P, Ul, /'21, q2), (q2, I/2, r22, q2), (q2, 1/3, r2a, q), 

(p, 1/1, ral, q3), (q3, u2, r32, q3), (qa, u3, r33, q), 

(q, 1/1, r41, q4), (q4, 1/2, r4.2, q4), (q4, u3, r43, q)e c5, 

t hen  s i (s { i ,  xl} and  co(s2) = co(s3) impl ies  co(r2ir23) - co(ralr33 ). 

Proof .  Let 

(-o(ril) = ai n u ei" x l ,  

o)(ri2 ) -= n i -t- di" x l ,  

e)(ri3) = bl + f / ' x l  

and 

co(riirl3) = A i + B i �9 x 1 for 

Thus (.O(S2) = (/)(S3) translates to 

e 2 d E f  2 = e a d a f  3 

and 

i = 1 , 2 , 3 , 4 .  

a 2 q- e2n  2 -t- e 2 d 2 b  2 = a a + e3n  3 + e a d 3 b  3. 

M has Property (S0) since M has Property (SI'). Therefore, cn(sl)r {0, xi} also 
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implies that  ~o(s4)~ {0, Xl}. Hence, q ~ Const(M), and Proper ty  (Sl') implies that  
dl = d2 = da = : d  > 0. Therefore, B2 = e2f2 = e3f3 = B3. Moreover ,  

(d - 1)[a2 - a l ]  = e2n2 - e ln l ,  (1) 

(d - 1)[a 3 - a l l  = ean a - e ln  l, (2) 

and hence 

(d - 1)[a3 - a2] = e3na - e2n2. (3) 

Hence, a2 + e2n2 + e2d2b2 = aa + ean3 + e3dab3 implies 

A 2 = a 2 + e2b 2 = a 3 + eab 3 = A 3. [] 

Fact  5. Assume M has Property  ($2'). Given states p, q, ql ,  q2, qa, q4 ~ Q, 

decompositions t = u l [ x l ,  u2u3] f o r  proper trees ul,  u2, and si = r/ l[Xl ,  ri2r/3], 
i -- 1, 2, 3, 4, such that 

(P, ul,  r l l ,  Pql), (ql, u2, rl2,  ql), (ql, ua, r ta ,  e), 

(p, ul,  rE1, qq2), (q2, u2, r22, q2), (q2, ua, r2a, e), 

(p, ul, r31, qqa), (q3, u2, r32, q3), (qa, u3, r33, e), 

(q, ul,  r , l ,  qq,), (q, ,  u2, r42, q4), (q, ,  u3, r43, e )e  3, 

then o ( s 2 ) =  o)(s2) implies o)(r21[x, r z 3 ] ) =  cO(ral[Xl, raa]). 

Proof. Define 

co(ril) = ai + eixi + f i x2 ,  

09(r/2) = ni + dix l ,  

(.o(ri3) = hi, 

og(r ,[x l ,  rla]) = Ai + B i x l  for i = 1, 2, 3, 4. 

Certainly, B2 = e2 = e3 = Ba. 
Moreover ,  P roper ty  ($2') implies 

f l n l  + ( d l  - 1) f ib  1 = f2n2 + (d 2 - -  1)f2b 2 = f3n3 + (d3 - 1)fab a. 

Hence, a 2 + f2n2 + f2d2b2 = a 3 + fan3 -]- fad3b3 implies 

A 2 = a2 + f2b2 = aa + fab3 = Aa. 

This finishes the p roof  of Fact  5. [ ]  

Now we are prepared to prove Proposi t ion  4.2(iii). Assume M has Propert ies  
($1') and ($2') and Proper ty  (F0') for trees up to depth 6n*. Consider  p, q e Q, and 
some proper  tree t e T~(xl) of minimal E-size such that  s /e  T~(xl) exist with 
(p, t, Sl, p), (p, t, S2, q), (p, t, s3, q), (q, t, s , ,  q) ~ 3 where S 1 ~ {..L, x1} , o)(s2) : (.0(s3) , 
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but  s2 ~ s3. By assumption,  depth(t) > 6n 4. Therefore,  one of the following two 
cases must  occur. 

Case 1: The path in t to the leaf x~ has length > 3n 4. Then  t = ulu2u3u4u5 for 
proper  trees u~ ~ Tz(xO with u2, u3, u4 ~ x l  such that  

(P, Ul, r l l ,  ql), (qi, us, r15, P), 

(P, Ul, r21, q2), (q2, Us, r25, q), 

(P, Ul, r31, q3), (q3, us, r35, q), 

(q, Ul, r4i, q4), (q4, us, r45, q), 

(qi, u , , r i~ ,q i ) e6  for i = 1 , 2 , 3 , 4  and v = 2 , 3 , 4 ,  

for certain states q, and decomposi t ions s~ = r~lr~Er~3r~4r~s. First assume ri2 = x i. 
Then  ( .0(r22) - - - - ~ o ( r 3 z ) =  xl  since M has Proper ty  ($1'). It follows that  indeed 
r22 --'-- r 3 2  ---- X 1. Hence,  s~ = r~r~ar~4ris for i = 1, 2, 3. It also follows that  Proper ty  
(F0') does not  hold for t ' :=  ulu3u4u5 where ]t'l~ < It[z, in contradict ion to the 
minimali ty of t. 

Therefore,  we may  assume rl2 ~ x 1. Then  also (rllri2)rls,  (rilr12)r13rls, and 
(rl lrlE)r14ri5 ~ (d_, xl}. Therefore,  by Fact  4, 

r r22)r2s) = o~((r31r32)ras), 

c9((r21, r22)rz3r2s) = oJ((r3~rz2)ra3r35), 

and 

o~((r2~r22)r24r2s ) = co((r3ir22)r34ras ). 

Since t was chosen minimal, Property (FO') holds for (ulu2)u5, for (ulu2)uau s, and 
for (ulu2)u4u s. We conclude that 

(r21r22)r25 = (raira2)ras, 

(r21rE2)rEar2s = (ralra2)raar35, 

and 

(r2xr22)r2J25 ---- (r31r32)r34r35. 

Thus, the assumptions of  Propos i t ion  1.4(ii) are satisfied which implies that  

S 2 ~ r21r22~'23r24F25 ~ F3tF32r33F34r35 ~ 83, 

in contradict ion to our  assumption.  
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Case 2: t contains a subtree from T z of  depth > 3n 4. 
for proper trees uv # x,,  v = 2, 3, 4, such that 

(P, ul, rxl, PqO, (ql, us, r15, e), 

H, Seidl 

Then t = ul[xl ,  u2UaUgUs] 

for 
co(s2) = co(s3) implies that 

co(r21[xl, r25]) = co(r31[xx, r35]). 

Since t was chosen of minimal Z-size, M has Property (F0') for ul[x 1, us]. Hence, 

r21[x,, r25] = r3~[xl, r3s]. 

Analogously, we deduce that 

r21rx1, r22r2s] -= ra1[X1, ra2r35], 

r21[xl,  r24.r25] = r31[Xl, r34r35], 

r21[xl, r23r24r25] = r31[xl,  r33ra4r35], 

rzl[Xl, r22rzar25] = ra1[Xl, r32r33r35], 

and 

rz1[Xl, r22r24r25] = r31[xl, r32r34r35]. 

Thus, we can apply Proposition 1.40) to derive 

S 2 = r21[X1, r22r23r24r25] = r31[x1, r32r33r34r35] = s3, 

in contradiction to our assumption. This finishes the proof. 

(P, Ul, r21, qq2), (q2, us, r25, ~), 

(P, Ul, r31, qq3), (q3, Us, r35, e), 

(q, ul, r41, qq4), (q4, us, r45, ~), 

(qi, uv, r~v, qi) s 6  for i = 1 , 2 , 3 , 4  and v = 2 , 3 , 4 ,  

certain states qi and decompositions si = ra[xl ,  r~2ri3ri4r~5]. By Fact 5, 

[]  

5. Upper Bounds for Finite (Size-) Valuedness 

In this section we show that Properties (F1) and (F2) (Properties ($1) and ($2)) 
are not only necessary but also sufficient conditions for an FST M to be 
finite-valued (finite size-valued). In showing this we prove: 

�9 sval(M)< ~ implies sval(M)< 22~lMl'~ for some constant c > 0 in- 
dependent of M (Theorem 5.4). 

�9 val(M) < ~ implies val(M) < 2 2"('M'~ for some polynomial P independent of 
M (Theorem 5.5). 
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The proofs are inductions on the number of strong components of M. The bases 
of these inductions are given by Proposition 5.1. For the inductive step we classify 
the accepting computations of M according to their behavior between nodes with 
identical sets of accessible and derivable states (Proposition 5.2). 

Assume p, q �9 Q. q is called reachable from p (denoted p ~M q) iff there is a 
(p, q)-computation of M for some proper tree, q and p are connected (denoted 
q ~--~MP) iff p ~ t  q and q ~MP. Clearly, ~--~u is an equivalence relation on Q. The 
equivalence classes Q 1 . . . .  , Qk of Q are also called strong components of M. Without 
loss of generality, they are numbered in such a way that, for all p �9 Qi, q �9 Q j, 
P ~ M q  implies i < j .  Proposition 5.1 investigates the case of just one strong 
component. 

Proposition 5.1. Assume p, q �9 Q are connected, and (p, t, sl, q), (p, t, s2, q) �9 6 for 
some proper t �9 T~(xl): 

O) I f  M has Property (S0), then o)(sl) = co(s2). 
(ii) I f  M has Property (F0), then sl = s 2 .  

Proof. We only consider statement (ii). Without loss of generality, let t ~ xl. If 
p �9 U(M), then q �9 U(M) as well, and Sl = J- = s2 which proves the assertion. If 
p (s U(M), then also q ~ U(M) since p and q are connected. Moreover, (q, u, v, p) �9 6 
for some proper u and some v in which xt occurs. We consider t'.'= tu. Then 
(p, tu, s~v, p), (p, tu, sly, p), (p, tu, s2v, p) �9 6. Thus the conclusion of (F0) gives 

$1/.) S1/) ~ Sl / )  $2/) .  

From this, assertion (ii) follows by top and bottom cancellation according to 
Proposition 1.1S. [] 

Proposition 5.2. 
that, for proper t �9 T~(xl) and B ~_ Q with, 

A constant c > 0 and a polynomial P independent of M exist such 

3(p, q)-computation of M for t, 

3(p, q)-computation of M for t, 

VpeB, 3q �9  

V q � 9  3 p � 9  

the following holds: 

(i) I f  M has Properties (S1) and ($2), then 

:~ {~o(s)l(p, t, s, q) e 6} < 2 2c1~1'~ for every 

(ii) I f  M has Properties (F1) and (F2), then 

~: {sl(p, t, s, q)e6}  < 2 2~'MI) 

p, q e B .  

for every p, q e B. 

The proof in [W4] of the (single exponential) result for NGSMs corresponding 
to Proposition 5.2 is based on the observation that the difference between lengths 
of possible output words is appropriately bounded. This is no longer true for trees. 
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As a substitute,  we prove  that  the ou tpu t  only depends on the kernel of a suitable 
triple of  computa t ions .  

Let  q~, p~, 1 . . . .  , Pi.k ~ Q and let ~p~ be a (q~, p~. ~"  "pi.k) computa t ion  of M for 
t~Tz(Xk) ,  i =  1, 2, 3. Then the triple cp = (~pl,~o2, ~o3) is called (Z, ZV"Zk) -  
compu ta t ion  of M 3 for t where z = (q~, qz, qa)  and  z~ = (Pl , s ,  PE,~Pa,i). Such a 
compu ta t ion  can also be viewed as a tree in T~(Xk) where ~3 consists of  all triples 
('[1, "s T3) of transi t ions z i = (qi ,  ai, St, qi,1 "" "qi, m) e t~  with a~ = a z = a 3. Such a 
triple is now called a (q~, q2, qa)- t ransi t ion.  According to this definition, compu ta -  
tions of  M 3 can be composed  and  decomposed  similar to trees or  computa t ions  
of  M itself. 

Fo r  a compu ta t i on  ~p = (~Pl, cP2, ~Pa) of  M 3 and i ~ (1, 2, 3}, the ith ou tpu t  
T/(tp) is defined as T(qh). Analogously,  Di(tp):= f~(~Pi). Assume ~p is a compu ta t ion  
o f  M 3 for some p roper  tree t e Tz(x~). Intuitively, the kernel  e~p of ~p is obta ined  
f rom ~p by  el iminating p roper  (z, z)-computat ions.  This is done  in two steps. 

First  assume (p is a z -computa t ion  of M 3, v ~ Tz, and we have the recursive 
decompos i t ion  ~p~ = ~r%(~o~. ~ . . . . .  q~,.,n), r e  O(v), where m r is the rank  of v(r) and 
z, ~ 63, and  r = ~o such that,  for every r e O(v), some p ~ Qa exists with: 

(1) ~r is a p roper  (p, p)-computat ion.  
(2) F o r  no j e  {1 . . . .  , mr}, q~r~ contains  a p-transit ion.  
(3) I f  ~kr(o ) = xl  and ~k~(o') is a p-transi t ion,  then o is lexicographically smaller  

than  o'. 

Then c~p is obta ined  f rom ~0 by removing  the subcomputa t ions  ~,,  r e O(v). Hence,  
e~p is defined by eq~ := e~p~ where, for r ~ O(v), eq~r := %(eq~,a, . . . ,  e~prmr). 

N o w  assume we are given a p roper  (z, z ' ) -computa t ion  ~0 of M 3. Consider  the 
recursive decompos i t ion  (0K = ~z~(~o~.l . . . . .  ~0~,m), X = 1 , . . . , k ,  where ~o 1 = cp, 
~0k+ 1 = Xa, and,  for every ~: ~ {1, . . . .  k}, some p e Q3 and j ~ ~ exist such that:  

(1) ~p~+ 1 = ~P~,s. 
(2) ~ is a p roper  (p, p)-computat ion.  
(3) N o  proper  subcompu ta t i on  of ~o~ + ~ is a (p, z ' ) -computat ion.  

Then  the kernel of ~0, e(o, is ob ta ined  f rom q~ by removing  the subcomputa t ions  
~k~ and applying e ( )  to the subcomputa t ions  oPt,s" which do not  contain  x~. 
Hence,  e~0 is defined by e(0 := e~pl where ex l  := x~, and, for x = 1 , . . . ,  k, e~0~ := 
z~(e~o~,l . . . . .  e~p . . . .  )- 

Proposition 5.3. Assume M has Properties (S1) and ($2). Assume t e Tz(xl) is proper, 
z = (p ,  p, q) ,  z' = (p ,  q, q )  for  some p, q ~ Q, and q~ is a (z, z')-computation o f M  3 
for  t. Assume t = t l t z t  3 is a decomposition o f t  into proper trees and q~ = qhq~2~% 
is the corresponding decomposition o f  the computation q~ where q~2 is a (z~, z2)- 
computation o f  M 3. Let  ~ denote the kernel o f  q~2, and (o = ~ol~q~ s. 

(i) Iff~l(q~2)r {0, xl},  then T2(~02) = T2(@). 
(ii) I f  q r Const(M), then ~1(~o)- 1~2(~o) = ~l((p)-  1~12((o). 

(iii) Let  (o'z be another (z 1, z2)-computation o f  M3  for  t 2, and let ~'  be the kernel 
o f  ~o' 2. Then Di(@) = f~i(~,') for  i = 1, 2 implies ~2(~o2) = D2(qY2 ). 
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Proof First we prove that  statement (iii) follows from (i) and (ii). If flx(q~2)e 
{0, xl}, then fll(~p~ ) e {0, x~} as well. Then the assertion directly follows from (i). 
If ~1(r ~ {0, xl}, then q cannot  be in Const(M). We conclude from (ii) that  

= ~')2(tp 1 ) -  1 ~"l l(q))~"l 1(q)3)-  i~-I 1 (~/) - l~'~l((p 1 ) - 1 ~'12(q9 i)~'12(~/)" 

Let ~ ' =  tpiq~@ 3. Analogously, we find 

tl2(~ol) = f12(~o,)- lal(~o')fl,(~03)- ~f11(r lfll(~01)- lf12(~0 0f12($'). 

By Proposi t ion 5.1, fl l(r  = t21(~0). Since, by assumption, t2i($) = fli($') for i = 1, 
2, we conclude that  f12(r = ~'12(~0~) which we wanted to prove. 

(i) Since ~ is the kernel of 92, a sequence of proper computat ions (p(~), 
tc = 0 . . . .  , k, of M 3 exists such that  q~(o) = r ~ o(k) = $, and, for x = 0 . . . .  , k - 1, 
either (1) or (2) holds: 

(1) r = 01q32~b3 and r 1) = (~1(~3 where ~b 2 is a proper (z, z)-computation 
for some z e Q3. 

(2) (p(~)= ~bl[xl, ~b2~3] and ~0 (~+1) = qbl[xl, ~b3] where q32 is a proper (z, z)- 
computat ion for some z e Qa. 

By Properties (SI') and ($2') we deduce in both cases that  t12(~32)~ {0, xl} and 
therefore T2(~b2) ~ {_k, xl}. Therefore, by the reducedness of M, 

T2((~2~3) = T2(03 ) 

and hence also T2(q~ (~)) = T2(cp (~+1)) for all x. Now statement (i) follows by 
induction on ~c. 

(ii) Now assume q ~ Const(M). Since ~ is the kernel of q~2, a sequence of 
computat ions q~(~), x = 0, . . . ,  k, of M 3 exists such that  (p(o) = cp, q~(k) = 0, and, for 
~c - 0 . . . . .  k - 1, either (1) or (2) above holds. Therefore, by Facts 20) and 3(i) from 
Section 3, 

~-~2((p(~c))- l~l((pOc) ) = ~'~2((p(r + 1))-  I~'~I(~O(K + 1}). 

By this, assertion (ii) follows with induction on ~c. [] 

Using Proposit ion 5.3 we are able to prove Proposi t ion 5.2. 

Proof of Proposition 5.2. First recall that  since M has Properties (F1) and (F2), 
M also has Properties (F0'), (S1), and ($2). Now assume n .'= # Q. Every kernel 
is a computa t ion  o f M  a of depth at most  2" n 3. Therefore, tl~(~b) = a + b" xl where 

a < (L + 1) 2"3. IMI 2"3+1 (1) 

and 

b < IMI 2"~. (2) 
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Moreover, there are at most [M[ a'tL+l)2"3 different kernels. By the assumptions 
on the set B, j ~ ~ and states Pl . . . .  , P6 ~ Q exist such that 

(Pl, ti, ul, P2), (P2, t, u2, P3), (P3, t i, u3, P0, 

(Pl, t J, u4, p), (q, t j, us, P4), 

(P4, t J, U6, P~), (Ps, t, U7, P6), (P6, t J, U8, P4) ~ 6 

for certain ul . . . . .  u8 ~ T~(xl) w {_L}. Let u .'= UlU:U3, let q~-i be a (P2, p3)-compu- 
tation, and let ~o~ be a (Ps, p6)-computation of A for t producing outputs uz and 
UT, respectively. We proceed similarly as in the proof of Lemma 2.8 of [W4] where 
our Proposition 5.3 is the substitute of Weber's Lemma 2.10. 

Case 1: u ~ {_1_, x 1 }. By Proposition 5.3(i), the cardinality of the set { T(~o) r~o(p, q)- 
computation of M for t} is bounded by the number of different kernels of 
(zl, z2)-computations for t where Zl := (P2, P, Ps) and z2 .'= (Pa, q, P6). Hence, it 
is at most ]M[ a.tz + 1)2,3. From this, statements (i) and (ii) follow. 

Case 2: ur  {• xl}. Especially, q cannot be unique-sized since M has Property 
(SO). Therefore, all ui contain an occurrence of xl. By Proposition 5.3(iii), the output 
sizes of (p, q)-computations ~0 and ~0' of A for t are equal whenever t)i(ff) = f2i(~,'), 
i = 1, 2, where ~, is the kernel of (~0_ 1, ~0, ~ol), and ~,' is the kernel of (~o  1, ~o', qh). 
By estimations (1) and (2), there are at most (L + 1)2n3-[M[ 2n3 + 1" IMI 2"3 different 
output sizes f~(r i = 1, 2. Hence 

#{og(s)l(p, t, s, q)66} < (L + 1) 4"~" [M[ 8"3+2, 

which implies statement (i). 
To prove statement (ii) consider L'= t 2j+ 1 and assume that ~i(~') = fli(~'). By 

Proposition 5.3(iii), f~(~o) = fl(qr It remains to show that T(~o) = T(~o') also. Let 
v := T(~o) and v' .'= T(qr By our assumptions, 

(PI, 7, u, P0, 

(Pl, t, u4vus, P4), (P~, i, u4v'u~, P4), 

(P4, {' U6U7Us' P4) ~6, 

where u q~ {_1_, xx} and w(u4vu3)= cO(UgV'U5). Hence, u4vu~ = u4v'u~, because M 
has Property (F0'). Since v, v', and u~ all contain occurrences of xl we can apply 
top and bottom cancellation to deduce that v = v'. [] 

We apply Propositions 5.1 and 5.2 to obtain the main theorems of this section. 

Theorem 5.4. There is a constant c > 0 such that, for every reduced F S T  M, the 
following three statements are equivalent: 

O) M has Properties (S1) and ($2). 
(ii) sval(M) < 22cFMr'~ 

(iii) sval(M) < ~ .  
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Theorem 5.5. There is a polynomial P such that, for every reduced FST  M, the 
following three statements are equivalent: 

(i) M has Properties (F1) and (F2). 
(ii) val(M) < 2 2P~t'~l~. 

(iii) val(M) < ~ .  

Proposition 3.4 now gives the following corollary: 

Corollary 5.6. Assume M is a reduced FST. Then val(M) < oo /ff sval(M) < 
and M has Property (F0). 

Simple examples show that Properties (F1) and (F2) are independent. More- 
over, modifying an example of [Sel l  we find that, for some constant c > 0, and 
infinite family of finite-valued FSTs M of arbitrarily large size exists with 
val(M) > 2 2clMI. 

We only prove Theorem 5.5. The proof of Theorem 5.4 is analogous: instead 
of using statements (ii) of the Propositions 5.1 and 5.2 statements (i) have to be 
employed. 

Proof o f  5.5. Assertion (ii) implies (iii). By Theorem 3.1(ii), assertion (iii) implies 
(i). Therefore, it remains to show that (i) implies (ii). 

Assume p, q ~ Q. Define 

Tp(t) := { T(~0) l r p-computation of M for t} 

and 

valp(t):= # Tp(t) for every t e T~, 

Tq, p(t):-- { T(q~)lq~(q, p)-computation of M for t} 

and 

valq,~(t)..= ~ Tq, p(t) for every proper t ~ Tz(xl). 

Define a function v(_, _): N x N ~ N u {oo} such that v(n, k) is the supremum of 
the numbers val(M) where M is a reduced FST with one single final state, I M I < n, 
and with at most k strong components such that M has Properties (F 1) and (F2). 

Clearly, n" v(n, n) is an upper bound for the valuedness of a reduced finite- 
valued FST of size n. Therefore, it suffices to compute an upper bound for v(n, k). 
We proceed by induction on k'. We claim 

v(n, 1) _< n for every n > 0, (1) 

v(n, k) ~ 2 2e'r162176176176 (2) 

for every n > 0 and k > 1 where P' is the polynomial given by Proposition 5.2 
and c is some constant > O. Clearly, inequalities (1) and (2) prove the stated 
implication. 



332 H. Seidl 

For  a proof consider a reduced FST M = (Q, Z, A, 6, {qF}) having k > 1 strong 
components Q1 . . . . .  Qk. Clearly, qF~Q1. Let t e  T~. For  some node oeO(t)  let 
t[xa/o] denote the tree obtained from t by replacing the subtree with root o by 
Xr First assume k = 1. Let o ~ O(t) an arbitrary leaf o f  t with label a. Then 
every accepting computation q~ can be factorized q~ = ~Oz where, for some p e Q, 

= q~[xl/o] is a (qv, p)-computation for t[xl/o], and z is a p-transition (p, a, s, e) 
for some s. Let ~o' be another accepting computation of M for t where qr = 
q~(o) = z. By Proposition 5.1, T(~o'[xl/o]) = T(q~[xl/o]). Therefore, T(q~) = T(q;) 
also. We conclude that the number of different possible outputs is bounded by 
the number of different transitions for some a e Y~o. This gives estimation (1). 

Now consider k > 1. For  t e T~ and o e O(t) define 

ACCt(o) := (q ~ Q] there is a (qF, q)-computation for t[xl/o]}, 

DER~(o) := {q e Q lthere is a q-computation for t /o},  

and 

D,(o) := ACC,(o) c~ DERt(o ). 

Observe that, by our definition, Dr(o) is precisely the set of all states q ~ Q for which 
some accepting computation q~ exists where q~(o) is a q-transition. 

We decompose t according to the first and latest occurrences of the sets of 
states. For  o e O(t) define succ(o) as the lexically smallest node 6 such that: 

�9 o is a prefix of 6, 
�9 Dt(o ) = Dr(6), and 
�9 Dt(6o') # Dr(o) for every o' # e. 

The set of designated nodes of t is the smallest set O ___ O(t) such that: 

(i) e e O ,  
(ii) if o e O, then succ(o) e 0 also, and 

(iii) if o ~ 0 and succ(o) = o, then oj e 0 for all j. 

Define O1 ~- O as the set of nodes in 0 with succ(o) = o. We have 

# ( 0 \ 0 1 )  < # 0 1  and # 0 1  < ( L +  1) 2~-1 

The type of a node o ~ O, type(o) E {1 . . . . .  L}*, describes the sequence of"decisions" 
made at nodes from O 1 to reach o. It is inductively defined as follows: 

(i) type(e):= e, 
(ii) type(succ(o)) = type(o), and 

(iii) if o = succ(o), then type(oj):= type(o) .j. 

In the next section we need the types of nodes from O to find a fixed finite set of 
specifications of outputs for input trees. For  the moment, consider just one input 
tree t. We classify the accepting computations of M for t according to set O. 
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We have 

T (t) = U 
o ~ 0 \ 0 1  

p ~ Q t  
q C O l  

kJ U 
o e O l  
q c Q l  

( q , a , s ,  ql " "qm)E6 
where  a = t(o) 

andq~r 

Tq~,q(t[xl/o])s[T~,(t/ol) . . . . .  T~m(t/om)]. 

Proposition 5.1 applied to t [x l /o  ] yields that :~ Tu(t[xa/o]) = 1. Furthermore, we 
apply Proposition 5.2 to t/o[xx/succ(o)] with B = Dr(o) (which, by definition, equals 
Dt(succ(o))) and obtain 

ValM(t ) < ~ 2 2:"'" n "valq(t/succ(o)) 
oeO\Oa 

qCql  

+ ~ valq,(t/ol) . . . . .  valq~(t/om), 
o E 0 1  

( q , a , s ,  ql . .qrn)E6 
where  a = t(o) 

a n d q E Q l , c l i r  

where P' is a polynomial chosen according to Proposition 5.2. It follows that 

v(n, k) <_ (L + 1) 2"- 1122"(" �9 n 2. v(n, k - 1) + n" v(n, k - 1) z] 

<__ 22P(")+c'"~l+l~176 k - -  1) L 

for some constant c' > O. Hence by inequality (1), 

log log v(n, k) < P'(n) + cn(l + log log L) + (k - 1) log(L + 1) [] 

Using Theorem 4.1 we conclude: 

Theorem 5.7. 

(i) It is decidable in polynomial space whether or not an F S T  M is finite 
size-valued. 

(ii) It is decidable in nondeterministic polynomial time whether an F S T  M is not 
finite-valued. 

Proof  Theorems 5.4 and 4.1(i) for statement (i); Theorems 5.5 and 4.1(ii) for 
statement (ii). [] 

6. Decomposing Finite-Valued Tree Transducers 

In this section we prove that it can be decided whether or not the translation of 
an FST is included in the translation of a finite-valued FST M' (Theorem 6.4). 
Actually, our Theorem 1.5, Property (F0'), and Proposition 5.3 allow us to 
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generalize the corresponding constructions of [W2]. Therefore, we proceed as 
follows. In Theorem 6.1 we show that this inclusion problem is solvable provided 
T(M') is a finite union of the translations of single-valued FSTs. In Theorem 6.2 
we show that every finite-valued FST M'  can be effectively decomposed into a 
finite union of single-valued FSTs. Together, this yields the desired result. 

For  size-valuedness, the theorems corresponding to Theorems 6.1 and 6.2 hold 
as well. We do no state them explicitly but refer to them as Theorems 6.1S and 
6.2S. Especially, we are able to decide whether or not two finite size-valued 
transducers M and M'  are equivalent with respect to the sets of output sizes, i.e,, 
whether ~(M) = ~(M'). 

Theorem 6.1. Assume M is an F S T  and M~ . . . .  , M K are single-valued FSTs 
such that L(M) ~ L(Mj) for all j = 1 . . . . .  K. Assume the number of states of any 
of these transducers is bounded by n. Then T(M) ~ U~= 1 t (M j) iff there is a pair 
(t, s) ~ T (M) \U~:  1 T(M~) such that depth(t) _< 3 �9 (2K)! �9 n K+ 1. 

Proof Assume t e T~, ~0o is an accepting computat ion of M for t. Since L(M) ~_ 
L(Mj) for j = 1 , . . . ,  K, there are accepting computations ~0j of Mj for t for all j. 
Define Ss:= T(qgj) for j --- 0 . . . . .  K. Assume t is chosen of minimal size such that 
s o ~ s j for  al l j  = 1 . . . . .  K, but depth(t) > N .  n x§  where N = 3 �9 (2K)]. Then there 
are states Po . . . . .  PK ~ Q, a factorization of t = t o ' "  tN into proper trees t~ e T~(xl), 
and corresponding factorizations ~o~ = q~,o" 'q~ ,N such that q~,j is a (p~,p~)- 
computat ion for all x = 0 , . . . , K  and j = 1 . . . . .  N - 1 .  Define s~,j:= T(q~,j), 
x = 0 . . . . .  K, j = 0 . . . . .  N. By the minimality of t, 

V O < i < j < N ,  3x~ {1, . . . ,  K}, 

S0,O'"S0, i - ISo , j ' ' ' So ,  N ~ Sx, O" " Sx,  i -  I S K , j "  " Slc,N" 

By Theorem 1.5(ii), this implies 

T(q~o) = SO,O'"So,N = S~,O'"S~,N = T(q~) for some 

a contradiction. [] 

Theorem 6.2 (Decomposition of Finite-Valued FSTs). For every finitely valued 
F S T  M single-valued FSTs Ma , . . . ,  MK, where K < 2 2alul), exist and IMp[ < 2 z~tM~}, 
j = 1 . . . .  , K, for some polynomial P independent of  M such that 

T(M) = T(M O t3 "" t3 T(MK). 

This decomposition can be found in deterministic time 2 2p~ 

Proof Assume M = (Q, E, A• 6, QF)" Without loss of generality, we may 
assume M is reduced and that QF----{q~}- Recall that Mq denotes the FST 
(Q, E, Al,  6, {q}). Note that val(m~) < ~ .  

Assume t ~ T~ and 0 ~ O(t) is the set of designated nodes of t as defined in 
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the p roof  of Theorem 5.5. We classify the accepting computa t ions  of M for t 
according to O. First  we make  the following observat ion:  

Observation 6.3. Assume go is a q-computation for t. I f  ~ > val(Mq) > 1, then there 
is exactly one o ~ 0(0 such that: 

(i) go(o) is a p-transition for some p E Q with p ~Mq. 
(ii) o is of maximal length, i.e., if go(OOl) is a if-transition with p' ~Mq,  then 

0 1 = ~ .  

Proof Assume the assertion is not  true. Then  there is a node  0 ~ O(t) and Jl ~ J2 
such that  bo th  Pl "-}M q and P2 ~M q where go(oil) is a p~-transition. F r o m  Proposi-  
t ion 5.1, applied to q, Pl, and t[xl/ojl], we get val (Mp:)= 1 and, therefore, 
val(M~) = 1 since P2 -"~M q and M is reduced. This is a contradict ion.  [ ]  

For  convenience we denote  the unique node o of Observat ion 6.3 by n(go). 
Assume go is q-computa t ion  of M for t. To  go we at tach a (finite) set of specifications 
F(go). A specification 7 is accepting iff 7 ~ F(go) for some accepting computa t ion  go. 
If val(Mq) = 1, F(go):= {q}. If val(Mq) > 1 we distinguish two cases. 

Case 1: n(go) ~ O1. Assume h := type(n(go)), and let t = t i t  2 where tl  := t[xl/n(go)]. 
Assume go = googo' is the corresponding decomposi t ion of go with go' = r(gol . . . . .  gok)- 
Then  (q, h, z )  (71 . . . . .  7k) e F(go) for every 7j s F(goj), j = 1 . . . .  , k. 

Case 2. Case 1 does not hold. Then a node 0 s O \01  of some type h exists such 
that  0 is a prefix of n(go) but  succ(o) is not  a prefix of n(go). Assume t = td2t3 for 
proper  tt ,  tzE Y~z(xl) such that  t Jo  = x l ;  and td2/succ(o)= xl ;  and let go = 
gooOogo' be the corresponding decomposi t ion of go where ~0 is a proper  (Po, qo)- 
computa t ion  and go' --- z(gol . . . .  , gok). 

Consider  states p_ 1, Pl, q-1,  ql e Q such that  (Pi, qi)-computations Oi for t2 
exist for i e { - 1, + 1} where 

( q - l ,  U, Sl, r l)  , (qo, u, S2, r2) , (ql, u, s3, r2) , 

(rl, v, s4, p_ 1), (rl, v, ss, Po), (r2, v, s6, P l ) e  

for some proper  trees u, and v, states rl ,  r2 ~ Q, and sl . . . . .  s6e  T,~(xl). Since 
Dr(o) = Dt(succ(o)) such a choice always is possible with u = v = t�89 for some j (see 
the p roof  of Proposi t ion  5.2). 

Finally, let ~b be the kernel of ( ~ - 1 ,  ~ko, ~1) .  Then  (q, h, ~b, 3) (71 . . . .  ,7k) ~ 
F(go) for every 7j e F(goj), j = 1 . . . . .  k. 

We claim: 

(1) The set F := U{F(go)Igo accepting computa t ion  of M} has cardinali ty at 
most  22p~M~ for some polynomial  P independent  of M. 

(2) If go~l) and go~2) are accepting computa t ions  of  M for the same tree t and 
F(go ~ c~ F(go t2)) r ~ ,  then T(go ~ = T(go(2)). 

Fo r  a p roof  of (1) observe that  a type h e {1 . . . . .  L}* is a word of length at most  
2 " - 1 .  Moreover ,  recall that  there are less t han  IMI 3"(I'+1)2"~ kernels (where 
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n = :~ Q). Therefore, the signature to denote the trees from F has cardinality at 
most  

n ' ( L  + 1) v - x "  IMI 3"~L+1)="' ~ 2 a~'~'M'~ 

for some polynomial P~ independent of M. Furthermore,  assume Y = A(VD . . . ,  V,~) 
is a specification of an accepting computat ion ~0 of an FST M with k strong 
components.  Then V~ is a specification of an accepting computa t ion  of an FST Mi 
with at most  k - 1 strong components.  Thus, depth(v) < k < n. Since the rank of 
the signature of F is at most  L, claim (1) follows. 

Now consider claim (2). Let t ~ Tz, 0 ~_ O(t) be the set of designated nodes of 
t and let ~o a), ~0 t~) be q-computations of M for t such that  F(~o m) c~ F(~o t2)) r ~ .  
Assume y is in both  F((o a)) and F(~ot2)). We deduce that  T(~o tl~) = T(~o t2)) by 
induction on the structure of 7. If y = q, then M~ is single-valued. Hence, 
T(~o m) = T(~o(2)). If y ~ Q, then we have to distinguish two cases. 

Case 1:7  = (q, h, z )  (Vl , . . . ,  7k). Then 0 s 01 of type h exists such that  t = q t  2 
for proper tree t 1 e Tz(x 0 where q / o  = x 1. Let q~(i)= q~(~)o(i) be the corres- 
ponding decompositions of ~o t~ i = 1, 2, with ~0 )=  z(q~) . . . .  , qCk ~ such that 
z = (p, a, u, ql"'" qk) ~ 6 where q and p are connected but q is not  reachable from 
any of the q j, and Vj ~ F(~o} ~ for all j and i = 1, 2. We show that  T(qr 1)) = T(~o~o 2)) 
and T(~b m) = T(~bt2)). Since both ~0~o ~) and (pro 2) are (q, p)-computations of M for tx, 
Proposit ion 5.1 implies that  T(tpto ~)) = T(~o(o2)). 

Moreover, by inductive assumption, T(~o} 1)) = T(q~} 2)) for all j = 1 . . . . .  k. 
Therefore, 

T((b tl)) = u[T(q~ 1)) . . . .  , T(q~l))] = u[T(q~? )) . . . . .  T(~o~2))] = T(~b(2)), 

which finishes the proof  in this case. 

Case 2: V = (q, h, if, z)  (71,. . . ,  7,n)- Then o ~O\O~ of type h exists such that  
t = q t  2 t 3 for proper trees tl,  tz where t 1 := t [x l /o  ] and qtz/SUCC(O) = x 1. Consider 
the corresponding decompositions ~o (~ = ~og)~k~)0(~ of (o (i), i = 1, 2, where ~,~) are 
proper (ptd), q~))-computations for states pg), q~) such that  q~-~up~ ) but not  

�9 F ..(o) q(d ) ~M q" Moreover,  q5 (~ = z((o~~ q~o) with Vj ~ (ws for all j and i = 1, 2. 
We show that  T(~o~o 1)) = T(~o(o2)), T(O(o 1)) = T(0(o2)), and T(~ m) = T(~(2)). Since 

y e F(q~ 0)) c~ F(q~2)), (pl ~), ql'))-computations O~ ~) for t 2 for i e { - 1, + 1} also exist 
such that  0 is the kernel of (0~1,  O~o ~), 0~)i ) for v = 1, 2. Therefore, in particular, 

(i) p p ) = p ! 2 ) = : p i  and q l l )=q!2)=:q i  for i = - 1 , 0 , 1 .  

Moreover, 

(ii) (rl, u, sl, p-1), (q-1, v, s2, q),  

(q,  u, sa, Po), (qo, v, s4, r2), 

(r2, u, ss, Pl)(ql, v, S6, r2)~ 
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for proper u, v, and certain rl, r 2 �9 Q, s l , . . . ,  s6 e Ta(x0. By (i), both (p(o 1) and r 2) 
are (q, po)-computations of M for tl. Since Po is connected with q, T(cp~o 1)) = T((pr 2)) 
by Proposition 5.1. 

Since 0 = e(O~)~, ~(o ~), 0(~)t) for v = 1, 2, we can apply Proposition 5.3 to the 
tree t' := ut2v where states p, q and computations r q~ of M a in the assumption 
are rt, r2, and (1~)1' ~'0't'(i)' v'a't'O\/, i = 1, 2, respectively. If f l(O~])�9 {0, xx}, then 
f~(O~]) �9 {0, xa} also, since p_ ~ and q_ ~ are connected. Therefore, by Proposition 
5.3(i), T(0to ~)) = T2(~b ) = T(O~02)). Otherwise, we apply Property (F0') to t'. By our 
assumptions, 

. . . . .  r 2 ) � 9  ' ' rz), (r 2, t ,  s,~, (r 1, t ,  sl, r0, (r~, t', s 2, r2), (rl, t ,  s 3, 

where 

and 

s i := s lTOg-1,  q~ xl} ,  

! 

s2 := s3 T(~ol))sr 
! 

s3 :=  s~ T(O~o~)s~, 

S t . ~  �9 - s5  T ( O ~ ' ) s 6 .  

Proposition 5.3(iii) for t' gives ~(0~o 1~) = f~(0~o 2~) and, therefore, co(s~) = co(s;). Thus 
Property (F0') gives s~ = s;. Since s~ contains an occurrence of xl, we deduce by 
top and bottom cancellation that T(0(o 1)) = r(0(o2)). 

Finally, by inductive assumption, T((p} 1)) = T((p} 2)) for all j = 1, . . . ,  k. There- 
fore, 

r(o(1)) = u[T(ep(11)), . . . ,  T(q~l))] = u[T(cp~ 2)) . . . . .  T(epP))] = T(0(2)), 

where u is the output pattern of z. This completes the proof of claim (2). 
Note that in order to prove equality of outputs in Case 2 by means of 

Proposition 5.3, it would have been sufficient to encode states ( P - I ,  Po, Pl) ,  
( q - l ,  qo, ql),  and the outputs of the components of kernel 0 (or, in the case of 
size-valuedness, the sizes of the outputs). This leads to a (slightly) smaller set of 
specifications. In order to make our constructions simpler we did not do that. 

For every specification ?, we construct an FST My such that T(My) consists 
of all (t, s) ~ T~ x Ta such that s = T(ep) for some computation q0 of M for t with 

�9 F(~0). Although much more involved, the construction is a generalization of the 
corresponding construction of [W2] to tree transducers. According to claim (2) 
above, the cardinality of Tu,(t ) is at most 1 for every t �9 T z. Therefore, M s is 
single-valued. For every accepting computation (p of M, F(~o) r ~ .  Hence for all 
t � 9  Tz, O ~ r  TM,(t) = TM(t) �9 Therefore, T(M) = ~)v~r T(M~). 

It remains to give a construction for M~. We proceed in four steps. We start 
by constructing an FTA M~ which on every input tree t �9 Tz computes the sets 
Dt(r ), r �9 O(t). The states of M~ have two components. In the second component 
Ma computes the set of derivable states. Conceptually, this computation is done 
in a bottom-up fashion. Opposed to that, the first component propagates informa- 
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tion top-down. It collects the subsets of states from the second component which 
in fact are accessible from the root. 

To implement this, let M x =(Q1, E, E, 61, Qx,v) be the FTA with 

Q1 := {<D, B)ID ~- B ~_ Q}, 

Qi.v:= {<O, B>eQiID = B c~ Qv}, 

and 

((D, B), a, a, (D1, BI)"" (DR, Bk)) ~ 6l iff 

�9 B = {qEQlB(q, a, s, q i " ' q k ) e g :  Vj: qj~Bj} and 
�9 Dj = {peBjl3(q, a, s, q l ' " q k ) e 6 :  qeD,  qi = P and Vj' # j :  qyeB;} .  

Clearly, #Q1 < 3"; IM] -< 3 luf and M 1 can be constructed in time 2 p~ 

Fact 6. Let q~ be an accepting computation of M~ for some t e T~. Then, for every 
r e O(t), (p(r) is a (D, B)-transition i f iB = DERt(r ) and D = Dt(r ). [] 

We use M1 to construct an FTA M 2 which for every input tree t computes 
the subset 0 c_ O(t) of designated nodes of t together with the corresponding types. 
On input tree t, Mz conceptually runs top-down from the root to the leaves. 
Besides simulating M~ in one component of its state we allow M 2 to have four 
more components. One component contains a flag from {0, 1, 2, 3}. 0, 1, 2, or 3 
indicate that M2 presently processes a prefix of some node of t in 0 which is not 
in 0 itself, a node from 01, a node from O\Oi,  or a node which is never a prefix 
of some node in O. In the second component M 2 computes the type of node in 
O. The third component holds a set o" of sets of states of M where we collect sets 
Dr(r), r e O, already found. M 2 has to verify that these sets of states do not occur 
any more. The fourth component holds a set D of states of which a leftmost latest 
occurrence is sought. D is not added to o- before this occurrence has been found. 

Thus, let M 2 = (Qz, E, Z, 62, Q2,F) be the FTA with 

Qz:= {0, 1, 2, 3} x T x 22q • 20 X Q1, 

where T :=  {w~{1,...,L)*llwl _< 2" - 1}, with n = #Q,  

and 

Q2,F:= {(b, e, ~ ,  D, (D, B>>]be {1, 2}, (D, B> e Qa,v}, 

62 : =  (~21 t.) 1522 k_) 623 , 

where the sets of transitions 62i a r e  defined as follows: 

621 consists of all transitions 

(<3, h, a, ~ ,  <D, B) ) ,  a, a, <3, h, a, ~Z~, <O~, B ~ ) ) " "  (3, h, a, ~ ,  (O~, B~))) 
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where 

�9 ((D, B>, a, a, (D1, BI>'"<D k, B k > ) ~ l  and 
�9 D, D1, . . . ,Dk~a.  

622 consists of all transitions 

(<1, h, a, D, <D, B>>, a, a, <b 1, h" 1, a', DI, (D1, BI>>.-. 

<b k, h" k, tr', Dk, <Dk, Bk>>) 

with t r '=  a u {D} and bj~ {1, 2} where 

�9 (<D, B>, a, a, <D1, BI>'"<Dk, Bk>)~61 and 
�9 D, D 1 . . . . .  Dk~tr. 

62a consists of all transitions 

((b,h, tr, D', (D,B>>,a,a, <3, h , a ' , ~ ,  <D1, Bl>>'"<3, h, tr ' ,~,  (Dj_l ,  Bj_l>> 

<b', h, tr, O', <Oj, Bj>><3, h, tr, ~ ,  <Dj+I, Bj+I>>'-" <3, h, ~, ~ ,  <D k, Bk>>) 

with k > 0, tr' = tr u {D'}, b ~ {0, 2} and b' ~ {0, 1, 2} where 

�9 ((D, B>, a, a, <D1, BI>'"<Dk, Bk>)~01, 
�9 D', D, D1 . . . .  ,DkCtr, and 
�9 if b' e {1, 2}, then D' = Dj. 

The first set of transitions describes how M 2 processes nodes outside the set 
of prefixes of designated nodes 0; the second and third sets give the behavior at 
nodes from 01 and at prefixes from nodes in 0 which are themselves not in 01, 
respectively. In particular, transitions chosen at leaves are either from the first or 
the second set. Clearly, I M21 < 22clMI for some constant c > 0, and M 2 can be 
constructed in time 22p~ 

Fact 7. Let q~ be an accepting computation of M 2 for some t ~ T~, r ~ O(t), and r 
is a (b, h, tr, D', (D, B>>-transition. 7hen: 

(i) D = Dt(r ). 
(ii) If b = 0, then r is a prefix of some node in 0 but r ~ O. 

I f b = 1 ,  t hen r~01 .  
If b = 2, then re  0 \01 .  
If b = 3, then r is not a prefix of any node in O. 

(iii) If b ~ {1, 2}, then type(r) = h. 

Finally, we need an auxiliary FST M a which computes the kernel of a guessed 
proper computation ~p of M 3 and, while doing so, produces Tz(cp ) as output. Similar 
to M a, it memorizes leftmost latest occurrences--but now of states of M 3. 
Therefore, it again has one component holding a flag from {0, 1, 2, 3}, one 
component in which the kernel is computed, one component holding the set of 
forbidden states (of M3), one component for the state (of M 3) actually processed, 
and one component in which a computation of M a is simulated. 
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We are only interested in the behavior of M 3 on proper trees from T~(Xl). 
For  simplicity we assume the labels of nodes on the (unique) path to leaf x 1 already 
contain some tag j indicating which subtree at this node contains x~. Such trees 
are said to have a designated branch. Formally, let ,~,= Z u {*} w {(a , j ) la~E,  
1 < j  < p(a)} where the rank of �9 is 0 and the rank of (a,j) equals the rank of a. 
t ~ T~ has a designated branch r iff the following three properties hold: 

(i) t (r)= *, 
(ii) for every prefix r7 of r, t(r') = (a,j) for some a e E, and 

(iii) t(r') ~ ~, whenever r' is not a prefix of r. 

We construct an FST M 3 = (Q3, ~, A u {*}, 63, Q3.v) with 

Q3:={0 ,1 ,2 ,3}  x C x 2  Q 3 x ( Q 3 w { •  

where C is the set of subtrees of kernels of proper (z, z')-computations of M 3, 

Q2.F:= {<b, q~, ~ ,  z, z>lb ~ {1, 2}, rp e C is a proper (z, z')-computation 

for some z ' e  Q3}, 

and 

63 = 6' u 6". 

The set of transitions 6' defines the behavior of M a on the designated path, i.e., 
for nodes labeled with �9 or (a,j) for some a E E, whereas 6" defines the behavior 
on the remaining nodes, i.e., those labeled by some a e E. The construction is based 
on ideas similar to those used for M2. Therefore, we omit presenting it explicitly 
but state the desired properties of M3. M3 can be constructed in time 22~~ with 
[Ma[ < 22cjMJ3 for some constant c > 0 such that Fact 8 holds. 

Fact 8. Assume t e T~ is a tree with a designated branch r, and t' e T~(xx) is the 
proper tree obtained from t by replacing the labels (a,j) with a and * with x 1. Then, 
for  every s e TA(xl), the following two statements are equivalent: 

(1) A <b, tp, ~ ,  z, z>-computation of  M 2 for t exists with b ~ {1, 2} producing 
output s[*]. 

(2) Some (z, z')-computation ~o of  M3 for t' exists such that tp = cq~ and Tz(q~ ) = s. 

Given constructions for M 2 and M3, FST M r = (Qr, Z, A, fir, Qr.F) is defined 
as follows (for comments see below): 

Q r : = F r x  Q2 x [Q3uQ], 

where Fr is the set of all subtrees of ?, and the union in the third factor is meant 
to  be disjoint. 

Q,,F:= {<?, z, q>lze  Q2.F} 
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provided one of the following condit ions hold: 

o y = q .  
�9 ~ = (q, h, z ) ( ~ l , . . . ,  7k), and 
�9 ~ = (q, h, ~k, z)(71 . . . . .  ~k) and h r e. 

It remains to consider specifications 7 = (q, h, ~k, z)(71 . . . .  ,7k) where h = ~. If 
T(Mr) r ~ ,  0 must  be a (g/. p)-computat ion of M 3 where ~ = (r, q, r') for some 
r, r' �9 Q. Then 

Q3',F :'~" {(7, Z, z ' ) l z � 9  z' = (b, O, ~ ,  gl, 0)  �9 Qa,F}- 

6r consists of five groups of transitions, namely, 

6~;= 6~. 1 u - "  ~ 6~.s, 

where 6r. i are defined as follows: 

6~,1 consists of all transitions ((7', z, q),  a, s, (7', zl, q l ) " "  (7', Zk, qk)) where 

�9 (z, a, a, Z l " "Zk ) �9  
�9 Z = (_ ,  h . . . . .  ) for some h not  occurring in V'(e), and 
�9 (q, a, s, q l " " q k ) � 9  

6r, 2 consists of all transitions ((~', z, z ') ,  a, s, (7', zl ,  z ' l ) ' " ( 7 ' ,  ZR, Z'k)) where 

�9 (z, a, a, Z l " "Zk ) � 9  62, and 
�9 for z = (b . . . . . . . .  ) ,  (z', a, s, Z'l""z'~) �9 63 provided b = 3, and 

(z', (a,j), s, z'l "" z'k) �9 63 

provided (b �9 {0, 1, 2} and zj = (b',  . . . . . . .  ) with b' �9 {0, 1, 2}). 

6it. a consists of all transit ions ((7', z, z ') ,  a, s, (7', zl ,  z'1) "" (7', Zk, Z'k)) where 

�9 (z, a, a, Zl""Zk) �9 62, and 
�9 ~' = (q, h, ~k, z)(71 . . . . .  7k) where ~k is a (proper) ( (p_  1, Po, P l ) ,  ( p 2  1, P~, P'I))- 

computa t ion ,  z = (2, h . . . . . .  ) ,  z i = (b  . . . . . . . .  ) with b �9 {0, 1}, z' = Po, 
and (z o, (a,j), s, Zi '"Z'k ) �9 63 with 

Z o = ( b ' , O , ~ , ( P - l ,  po, P l ) , ( p - l ,  po, p l ) )  for b' �9 {1, 2}. 

6v,4 consists of all transitions ( (~,', z, q'), a, s, (71, zl ,  q l ) " "  (Tk, Zk, qk)) where 

�9 (z ,a,a,  z1 . . .Zk ) �9  
�9 7' = (q, h, z)(71 . . . .  ,7k) where z = (q', a, s, ql""qk) ,  and 
�9 z = ( 1 ,  h . . . . . . .  ). 

Finally, 6~.5 consists of all transitions ((7', z, z ') ,  a, s, (71, zl ,  ql ) "  " (Tk, Zk, qk) ) 
where 

�9 (z ,a,a,  z l . . . Z k ) � 9  
�9 7' = (q, h, ~, z)(71 . . . .  ,7k) where ~k is a (/3, O)-computation, ~ -- (q', a, s, 

ql"'" qk), and q' is the second componen t  of g/, and 

�9 z = (1, h . . . . . .  ) and z' = (1,  X1, __, q, ~/)" 
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(As usual, we indicated components of states on which no restriction is imposed 
by "_".) 

M r conceptually runs top-down an input tree t. In its first component M r 
keeps track of the subtree 7' of y which still has to be checked. In its second 
component M r simulates M z. The computation here is independent of V. The third 
component is used to check a guessed computation of M against 7. It is this 
component which produces the output of My. 

In detail, the third component operates on a given input tree t with a 
designated set of nodes 0 as follows. If 7 --- q the third component of M r simulates 
Mq for t. For  this, M r uses transitions from group 6r, 1. 

Assume 7r Let ? =  ( q , h , z ) ( ~ l  . . . .  ,~k )  and t =  txa(u 1 . . . . .  uk) where 
tl/O = x l  for the node 0 s 01 of type h. Then the third component of M r first 
simulates a computation of Mq for tx. This is again done by means of transitions 
from 6r, i- At node o, z is applied using a transition from 6r,4- For  every subtree 
u j, My continues as M w 

Finally, let ~ = (q, h, ~k, z)(7l . . . . .  7k) and t = tlt2a(ul . . . .  , Uk) where tl, t 2 are 
proper, t l /o = xl ,  and tlt:/succ(o ) = xl  for the (unique) node 0 ~ 0 \ 0 1  of type h. 
Assume ~k is a ( (p_Dpo ,  p l ) , (p '_ l ,p 'o ,p ' l ) ) -computat ion  of M 3 and z is a 
p~-transition of M. Then the third component of My first simulates a (q, qo)- 
computation of M for t~ using transitions from 6r, 1. For  t2 it simulates a 
( (P - I ,  Po,Pl) ,  ( P ' I ,  fro, p] ))-computation ~0 of M 3 whose kernel is ~k and pro- 
duces output T2(q~); this is done using, for the third component, states and 
transitions from M3, i.e., by means of transitions from 6r. 3 and 67, 2. Finally, at 
node succ(o), -r is applied using transitions from 6r,5, and M r continues with 
subtrees uj as M w 

Since M r can be constructed in time 22'~ with ]Mrl < 2 2~'ml3 for some c > 0 
this completes the proof of Theorem 6.2. []  

From Theorems 6.1 and 6.2 and their corresponding size versions we conclude 
the main theorem of this section. 

Theorem 6.4. Assume M and M'  are FSTs. 

O) I f  sval(M') is finite, then it can be decided in space 2 22p~ whether or 
not ~(M)  ~_ ~(M'). 

(ii) I f  val(M') is finite, then it can be decided in nondeterministic time 2 22p~ 

whether T(M) 7~ T(M'). 

Proof of(ii). Without loss of generality, assume the input and output signatures 
of M are disjoint. Then the algorithm is as follows: 

(1) Decompose T(M') into a union T(AO u ' "  u T(AK) where K _< 2 2p0M'I) and 
Mj are single-valued FSTs of size at most 2 2p~M"~, where P is the polynomial 
independent of M given by Theorem 6.2. 

(2) For  j = 1 . . . . .  K, compute an FTA A4j with L(/~r:) = T~kL(Mj). 
(3) Guess a subset 1 ~ (1 , . . . ,  K}. 
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(4) Guess a witness (t, s) ~ T~ x TA and verify that: 
�9 (t, s)~ T(M), 
�9 Vjq~I, teL(fflj),  and 
�9 Vj e I, 3 accepting computation q~j of Mj for t such that s ~ T(tp~). 

By Theorem 6.2, step (1) can be performed in deterministic time 2 2p~ Step 2 
can be implemented by using the standard subset construction. This needs time 
2 22p~ yielding FTAs )~j of size at most  2 22P(l~'l). Clearly, L(M) ~_ L(Mj) u L(lfflj) 
for every j. Therefore we can apply Theorem 6.1 to deduce that it suffices in step 

4 to guess a witness of depth 2 22~'~'M'~ for some polynomial P' in order to let the 
algorithm accept iff T(M) ~ T(M'). By using similar ideas as in the algorithm from 
the proof of Theorem 2.2(ii), the verification part of step (4) can be executed in 
nondeterministic time 22~p~ 

The proof of (i) is analogous where Theorems 6.1S and 6.2S are used instead 
of Theorems 6.1 and 6.2, respectively. [] 

As a corollary of Theorems 5.7 and 6.4 we obtain: 

Corollary 6.5. Assume M and M' are FSTs. 

(i) I f  sval(M) is finite, then it can be decided in space 2 22p~ whether or 
not f~(M) = f~(M'). 

(ii) I f  val(M) is finite, then it can be decided in nondeterministic time 2 22p~ 
whether T(M) ~ T(M'). 

7. Conclusion 

We showed that equivalence is decidable for finite-valued transducers. We pre- 
sented Properties (F1) and (F2) of an FST M which precisely characterize 
finite-valuedness of M and derived an upper bound on the depth of a witness t 
such that M does not have Property (F1) or (F2) for t provided val(M) = m. This 
allowed us to derive a nondeterministic polynomial-time algorithm to decide 
whether M is not finite-valued. The question arises whether or not this is the best 
time complexity that can be hoped for. It turns out that this is not the case. In 
[Se2] it is shown that, in fact, finite-valuedness of FSTs can be decided in 
deterministic polynomial time. The polynomial decision procedure is based on a 
polynomial-time algorithm deciding whether or not an FST is single-valued. 

Several questions remain open. The decomposition described in Section 6 
decomposes a finite-valued FST M into a possibly double-exponential number of 
single-valued FSTs--even if the valuedness of M is small (say, 2). In [W5] 
it is shown that NGSMs of valuedness k in fact can be decomposed into k 
single-valued NGSMs. It is not clear whether a similar result holds for FSTs as 
well. Finally, it is also open whether the results of [W3] can be carried over to 
FSTs, i.e,, if it is decidable for FSTs M and M' whether or not T(M) = T(M') 
provided sval(M') < m. 
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Appendix 

The following basic proposition of Ramsey Theory is taken from [GRS, Chap. 1, 
Theorem 1]. We sketch a proof of it in order to get an estimation of the numbers 
involved. 

For set S let ~S] 2 denote the set {{s, s'} ~ Sis ~ s'} where we simply write 
In] 2 if S = {1 . . . . .  n}. Assume C is a finite set of colors of cardinality k. Any map 
p: IS] 2 ~ C is called k-coloring of IS] 2. A k-coloring p defines a partition of IS] 2 
into sets p -  1(c), c e C. 

Proposition A. For every m > 2 and every k ~ N, some n E N exists such that, for  
every k-coloring p o f  In] 2, ES]2~ p-m(c) for  some c e C  and S ~ {1 . . . . .  n} o f  
cardinality m. 

Let  R(m; k) denote the least such number n ~ ~.  Then 

R(m; k) <_ 3 .((m - 2)k)L 

Proof(Sketch) .  Without loss of generality, we may assume that, for all involved 
k-colorings, C = {1, . . . ,  k}. For k > 1 and aj > 2, define R(a 1 . . . . .  ak) as the 
minimal number n such that, for every k-coloring p of In] 2, IS] 2 _ p - l(j) for some 
j ~  C and S _ {1,. . . ,  n} of cardinality a~. 

Clearly, R(m; k) = R(m . . . . .  m) where m is taken k times. The following facts 
are easy to prove: 

R ( a l , . . . ,  ak) = R(a~tl) . . . .  , a~(k)) for every permutation re, (1) 

R(2, a 2 ,  . . .  , ak) = R ( a  2 . . . . .  ak) , (2) 

k 

R(al . . . . .  ak) <-- ~ R(al . . . . .  a~_ 1, ai -- 1, ai+ 1 . . . .  , ak) for k _> 2, (3) 
i = l  

R(al) = a 1. (4) 

We prove, for k _> 1 and aj > 3, 

R(al . . . . .  ak)_< 3 " ( ~  (aj -- 2))'. (5) 
j = l  

The bound in (5) obviously implies the assertion. Estimation (5) is proved by 
k induction on k and, for every k >_ 2, by induction on ~4= l aj. 
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Base  o f  induction (k = 1). Then 

R(ai) = a l  < 3 "(al - -  2)!. 

Induct ion  step (k > 2). 
k 

R(al, . . . ,  ak) < ~ R(a l  . . . .  , aj - -  1 , . . . ,  ak) by (3) 
j = l  

_< ~ 3" ( a j - 2 ) - - I  [ by(1) and(2), 
j = l  j = l  

where the induction hypothesis for the same k but a smaller total sum of the 
coefficients is used for those summands where a j -  1 > 2, and the induction 
hypothesis for k - 1 for the remaining ones 

j = l  

< _ 3 . ( ~  ( a j - - 2 ) ) . ( ~  ( a ~ - 2 ) - - l ) ,  since a j>_3  fora l l j  
j = l  j = l  

References 

[CF] 

[CK] 

[En] 

[Es] 
[GSI] 
[GS2] 

[GRS] 
[P] 

[Sc] 

[Sel] 

[Se2] 

[Wl] 

[W2I 

B. Coureelle and P. Franchi-Zannettacchi. Attribute grammars and recursive program 
schemes, Part I. Theoret. Comput. Sci. 17 (1982), 163-191. 
K. Culik II and J. Karhum~iki. The equivalence of finite valued transducers (on HDTOL 
languages) is decidable. Theoret. Comput. Sci. 47 (1986), 71-84. 
J. Engelfriet. Some open questions and recent results on tree transducers and tree languages. 
In: Formal Language Theory, ed. by R. V. Book, Academic Press, New York, 1980, 
pp. 241-286. 
Z. Esik. Decidability results concerning tree transducers, I. Acta Cybernet. 5 (1980), 1-20. 
F. Gecseg and M. Steinby. Tree Automata. Akademiai Kiado, Budapest, 1984. 
R. Giegerich and K. Schmal. Code selection techniques: Pattern matching, tree parsing and 
inversion of derivors. Proc. of ESOP, 1988. Lecture Notes in Computer Science, vol. 300, 
Springer-Verlag, Berlin, pp. 245-268. 
R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey Theory. Wiley, New York, 1980. 
W. Paul. Komplexitiitstheorie. Teubner Verlag, Stuttgart, 1978. 
M. Schiitzenberger. Sur les relations rationelles entre monoides libres. Theoret. Comput. Sci. 
3 (1976), 243-259. 
H. Seidl. On the finite degree of ambiguity of finite tree automata. Acta Inform. 26 (1989), 
527-542. 
H. Seidl. Single-valuedness of tree transducers is decidable in polynomial time. Theoret. 
Comput. Sci. 106 (1992), 135-181. 
A. Weber. Ueber die Mehrdeutigkeit und Wertigkeit yon endlichen Automaten und Transdu- 
cern. Doctoral Thesis, Frankfurt/Main, 1987. 
A. Weber. Decomposing finite-valued transducers and deciding their equivalence. SIAM J. 
Comput. 22 (1993), 175-202. See also Proc. MFCS, 1988. Lecture Notes in Computer Science, 
vol. 324, Springer-Vertag, Berlin, pp. 552-562. 



346 H. Seidl 

[W3] A. Weber. On the lengths of values in a finite transducer. Acta Inform. 29 (1992), 663-687. 
[W4] A. Weber. On the valuedness of finite transducers. Acta Inform. 27 (1990), 749-780. 
[W5] A. Weber. Decomposing a k-valued tranducer into k unambiguous ones. Proc. LATIN "92. 

Lecture Notes in Computer Science, vol. 583, Springer-Vedag, Berlin, 1992, pp. 503-515. 
[WS] A. Weber and H. Seidl. On the degree of ambiguity of finite automata. Theoret. Comput. Sci. 

88 (1991), 325-349. 
I-Z] Z. Zachar. The solvability of the equivalence problem for deterministic frontier-to-root tree 

transducers. Acta Cybernet. 4 (1978), 167-177. 

Received October 9, 1989, and in revised form February 24, 1992, and October 6, 1992. 


