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Abstract. A bottom-up finite state tree transducer (FST) M is called k-valued
iff for every input tree there are at most k different output trees. M is called
finite-valued iff it is k-valued for some k. We show that it is decidable for every
k whether or not a given FST M is k-valued. We give an effective characteriza-
tion of all finite-valued FSTs and derive a (sharp) upper bound for the
valuedness provided it is finite. We decompose a finite-valued FST M into a
finite number of single-valued FSTs. This enables us to prove: it is decidable
whether or not the translation of an FST M is included in the translation of
a finite-valued FST M'. We also consider these questions for size-valuedness.

Introduction

A bottom-up finite state tree transducer (here FST for short) is a finite state device
which produces its output tree while consuming a given input tree in a bottom-up
fashion. Since muitiple occurrences of variables in patterns are allowed an FST is
able to generate several identical copies of images of subtrees. Since some variables
can be missing, the image of a correctly parsed subtree may be dropped again.

In compiler construction finite state transducers are an important tool for
manipulating abstract syntax trees. For example, consider the code generation
phase. The different possible target code sequences for an abstract syntax tree ¢
correspond to the different outputs s possibly produced by an FST [GS2]. A good
survey on tree automata theory and its applications may be found in [GS1].

Formally, FSTs can be viewed as one possible generalization of non-
deterministic generalized sequential machines (NGSMs). Therefore, the natural
question arises whether or not results about NGSMs can be extended to FSTs.
In this paper we investigate finite-valuedness and the equivalence problem for
FSTs.
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Two FSTs are called equivalent iff they define the same translation. It is well
known that the equivalence problem for NGSMs is undecidable. However, in 1986
Culik IT and Karhuméki proved that the equivalence problem is decidable at least
for finite-valued NGSMs [CK]. They employed the (confirmed) Ehrenfeucht
conjecture for proving their procedure to be recursive; therefore, no estimation of
its complexity is known. In 1988 Weber came up with a totally different decision
procedure (running in double exponential time) which was based on a careful
structural analysis of finite-valued NGSMs [W2]. In 1989 Weber showed that the
equivalence problem was decidable even for NGSMs having finite length-degree
[w3].

Knowledge about finite-valuedness and the equivalence problem for finite tree
transducers is comparatively poor. In 1978 Zachar showed that equivalence was
decidable for deterministic FSTs [Z]. In 1980 Engelfriet exhibited a nice gen-
eralization (T1) of a word lemma by Schiitzenberger [Sc] to trees which allows
the decision whether or not a given FST is single-valued [En]. Note that any
algorithm which decides single-valuedness can be used to decide equivalence of
single-valued FSTs. For the sake of completeness we also mention the (stronger)
result of Esik [Es] which showed that single-valuedness is decidable for top-down
FSTs as well. Also, as a special case of this Courcelle and Franchi-Zannettacchi
exhibited an interesting method to decide whether or not two deterministic
top-down transducers are equivalent [CF].

We proceed in the spirit of [W4], [W2], and [En]. In fact, it turns out
that most of the proofs deal with sizes of output trees (thus generalizing the
notion of “length” for words). Therefore, in parallel with a theory of finite-valued
FSTs, we develop a theory of FSTs where the sets of output sizes have bounded
cardinalities.

We start with an investigation of the combinatorics of trees. Employing
Ramsey’s theory we generalize Engelfriet’s property (T1) (Theorem 1.5). This
enables us to prove: for every k it is decidable in nondeterministic polynomial
time whether a given FST is not k-valued (Theorem 2.2). Moreover, we consider
polynomials with rational coefficients of degree at most 1. Surprisingly, they have
similar cancellation and factorization properties as trees. Therefore, analogous
considerations allow us to prove: for every k it is decidable in polynomial space
whether or not an FST is k-size-valued (Theorem 2.3).

In Section 3 we exhibit two necessary conditions (F1) and (F2) for an FST to
be finite-valued. At least two-thirds of the proof consists in proving that the size
versions (S1) and (S2) of (F1) and (F2) are necessary conditions for an FST to be
finite size-valued.

In Section 4 we prove that the necessary conditions (F1) and (F2) for
finite-valuedness ((S1) and (S2) for finite size-valuedness) are decidable (Theorem
4.1). This is done by proving that they only have to be verified for input trees up
to a fixed depth.

In Section 5 we prove that the necessary conditions (F1) and (F2) ((S1) and
(S2)) of Section 3 are also sufficient to derive an upper bound for the valuedness
of an FST (size-valuedness of an FST). Property (F1) subsumes the criteria for
NGSMs to be finite-valued given in [WS], [W1], and [W4]. Due to the more
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complicated structure of trees this generalization is by no means obvious. Property
(F2) has no analogue for NGSMs. From the characterization of finite-valuedness
we obtain the following results (Theorems 5.4, 5.5, and 5.7):

(1) It can be decided in nondeterministic polynomial time whether an FST
M is infinite-valued. '

(2) If M is finite-valued, then its valuedness is bounded by 22 for some
polynomial P independent of M.

The upper bound in (2) is sharp in the following sense: there are finite-valued
FSTs M’ of arbitrarily large size such that their valuedness is at least 22" for
some polynomial P’

Corresponding results also hold for size-valuedness. Here we find:

(1)) It can be decided in polynomial space whether or not an FST M is finite
size-valued.

@) If M is finite size-valued, then its size-valuedness is bounded by
22¢IMilogL+ 1) for some constant ¢ > 0 independent of M (L denotes the
maximal number of successors of a node of an input tree).

Finally, Section 6 shows that the ideas of [W2] for NGSMs can be extended to
FSTs. We employ the precise knowledge about the structure of finite-valued FSTs
of Section 5 to decompose a finite-valued FST into a finite number of single-valued
FSTs (Theorem 6.2). The decomposition is based on a classification of accepting
computations such that the following holds: if two accepting computations for the
same input tree ¢t admit the same specification y, then they produce the same
output. Secondly, we observe that an FST can decide “on-line” whether or not a
simulated accepting computation admits some specification y. By employing again
our generalization of Engelfriet’s property (T1) we finally derive the following result
(Theorem 6.4): It can be decided for an FST M and a finite-valued FST M’ in
nondeterministic time 22° " whether the translation of M is not included in
the translation of M’. Again, a corresponding result for size-valuedness holds as
well. We conclude with open problems.

1. Trees and Polynomials

In this section we give basic definitions and state some fundamental properties
about trees. Especially, we generalize Engelfriet’s property (T1) of [En] into two
directions. For this we employ a proposition taken from Ramsey Theory which
is presented in the Appendix. One generalization of Engelfriet’s property (T1)
enables us to decide whether or not a given FST is k-valued; the second
generalization is used in Section 6 to show that it can be decided whether or not
the translation defined by an FST is included in the union of the translations of
a finite number of single-valued FSTs.

In a second subsection we consider the same questions for polynomials of
degree at most 1.
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A ranked alphabet or signature is a pair (Z, p), where Z is a finite alphabet
and p: X — N, is a function mapping symbols to their rank (N denotes the set of
positive integers and N, the set of nonnegative integers). Usually, if p is understood
we write 2 for short and define Z;:= p~'(j). The maximal j such that T; # & is
also called the rank of £. T; denotes the free Z-algebra of (finite ordered X-labeled)
trees, i.e., Ty is the smallest set T satisfying (i) £, < T and (ii) if aeX,, and
tyy...,tmy€ T, then a(t, ..., t,)e T. Note: (i) can be viewed as the subcase of (ii)
where m = 0.

The depth of a tree t e Ty, depth(r), is defined by depth(t):= 0 if re Z,, and
depth(t):= 1 + max{depth(t,), ..., depth(z,,)} if t = a(t,, ..., t,,) for m > 0.

The set of nodes of (or occurrences in) t, O(t) is the subset of N* defined by

m

o@):={eyu | ) j-Ok)  where t=alty,...,t,) for m>0;

Jj=1

especially, the empty string ¢ is the root of ¢.

O(t) is partially ordered by the prefix relation and totally ordered with respect
to the lexicographical ordering,

t defines maps #(_): O(t) —» X and ¢/_: O(t) » Tz mapping each node o of ¢ to
its label or the subtree of t with root o, respectively. We have, fort = a(ty, ..., t,,),

if o=g, t if o=s¢,
o) = {“ o= and  tfoi= { oo
tj(0") if o=j-0, tijo if o=j-0.

For every subset N of £ define the N-size |t]y of t =alty,...,t,) by |tly:=
1+ Z}"=1|tj|zv ifaeN and |ty = Z}":lltle ifa¢g N.If N = Z, we drop the index.

Let X denote a set of variables of rank 0. Then define Ty(X):= T3, x. (Clearly,
Ty = T(X).) We use this different notation in order to indicate those variables
which are to be substituted. ¢ e Ty(X) is called X-proper iff every x € X occurs in
t exactly once. If X is understood, we call ¢ simply proper.

Every map 8: X — Ty(X) can be extended to a map 0: T(X) — Ty(X). For
te Ty(X), 10 is obtained from t by replacing all the occurrences of variables x € X
with x0. 8 is called an X-substitution or just substitution if X is understood. We
write 0 to the right of the argument in accordance with the prefix notation of
trees. If X = {x, ..., x,,} and x;0 = t,, we denote t8 by t[t,, ..., t,]. We also write
t t, instead of ¢[t;].

The set Ty(x,):= Tz({x,}) is a monoid with respect to substitution (the neutral
element is x,). Ty(x,) is not a free monoid. Especially, t,t, = t, if t; does not contain
an occurrence of x;.

Propositions 1.1-1.4 (mainly taken from [En]) state basic properties of Tx(x,).

Proposition 1.1.  Assume s, s,, t,, ty, th, th € T(x,).

(i) Bottom Cancellation. Assume t, # ty. Then s t; = s,t; and syt = st}
implies s, = 5,.
(i) Top Cancellation. Assume x, occursins,. Then s,t; = syt, impliest, = t,.
(iii) Factorization. Assume t; # t;for i = 1, 2. Then s(t, = s,t, and s,t1 = s,15
implies s,r = 5, or s, = s, for some r e Ty(x,).
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An immediate consequence of assertion (iii) is:

(iv) Assumet, # tifori = 1,2 and|s,|z = |$,|z- Then s t, = s,t, and st} = 5,1,
implies s; = s,.

Proof of (iii). First we define a relation < = Ty(x,) x Ty(x,). Fors, te Tay(x,), s < t
iff O(s) = O(t) and, VYo e O(s), s(0) # x, implies s(o) = t(0). Intuitively this means
that s is a “prefix” of ¢, i.e., s is obtained from ¢ by changing certain subtrees (not
necessarily all the same) into x,. Thus, ¢ = sr implies s < ¢ but not vice versa. We
prove the following fact:

(*¥) Assume s,, 5,, te Ty(x,) where s, <t and s, <t If not s; <s,, then
Jo € O(sy) N O(s5), 54(0) # x,, and s,(0) = x;.

Assume
sy(0) = x,; implies s,(0) = xy, Yo e O(s;) N O(s,). 1)

In order to prove fact () it suffices to deduce from (1) that s, < s,. Since 5; < ¢t
for i = 1, 2 we have

s(0) # x; and s,(0) # x, implies s5,(0) = s,(0),
Yo € 0(s,) n O(s,). )

From (1) and (2) it follows that s; < s, already holds provided O(s,) = O(s,) (and
hence O(s;) = O(s;) N O(s,)). To prove that O(s,) < O(s,) we assume for a con-
tradiction that s; contains a node o ¢ O(s,). Then o = 0,0" where o0, is the maxi-
mal prefix of o in O(s;) " O(s,) and o' # &. Since o€ O(H)\O(s,), S,(0,) = x;. By
assumption (1) this implies that s,(0,) = x, as well and hence o' = ¢ which is a
contradiction.

Using fact (*) we are able to prove assertion (iii). For a contradiction assume
;; £t fori=1, 2, s,t; = s,t,, and st} = s,t,, but assertion (iii) does not hold,
ie., there is no r € Ty(x,) such that s,r = s, or 5; = 5,r. We distinguish three cases.

Case 1: 5, <s5,. Then O(s,) < O(s,) and 3oy, 0, € O(sy), s;/0; = 5{/0, = x4, and
5,/0, =1, # $,/0, =1,. Define t = s,;t,. Then t; = t/o, = r,t, and t; = t/o, =
r,t,,and therefore r t, = r,t,. Analogously, we find r,t, = r,t,. Hence, by bottom
cancellation r, = r, in contradiction to our assumption.

Case 2: s, <s,. This case is analogous to Case 1 with the role of 1 and 2
exchanged.

Case 3: Neither s, < s, nor s, < s,. By fact (), 30,, 0, €0(s;) N O(s,), s;/0, = x4
and s,/0, =r; # x; and s,/0, = x, and s,/0, =1, # X;.

8.ty = Syt,impliest, = rt, and t, = r,t,. Hence, t, = r,r,t, andso t; = r,r,.
Similar considerations for ¢; show that t; =r,;r,. Hence, t, = t;, which is a
contradiction. This finishes the proof. O

In case the second factors contain variables as well, both bottom cancellation
and factorization have a much simpler form. In fact, the same cancellation and
factorization rules hold as for the free monoid. We find:
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Corollary 1.2.  Assume sy, s,, ty, t, € Ty(x,) contain at least one occurrence of x,.

(i) Bottom Cancellation. s,t; = s,t, implies s; = s,.
(il) Top Cancellation. s t, = s,t, implies t; = t,.
(iii) Factorization. s,t; = s,t, implies s;r = s, or s; = s,r for some r € Tg(x,).

Proof of (). If sit; = s,tq, then s,t,t' = s,t,t’ for every tree t' € Ty(x,). Since t;
contains an occurrence of x,, t,t' # t, whenever t' # x,. Hence, we can apply
bottom cancellation according to Proposition 1.1(i) and obtain s, = s, according
to the assertion.

The proof of assertion (iii) is analogous. O

Engelfriet employs the properties stated in Proposition 1.1 to derive a property
(T2) which in turn is used to prove the generalization (T1) of Schiitzenberger’s
lemma. Since [En] does not contain full proofs of these properties we present them
in greater detail. In parallel, we state the corresponding properties for trees that
contain at least one occurrence of a variable.

Proposition 1.3 (Engelftiet’s Property (T2)).

(i) Assume s;, t;, u;, v;, w;€ Te(xy), i =1, 2, and either u, or u, contains x,,
vy # wy and v, # w,. Then

UiUy = Uy 0y

WWy = U W,

U, = uyt, implies st = S,t,.
8101 = 830,

S1Wy = S, W,

(ii) Assume s;, t;, u;, v;€ Tix,), i = 1, 2, and every tree contains at least one
occurrence of x,. Then

Uiby = Uz0;
ultl = uztz lmplles Sitj = Sztz.
Slvl = 3202

Proof of (i). First assume both u; and u, contain x,. By factorization, the first
two equations give u,r =u, or u, = u,r. Without loss of generality, assume
u,r = u,. Replacing u, in the first three equations of the assumption with u;r and
applying top cancellation we find v, = rv,, w, = rw,, and t; = rt,. Replacing v,
and w, in the last two equations with rv, and rw,, respectively, and applying
bottom cancellation we obtain s,r = s,. Hence we can conclude: s,¢, = 5,7, = 5,1,
which is what we wanted to prove.

Now assume u; does not contain x,. Then u,v; = u,w; = u;, and hence
u,v, = u,w, = u,. If u, contained x,, then top cancellation would yield v, = w,.
Since v, # w, by assumption, u, cannot contain x, and assertion (i) trivially holds.
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The proof of (ii) is analogous employing the simpler cancellation properties
according to Corollary 1.2. O

Proposition 1.4 (Engelfriet’s Property (T1)).
i) Assume t;, t;e T(x,),i=10,1,2, 3, 4.
totimg byt =ty ettty forall 0<i<j<4
implies tot t,tat, = totithtsty.
(i) Assume t;, tie T{x,), i=0, 1, 2, 3, and every tree contains at least one
occurrence of x,. Then
torti_g Lty =1o tiy Loty forall 0<i<j<3
implies tot t,t3 = totithts.
Due to the simpler cancellation and factorization properties of trees containing
variable occurrences, in (ii) only a subdivision into four factors is needed (as
opposed to five in the general case).
In [En] Proposition 1.4(i) is stated with the additional assumption that

tolst, = totht,. However, it is not used in the proof. Removing this assumption
enables us to prove a powerful extension of this proposition.

Proof of Proposition 1.4(i).
Case 1: t, or ty contains xq, t, # t3t,, and t, # t5t,. We know

tols = tols,

toltata) = to(tsta),

toltatats) = tolt2t3 £4),

(tot1)ts = (E6t1)t4,

(tot1Mtsty) = (totiNE514).
Proposition 1.3(i) implies (£t )t t5t4) = (to 1)t 15 t,) which proves the assertion.
Case 2: t, and ty do not contain x;. The assertion trivially holds.
Case 3: Either t, or t, contains x, but t, = t;t,. It follows that tyt, = t,t51t,.
Assume t; contains x,. Then ¢, = t5t, by top cancellation. Now the assertion
follows from the fact that tyt,t,t, = tot tht,:

t0t1t2t3t4 = t0t1t2t4 = tbtlltlzt; = tbt’ltlzt%t:‘_.
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If 5 does not contain x,, then
totithtsty = tg
= totithty
totiltsts

Case 4: Either t, or t contains x, but t, = t3t,. This is analogous to Case 3.
The proof of statement (ii) is omitted. O

Theorem 1.5. Let K, NeNandt, ;e Tix,) fork =1,...,Kandi=0,...,N.

(i) Assume N >3-(K?> —K)! and for every 0<i<j< N there are K,
k' €{l,..., K} with k < k' such that

tk,O'”tk,i—ltx,j.”tx,N = tk’,ON 'tx',iﬁltk’,j'”tx’,N'

Then t, o "ty v = tey0° e, v fOr some ko < xy in {1,...,K}.
(i) Assume N =3-(2K)\, ty o, ..., to n IS another group of trees in Ty(x,), and
for every 0 <i<j< N some ke{l,..., K} exists such that

fo,0 " " to,i—1fo,; " to.N = b0 T hkyim 1l it b, N

Then tg, o' " to,n = b0 Lo n JOT SOMe kg€ {1,..., K}.

Proof. The proof of statement (i) relies on Proposition A from Ramsey Theory
which for reasons of self-containedness is presented in the Appendix. For
NeN, let [N]* denote the set {{i,j}|1 <i<j<N}. Consider the set of
“colors” C:= {{x, ¥'}|1 < k < ¥ < K}. By assumption, a k-coloring p: [N]* > C
exists where k = #C = 3K(K — 1) such that, for i <j, p({i,j}) = {k, ¥’} implies
Leo lei—1lei "l = Lo bei-abe, it he N

According to Proposition Aform=4and k =1K(K — 1), 1 < ks <k, <K
and 0<i; <'- < i4 < N exist such that, for any two i <j from {i, i,, 13,14},
tko,o ’ xo l—ltko J ) Ko N~ txl,Ou.trcl,i—ltxl,j”'txl,N‘

Proposmon 1.4(i) applied to

t0:= txo,O.”tko.iJ—l’ t:):: tkl,o‘.'tkl,h—l’
51 Lo, iy """ Ligy i — 15 ty:= Lty " " ey in— 10
£2:= by iy " Lgis— 1 t’2:: by " brpiz—1s
t3 = tko, iy " tko, is— 12 t% = trq,i; T trq,i4— 1s
tyi= txo,i4“'txg,N? [:1_== txl,i4“'tm,N’

yields assertion (i).
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The proof of assertion (ii) is analogous with a set of colors C:= {1,..., K}.
O

Theorem 1.5(ii) generalizes Engelfriet’s property (T1) in the same sense that
Weber’s Lemma 2 of [W2] generalizes Schiitzenberger’s lemma. Note that the
lower bounds for N in the theorem can be stated more precisely as the Ramsey
numbers R(4; 3K(K — 1)) and R(4; K), respectively. We stated the results (i) and
(ii) slightly weaker but more explicit (with respect to numbers) since we apply them
to estimate the complexities of algorithms.

As another application of Ramsey Theory we have:

Proposition 1.6. Assume s,, s, € Ty(x,) are different and m > 0. Then some N e N
exist such that, for all pairwise different t,,...,tye Ti(x,), an m-element subset
J<={1,...,N}andie {1, 2} exist such that the trees t;s;,j € J, are pairwise different.

Proof. For every j # j we have, by Proposition 1.1(i), ¢;s; # t;5, Or t;s, # ;5.
Therefore, a 2-coloring p: [N]* — {1, 2} exists such that p({j, j }) =i 1mp11es t 5;
Now, the assertion follows from Proposition A for k = 2 (and varying m). |:|

For trees in Ty(X) the size is more adequately described by a polynomial. Let
QWLX]:= Q + Y ,.x @ x denote the set of polynomials of degree at most 1 in
variables from X with coefficients in Q. We define a map w: TZ(X )= QWLX] by
ot):=tls+ X |tlx,
xeX
i.e,, the constant is the X-size of ¢, whereas the coeflicient of x is just the number
of occurrences of x in t. Note that w(t) e N{[X].

As for substitutions, maps 6: X — QW[X] can be extended to maps
QWIX] - QYLX]. For fe QM[X], 6 is defined by function composition, ie.,
S0 is the function obtained from f by first applying the functions x0 and then
applying f to the results. As for trees, we call 6 an X-substitution or substitution,
if X is understood. If X = {x,, ..., x,,} and x;0 = f; we denote fO by f[fi,..., ful
and write f f, for f[f].

Similar to Ty(x,), QW[x,] = Q[{x,}] forms a monoid where the product
is defined by

(g +dyxy) (np + dyxy)i=ny + di(dyx; + 1)) = (g + dyny) + dyd, x4,
and the unity is x;.

o commutes with substitution. Especially, w: Ty(x,) » QV[x,] is a monoid
morphism, i.e., w(st) = w(s)w(f) for all s, t € Ty(x,). Hence the following proposition
holds:

Proposition 1.7.

() If, forj=1,..., k t;e Tx,) and o(t) = n; + d;x,, then

w(tl'“tk) =n, + d1"2 4+ e+ (dl.”dj—l)nj IR
+ @y de )+ dyd) e xy
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() If t e T(x,) and w(t) = n + dx,, then

k-1
oy=n-Y &+d-x,.

j=0

With the only exception being Proposition 1.1(iv), statements 1.1-1.6 remain
valid for QW[x,] as well. We refer to them as 1.1S-1.6S, respectively. The
occurrence of x, in a polynomial f now means that the coefficient of x, is different
from 0. In this case even f is invertible. As an example, we state the version of
Proposition 1.1 for polynomials.

Proposition 1.1S. Assume sy, s,, t1, L5, t}, 1, € QP[x,] where s; = n; + d;x,.

(i) Bottom Cancellation. Assume t, # t}. Then st = s,t; and s,t; = s,1}
implies s, = s,.
(i) Top Cancellation. Assume x, occurs in s, i.e., d; #0. Then s;t; = s¢,
implies t, = t,.
(iii) Factorization. Assume t; # t; for i = 1, 2. Then sit, = s,t, and s,t] = s,t,
implies s,r = s, or s; = s,r for some re QW[x,].

Proof of (iii).
Case 1:d; =0and d, =0. Then s; =s,.

Case 2: d; #0 or d, #0. Without loss of generality d, # 0. Define sy L
di'x, + (—dj'n;) and r:= s{ 's,. Then s;7 = s,. O

Note that we in fact proved a somewhat stronger version of (iii), namely that
already s,t; = s,t, implies s;7 = s, or 5, = 5,7 for some re Q*[x,]. However,
we only need the version stated in Proposition 1.1S(iii).

In fact, statements 1.2-1.6 are valid for any monoid in which Proposition
1.1(i)iii) holds (where “x; occurs in s” should be read as “3t, st # s”) with the
same proofs as above.

2. Bottom-Up Finite State Tree Transducers

In this section we introduce bottom-up FSTs. We define the notion of a computa-
tion of a tree transducer quite carefully in order to get precise terminology for the
composition and decomposition of subcomputations. A major difficulty when
dealing with bottom-up transducers is that during a computation we may
substitute a tree s; produced by some subcomputation for a variable x; not
occurring in the corresponding output pattern. Thus, s; is dropped and will not
be part of the final output. We introduce FSTs which only drop a special symbol
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1. We show that every FST M can be modified to have this property without
changing the translation of M (Proposition 2.1). Moreover, applying Theorems
1.5 and 1.5S, we prove that it can be decided whether or not an FST is k-valued
or k-size-valued (Theorems 2.2 and 2.3).

For the following, X denotes the fixed denumerable set {x;|i € N} of variables
and X, = {Xy, ..., X}

A bottom-up FST is a 5-tuple M = (Q, Z, A, 8, Q) where:

Q is a finite set of states.

Or < Q is the set of final states.

¥ is the signature of input trees.

A is the signature of output trees.

0, the set of transitions of M, is a finite subset of  J,,.0 @ x T, x To(X,) x O™

The tree s in a transition (g, 4, 5,4, ""q,,) €0 is also called the output pattern
of this transition. The transitions in 6 N {g} x T x T(X) x Q* are called g-
transitions.

M is called finite tree automaton (abbreviated FTA) if, for every transition
(g, a,5, 4, q,,) in 3, the output pattern s equals a(x,, ..., X,,).

Lett=alty,...,t,)e Ti(X;) and q, 45, ..., ¢ € Q. A (g, 4, " * - qi)-computation ¢
of M for t starts at variables x; in the states g;, i€ {1,..., k} and consists of
(p;» 41 - qp)-computations of M for the subtrees ¢;, je {1, ..., m}, together with a
transition (g, a, s, p, - ** p,,) € 0 for the root. Note that in our notation the resulting
state of ¢ at the root of t is written to the left whereas the starting states for the
variables are written to the right thus suggesting a bottom-up computation to
proceed from the right to the left. This order is chosen according to our (linear)
description of trees in Section 1:in t = a(t,, ..., t,), the label a of the root stands
to the left of the subtrees t;.

Formally, a (g, 4, - - ¢,)-computation of M for ¢ is a tree ¢ in T(X,) with the
following properties:

(1) If t = x;, then g = g; and ¢ = x;.
() If t=afty,...,t,), then @ =1(p;,...,,) for some transition 7=
(9, 4,5, py " pyy) and (p;, q -+ qi)-computations ; for t;.

A (g, e)-computation is also called a g-computation. A g-computation is called
accepting iff g € Qp.

Let t e Te(X}), 0€ O(t), and let ¢ be a (g, q, - - q,)-computation of M for t. The
subcomputation of ¢ for the subtree /o of ¢ with root o is defined as ¢/o. Assume
t =tolty, ..., ). Assume @, is a (g, p, - py)-computation for t,, and ¢; are
(Pi» 41" gm)-computations for ¢;, j=1,...,k. Then ¢:= @o[@s,....,0] is a
(g, 9, - qm)-computation of M for t. Conversely, if ¢, contains exactly one occur-
rence of any x; (ie., is X,-proper), then every (g, g, ‘- g,)-computation ¢ for
tolts, ..., t;] can be uniquely decomposed into a (g, p, - - - p,)-computation ¢, for
to,and (p;, 4, "~ qn)-computations ¢;for t;,j = 1, ..., m(for suitable states p;), such
that ¢ = @@y, ..., ¢l
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The output T(p) produced by a (g, q, - q)-computation ¢ is defined as
follows. If ¢ = x;, then T(¢):= x;. If o = (@, ..., @) where 7 =(q, a, 5, 4, " 4,
then T(¢):= s[T(¢,), ..., T(¢,)]. As an abbreviation, we define Q(¢):= (T (¢)).

For convenience (and in abuse of the symbol 6) we write (¢, ¢, 5,4, - q,)€J
iff there is a (g, 4, ‘- - qo)-computation ¢ of M for t with T(¢p) = s.

Tie(®):= {T(9)|  accepting computation of M for ¢t} denotes the set of outputs
of M for t; Qu(t):= {Q(¢)|  accepting computation of M for ¢} denotes the set of
output sizes of M for t; valy{t):= ¥ Ty(t) denotes the number of different outputs
of M for t; svaly(t):= #Q,(t) denotes the number of different output sizes of M
for t; L(M):= {t € Tg|there is an accepting computation of M for ¢} is the language
accepted by M; T(M):= {(t, s)|t € L(M), s€ (1)} is the translation defined by M
(note: for an FTA M, T(M) = {(t, t)|t € LM)}); QM) := {(t, 5)|t € L(M), s € Q (1)}
is the size translation defined by M; val(M):= sup{valy(?)|te Ty} is the valued-
ness of M; and, finally, sval(M):=sup{svaly(t)[t€T;} is the size-valuedness
of M.

M is called:

o single-valued if val(M) < 1,

o k-valued if val(M) < k,

o finite-valued if val(M) < o0, and
o infinite-valued if val(M) = oo.

Analogously, we define the notions single-size-valued, k-size-valued, finite-size-
valued, and infinite-size-valued.

For measuring the computational costs of our algorithms relative to the size
of an input transducer, we assume that X and A are fixed in advance and therefore
have constant cardinalities and ranks. Throughout this paper the rank of ¥ is
denoted by L. Moreover, we assume that every symbol can be stored in one
memory cell of a Random Access Machine (with uniform cost measure). Thus, we
define the size of M, |M|, by

(M| = Y (m+ |s| + 2).

4, 8,541 "gm)€d

As a special convention we introduce a new symbol L of rank 0 (i.e,, L ¢ A) and
define A, := Au {L}. We extend the notion of an FST M = (Q, Z, A, 5, Q) by
extending A to A, and allowing L as an output pattern of transitions, i.e., for
every transition (g, 4, s, q, * - * 4,,) of M, either s € Ty(X,,) or s = L. We only consider
FSTs M where an output tree L is always substituted for a variable which does
not occur in the corresponding output pattern. Therefore, L does not occur as
the leaf of an output tree s # L, i.e., the output of every (g, g, * - * q,)-computation
@ of M either equals L or is in T(X,). The map w is extended to trees ¢t in T (X))
by w(t):= |t + Zj; 118y - x5, L€, we give L size 0. Clearly, this modified map @
still computes with substitution.
AnFST M = (Q, %, A, 6, Qp) is called reduced if:



Equivalence of Finite-Valued Tree Transducers Is Decidable 297

(i) For every g € Q an accepting computation ¢ of M and a node o in ¢ exist
such that ¢(0) is a g-transition.

(ii) There is a subset U(M) < Q such that, for every transition (g, a, s, 4; " ¢,,)
€ d, the following holds:
if ¢ U(M), then s # L and (q;€ U(M) iff x; does not occur in 5), and
if ge U(M), then s = 1 and g;€ U(M) for all j.

The states in U(M) are exactly those which are used by subcomputations ¢ with
T(p) = L. If a computation has reached some state not in U(M) we can be sure
that the output for the corresponding subcomputation is part of the final output.

Proposition 2.1. For every FST M =(Q,Z, A, 5, Q) there is an FST M, =
(Q,,Z,A,,6,, Q, ) with the following properties:

(i) M, is reduced.
(i) T(M,) = T(M).

M, can be constructed from M in polynomial time.

Proof (Sketch). Define M =(0,X,A,,6,0r) where Q:=Q x {0,1}, Qp:=
Or x {1}, and § is defined as follows. Assume (g, @, s, ¢, *** 4,) € 6.
B Then (<q= 0>,a 1, <q1: 0> <qm, 0>) and (<qs 13, a,s, <q17 81> e <qm9 5m>) arc
in 6 where ¢;:= 1 if x; occurs in s, and ¢;:= 0 otherwise.
Then, T(M) = T(M) and M satisfies (ii) of the definition of reducedness with
U(M) = Q x {0}. Now eliminate superfluous states and transitions. O

Proposition 2.1 can be used to decide in polynomial time whether or not L(M)
is empty. The next theorem shows that it can be decided in nondeterministic
polynomial time whether M is not (k — 1)-valued. In the proof reducedness is not
needed.

Theorem 2.2. Assume k > 1 is a fixed constant and M an FST with n states.

(i) val(M) = k iff there is a tree t of depth at most 3-(k* — k)! - n* such that
valy(f) > k.
(ii) It can be decided in nondeterministic polynomial time whether val(M) = k.

Proof. (i) Define N:= 3-(k* — k)!. Assume te Ty is a tree of minimal size such
that there are accepting computations ¢, ..., ¢, of M for t with T(e,) # T(¢p,.)
for k # «’. For a contradiction assume depth(t) > N -»n*. Then there are states
P1,--->Px€Q, a factorization of t=1,---ty into proper trees t;e Ty(x,) and
corresponding factorizations ¢, = @, - @, y such that ¢, ;are (p,, p,)-computa-
tions forallk =1,...,kand j=1,..., N — 1. Define s, ;:= T(p, ), k=1,...,k,
j=0,..., N. By the minimality of ¢,

VO<i<j<N, Jk<k,

sK,O...sK,i“lsk,]’...sK,N = sk',Ou'sx’,i—lsx',f.-'sx’,N'
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By Theorem 1.5(1), this implies
T(Pxy) = 54,0 SN = S0 “Sipn = T(@y)  forsome 1<, <k, <k,

a contradiction.

(ii) The first observation is that it suffices to consider only paths of outputs
of accepting computations. Paths in a tree s over some alphabet I' start at the
root of s and lead to some node o. They are denoted by words over the alphabet
B(I'):= {(a, j)laeT’, 0 <j < p(a)}. The first components of the letters give the labels
of the nodes on the path w, whereas the second components contain the direction
in which w may proceed. Label (g, 0) indicates the endpoint of a path. For s € Tr(X)
we distinguish between sets b (s), j > 0, of paths of s leading to nodes labeled with
x; and the set by(s) of paths of s leading to some node not labeled with some aeT.
Formally, we define:

e If s = x; € X, then, for j > 0,

b) {{8} ifj =7,

[%] otherwise.

o If s = alsy, ..., s,), then
bols) = {(a, 0)} U U (@ %) bols,)
and
by(s):= Ol (@1 bs) for j>0.

Let w=(ay,j,) " (a.,j)a 0)e BI)* and o =j; j,. If weby(s), then, in fact,
0 € 0(s) and s(0) = a. Thus, path w of s leads to node 0. Observe that there is at
most one path of s leading to o € O(s). We have:

(1) For all trees s,, s, € Tr, 5, # S, iff paths w;eby(s;), i = 1, 2, exist leading
to some node o € O(s;) N O(s,) such that w, # w,.

Observation (1) follows from the fact that s, # s, iff some 0 € O(s;) N O(s,) exists
with s,(0) # 5,(0).

Our second observation is that the paths of the output produced by some
computation ¢ are in fact produced by the paths of ¢. For = e b(¢), the set B(r)
of paths produced by n is defined by B(n):= {¢} if = = ¢, and B(n):= b(u)- B(r')
if w=(1,x) n’ where t =(q, a, u, g, " qy).

We prove:

(2) b;(T(p)) = U{B(n:)[n: e b;(p)} for every computation ¢ and j > 0.

For a proof consider some computation ¢. The sets b;(T(¢)} inductively can be
obtained as follows:
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o If ¢ = x; € X, then, for j > 0,

& ifj=7,
(%] otherwise.

bi(T()) = {

o If o =tpy,..., 00 for t=1(q,a,u,q, - q) €0, then

k

bo(T(@)) = bow) U | bylt) bo(T(,))

k=1

and
k
bi(T(e)) = L_) b(u)-bi(T(p,))  for j>0.

From this, observation (2) follows by induction on the depth of ¢.
For g€ Q, let M, denote the FST M, :=(Q, %, A, 9, {g}).

Claim. val(M) > k if and only if M has property (k-val):

(k-val) m < L-k(k — 1)- N - n¥, some proper t e Ty(X,,), and (g, pi-- - p)-
computations ¥, k = 1, ..., k, of M for t exist such that the following
hold:

@@ |t|<L-k(k—1)-N-nr~

(b) g™ e Qg for all k.

© ﬂ{L(MPLK))lx =1,..,k}#Fforall pe{l,...,m}.

(d) For every 1 <k; <k, <k, paths m eby(y,), and w;e B(xn),
i =1, 2, exist that lead to the same node o but where w, # w,.

It is easy to construct a nondeterministic polynomial-time algorithm which tests
whether M has property (k-val). Therefore, it remains to prove the claim. Direction
“<«=" follows from observations (1) and (2).

For a proof of the remaining implication assume val(M) > k. By statement (i)
of the theorem, we know that some tree s € T; of depth at most N - n* and accepting
computations ¢, ..., ¢, of M for s exist such that T(¢p, ) # T(p,,) for all k; # x,.
Assume K, < k,. According to observation (1), paths w® eby(T(p,)), i =1, 2,
exist that lead to the same node but are different. By observation (2), paths
78 . €bole,) exist such that wl eBx® ). Assume 7, lead to nodes

Ky, ¥ K1, K. K1 K. K1, K
o ,c:e O(¢,) = O(s). Let O denote the set of all these nodes. We construct ¢ as the
smallest tree that contains all paths of s leading to some o € 0. Thus, ¢ is obtained
by removing all subtrees from s whose roots are not prefixes of any o e 0.

Formally, let R denote the set of all nodes r e O(s) minimal with respect to
the prefix ordering that are not prefixes of some oeO. Let r,,...,r, be an
enumeration of the nodes in R. By construction, m < L-k(k — 1)+ N - n*. Now t is
obtained from s by replacing the subtrees with roots'rj with x;, j=1,...,m
According to the definition of R, ¢ is well defined and X ,-proper. t gives us the
decomposition s = t[sy, ..., s, | where s;:= s/r;. Let o, = Y. [0, 1, ..., @i ] be the
corresponding decomposition of ¢,. Then m, t together with ., k =1,...,k,
satisfy conditions (a}(d) of (k-val). This finishes the proof. O
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A corresponding result holds for k-size-valuedness, but the complexity of the
proposed decision procedure is worse. This is due to the fact that size is a “global”
property of trees. Therefore, there is no (at least no obvious) way to decide equality
of the output sizes produced by two computations for a tree ¢t of polynomial
depth—by looking just at a polynomial number of nodes of ¢.

Theorem 2.3. Assume k > 1 is a fixed constant and M is an FST with n states.

(i) sval(M) > k iff there is a tree t of depth less than 3 - (k* — k)! - n* such that
svaly(t) > k.
(ii) It can be decided in polynomial space whether or not sval(M) > k.

Proof. The following nondeterministic procedure possible_size computes for a
given state g the output size Q@) of a guessed g-computation ¢:

Jfunction possible_size(q: state): rational,;
begin
guess me{0,..., L};
var A: array [1..m] of rational;
guess (4, 4,5, 4y """ ) € 9;
fori:=1tomdo
A[i]:= possible_size(q,);
return w(s)[A[1], ..., A[m]]
end;

Assume the guessed computation is a g-computation ¢ of M for ¢.

Using the standard stack-based implementation of recursion, the RAM needs
a stack size proportional to L - depth(tf) where every stack item contains a pair of
a state p and the output size of a subcomputation ¢’ of . We have

) < 1] MO < (L | MmO+,

Hence, every integer intermediately computed by our RAM has bit length
O(log(L - |M])- depth(r)). Therefore, the Turing machine space to compute a
possible output space for ¢ is polynomial in [M| and depth(z).

Accordingly, for every constant k > 1, we can construct a Turing machine
which returns the output sizes of k > 1 accepting computations for a common
input tree ¢ which uses space polynomial in |M| and depth(t).

Since it suffices to consider input trees of polynomial depth we can construct
a polynomially space-bounded Turing machine that guesses accepting computa-
tions @, ..., ¢, of M for a common (guessed) tree ¢ of polynomial depth, computes
the values Q(¢,), ..., X¢,), and verifies whether these are pairwise different. [

Assume M is a reduced FST. The following notion is crucial in the case
distinctions of Sections 3 and 4. State g € Q is called unique-sized iff X¢p,) = Qp,)
for all g-computations ¢,, @,. Define Const(M):= {q e Q|q is unique-sized}. The
states in Const(M) are relevant in what follows since at least two different output
sizes are necessary to apply bottom cancellation or factorization according to
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Proposition 1.1S. Observe that, since M is reduced, g € U(M) implies Q(¢p) = O for
every g-computation ¢ of M. Therefore, U(M) < Const(M).

The following proposition summarizes simple properties of the states in
Const(M).

Proposition 2.4. Assume p is unique-sized. Then the following holds:

(1) If there is a proper (p, q)-computation, then q is unique-sized as well,

(2) For every proper (p, p)-computation ¢ one of the following two possibilities
holds:
o O(¢p) =0 and hence T(p) = L, or
e Q) = x, and hence T(p) = x;.

3. Necessary Conditions for Finite (Size-) Valuedness

In this section we introduce three necessary conditions (FO)(F2) for an FST M
to be finite-valued. Property (FO0) is implied by Property (F1). We also introduce
the corresponding necessary conditions (S0)~(82) for an FST to be finite size-
valued.

In order to prove that Property (FO0) is necessary for val(M) < oo and that
Properties (S1) and (S2) are necessary for sval{M) < oo we introduce (technical)
Properties (F0'), (S1), and (S2'), respectively. The relations among these properties
are as follows:

e For i = 1, 2, M has Property (Si) iff M has Properties (SO0) and (Si).
e Fori=20, 1, 2, M has Property (Fi) iff M has Properties (F0') and (Si).

(F0), (S0), and (S1') correspond to (IV2), (IV3) and (IV1) of the conference version
of [W4], respectively. Thus, Property (FO) subsumes Criteria (IV2) and (IV3), and
(F1) subsumes all three Criteria.! Our additional Property (S2) (or F2)) has no
analogue in the word case.

For Sections 3-5 assume M =(Q,X,A,,d,0Qp) is a reduced FST with
T(M) < Ty x T, (see Proposition 2.1).

Property (F0). M has Property (F0) for proper t e Ty(x,) iff

(p’ ta S, p), (p5 ta S3, 41)» (q: t’ S3, q)E(S
implies

slsz = 3253. (FO)
By the assumptions of Property (F0), u; ;:= sis,s57/~1 is the output produced by
some (p, g)-computation of M for t* for every 1 <j < k. Intuitively, the commuta-
tion relation (FO) means that the output s, for one copy of ¢t produced in the

p-loop can be shifted to the output s; produced for ¢ in the g-loop. Hence,
U, ; =ty forevery 1 <j,j <k.

! In the journal version of his paper, Weber modified his criteria in the spirit of ours.



302 H. Seidl

Property (F0.0) is obtained from Property (F0) by replacing conclusion (F0)
with

sie{l, x;} iff s;e{l,x,}. (F0.0)

It is implied by Property (F0) as can be seen as follows. Without loss of generality,
we may assume that ¢ # x,. First assume s, contains an occurrence of x,. Then
by reducedness of M, also s, and s; contain occurrences of x;. Thus, (F0.0) takes
the form

5, = X4 iff s3=2x.

If s; = x, then (F0) implies that s, = 5,55, and hence x, = 55 by top cancellation.
If, on the contrary, s; = x,, then (FO) implies that s;s, = s,, and hence s, = x;
by bottom cancellation.

Therefore, assume s, does not contain an occurrence of x;. Then ge UM)
since M is reduced. It follows that s; = 1. Equation (FO0) yields that s,s, = s,. If
s, does not contain an occurrence of x,, then by the reducedness of M, p e U(M).
Hence since t # x,, s; = L. If 5; contains x,, s, is a subtree of s,s,. Therefore,
(F0) can only hold if s, = x,.

Property (F1). M has Property (F1) for proper t € Ty(x,) iff, for every factorization
t = tt,t5, with proper t,, t,, t3 € Tr(x,),

(P, t1s S115 P1)s (P15 25 S125 P1)s (P15 L35 8135 D),

(P, t1 5215 P2)s (P2 t25 S22, P2)s (P2 135 S235 9),

(9> t1> 5315 P3), (P35 L2, S325 P3), (P3, B3, S35, @) €9
implies

511512513521523 = 521522 523531533 (F1)

Property (F1) is less intuitive. It is obtained from (F0) by considering a product
t,t5 and the corresponding factorizations of the (p, p)-, (p, 9)-, and (g, g)-computa-
tions according to Property (F0). Into these three computations one inserts
piloops for some proper t,. Now commutation relation (F1) says that while
shifting the output for ¢,¢; from the p-loop to the g-loop, the output of the p,-loop
for t, can be shifted to the output of the p,-loop for ¢,.

Property (F2). M has Property (F2) for proper t € Ty(x, ) iff, for every factorization
t = t,[x,, t,t5] with proper t, € T(X,), proper t, € Tr(x,), and t; € Tg,

(p9 t15 S115 ppl): (pla t27 S125 pl)a (pl’ t3= S13> 6)’
(p’ tl’ 321’ qu)a (pZ’ t29 522, Pz)’ (st t35 523a 8)7

(@, t1> 5315 P3)s (P35 L2 S325 P3), (P35 t3, 533, E) €0
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implies
5110821[%15 S23]s 5128131 = 531[831[% 1, 8331, 5225231 (F2)

The basic structure of Property (F2) is again the same as for (F0). However,
we now consider a tree t,[x,, t3] for some {x,, x,}-proper t,. Similar to commuta-
tion relation (F1), commutation relation (F2) says that while shifting the output
for t,[x,, t;] from the p-loop to the g-loop, the output of the p,-loop for ¢, inserted
into the p-loop can be shifted to the output of the p,-loop for t, inserted into the
(p, q)-computation for ¢ [x,, t31.

For i =0, 1, 2, Properties (Si) and (S0.0) are obtained from Property (Fi) and
(F0.0) by applying w to the output trees in the conclusions (Fi) (resp. (F0.0)). Since
ofs) =0 iff s = L and w(s) = x, iff s = x; we have:

Fact 0.

(i) M has Property (FO.0) for t iff M has Property (S0.0) for t.
(i) Fori=0, 1, 2, if M has Property (Fi) for t, then M also has Property (Si)
for t.

In what follows whenever we do not specify the tree for which a property
holds we mean that it holds for all x,~proper trees.

Also, M has Property (FO) for t provided M has Property (F1) for ¢ with
t = t t,t3 where t, = x;. Hence, if M has Property (F1), then M also has Property
(FO). Analogously, if M has Property (S1), then M also has Property (S0).

Now we state the main theorem of this section.

Theorem 3.1. Assume M is a reduced FST. Then the following hold:
(i) If sval(M) < oo, then M has Properties (S1) and (S2).
(i) If val(M) < oo, then M has Properties (F1) and (F2).

In order to prove Theorem 3.1, we start by considering Property (S0). Then,
we introduce Properties (F0'), (S1), and (S2') which are closely related to (F0), (S1),
and (S2), respectiyely, but are technically more adequate.

Proposition 3.2. If sval(M) < oo, then M has Property (SO).
Proof. Assume teTyx,) is proper, p, qeQ, and (p,t,s:,p), (P.t,52,9),
(g, t, 53,q9) € 6. We show
@($152) = @(s353). 0y
Define w(s;) = n; + d;- x, for i = 1, 2, 3. Equation (1) is equivalent to (2) and (3):
ny + (dy — Dny = d,ng, 2
d,d, =d,d;. 3)
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Since M is reduced, (g, ¢, &', €) € 6 for some trees ¢’ and s’ where w(s') = n,. Define
we = s58,55771, j=0,...,k—1. Then (p,t*u ;,q) and (p,t*¢,u ;5',€)€d
for all j. First assume pe U(M). Then ge U(M) since M is reduced. Hence,
5, =8, =53 = L and w(s;s,) = 0 = w(s,s3). Now assume p ¢ U(M), ie., d, > 0. If
g e Const(M), then w(s5™"1s") = w(s). By Proposition 2.4, w(s;)€ {0, x,}, ie.,
ny = 0 and d; € {0, 1}. Hence, the right-hand side of (2) equals 0. Moreover,

oy, ;5) = o(s]s,s) = ny YiZd dy + & [y + dyny)
by Proposition 1.7. Therefore,
Uy, j+15) — ol ;5) = d} - [ny + (ny + dyng) - (d, — 1)].

If n, + (n, + dyng)-(dy — 1) > 0, then all w(y, ;s) are distinct and ¢*¢' has at least
k output sizes; since k can be chosen arbitrarily and M is reduced, this implies
that sval(M) is infinite. Consequently, n, + (n, + d,n,)-(d, — 1) = 0 from which
we deduce that n, = 0 and d, = 1 because s,, s’ # 1. Hence, the left-hand side of
(2) equals 0 as well. To prove (3), recall that d; {0, 1}. If d3 = 1, then d,d, =
d, = d,d;. 1f d; = 0, then g € U(M). Therefore, d, = 0since M is reduced. It follows
that d,d, = 0 = d,d,, and (3) holds as well.

Now assume g ¢ Const(M). Hence especially, g ¢ U(M) and so d; > 0 for i =
1, 2, 3. By Proposition 1.7, w(uy ) = 4, ; + By ;- x; with

i-1 . ] k—j=-2
Apy=ny Y &y +nydi +nsdid, Y, db
i=0

i=0
and
B, ;= did,ds 71

First assume d,; # d5. Then, for every k, all the B, ; and hence all the values oy, ),
j=0,...,k — 1, are distinct. Since g ¢ Const(M), we have (q, t;, v;,¢) €6 for i =
1, 2 and suitable trees t; such that w(v,) # w(v,). Therefore, we can apply
Proposition 1.6S and find that, for every m, some k > 1 and ie {1, 2} exist such
that £*t; has at least m p-computations with pairwise different output sizes. Thus,
sval(M) cannot be finite. Therefore, d; = d3 =:d and (3) holds. For A4, ; we find

-1 _ k-2
Agj=ny Y d+md +nyd, ), 4
i=0 iz

Hence,
Agjr1— Ay j= d'[ny + ny(d — 1) — n3d,].

If n, + ny(d — 1) — n3d, # 0, then, for every k, all the values 4, ; and hence
all w(, ), j=0,...,k—1, are distinct which as above allows us to construct
a contradiction to sval(M) < co. Therefore, n; + ny(d — 1) — nyd, = 0 which
gives (2). [

The next property is crucial to “recover” Properties (Fi) from Properties (Si).



Equivalence of Finite-Valued Tree Transducers Is Decidable 305

Property (F0'). M has Property (F0') for proper t € Ty(x,) iff
(pa t’ s19 p)a (p9 t, s2a q): (ps t, S3, q)a (q, t’ S45 q) € 59

si¢{Ll,x,} and fsy)=o(s;) implies s, =s;.
M has Property (FO') iff M has Property (F0) for all x,-proper trees t.
Propeosition 3.3. If val(M) < oo, then M has Property (FO').

Proof. Assume val(M) < oo, and let t e Ty(x;) be proper, (p, 1, s1, D), (P, t, 52, q),
(P, t, 53, 9), (@, t,54,9) €9, s, ¢ {L, x1}, and (s,) = w(s;). We show s, = s5.

Since val(M) < o0, M has Property (S0) by Proposition 3.2 and hence also
(F0.0) by Fact 0. Therefore, s, ¢ {1, x,} implies s, ¢ {.L, x,}. Hence, since M is
reduced, s; contains at least one occurrence of x, for all i = 1, 2, 3, 4. Also, since
M is reduced, trees t' € T and ' € T, exist with (g, ', §, ¢) € 8. Define s:= s, 5". Since
sa¢{L,x;}, s # 5. Note that (g, tt', 5, &) € 6. For k > 1 consider u; ;:= s{s,s§ /77,
j=0,...,k— 1 Then (p, t* u, ;, q) €6 for all j. Assume, for every k, that all the
outputs U, j=0,...,k— 1, are distinct. Then, by Proposition 1.6, for every m
some k exists such that at least m p-computations exist either for £’ or for £** ¢’
which produce pairwise different output values. Since val(M) < oo, this is a
contradiction. Therefore, k > 1 and 0 < j; < j, < k exist such that u, ; = u, ;. By
top and bottom cancellation we find

sis; = 58k, 1)

where j = j, — j;. By induction on n this 1mphes sits, = 5,88 for all ne N. By
Corollary 1.2(iii), either s,r = s" or s, = sJ'r for some suitable tree r. Since s, is
proper but different from x,, we have |s{"|; > jn. Hence, for sufficiently large n, s¥"
cannot be a prefix of s5,. Therefore,

In, Van>n, I,  s,r=sp 2
Analogously, we find some j' such that
In, Vn>n, Ir,  s3r =sin 3

Choosing in (2) and (3) a sufficiently large common multiple of j and j' as an
exponent of s; we conclude that s,r = 537 for proper trees r, r' € Ty(x,). Hence by
Corollary 1.2(ii) and Proposition 1.1(iv), s, = s5. O

Proposition 3.4.

(i) Assume te Ty(x,) is proper. If M has Property (FO) for t, then M has
Property (FQ) for t.

(ii) Assume M has Property (FO'). Then, for i =0, 1, 2, M has Property (Si) iff
M has Property (Fi).

Proof. The proof of assertion (i) is analogous to the proof of Proposition 3.3:
just observe that s,;s, = s,s; implies that sis, = s,s} for all j.
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(i) If M has Property (Fi), then certainly also Property (Si). Conversely,
assume M has Property (S0) and (F0'). Assume ¢ € Ty(x,) is proper and (p, t, s1, p),
(ps L, 83, Q)a (qa £, 53, q) €9.

We show s,5, = s,55. By Fact 0, M has Property (F0.0). Therefore, assume
sy ¢{L, x,}. Certainly, (p, tt, 5151, p), (P, tt, 5,8;, q), (D, tt, 5,83, q), (g, tt, 5353, g) €6
where 5,5, ¢ {1, x,}. Since M has Property (S0), «(s,s,) = w(s,s;). Since M has
Property (F0') for tt, 5,5, = s,s;—which we wanted to prove.

For proofs of the assertion with i =1 or 2, we only treat the case where
s1 € {1, x,}. The remaining parts of the proofs are analogous to the proof for
i=0. So assume M has Property (S1). Especially, M also has Property (S0.0)
and therefore also Property (F0.0). Let t = t,t,¢; # x, for x,-proper trees t,,
i=1,2 3 let

(P> t1s S11, P1)s (P15 t25 S125 P1)s (P15 L35 S13, D),
(p5 tla $21» p2)9 (p29 t29 822, p2)5 (Pz, ts, 5237 CI),

(@ t1; S31, P3)s (D3 tas 325 P3)s (P35 3, S33, Q) €,

and assume s,,5;,5,3 €{L, x,}. First assume s,,5,,5,;3 = L. Then both p and ¢
are from U(M). Therefore, s,15,,5,3531533 = L as well, and the conclusion
according to Property (F1) holds. Now assume s;,5;,5;3 = X;. Then, especially,
S12 = xp. Ifalso sy, € { L, x4}, then s,15,,5,3531533 = 551553531533, and the conclu-
sion of (F1) follows since M has Property (F0.0) for t,t;. For a contradiction
assume s,, ¢ {1, x,}, i, w(sy,) ¢ {0, x.}. Denote w(s;;) by g;. Let g5, = ny + dyx4,
922 = Ny +dyx;,and g,3931933 = iy + d3x,. Since M has Property (S1) for ¢,£5 ¢,
we have, for every k > 0,

911913 921923 = 911952913 921923 = 921052923 931933 = Ax + Bi- x4,
where
k-1
Ay=ny +dny Y, dy+dydins.
i=0
It follows that
0=A, — Ay, =dyn,d5 + dds dy, — 1) ns.

g,, contains an occurrence of x,. Therefore, d; # 0. Hence, n, = 0 and d, € {0, 1}
in contradiction to our assumption.

Now assume M has Property (S2). Especially, M has Property (S0.0) and
therefore also Property (F0.0)—at least for all trees containing a symbol ae X of
rank > 1. Let ¢t = t,[x,, t,t5] for X ,-proper tree ¢, and x;-proper tree ¢,. Let

(P> t1s S11, PP1)> (P15 t25 S125 P1)s (P15 E35 5135 8)s
(1, t1, S21s GP2)s (P25 L, 822, Pa), (P2s 3, 523, €),

(4 t1, S31, 4P3)s (P35 ta5 S325 P3)s (P3s L35 S33, €) €0,
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and assume s;,[x,5;,813]1€{L,x,}. First assume s;,[x;,s,,5;3} = L. Then
both p and g are from U(M). Therefore, s,,[531[X1> S33], 522531 = L as well, and
the conclusion according to Property (F1) holds. Now assume s, ([X;, §158;3] = X¢.
Then, especially, s,, = L. Again, if also s,, e {1, x,}, then

S2108310% 1, $3315 8225231 = $21[831[%15 5331, 5231,

and the conclusion of (F1) follows since M has Property (F0.0) for ¢,[x,, t;]. For
a contradiction assume s,, ¢ {1, X}, i.e, (sy,) ¢ {0, x;}. Denote w(s;;) by g;;. Let
ga1 =Ny +dix; + €xy, gro =Ny + dy Xy, gp3 = n3, and g31[x1, g33] = 1y + dyx;.
Since M has Property (S1) for t,[x,, t5¢5], we have, for every k > 0,

911[921[%15 9231, 9131 = 911[921[% 1, 9231, g’izgm] = g21[931[%1, 9331, 952923]
= 051952923 931933 = Ay + By x4,

where
k—1 .
Ay=n, +dn,+en,- Y &+ edin,.
i=0

It follows that
0= A, — Ay_; =enyds™ ! 4 eds Y d, — 1) n,.

g»; contains an occurrence of x,. Therefore, e # 0. Hence, n, = 0 and d, € {0, 1}
in contradiction to our assumption. O

Property (S1). M has Property (S1') for proper tree te Ty(x,) iff, for every
factorization t = ¢,1,15, t; proper,

(D> 15 S11 P1)s (P15 E25 S12, P1)s (P15 B35 543, D)

(P, t1, S215 P2), (P25 L2, 225 Pa)s (P2, L3, 23, 9)

(@, 14, S315 P3)s (D3, 12, 832, P3), (D3, 13, S33, )€,
with o(s;;) = g;; implies:

(i) If g e Const(M), then g¢,,, g,, € {0, x,}.
(i) If g ¢ Const(M), then

91191291—11 =92192292_11- (819

Recall that if g is not unique-sized, then the output sizes produced by
proper (g, 9)- or (p, g)-computations depend on x,. Hence, by reducedness of M,
g11 and g, depend on x, as well. Therefore, the inverses occurring in (S1’) indeed
exist. Observe that g;; or g;; do not occur in (S1').
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Fact 1. Assume A, Be QW[x,] where A=a,+a, x, and B=by+ b, x,.
Then:

(1) B7'4 = (1/by)-[—bo + ao] + (a1/by)" X,.
(2) BAB ' =b,"ay+by-(1 —a;) + a; " x;.

Fact 2. Assume q ¢ Const(M):
(i) Then (S1') is equivalent to

[921922923]~1 ‘[911912913] = [921923]_1 ‘[911915]. (817

(i) If g;, = a; + €;" x; and g, = n, + d;- xy, then (S1') is equivalent to the two
equations:

(dy — Dla, — a,] = e;n, — eyny
and

dl = d2'

Proof. By top and bottom cancellation, (S1”) is equivalent to

(921922)_1 ‘911912 = 92—11911,

which is equivalent to (S1’). This proves (i).
The proof of (ii) follows by simple calculations from Fact 1. |

Proposition 3.5,

(i) Assume t € Ty(x,) is proper:
If M has Property (S1) for tt, then M has Property (SO) for t.
If M has Property (S0) for t and t,t, whenever t = tt,t; for proper ti,t,,
t3, then M has Property (S1) for t iff M has Property (S1') for t.

(ii) If sval{M) < oo, then M has Property (S1).

Proof. (i) Assume (p, t, s;,p), (p, 1, 55, q), (g, . 53, q) €0 and let g;:= w(s;) for i =
1, 2, 3. Consider the decomposition ¢t = t,t,t3 where ¢,:= x, and t,:= t3:=¢. If
g € Const(M), then the conclusion of (S1') gives g;, g5 € {0, x,} in accordance with
(S0). If g ¢ Const(M), then the conclusion of (S1') gives x;g,x; ' = g,gs95 *. Since
x1 ! = x, this implies the conclusion of (S0) also in this case.

For the second part of (i) we show that the conclusion according to (S1) is
equivalent to the conclusion according to (S1'). Assume p, p;, ¢, s;; are chosen
according to the assumptions of Properties (S1') and (S1) and g;;:= «(s;)).

By assumption, M has Property (S0) for ¢,¢; and t,t,¢5. Therefore,

911913 912923 = 921923 931933 (1)
911912913 921922923 = 921922923 931932933- )
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First assume g € Const(M). Then g5,93,933 € {0, x{} by Proposition 2.4. From (2)
we conclude (by the reducedness of M) that also g,,9,,913 € {0, x,}. Hence (again
by the reducedness of M), especially, g;, € {0, x;}. If g,,91,9,5 = 0, then p € U(M),
and the assertion follows from the reducedness of M. If g,,9:,9:5 = X, then
g11 = 912 = 913 = X;. The conclusion of (S1) has the form

921923 = 921922923-
This is (by the reducedness of M) equivalent to

922 €10, xl}

according to (S1).
Now, assume g ¢ Const(M). Then all g;; are invertible, and we have

(911912913) 921923 = (921922923) 931933
iff

(911912911 911913921923 = (921922921 921923931933
iff

911912911 = 921922921

provided (1) holds.

The last equation is the conclusion according to (S1').

(ii) Again assume p, p;, ¢, s; are chosen according to the assumptions of
Property (S1') and g;;:= a(s;)).

Fork,j > 0, define t9:= ¢, t; and * := (@&~ V... O Define v := 5,54, 5,5,
i=1,23 and 4 ;=P o VoPYV-0P, 0<j<k—1 We have
(p, ™, u, ;,q)edé for all j. For convenience, we write hY for oY), ie.,
h(ij) = gug{zgis-

First assume g € Const(M). Then (53,53, 533) € {0, x,} by Proposition 2.4, and
@(11512513) € {0, x,} by Proposition 3.2. If pe U(M), then s;; = L for all i, j since
M is reduced. Therefore, g;; = o(s;;) = O for all i, j, and the assertion trivially holds.
If p¢ U(M), then g419,,9,3 = X;. Especially, g,, = x;. Since M is reduced, t' ¢ T
and se T, U {1} exist with (g, t, s, &) € 5. Assume g,, = a, + b, x; and w(s) = m.
Then we have

. izt .
Q)(uk,js) = CO(U(ZI)S) = a1 + blaz Z bf’l + blblz * [a3 + b3m]
i=0

Therefore,
(i j+15) — 0y, ;8) = bybh - [a, + (a3 + bsm) - (b, — 1)] = .

If this is greater than 0, then all w(y, ;s) are distinct which gives a contradiction to
sval(M) < co. Hence, b,bj - [a, + (a3 + bym)- (b, — 1)] = 0. Then two cases can
occur. Either b;b, = 0 which implies p, € U(M), then g,, = 0 in accordance with
Property (S1'), or byb, > 0, then [a, + (a5 + bym)- (b, — 1)] = 0. We deduce that
a, = 0. Hence g,, € {0, x,} and the conclusion of (S1’) holds.
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Now assume g ¢ Const(M). Then all g;; are invertible. Applying Proposition
3.2 to t9, we obtain

HPHY = HPhY ®
for all j. Moreover, we have
Wty j41) = hP - BT PG VR - B
— h(1k) cee h(1j+ 2)(h(2j+ 1’h(3j))h(3j" 1)... h(3°’. (2)
Since h¥ 1Y = (g,,9:29:1)h", we conclude
hg*PhY = (921922921) HPhY

= (92192292—11) hPhY by (1)
— AT VRY,

where
A =(921922920)911912911)
Substituting this into (2) we find
w(uk, i+ )= (Bk, jABlZ ;1 Jeo(i, j) (3)

for By ; = h{P---h{*? which is a polynomial from N [x,].
If A = x,, then the conclusion of (S1') holds. Hence for a contradiction, assume
' A # xl. Let A = ao + a; 'xl and a)(uk,j) = Uk,j + I/k’j'xl.

Case 1:a; # 1. Then V; ;=aj"' ¥ o by Fact 1 and (3). It follows that all the
output sizes oy, ;) are different. Since q ¢ Const(M) we deduce from Proposition
1.6S that sval(M) = oo in contradiction to our assumption.

Case2:a, = 1. Since A # x, this implies that a, 0. Let B, ;AB; | = by ; + X;.
Then by Fact 1 and (3), Uy, j4+ = by, ; + Uy, ;. I ag < 0, then, by Fact 1, all b, ; <O.
Analogously, if a, > 0, then all b, ; > 0. It follows that all the Uy ;,j=0,...,k — 1,
are different. Therefore, sval{M) = co in contradiction to our assumption. O

Property (S2). M has Property (S2) for proper t € Tx(x,) iff, for every decomposi-
tion t = t;[x,, t,t5] with proper ¢, € T{(X,), proper t, € Ty(x,), and t; € Ty,

(P, t1, S11, PP1)s (P> B25 S125 P1)s (P, U3, 5135 8),

(P, t1, S215 qP2)> (P25 t25 S225 P2)s (P25 T35 S23, &)

(4, t1, S31, 9P3) (P35 t25 532, P3)s (D3 L3, 533, €)€0
with w(s;;) = g;; implies

g110%1s 9129131 — 9110%15 9131 = 210X, 9229231 — 921[%1, 9231 (82)
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Fact 3.
(i) Provided q ¢ Const(M), (S2') is equivalent to
91101, 9120131911 [%1, 91317" = 92101 9220231921051, 923171 (S29)
(i) Assume
ofs;y) = a; + e;xy + fix,.
W(s;2) = n; + d;xq,
w(s;3) = b;, i=1,2
Then (S2') takes the form

Sing +dy — Vfiby = fony + (dy — 1) f3b,.

In proofs we mainly refer to the version of (S2') given under (ii). Especially
note that this version does not depend on q; or ¢;. Assertion (i) is used in Section
5 in the proof of the (technical) Proposition 5.3.

Proposition 3.6.

(i) Assume t e Ty(x,) is proper, and M has Property (SO) for t,[x,, t;] whenever
t = t1[xy, tats] for proper t, € T(X,), proper t, € Ty(x,), and t; € T;. Then
M has Property (S2) for t iff M has Property (S2)) for t.

(i) If sval(M) < oo, then M has Property (S2').

Proof. Assume p, p;, g, t;, and s;; are chosen according to the assumptions of
Properties (S2') and (S2). We show that the conclusion according to (S2) is
equivalent to the conclusion according to (S2).

Define g;;:= w(s;), and g;1:= a; + ex; + fix;5, gi = + dixy, g3 = b; for
i=123.

(i) Property (S0) for t,[x,, 5] implies

ay +ejla; + exxy + f,0,]1 + fiby = a, + e;lay + e3x; + fibs] + f2b,. (1)
The conclusion in (S2) is

a; +e[a, + eyx1 + f,b,] + filny + dyby]
=a, + ela; + e3x; + f3b31 + filn, + dyb,]. @

Subtracting (1) from (2) yields
filng +(dy — 1) by] = foln, +(d, — 1)- b,],

which is the conclusion of (82’).
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(i) Since M is reduced, te Ty and se T, u {1} exist with (g, t,s,¢)€d. Let
m:= w(s). For j, k > 0, define t¥:= t,[x,, tjt;], and ®:= t®*~D... 1O Define
v =5y [x4, hsizl, =1, 2, 3, with hf:= g;y[x,, 9/9:3] = 0(@?) and U, j =
oP - pfpPpg =D o) for 0<j<k—1 Then (p,i%, u, ;,qed for all
jef{0,....,k—1}.

First assume q € Const(M). Then, by Proposition 2.4, s5,[x,, s3,8331€ {1, x;}.
Hence, by Proposition 3.2, g,,[x;,91,9,31€{0,x,}. If pe UM), then g,, =
g1z = 921 = g2, = 0 by the reducedness of M, and the conclusion of (S2') trivially
holds. Therefore, assume p ¢ U(M). Since g,,[X1, 9129131 = X1, 912913 =0=¢,3
by the reducedness of M, and the left-hand side of (S2') equals 0. Moreover,

Cl)(uk,js) = (D(U(Zj)s) =d, + e,m + fz"z Z{;é d’2 + f2b2 . d‘ﬁ
Consequently,
cu(uk,j+ 1S) — a)(uk‘js) = f2d£[n2 + bz(dz — 1)] >0,

If this is different from 0 it follows that w(, ;s) are distinct forall j =0, ...,k — 1,
which gives us a contradiction to sval(M) < co. Therefore, f,di[n, + b,(d, — 1)]
= 0. If f,d} = 0, then (by the reducedness of M) p, € U(M). Hence f, = 0, which
implies that the right-hand side of (S2') equals 0 as well. If f,d} > 0, then n, + b, -
(d, — 1) = 0, which again implies that the right-hand side of (S2') equals 0. Hence,
the conclusion of Property (S2') holds.

Now assume g ¢ Const(M). Then all h? are invertible. Applying Proposition
3.2 to t9 we obtain

PRSP = hPhY. )
Moreover, we have
Ot j51) = B hG* DRGH DR - B
= W P D YD+ DEDRG= D ... O
= (B, jAmBlZ 11 )w(uk j) 2
for some invertible B, ;& N{"[x,] where
AP = H* DRGTHY] [ V)
= Wg*OTAP T HOTAT T by (1),
First we show, by induction on j,

Jt1

95 19i3 — ghgis = & [9i29i3 — 9i3]- 3)
By definition, (3) holds for j = 0. Assume j > 0, and (3) holds for j — 1. Then
95 'gis — Gl gis = i+ di- ghgis — i — di- gl g5
=d; [9h29:3 — 91 '9:5]
=d; di™ [g:29:3 — 93] by the induction hypothesis,

which proves (3).
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We conclude that

hfﬁ 1)[hlg)]_l = gul[x1, g{; 1gi3]gi1[xl’ ggzgis]_l
= £ [9l5 '9i3 — 9h9i3] + x;

= fid[9:205s — g1 +x; by (3). @)
Hence, ’
AY = a? + x,
where
a? = fo & [922923 — 9251 = i # - [912913 — 9151 (5)

Using (5) and Fact 1, (2) can be rewritten as
ity j41) = by ;a9 + oy ;4 1) 6)
for some b, ;e N. We distinguish between the different possibilities for d;,i = 1, 2.
Case 1: d, = 0. Then p, € UM). Hence, f; = 0 and, therefore,
J1'[912913—9131=0 and a¥ = f,-d}-[952925 — g23]-

If a9 =0, then the conclusion of (S2') is satisfied. Therefore, assume a" # 0.
If a¥ >0, then w(u, ;. ;) — (i ;) >0 for all j. Analogously, if a'? <0, then
iy j11) — 0wy, ;) <0 for all j. In both cases all the output sizes w(u ;),
j=0,...,k—1, are distinct. Since g ¢ Const(M) this gives a contradiction to
sval(M) < co.

Case 2: d, =0. This case is analogous to Case 1 with the role of d, and d,
exchanged.

Case 3: d; # 0 # d,. We consider three subcases.
Case 3.1:d, =d, =:d. Then

a? =di- Lf2 (922923 — 923) — f1 (912913 — 913)])

If a? = 0, then f; (922023 — 923) — f1° (12913 — 913) = 0, and the conclusion of
(S2') is satisfied, whereas a"? # 0 gives a contradiction as in Case 1.

Case 3.2: d, > d, > 0. Especially, d, > 1. Define ¢:= d,/d,. Then
a? = ;[ £ 022923 — 923) — ¢ f1(G12915 — 913)])-
Since 0 < ¢ < 1, some j, € N exists such that, for all j > j,,

I/ f1- (912915 — 9131l < 1.

Assume g,,9,3 — g23 = 0. Then g,, € {0, x,}, which is impossible since d, > 1.
Therefore, g,29,3 — 9,3 = 1. It follows that a¥ > 0 at least for all j > j,. Hence,
for all k > jo, w(uy, j+,) — @(u, ;) > 0 whenever j, < j < k. Therefore, the output
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sizes w(w ), j€ {Jjo. ..., k}, are distinct. Since we can choose k arbitrarily large,
this gives a contradiction to sval(M) < oo.

Case 3.3:d, > d, > 0. Here the argumentation is analogous to Case 3.2 where
we considered d, > d,. We derive that some j, € N exist such that, for all k > j,,
oty ;1) — oy, ) <0 for j, <j<k; which again gives a contradiction to
sval(M) < oo. This finishes the proof. O

Proof of Theorem 3.1.  Assume sval(M) < oo. By Proposition 3.2, M has Property
(S0). By Propositions 3.5(ii) and 3.6(ii), M has Properties (S1') and (S2'). Therefore,
by Propositions 3.5(i) and 3.6(i), M has Propoerty (S1) and (S2) as well. This proves
statement (i).

Now assume val(M) < co. Especially, sval(M) < co. Therefore, by statement
(i), M has Properties (S1) and (S2). Since by Proposition 3.3 M also has Property
(F0'), we conclude with Proposition 3.4 that M has Properties (F1) and (F2) as
well. This proves (ii). O

4. Decidability

The main theorem of this section (Theorem 4.1) states that it can be decided
whether or not a reduced FST M has Properties (S1) and (S2) or Properties (F1)
and (F2) and gives upper complexity bounds. In order to prove this result we
show that M has the corresponding pair of properties provided M has these
properties for all trees up to a depth polynomial in the size of M (Proposition 4.2).

Theorem 4.1. Assume M is a reduced FST.

(i) It can be decided in polynomial space whether or not M has Properties (S1)
and (S2).

(ii) It can be decided in nondeterministic polynomial time whether M does not
have Properties (F1) and (F2).

Assume n = #Q is the number of states of M. The crucial step in proving
Theorem 4.1 is given by the following proposition:

Proposition 4.2.

(i) If M has Property (S1) for all proper t € Ty(x,) up to depth 4n> and Property
(S2), then M has Property (S1').
(i) If M has Property (S2') for all proper t e Ty(x,) up to depth 6n°, then M
has Property (S2).
(iii) Assume M has Properties (S1') and (S2'). If M has Property (FO') for all
proper trees t € Ty(x,) up to depth 6n*, then M has Property (FO).
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Proof of Theorem 4.1. Assume M has Properties (S1) and (S2) for trees up to
depth 6n°. Then, especially, M has Property (S0) for all trees up to depth 6n°.
Hence, by Propositions 3.5(i)) and 3.6(i), M has Properties (S1') and (S2') for all
trees up to depth 6n3. Applying first statement (ii) and then statement (i) of
Proposition 4.2, we deduce that M has Properties (S1) and (S2') and also (by
Proposition 3.5(i) again) Property (S0). Consequently, by Propositions 3.5(i) and
3.6(i) (now in reverse direction), M has Properties (S1) and (S2). This proves
statement (i) of Theorem 4.1.

Assume M additionally has Property (F0) for all trees up to depth 6n*. By
Proposition 3.4, M also has Property (F0) for all trees up to depth 6n*. Therefore,
by Propositions 4.2(iii), M has Property (F0’), and hence, by Proposition 3.4(ii),
Properties (Fi) where i = 0, 1, 2. We conclude: if M has Properties (F1) and (F2)
for all trees up to depth 6n*, then M has Properties (F1) and (F2). (ii) follows from
this. O

Proof of Proposition 4.2. (i) For a contradiction, assume the proper tree t € Ty(x,)
is of minimal X-size such that t = t,¢,t, for proper trees ¢; and

(pa tl’ S11s pl)’ (pl’ t23 $125 pl)s (pla t3’ S135 p)>
(pa t15 $215 p2)7 (p2> t2a $225 pZ)’ (pZ, t39 $235 Q)a
(qa tl» $315 Ps)s (Paa t2> $325 Ps)’ (Psa t3’ 5335 Q)€5

for certain states p, p;, ¢ € Q and output trees s;, € T)(x,) such that the conclusion
of (S1") does not hold. Moreover, assume that the decomposition of ¢ is chosen
such that t, is of minimal 2-size. By assumption, depth(t) > 4n°.

First assume g€ Const(M). In this case the conclusion of (81) is w(s,,),
w(s,,) € {0, x, }, which is independent of s;; and s;;. Hence, the conclusion holds
for t = t,t,t; provided it holds for ¢, where ¢} and t} are fixed proper input
trees for which (p, py)-, (p, p2)- (g, ps)-computations and (p,, p)-, (p;,q)-, and
(p3, 9)-computations respectively exist. If these computations exist, then the
conclusion also holds for trees t; and ¢, of depth at most 2n® where the paths to
the leafs labeled x, have length at most »n°.

Hence if depth(t) > 4n®, one of the following two cases must occur.

Case 1: The path in t, to the leaf x, has length > n®. Hence, t, = uu,u, for
proper u, € Ty(x,) with u, % x; # u u, such that

(pia Uy, Tins qi)ﬂ (qia Uy, Tizs qi)’ (Qi, Uz, i3, pi)659 i=123,

for some states ¢; and decompositions s;, = r;;7;,7;3. The Z-sizes of both u, and
u,u; are strictly less than |t,|;. The latter implies that M has Property (S1') for
U=t u ust;. Hence, w(r;yr;3) € {0, x, } and therefore both w(r;,) and w(r;3) € {0, x,}
for i = 1, 2. By minimality of ¢, in the decomposition of ¢, the conclusion (S1')
holds for t = tyt5t; where t}:= t,u,, th:=u,, and t3:= uyt;. We conclude that
olri;) €10, x,} for i = 1, 2 as well. Together, we find w(s;,) = w(r;;7;,7:3) € {0, x,}
for i = 1, 2, in contradiction to our assumption.
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Case 2: t, contains a subtree from Ty of depth > n®. Then t, = u,[x,, u,u;] for
proper u; where u, # x, such that

(Pi> U1 Tigs PiG3)s (Gis Y2, Tia, Qi)s (s U3, Tiz, 3)eéq i=1,23,

for certain states ¢g; and decompositions s;, = r;;[ Xy, 1573 ] Since |u,[xy, 43]lg <
|t, |5, minimality of ¢ implies that Property (S1") holds for ¢’ = t,u,[t;, u;]. Whence,
ori1[x4, 131 € {0, x,}, i = 1, 2. This means that x, does not occur in w(r,,) or in
w(r,,). It follows that w(r;;[x,, r;,7:3]) = @(r;;[x,, ¥;3]). Therefore, the conclusion
(S1') for ¢ holds as well, contradicting our assumption.

Thus, the conclusion of Property (S1") holds for every ¢ provided g € Const(M).
It remains to consider g ¢ Const(M). Assume the sizes of the outputs s;; in the
assumption of Property (S1) are given by

ofs;) = a; + ¢;° Xy,
o(s;y) = m + d;- x4, i=1,2

Since the assertions of Property (S1’) are independent of 5, a similar argument-
ation as above shows that without loss of generality we may assume that
depth(t;) < 2n® and the path in t, to leaf x, has length at most n®. The remainder of
the proof is a case analysis according to different possibilities for ¢, and ¢, in the
factorization of ¢.

Case 1: t, is too “large.”

Case 1.1: The path in t, to the leaf x, has length > n®. Then t, = u u,u; for
proper trees u, where u, # x; # u 45 such that

(pa Uy, 711s ql)’ (qls Uy, T2, ql)’ (qb Uz, ¥13, pl):
(P, U1, 21, 42), (@2, Uz, 722, 42)s (25 U3, T23, P2),

(q9 Uy, 731, q3)’ (q3a Uy, T332, 613), (q39 Uz, I'az, Ps)ea

for certain states q; and decompositions s;; = r;#;, ;3 Where w(r;,) = a;, + €;,* X4.

Consider the trees t' := u,u,t,t; and t":= uu,ust;. Since u, # x4, |t'|s < |t|s.
The conclusion (S1') trivially holds if ¢, = x,. Therefore, £, # x, and hence
|t"|s < |tlz as well. Whence, by minimality of ¢, M has Property (S1) both for
t' = (uyus)t, t; and t” = u u,(ust;). This gives us the following four equations (see
Fact 2(ii)):

dy =dy, 0y
(dy — Dlaz, + e31a55 ~ a1 — €11a13] = €31€53n;, — ey €q3My, 2
€13 = €33, (3

(612 — Dlaz;, —ay ] = e85 — 41845 “
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Therefore,

(dy —1)-(a, — ay) — [eyn, —eyny]
=(d; — Dlays + €310, + €31€5,053 — Ay, — €101, — €5,€1,0;3]

— [ez1€22€23m, — €y1€15€13n4]
4)
= (dy — Dlej2051 + €31€5,055 — €1,0;; — e11€,,043)

—[ez1e20€23n, — €y1€12€130,]
3)
= e dy — Dlayy + e318,5 — aq1 — e11a13] — eg5[ey,e3n5 —e51e53n4]

@
=0

Hence, M has Property (S1') for #, contradicting our assumption.

Case 1.2: t, contains a subtree from Ty of depth > n*. Then t; = u,[x,, u,u;] for
proper trees u, where u, # x, such that

(P, Uy, 111, P1s G4), (P, s, 712, G4), (G5 U3, Ty35 )
(P, 1, 121, P242) G2y Uz, T225 42), (@25 U3, 7335 &),
(4, 1, 731, P3d3), (43, Ua; 7325 G3), (g3, U3, 733, ) €D
for certain states g; and factorizations s;; = r;,[x, r127;3] With
(i) =i + € Xy + fi X2,
ofrp) = ai; + di* x4,
ofr3) = ag; for i=1,2
By minimality of ¢, M has Property (S1') for ¢ := u,[¢,t5, u3]. This gives us
dy=4d,, 1)
(dy — Dlazy + f21823 — ay1 — f11813] = e,n, —eqny. 2

Moreover, by assumption, M has Property (S2') for ¢":= u,[t;, u,u,] with factors
uyfts, x5, u,, and u;. We deduce

Jua, + @y — Dfas = 21825 + (dy — 1) f51a55. 3
It follows that

d,—1)-(a, —ay)
=(d; — Dlay; + fr1020 + foidr055 — a1, — 11815 — fiidia,;5]
(3)

=(d; — Dlayy + f21823 — a31 — f11a45]

= e,n, — e n;.

Hence, M has Property (S1') for ¢, in contradiction to our assumption.
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Case 2: t, is too “large.”

Case 2.1: The path in t, to the leaf x| has length > n®. Thent, = u,u,u for proper
trees u, with u, # x, such that

(Pis U1 Tins 43> (@is Uz, Tizs ) (G3, U3, Tizs D) €O, for i=1,23,

for certain states ¢; and decompositions s;, = r;,#;,7;3 Where w(r;,) = n;, + d;, - x;.

By minimality of ¢, M has Property (S1') for ¢ := t u u;t;. By minimality of
t,, M allows for the conclusion (S1') for the factorization t = #,t5t5 where
ty =ty ty:=u,, and t3:= uyt,. Therefore,

dydys =dyid;ys, 1)
di1d13 — Dla, —ay] = ey[nyq + dyynys] — e[ngy + diinysl, (2)
di, =45y, 3
s — Dla, + eynyy —a; —eqny ] = exdy ny, —egdyng,. 4

From (1) and (3) we obtain
di=ddi,dy5s =dyd,,d;5 =d,.
Moreover,
@, — 1) (ay — ay) — [exn, — eyny]
=(dy1d12dyz — Dla; — a1] — e;[nyy + dainyy + dyydyynss]
+ ey[nyy +dyngy + dydyang;]
2 @12 — Dla, — a ] — e[(1 — dyp)nyy + dyynys + dyy(dzz — dyo)nas]
+ e [(1 — dyz)nyy +dyang,]
2 (@di = Dla; — a,] = e[(1 = dyo)nyy + dyyny]
+ e [(1 —diyny +ding,]

@)
=0.

Hence, M allows for the conclusion (S1') also for the factorization t = tt,¢;, in
contradiction to our assumption.

Case 2.2: t, contains a subtree from Ty of depth > n®. Then t, = u,[x,, u,u;] for
proper u, where u, # x; such that

(Pi> Ui Tits Pigds (s Y25 Tias @) (s Us, 713, E)ED for i=1,23
for certain states g; and decompositions s;, = r;{[ x4, ¥;,7:3] where

ofry) = My +di Xy + fi Xa,

(rp) =Ny +dip - Xy,

w(r;3) = Ny, for i=1,2
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By minimality of ¢, M has Property (S1') for t' := t,u,[t5, u3]. Therefore,
dl = d2’ (1)

(dy — Dlaz — a1 = eylnyy + fonys] — eslngy + fings) 2

By assumption, M has Property (S2) for t = t|[x,, t5t5] where t}:= t,u,[t5, X, 1,
th == u,, and t3:= u;. This gives us

e finiy + e fildiy — Dnys = e, fon; + e, foldyy — Dngs. 3

Therefore,
exny — ey = ex[nyy + fony, + fodaanys] —eg[ngy + fing, + fidianys]
2 eylnyy + fonps] — eslngy + fings]
= (dy = Dla, — a,)

Together with (1), we deduce that M has Property (S1’) also for t, in contradiction
to our assumption.

(ii) Assume M has Property (S2') for all proper trees up to depth 61 but not
for all trees. Then there is a proper tree t = t,[x,, t5t5] of minimal X-size, states
P» 4, p;» and s;; as in the assumption of Property (82') with

os;) = a; + e;-xy + fi* %y,
o(5;5) = n; + d; - xyq,
o(s;3) = b, i=1,2,
such that the conclusion of (82) does not hold, i.e.,
firlng +(dy —1)b ] # fr-[ny +(dy — 1) b,].

Moreover, assume that the factorization t = t,[x;, t;t5] of t is chosen such that
t, is of minimal X-size. By assumption, depth(f) > 6n>. We have to distinguish
between the following cases:

Case 1: t, is too “large.”

Case 1.1: t, contains a subtree from Ty of depth > n®. Then t; = u;[xq, X,, Uy ti5]
for proper u; € T(X ), proper u, € Ty(x,), and u, € Ty with u, # x, such that

(P> U1, 7115 PP141)s (G215 Uzs T125 4)s (G4, U3, 713, ),
(D, U1, 215 GD242); (25 Uz, T3, G2), (425 Uz, 723, &),

(q9 Uy, ¥34, ‘1P3613), (qu Uz, ¥32, q3)’ (Q:‘b Us, F33, 8)65

for certain states g; and decompositions s;; = r;1[x1, X5, 7i2ti3]

Consider t':= u [x,, t5t5, u3]. Since |t'|z < |t{z, M has Property (S2') for ¢
o(r;1[xq, x,, r13]) only differs from w(s;;) in the constant. Since this constant does
not occur in the conclusion (S2'), the conclusion holds for ¢ as well, in contradiction
to our assumption.
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Case 1.2: The common prefix of the paths in t; to x, and x, has length > 2n>.
Then t; = uuyusu,[x,, x,] for proper u,, u,, usz € Ty(x,) and proper u, € T(X,)
with u,, u; # x,; such that

(D, 1, 7115 91)s (@15 Uz, 7125 1), G15 U3, T13, 41), (4, Ug, P14, PP1)s
(P> U1, 7215 42), (@2, Y25 T35 G2), (425 U3, T3, 2)s (G2 Uas P24 qP2);

(9, 41, 7315 43)s (G35 Uss Y325 93)s (G35 Us, 133, 3)s (935 Uas T34, qP3) €O

for certain states g; and decompositions s;; = #;F;5¥;3¥4-

Assume o(r;,) = a;, + fiy %, v=1, 2, 3, and w(ry,) = a;, + €;- X1 + fis ' X,.
Especially, f; = fi1 - fia " fis " fia- By minimality of ¢, the conclusion of (S2') holds for
U thg[ X1, tats], Uyt us[ Xy, tots], and for uusu,[x,, t5t;]. This gives us

Sfirhia AL = farfaa 4o, (v
f11f12f14'A1 =f21f22f24'A2, @
Junfisfia Ar = f1f23 o 42 3)

for A;:=n; + (d; — 1)- b;. First assume either both sides in (2) or in (3) equal 0.
Then both sides in the conclusion of (S2) for ¢ equal 0 as well, in contradiction
to our assumption. Therefore, assume all the numbers f;, and 4, in (2) and (3) are
different from 0. Powers of a prime can be viewed as members of the free monoid
1*. It follows that we can apply Schiitzenberger’s lemma (see Proposition 1.4(ii)S)
to (1), (2), and (3) which gives us

Si Ay = fith2a fiafia AL = o faz fas fas A2 = [ 4,
in contradiction to our assumption.

Case 1.3: t; contains a proper subtree from Ty(x,) in which the path to the leaf x,
has length > 2n®. Then t, = u,[x,, uuszu,x,] for proper u, € T(X,) and u,,
us € Ty(x,) with u,, uy # x; such that

(p, 41, 711> Pa1), 1> Y25 T125 Q1)s (@15 Us» T135 41)s (A1 Uas T145 Pi)s
(P, U, 7215 442)s (@25 Uz 7225 42), (925 U3, 7235 42), (A2 Yas F245 D2);

(4, 41, 31, 493), (G35 Uas P32, 93)s (G35 Us, 335 43)s (@35 Uas T34, P3)ED

for certain states ¢; and decompositions s;; = ¥;1[ Xy, F;2Fis¥ia X2 ]
The argumentation is similar to Case 1.2. Assume

o(ryy) = @ + € Xg + fig " X2,

and o(r;,) = a;, + fi, " %, for v =2, 3, 4. Then, especially, f; = fi1* fiz* fis* fis- By
minimality of ¢, the conclusion of (S2') holds for u;[x,, u t5t3], u;[ x4, ustigt,ts],
and for u,[x;, usu,t,t3]. This again gives us (1), (2), and (3), and then the same
argument as in Case 1.2 shows that f; - 4, = f, - 4,.
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Case 1.4: t, contains a proper subtree from Ty(x,) in which the path to the leaf x,
has length > n®. Then t, = u,[u,us, x,] for proper u,, u,, uz € Ty(x,) with u, #
x, such that

(P Uss 711, 41P1)> @15 Y25 T125 91)s (915 U3, 713, D)
(pa Uy, oy, Qsz)s (‘Iﬂ Uzs 7232, q2)’ (QZ: Usz, 733, q):
(qa Uy, 39, q3p3)9 (q3> Uy, T3z, q3)’ (q3’ Uz, I33, q)65

for certain states g; and decompositions s;; = r;;[Fi2¥i3> X1

By minimality of t, M has Property (S2') for t' = u,{u,, t,t5]. By definition,
or;[ri3, X,]) = a; + €, x, + fi-x, for certain d}, e;, and f} where f}=f.
Whence, (S2') for ¢ implies (S2) for t, in contradiction to our assumption.

Case 2: t, is too “large.”

Case 2.1: The path in t, to the leaf x; has length > n®. Then t, = u u,u, for
proper uy, u,, U € Ty(x,) with u, # x| # u;u5 such that

(pi’ Uy, ¥igs qi)a (qia Uy, Ti2,5 qi)’ (Qi’ Us, I3, pi)ea’ fOI' i= 15 25 3,

for certain states g; and decompositions s, = #;,¥;,7;3. Assume w(r,) =
Hy +dyx fori=1,2andv=1,23.
By minimality of t, M has Property (S2') for t' = t,{x,, u;u3t5]. Whence

fingy + fidyings + fildydys — 1)by
= fanyy + frdaings + foldyidys — 1)b,. ey

Moreover, by minimality of ¢,, we find that M allows for conclusion (S2') for ¢
factored t = tj[xy, tht3] where ¢y := t;[x,, U, x,], th:= u,, and t’5 :== uyt,. Whence

fidynys + fidq(dyy — Dngs + dysby]
= fadainas + fodyy(dyy — Dngs + dysby]. 2

Therefore,

SarIng + (dy — Dby] ~ fy- [y + (dy — 1)by]
= falnay + dyinyy + dyidyanas] + foldyidypdys — 1)b,
= filnyy + dyany; + dysdipngs] — fi(di1di,di5 — )by
2 Jangy + fadyings + foldyydy; — Db,
—fing — fidings — fidyydy s — Db,

(1)
= 0,

which implies that M also allows for conclusion (S2') for ¢ factored ¢ = t,[x,, 53],
in contradiction to our assumption.
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Case 2.2: t, contains a subtree from Ty of depth > n®. Then t, = u,[x,, u,u;] for
proper uy € T;(X,), proper u, € Ty(x,), and u; € Ty with u, # x, such that

(Pi> w1, Figs P10, (91 Uz, Tias 43), (G55 U3, Tis €) €, for i=1,23,
for certain states ¢; and decompositions s;, = r;;[x;, ;2¥;3]. Assume
olry) =my + di* Xy + fi %5,
frip) = g + di- x4,
ofr;3) = Ay for i=1,2
By minimality of ¢, M has Property (S2') for ' := t,[x, uy[ 15, #3]]. Whence
filngy + fings] + fildy — Dby = folnayg + fona3] + foldy — Db, (1)

By minimality of t,, we may assume that M allows for the conclusion (S2') for ¢
with respect to the factorization ¢ = tj[x, t5, t5] where ¢ := ¢,[x, ui[t;, x,1],
th:=u,, and t5:= u,. This gives us

fifinys + i fildy — Dngs = £ fony + f2.f5(d; — Digs. @
Therefore,
far [y + (dy — Dby] = fi - [0y + (dy — 1)b]
= folnyy + fanay + fodanys] + fioldy, — 1)b,
= filnyg + finga + fidings] — fildg — Db,
(__2_)],2[”21 + fanys] + faldy — Dby — filngg + fings] — fildy — )by
2o,

Whence, M allows for the conclusion (S2') also for ¢ with respect to factorization
t = t[x,, t,t5], in contradiction to our assumption.

Case 3: t; has depth > n®. Then t; = u u,u, for proper uy, u, € Ty(x;)and uz e Ty
with u, # x, such that

(P> s, T3, 4> (@i U2 Tizs> ), (Gss U3, Ti3, E) €D

for i =1, 2, 3, states ¢4, 45, 43 € @, and decompositions s;3 = ;172 ¥;3-
We may assume that ¢, # x, because otherwise the conclusion of (S2') trivially
holds. Therefore, by minimality of t, M has Property (S2') both for

t' = ty[xy, tyuqus]

factorized in the obvious way and for t” = ¢,[x,, u,u,u;] with factors ¢,[x,, u,x,],
u,, and uy. Assuming w(r;,) = b;, + d;, - x; for v=1, 2, 3 we deduce

filng +dy — 1) (byy +dyybia)] = fo [+ — 1) (byy +dy1by3)], (1)
Sfi-dyg[bys + iy — 1)-by3] = fr-dyi[b2y + (22 — 1) by3] 2
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Using (1) and (2) we find

Ji-[ny +dy~1)-by]
= fi[ny +dy — 1) (byy + dy1bys + dyydy5by5)]
= fi-[ny +dy = 1 (byy + dyybi3)] + fidyy [b12 + (dy; — 1bys)]
= fo [ny +(dy — 1) (bay + dy1b;33)] + f2d21 " [b22 + (d2; — 1)by3)]
= fy-[ny +(dy — 1) b,],

in contradiction to our assumption. A

(iii). Before we prove Proposition 4.2(iii), we consider two auxiliary facts which
show that we can eliminate subcomputations in a controlled way without changing
equality in the outputs produced.

Fact 4. Assume M has Property (S1'). Given states p, q, 4, 42, 43, 42 €0,
decompositions t = u u,u, for proper trees u,, and s; = r; it i = 1,2, 3, 4, such
that

(D, Uy, F115 41), (@15 Uzs P12, 91)s (@55 U3, 713, D),
(P, u1s 7215 42)s (25 Uy, 7225 G2), (25 U3, 7235 @)
(Ps 1> 7315 G3)s (G35 Uz, P32, G3), (35 Uz, 733, G)s

(9 415 415 4a)s (Qas U2, Tazs Ga)> (s> Uz, Ta35 V€D,

then s ¢ {1, x,} and w(s,) = w(s;) implies w(ry,r;3) = w(rs 33).

Proof. Let
olry) = a; + ¢;" Xy,
oty =n; +d;" x,,
w(rs)=b; + [ x;
and
o(riyri3) = A; + B x, for i=1,2,34.
Thus w(s,) = w(s;) translates to
eyd, fr=e3d3 f3
and
a, + eyn, +e,dyb, = ay + ezng + eydsbs.

M has Property (S0) since M has Property (S1'). Therefore, w(s,) ¢ {0, x,} also
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implies that o(sy) ¢ {0, x,}. Hence, g ¢ Const(M), and Property (S1') implies that
d, =d, = d; =:d > 0. Therefore, B, = ¢, f, = e3 f3 = B;. Moreover,

(d — Dla; — a;] = exn, — eyny, (1)

(d — Dlas — a;] = e3ny —eny, @)
and hence

@ — Dla; — a,] = esnz — e;n,. 3

Hence, a, + e,n, + e,d, b, = ay + eyny + e;d; b, implies
A2=a2+62b2:a3+e3b3=A3. D
Fact 5. Assume M has Property (S2'). Given states p, q, 41, 4,2, 43, 94€Q,

decompositions t = u,[x;, u,us] for proper trees uy, u,, and s; =r;[x, 73],
i=1,2, 3,4, such that

(D, Uy, 115 PA1)s (@15 25 T12, 41)s (g, U3, Fe3, 8),
(D, U5 215 492)s (25 Uas T2, d2)s (92, U3, T2z, €
(P, Uy, 315 493), (g3, U2, T3, 43)s (43, Us, T3, €),
(2> t1s Ta1> 994), (4> Y25 T4z 9a)s (das U3, T4z, €) €D,

then o(sy) = w(s,) implies (ry;[x, r23]) = o3 [x1,733])

Proof. Define
ofr;) = a; + e;x; + fix,,
olry) = n; + d;x,,
ofriz) = b;,
olriy[x;, r3]) = A;+ Bix,  for i=1,2,3,4

Certainly, B, = e, = e; = B;.
Moreover, Property (S2') implies

fing +(dy = Vfiby = fony + (dy — V) faby = fing + (d3 — 1) f3b5.

Hence, a, + fon, + f2d,b, = a3 + fang + fid;bs implies
A, =ay + by = a5 + f3b3 = 4;.

This finishes the proof of Fact 5. O
Now we are prepared to prove Proposition 4.2(iii). Assume M has Properties

(S1) and (S2') and Property (F0') for trees up to depth 6n*. Consider p, g€ Q, and
some proper tree te Ty(x,) of minimal %-size such that s;e Ti(x,) exist with

(P, t’ S1» p), (pa L, Sz, 4): (p, t’ 835 Q)’ (qa t’ S45 q) € 5 where S1 ¢ {-L’ x1}9 w(SZ) = a’(sa)’
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but s, # s;. By assumption, depth(t) > 6n*. Therefore, one of the following two
cases must occur.

Case 1: The path in t to the leaf x, has length > 3n*. Then t = uu,usu us for
proper trees u, € Ty(x ) with u,, us, u, # x; such that

(pa Uy, F145 q1)5 (QD Us, Ty5, p)s

(p5 Uy, Iaas qz)a (425 Us, ¥as, q)7

(P, uy, 731, 43)s (@3, Us, T35, 9),

(q’ Uy, Tays Q4), (CI4, Us, Tys, q)a

a; uy, 1y, @)D for i=1,2,3,4 and v=23,4,
for certain states g, and decompositions s; = r;; ¥, i3ratis. First assume ry, = x;.
Then (r,,) = wlr;,) = x; since M has Property (S1'). It follows that indeed
Fap = T3, = X;. Hence, s; = r; r;3ra1is for i = 1, 2, 3. It also follows that Property
(FO') does not hold for t':= uusu,us where |t'|; < ||z, in contradiction to the
minimality of t.

Therefore, we may assume r,, # x;. Then also (ryy7;,);s, (ty1712)F 1315, and
(ry1r12)F 14715 € {L, x, }. Therefore, by Fact 4,

al(ra1, 22)r25) = 0((r31732)7r3s),

ol(ry1, 122)2372s) = O(r35¥22)r33735),
and

l(ra1722)r24725) = O((r31722)r 347 35)-

Since t was chosen minimal, Property (FO') holds for {(u,u,)us, for (u,u,)usu,, and
for (u u,)u,us. We conclude that

(r21722)r2s = (r31732)F 35,
(r21722)r237 25 = (r31732)r337 35,
and
(r21722)r24T25 = (F31732)F 34735,
Thus, the assumptions of Proposition 1.4(ii) are satisfied which implies that
Sz =T33T22F23724 25 = T31¥32733T 34135 = S3,

in contradiction to our assumption.
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Case 2: t contains a subtree from Ty of depth > 3n*. Then t = u,[x,, uyusu,us]
for proper trees u, # x, v = 2, 3, 4, such that

(p, uy, 11, P4y), (41, Us, 715, 8),
(P, Uy, ¥21, 442); (42, Us, T25, €),
(P, Uy, 731, 493); (43, Us, T35, &)
(4, U35 7415 494), (da, s, 745, €);
(4:» Uy, 15ys g) €D for i=1,2,3,4 and v=23,4,

for certain states g; and decompositions s; = r;[x4, F;2Fi3¥at:s]- By Fact 3,
(s,) = w(s;) implies that

o(r31[xy, 725]) = olrs [x 735])-
Since t was chosen of minimal X-size, M has Property (FO') for u,[x,, us]. Hence,
ra1[xy, r2s] = r31[xy, r35)-
Analogously, we deduce that
ra1lX4, 1227251 = r31[%4, 1357351,
ra1lXy, 724725] = r31[%1, r34735],
ra1[X1, 1237247251 = r3g[x1, r33r34735],
r21[X1, Fa2723725] = rag[Xy, 1327337351,
and
ra1lX1s 7227247251 = 131[Xy, r32734735]
Thus, we can apply Proposition 1.4(i) to derive
Sy = r21[X1s 1227237247 25] = r31[X1, 1327337347 35] = 53,

in contradiction to our assumption. This finishes the proof. Od

5. Upper Bounds for Finite (Size-) Valuedness

In this section we show that Properties (F1) and (F2) (Properties (S1) and (82))
are not only necessary but also sufficient conditions for an FST M to be
finite-valued (finite size-valued). In showing this we prove:

e sval(M) < oo implies sval(M) < 2>"™"**? for some constant ¢ >0 in-
dependent of M (Theorem 5.4).

e val(M) < oo implies val(M) < 22" for some polynomial P independent of
M (Theorem 5.5).
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The proofs are inductions on the number of strong components of M. The bases
of these inductions are given by Proposition 5.1. For the inductive step we classify
the accepting computations of M according to their behavior between nodes with
identical sets of accessible and derivable states (Proposition 5.2).

Assume p, ge Q. q is called reachable from p (denoted p —,,¢q) iff there is a
(p, g)-computation of M for some proper tree, ¢ and p are connected (denoted
gy p) iff p—,q and g —, p. Clearly, «,, is an equivalence relation on Q. The
equivalence classes @1, ..., @, of Q are also called strong components of M. Without
loss of generality, they are numbered in such a way that, for all peQ;, geQ;,
p - q implies i <j. Proposition 5.1 investigates the case of just one strong
component.

Proposition 5.1. Assume p, q € Q are connected, and (p, t,5¢, q), (p,t, 5,,q) €6 for
some proper t € Ty(x,):

(i) If M has Property (S0), then w(s,) = w(s,).

(i) If M has Property (FO), then s, = s,.

Proof. We only consider statement (ii). Without loss of generality, let ¢ # x,. If
pe U(M), then ge U(M) as well, and s, = L = s, which proves the assertion. If
p ¢ U(M), then also g ¢ U(M) since p and g are connected. Moreover, (q, u, v, p) € 6
for some proper u and some v in which x; occurs. We consider t':= tu. Then
(p, tu, 5,0, p), (p, tu, 5,0, p), (p, tu, s,v, p) € 6. Thus the conclusion of (FO) gives

54U SV = S;0 8,0.

From this, assertion (ii) follows by top and bottom cancellation according to
Proposition 1.18S. [

Proposition 5.2. A4 constant ¢ > 0 and a polynomial P independent of M exist such
that, for proper te Ty(x,) and B = Q with,

VpeB, 3dqeB, I p, q)-computation of M for t,
Vqe B, 3IpeB, 3(p, g)-computation of M for t,
the following holds:
(i) If M has Properties (S1) and (S2), then
#{o@E)|(p, t, 5, g€ 8} < 22 for every p, geB.
(i) If M has Properties (F1) and (F2), then
#{sl(p, t, 5, q) €8} < 2™ for every p, qeB.
The proof in [W4] of the (single exponential) result for NGSMs corresponding

to Proposition 5.2 is based on the observation that the difference between lengths
of possible output words is appropriately bounded. This is no longer true for trees.
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As a substitute, we prove that the output only depends on the kernel of a suitable
triple of computations.

Let g;, pi,1,-.-» P €Q and let @, be a (g;, p; 1 *** pi,x) computation of M for
teT(X,), i=1, 2, 3. Then the triple ¢ = (@, ¢;, @3 is called (z,z, - z)-
computation of M* for ¢ where z = {4y, 45, q5> and z; = {(p, j, p, ;ps.;>- Such a
computation can also be viewed as a tree in Ty(X,) where 62 consists of all triples
{11, T2, T3, of transitions t; = (q;, a;, 51, 4,1 """ i, m) €0 With a; = a, = a;. Such a
triple is now called a {q, q,, g5 >-transition. According to this definition, computa-
tions of M> can be composed and decomposed similar to trees or computations
of M itself.

For a computation ¢ = {¢,, ¢,, 93> of M> and ie {1, 2, 3}, the ith output
T(¢) is defined as T(¢p;). Analogously, Q(¢):= Q(p;). Assume @ is a computation
of M3 for some proper tree t e Ty(x,). Intuitively, the kernel cp of ¢ is obtained
from ¢ by eliminating proper (z, z)-computations. This is done in two steps.

First assume ¢ is a z-computation of M3, ve Ty, and we have the recursive
decomposition @, = Y, T@,.1, .. @,..), ¥ € O(v), where m, is the rank of v(r) and
1,€ 6%, and @, = @ such that, for every r e O(v), some p e 0 exists with:

(1) ¥, is a proper (p, p)-computation.

(2) Forno je{l,...,m,}, ¢,; contains a p-transition.

(3) If (o) = x, and ¥ ,(0') is a p-transition, then o is lexicographically smaller
than o'.

Then c¢g is obtained from ¢ by removing the subcomputations y,, r € O(v). Hence,
cp is defined by cg:= c@, where, for re O(v), ¢, := 7,(Q,q, ..., CPup )

Now assume we are given a proper (z, z')-computation ¢ of M3, Consider the
recursive decomposition ¢, = ¥, T(@y 1, -.-> Puem ), K = 1,..., k, where ¢, = ¢,
@r+1 = X1, and, for every ke {1,..., k}, some pe Q> and je N exist such that:

(1) (px+1 = qok,j‘
(2) ¥, is a proper (p, p)-computation.
(3) No proper subcomputation of ¢, ., is a (p, z')-computation.

Then the kernel of ¢, cp, is obtained from ¢ by removing the subcomputations
¥, and applying ¢(_) to the subcomputations ¢, ; which do not contain x;.
Hence, co is defined by cg:= cp, where ¢x,:=x,, and, for k =1,...,k, ¢co,:=
Tk(C(px, 124+ C(pk,m,()'

Proposition 5.3. Assume M has Properties (S1) and (82). Assume t € Ty(x) is proper,
z=4p,p, 9>, 2 =<, q, q> for some p, q€ Q, and ¢ is a (z, z')-computation of M3
Jor t. Assume t = tt,t; is a decomposition of t into proper trees and ¢ = @, @3
is the corresponding decomposition of the computation @ where ¢, is a (zy, z;)-
computation of M3, Let y denote the kernel of @,, and § = @ ¢5.

(i) If Qi(@2) € {0, x,}, then Ty(,) = To(Y). i
(i) If q ¢ Const(M), then Q,(9) ™' Qu(p) = Q,($)1Q,(3).
(iii) Let ¢’ be another (z,, z,)-computation of M3 for t,, and let ' be the kernel
of ¢5. Then Q) = Q) for i = 1, 2 implies Qy(¢,) = Qa(2)-
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Proof. First we prove that statement (iii) follows from (i) and (ii). If Q,(¢p,)e
{0, x,}, then Q;(¢%) € {0, x,} as well. Then the assertion directly follows from (i).
If Q,(p,) ¢ {0, x,}, then g cannot be in Const(M). We conclude from (ii) that

Qx(02) = Qy(01) ™ 1Q(0)Q24(P)~ 192(@)92@’3)_ !
=Qy(01) 7 'Q(@)R1(03) T IQ) Q4 (01) T Q0 1), ().

Let ¢’ = ¢,9, ;3. Analogously, we find
Qu(03) = Q1) "' Qy(0)24(03) T (W) Q4 (01) T Qa0 ).

By Proposition 5.1, Q,(¢") = Q,(¢). Since, by assumption, Q) = Q) fori =1,
2, we conclude that Q,(¢,) = Q,(¢%) which we wanted to prove.

(i) Since ¥ is the kernel of ¢,, a sequence of proper computations ¢®,
k=0,...,k of M3 exists such that ¢'? = ¢,, o® =, and, for k =0,...,k — 1,
either (1) or (2) holds:

(1) 0™ = $,0,6; and p**Y = $,p, where @, is a proper (z, z)-computation
for some z e Q3.

2 0" = ¢i[x, $,05] and ¢**V = @ [x,, $5] where @, is a proper (z, z)-
computation for some z € Q>.

By Properties (S1') and (S2') we deduce in both cases that Q,((,) e {0, x,} and
therefore T)(¢,) € {1, x,}. Therefore, by the reducedness of M,

Tz(@z (//53) = T2(¢3)

and hence also T,(¢™) = Th(¢**Y) for all x. Now statement (i) follows by
induction on x.

(if) Now assume g ¢ Const(M). Since y is the kernel of ¢,, a sequence of
computations ™, x = 0, ..., k, of M3 exists such that ¢/ = ¢, ¢* = @, and, for
k=0,...,k — 1, either (1) or (2) above holds. Therefore, by Facts 2(i) and 3(i) from
Section 3,

Qu(0™) ™1 (0™) = Qy(0" V) T Qy (9" V).

By this, assertion (ii) follows with induction on x. O
Using Proposition 5.3 we are able to prove Proposition 5.2.

Proof of Proposition 5.2. First recall that since M has Properties (F1) and (F2),
M also has Properties (F0'), (S1), and (S2). Now assume n:= 4 Q. Every kernel i
is a computation of M> of depth at most 2 - n®. Therefore, Q,() = a + b+ x, where

a<(L+ 1)2n3,|M|2n3+1 (1)
and

b < |MJ*, )
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Moreover, there are at most |[M|> ©* V"™ different kernels. By the assumptions
on the set B, je N and states p,, ..., ps € Q exist such that

(pla tja Uy, Pz)a (Pz, t, Uy, pS)’ (p3a tjs Us, pl)’
(1> ¥, s, D), (g, ¥, us, Py,
(p49 tj: Ug, Ps): (p59 t: U, pﬁ)’ (p6’ tj9 Ug, p:i.)E(S

for certain uy, ..., ug € Ty(x;) U {L}. Let u:= uu,us, let ¢_, be a (p,, ps)-compu-
tation, and let ¢, be a (ps, pg)-computation of A for ¢ producing outputs u, and
u,, respectively. We proceed similarly as in the proof of Lemma 2.8 of [W4] where
our Proposition 5.3 is the substitute of Weber’s Lemma 2.10.

Case1:ue{l,x,}. By Proposition 5.3(i), the cardinality of the set {T(¢)|o(p, 9)-
computation of M for t} is bounded by the number of different kernels of
(z;, z,)-computations for t where z; := {p,, p, ps» and z,:= {ps, q, ps». Hence, it
is at most | M[>"©*V™ From this, statements (i) and (ii) follow.

Case 2: u¢ {1, x}. Especially, ¢ cannot be unique-sized since M has Property
(S0). Therefore, all u; contain an occurrence of x,. By Proposition 5.3(iii), the output
sizes of (p, g)-computations ¢ and ¢’ of A for ¢ are equal whenever Q,(y) = Q),
i = 1,2, where { is the kernel of ¢ _,, @, @ >, and {' is the kernel of (g _,, @', ).
By estimations (1) and (2), there are at most (L + 1)>” - [M|***1-|M|*" different
output sizes Q,(¥), i = 1, 2. Hence

#{CD(S)|(p, L8, q)eé} <(L+ 1)4”3- |M|8n3+2’

which implies statement (i).

To prove statement (ii) consider 7:= t>/*! and assume that Q) = Q). By
Proposition 5.3(iii), Q(¢) = OQ(¢’). It remains to show that T(¢) = T(¢') also. Let
v:= T(p) and v':= T(¢"). By our assumptions,

(p17 fs u, pl)a
(pli f’ UylUs, p4)5 (p15 E: u4v,u55 p4)’
(P4, L, ugtuig, py) €9,

where u¢ {1, x,} and w(u,vus) = w(u,v'us). Hence, u,vus = uyv'us, because M
has Property (F0'). Since v, ¢/, and 1; all contain occurrences of x; we can apply
top and bottom cancellation to deduce that v = v". O

We apply Propositions 5.1 and 5.2 to obtain the main theorems of this section.
Theorem 5.4. There is a constant ¢ > 0 such that, for every reduced FST M, the

following three statements are equivalent:

(i) M has Properties (S1) and (S2).
(11) SV&](M) < 22”"Mf'log(b+1).
(iii) sval(M) < oo.
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Theorem 5.5. There is a polynomial P such that, for every reduced FST M, the
following three statements are equivalent:

(@) M has Properties (F1) and (F2).
(i) val(M) < 2FIM)
(i) val(M) < o0,

Proposition 3.4 now gives the following coroliary:

Corollary 5.6. Assume M is a reduced FST. Then val(M) < oo iff sval(M) < oo
and M has Property (FO).

Simple examples show that Properties (F1) and (F2) are independent. More-
over, modifying an example of [Sel] we find that, for some constant ¢ > 0, and
infinite family of finite-valued FSTs M of arbitrarily large size exists with
val(M) > 2%™,

We only prove Theorem 5.5. The proof of Theorem 5.4 is analogous: instead
of using statements (ii) of the Propositions 5.1 and 5.2 statements (i) have to be
employed.

Proof of 5.5. Assertion (ii) implies (iii). By Theorem 3.1(ii), assertion (iii) implies
(1). Therefore, it remains to show that (i) implies (ii).
Assume p, g € Q. Define

T,(t):= {T(¢)|@ p-computation of M for ¢}

and

val () == # T(t) for every teT;,

T, t):= {T(¢)| ¢(q, p)-computation of M for t}
and

val, ()= #T, (1) for every proper te Ty(x,).

Define a function v(_, _): N x N - N U {00} such that v(n, k) is the supremum of
the numbers val(M) where M is a reduced FST with one single final state, |[M| < n,
and with at most k strong components such that M has Properties (F1) and (F2).

Clearly, n-v(n, n) is an upper bound for the valuedness of a reduced finite-
valued FST of size n. Therefore, it suffices to compute an upper bound for u(n, k).
We proceed by induction on k. We claim

vin, ) <n for every n >0, 1

v(n k) < 22P'(n)+cn-(l+loglogL)+(k—1)<lng(L+1) (2)
for every n > 0 and k > 1 where P’ is the polynomial given by Proposition 5.2
and ¢ is some constant > 0. Clearly, inequalities (1) and (2) prove the stated
implication.
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For a proof consider a reduced FST M = (Q, Z, A, 4, {gz}) having k > 1 strong
components Qy, ..., Q. Clearly, gz Q,. Let te T;. For some node o€ O(t) let
t[x,/0] denote the tree obtained from ¢ by replacing the subtree with root o by
x,. First assume k = 1. Let o€ O(f) an arbitrary leaf of ¢ with label a. Then
every accepting computation ¢ can be factorized ¢ = Yt where, for some peQ,
¥ = ¢lx,/0] is a (gg, p)-computation for ¢[x,/0], and 1 is a p-transition (p, a, s, &)
for some s. Let ¢’ be another accepting computation of M for t where ¢'(0) =
@(0) = 1. By Proposition 5.1, T(¢'[x,/0]) = T(¢[x,/0]). Therefore, T(p) = T(¢')
also. We conclude that the number of different possible outputs is bounded by
the number of different transitions for some a € X,. This gives estimation (1).

Now consider k > 1. For t e Ty and o € O(t) define

ACC(0):= {q € Q|there is a (g, g)-computation for [x,/0]},
DER(0):= {q € Q|there is a g-computation for t/o},.

and
D{o0):= ACC/(0) n DER/0).

Observe that, by our definition, D (o) is precisely the set of all states g € Q for which
some accepting computation ¢ exists where ¢(o) is a g-transition.

We decompose ¢t according to the first and latest occurrences of the sets of
states. For o € O(t) define succ(o) as the lexically smallest node 6 such that:

e o is a prefix of 9,
e Do) = D(0), and
e D (00") # Do) for every o’ #¢.

The set of designated nodes of t is the smallest set O = O(t) such that:

() e€0,
(i) if 0 € 0, then succ(o) € O also, and
(iii) if 0 € O and succ{o) = o, then oj € O for all j.

Define O, < O as the set of nodes in O with succ(o) = 0. We have
#(O\0,) < #0, and #O0, <(L+ 1)L

The type of anode o € O, type(o) € {1, ..., L}*, describes the sequence of “decisions”
made at nodes from O, to reach o. It is inductively defined as follows:

(i) type(e):= s,
(ii) type(succ(o)) = type(o), and
(iii) if o = succ(o), then type(oj) := type(o) ‘ J.

In the next section we need the types of nodes from O to find a fixed finite set of
specifications of outputs for input trees. For the moment, consider just one input
tree t. We classify the accepting computations of M for t according to set O.
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We have

Tu) = |J T (t[x1/0DT, [t/o[x,/succ(o)]) T,(t/succ(o))
0c O\O1
pty
v U T, (t[x,/0Ds[ T, (t/o1), ..., T, (t/om)].

oeO)
qe
4,a,5,41"** qm)€d
where a=t(0)
andgi¢ Q1

Proposition 5.1 applied to t[x,/o0] yields that # T,/(t[x,/0]) = 1. Furthermore, we
apply Proposition 5.2 to t/o[ x,/succ(o}] with B = D {0} (which, by definition, equals
Dsucc(o))) and obtain

valy() < Y 2%"-n-val(t/succ(o))

0e0\01
q¢q1
+ Y val, (t/o1)- -+ - val, (t/om),
0e0

(9,a,5,41..qm)€d
wherea=¢0)
andqeQ,qi¢ Q)

where P’ is a polynomial chosen according to Proposition 5.2. It follows that

vn, k) < (L + )P 1227 n2-0o(n, k — 1) + n-v(n, k — 1)}]
S 22P(n]+c'n(l+loglogL) . U(n, k _ l)L

for some constant ¢’ > 0. Hence by inequality (1),

log log v(n, k) < P'(n) + cn(l + log log L) + (k — 1) log(L + 1) O
Using Theorem 4.1 we conclude:

Theorem 5.7.

(@) It is decidable in polynomial space whether or not an FST M is finite
size-valued.

(i) It is decidable in nondeterministic polynomial time whether an FST M is not
finite-valued.

Proof. Theorems 5.4 and 4.1(i) for statement (i); Theorems 5.5 and 4.1(ii) for
statement (ii). O

6. Decompesing Finite-Valued Tree Transducers
In this section we prove that it can be decided whether or not the translation of

an FST is included in the translation of a finite-valued FST M’ (Theorem 6.4).
Actually, our Theorem 1.5, Property (F('), and Proposition 5.3 allow us to
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generalize the corresponding constructions of [W2]. Therefore, we proceed as
follows. In Theorem 6.1 we show that this inclusion problem is solvable provided
T(M’) is a finite union of the translations of single-valued FSTs. In Theorem 6.2
we show that every finite-valued FST M’ can be effectively decomposed into a
finite union of single-valued FSTs. Together, this yields the desired result.

For size-valuedness, the theorems corresponding to Theorems 6.1 and 6.2 hold
as well. We do no state them explicitly but refer to them as Theorems 6.1S and
6.28. Especially, we are able to decide whether or not two finite size-valued
transducers M and M’ are equivalent with respect to the sets of output sizes, ie.,
whether Q(M) = Q(M').

Theorem 6.1. Assume M is an FST and M,,..., My are single-valued FSTs
such that L(M) < (M) for all j=1,..., K. Assume the number of states of any
of these transducers is bounded by n. Then T(M) & | )=, t (M) iff there is a pair
(t, s)e TIM\|JX 1 T(M)) such that depth(z) < 3-2K)!-n®*1,

Proof. Assume t e T;, ¢, is an accepting computation of M for ¢t. Since L(M) =
L(M)) for j=1,..., K, there are accepting computations ¢; of M; for ¢ for all j.
Define s;:= T(¢;) for j =0, ..., K. Assume ¢ is chosen of minimal size such that
so # s;forallj=1,..., K, but depth(t) > N - n®** where N = 3 - (2K)!. Then there
are states py, ..., px € 0, a factorization of t = t, "ty into proper trees t; € Tg(x,),
and corresponding factorizations ¢, = @, o' @, n such that ¢, ; is a (p,, p.)-
computation for all x=0,...,K and j=1,...,N — 1. Define s, ;:= T(o,,;),
k=0,...,K,j=0,..., N. By the minimality of

VO<i<j<N, Ike{l,...,K},
S0,0"""So0,:~150,;" " " So,N = Sk,0" Sk, i—15k,j" " Sk,N-
By Theorem 1.5(ii), this implies
T(po) = So,0" " So.xn = Sx.0" " Se,y = T(p,)  forsome ke{l,....K},
a contradiction. O
Theorem 6.2 (Decomposition of Finite-Valued FSTs). For every finitely valued

FST M single-valued FSTs M, ..., Mg, where K < 22" exist and | M| < 22",
j=1,..., K, for some polynomial P independent of M such that

T(M)=T(M)v v T(Myg).

This decomposition can be found in deterministic time 22°""*".

Proof. Assume M =(Q,Z, A, J, Qr). Without loss of generality, we may
assume M is reduced and that Qp = {gr}. Recall that M, denotes the FST
(Q,Z,A,, 9, {q}). Note that val(M,) < .

Assume te T; and O < O() is the set of designated nodes of ¢ as defined in
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the proof of Theorem 5.5. We classify the accepting computations of M for ¢
according to O. First we make the following observation:

Observation 6.3.  Assume @ is a g-computation for t. If 0 > val(M,) > 1, then there
is exactly one o € O(t) such that:

(i) (o) is a p-transition for some pe Q with p — . q.
(ii) o is of maximal length, i.e., if ¢(oo,) is a p'-transition with p' —,,q, then
0 =8

Proof. Assume the assertion is not true. Then there is a node 0 € O(t) and j; # j,
such that both p; —,,q and p, —,,q where @(0j;) is a p-transition. From Proposi-
tion 5.1, applied to g, p;, and t[x,/0j,], we get val(M,)=1 and, therefore,
val(M,) = 1 since p, =, q and M is reduced. This is a contradiction. O

For convenience we denote the unique node o of Observation 6.3 by ().
Assume ¢ is g-computation of M for t. To ¢ we attach a (finite) set of specifications
I'(p). A specification y is accepting iff y € T'(¢) for some accepting computation ¢.
If val(M,) = 1, I'(¢):= {q}. I val(M,) > 1 we distinguish two cases.

Case 1: i(p) € O,. Assume h:= type(n(¢)), and let t = t,t, where £, := t[x,/n(¢)].
Assume ¢ = ¢, ¢’ is the corresponding decomposition of ¢ with ¢’ = 1(@y, ..., @,).
Then <q, h, > (yy, ..., 7) € (@) for every y;eI(g),j=1,..., k.

Case 2. Case 1 does not hold. Then a node o e O\O, of some type h exists such
that o is a prefix of (@) but succ(o) is not a prefix of n(¢). Assume ¢ = t,1,t, for
proper ty, t,e Ty(x;) such that /o = x;; and ¢;t,/succ(o) = x;; and let ¢ =
Poo¢ be the corresponding decomposition of ¢ where , is a proper (py, qo)-
computation and ¢’ = ©{p,,..., @)

Consider states p_,, py, 41, 4; € Q such that (p;, g;)-computations y, for ¢,
exist for ie {—1, +1} where

(q—la U, 84, rl)a (q()a U, Sz, "2), (QI’ u, 83, rz)a

(rla U, 84, p—1)5 (rls v, S5, PO)’ (7'2, U, Sg, p1)€5

for some proper trees u, and v, states ry, r,€Q, and s,,...,s5€ Ty(x,). Since
D,(0) = D/succ(o)) such a choice always is possible with u = v = t}, for some j (see
the proof of Proposition 5.2).

Finally, let  be the kernel of (¢ _, Yo, Y1 ). Then <{q, h, ¥, > (y1,..., 7)€
I'(¢p) for every y;eT(@),j=1,..., k.

We claim:

(1) The set I':= | J{T'(p)|¢ accepting computation of M} has cardinality at
most 22" for some polynomial P independent of M.

(2) If o'V and ¢'? are accepting computations of M for the same tree ¢ and
L(e™) N T(e"?) # &, then T(p") = T(e®?).

For a proof of (1) observe that a type he {1,..., L}* is a word ?f length at most
2" — 1. Moreover, recall that there are less than |M|>©*+V™ kernels (where
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n = #Q). Therefore, the signature to denote the trees from I" has cardinality at
most

ne(L 4 D 7H M@ g g2

for some polynomial P, independent of M. Furthermore, assume y = A(yy, ..., ¥n)
is a specification of an accepting computation ¢ of an FST M with k strong
components. Then y; is a specification of an accepting computation of an FST M;
with at most k — 1 strong components. Thus, depth(y) < k < n. Since the rank of
the signature of I" is at most L, claim (1) follows.

Now consider claim (2). Let t € Ty, O < O(¢) be the set of designated nodes of
t and let oY, ¢'® be g-computations of M for ¢t such that I'(o') N I'(¢*?) # .
Assume 7y is in both I'(p") and T'(¢'?). We deduce that T(p") = T(¢p?) by
induction on the structure of y. If y =g, then M, is single-valued. Hence,
T(e™) = T(p?). If y ¢ Q, then we have to distinguish two cases.

Case 1: y={q,h, 7> (y1,...,7)- Then o0, of type h exists such that ¢t = t,t,
for proper tree t; e Ty(x,) where t;/o =x,. Let ¢ = oP@"® be the corres-
ponding decompositions of ¢®, i=1, 2, with @ = 1(e?,..., p{’) such that
1 =(p,a,u,q, " qx) €6 where q and p are connected but g is not reachable from
any of the g;, and y,e (o) for all j and i = 1, 2. We show that T(p{") = T(¢§)
and T(¢") = T(¢?). Since both ¢§ and ¢ are (g, p)-computations of M for t;,
Proposition 5.1 implies that T(¢{") = T(¢¥).

Moreover, by inductive assumption, T({") = T(¢{?) for all j=1,..., k.
Therefore,

T(3") = ulT(@), ..., T(9")] = ulT(9P), ..., T(@)] = T(¢?),
which finishes the proof in this case.

Case 2: y=<{q, Y, 1> (y15---»7m)- Then o€ O\O, of type h exists such that
t = t,t,t4 for proper trees t, t, where ¢, := f[x,/0] and ¢,t,/succ(o) = x,. Consider
the corresponding decompositions @ = e@PyYPe? of ¥, i = 1, 2, where y§ are
proper (p¥, ¢¥)-computations for states p¥, g such that g, pl but not
q® =, q. Moreover, 3@ = (¢, ..., of’) with y,e I'(¢p{") for all jand i = 1, 2.
We show that T(p{") = T(¢), TW) = TWP), and T(@Y) = T(¢'?). Since
yeT (W) N T(@?), (1, ¢)-computations W for ¢, for ie {—1, +1} also exist
such that y is the kernel of (Y, &), ¢, > for v = 1, 2. Therefore, in particular,

@) p¥ =p® =p; and ¢’ =q®=q, for i=-101
Moreover,
(i) (ri, 4 S1, P—1)s (G- 15 05 525 74),
(r1, 4, 53, Do), (4o Vs 54> T2),

(r2, 4, 55, P)(G1, U S5 F2) €D
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for proper u, v, and certain r,, r,€Q, 5y, ..., 5¢ € Ty(x,). By (i), both @iV and ¢
are (g, po)-computations of M for ¢,. Since p, is connected with g, T(¢§”) = T(p)
by Proposition 5.1.

Since ¥ = eYW, YY), YP,> for v = 1, 2, we can apply Proposition 5.3 to the
tree t’ == ut,v where states p, ¢ and computations ¢,, @5 of M* in the assumption
are ry, r,, and Y@L YP, Y9, i =1, 2, respectively. If Q@))€ {0, x,}, then
Q) e {0, x,} also, since p_, and g_, are connected. Therefore, by Proposition
5.3(), TWY) = Ty = TWY). Otherwise, we apply Property (FO') to t'. By our
assumptions,

(ros £, 84, 11), (1, €, 82, 72), (7, 0, 83, 72), (12, ¥, 54, 7o) €9,
where

sy o= 5. T 2)s2 ¢ {0, x4},
and

sy = 53 T §)sa,

s5:= 83 T(Y§)sa,

sa:= 55 T(Y{")se.

Proposition 5.3(iii) for ¢ gives Q") = Q(Y§) and, therefore, w(s,) = w(sy). Thus
Property (FO) gives s, = s3. Since 53 contains an occurrence of x,;, we deduce by
top and bottom cancellation that T(Y) = TWP).

Finally, by inductive assumption, T(¢$") = T(p{?) for all j = 1,..., k. There-
fore,

T(G®) = ulT(e{), ... T@)] = ulT(@P, ... (o] = T(G?),

where u is the output pattern of 7. This completes the proof of claim (2).

Note that in order to prove equality of outputs in Case 2 by means of
Proposition 5.3, it would have been sufficient to encode states {p_y, po, P1>»
{q-1,40, 91, and the outputs of the components of kernel ¥ (or, in the case of
size-valuedness, the sizes of the outputs). This leads to a (slightly) smaller set of
specifications. In order to make our constructions simpler we did not do that.

For every specification y, we construct an FST M, such that T(M ;) consists
of all (¢, s)e Ty x T, such that s = T{¢) for some computation ¢ of M for t with
y € I'(p). Although much more involved, the construction is a generalization of the
corresponding construction of [W2] to tree transducers. According to claim (2)
above, the cardinality of TMv(t) is at most 1 for every te T;. Therefore, M, is
single-valued. For every accepting computation ¢ of M, I'(¢) # . Hence for all
te T, {Uyer T (0) = Taf2). Therefore, T(M) = | J,.r T(M,).

It remains to give a construction for M,. We proceed in four steps. We start
by constructing an FTA M, which on every input tree t e T; computes the sets
D(r), r € O(t). The states of M, have two components. In the second component
M, computes the set of derivable states. Conceptually, this computation is done
in a bottom-up fashion. Opposed to that, the first component propagates informa-



338 H. Seidl

tion top-down. It collects the subsets of states from the second component which
in fact are accessible from the root.
To implement this, let M, =(Q,, X, %, 6,, @, §) be the FTA with

0,:={<D, B>|D = B< @},
Q= 1{<D, BY€Q,|D = B Qx},
and
(D, B), a,a,{Dy, By>--{Dy, B))ed, iff

e B= {quIE(q: a, s, Q1"'Qk)651 V]~ quBj} and
o D;={peB;|3g 0,549, q)€d: qeD, q;=pand Vj' #j: q; € B;}.

Clearly, #0, < 3"; |M| < 3™! and M, can be constructed in time 2™,

Fact 6. Let ¢ be an accepting computation of M, for some t € T;. Then, for every
re 0(t), o(r) is a (D, B)-transition iff B = DERJ(r) and D = Dr). |

We use M, to construct an FTA M, which for every input tree ¢ computes
the subset O = O(t) of designated nodes of ¢ together with the corresponding types.
On input tree t, M, conceptually runs top-down from the root to the leaves.
Besides simulating M, in one component of its state we allow M, to have four
more components. One component contains a flag from {0, 1,2,3}. 0, 1, 2, or 3
indicate that M, presently processes a prefix of some node of ¢ in O which is not
in O itself, a node from 0,, a node from O\O,, or a node which is never a prefix
of some node in O. In the second component M, computes the type of node in
0. The third component holds a set o of sets of states of M where we collect sets
D¥), r € O, already found. M, has to verify that these sets of states do not occur
any more. The fourth component holds a set D of states of which a leftmost latest
occurrence is sought. D is not added to o before this occurrence has been found.

Thus, let M, =(Q,, X, X, J,, O, ) be the FTA with

0,:=10,1,2,3} x Tx 22* x 22 x @,
where T:= {we{l,..., L}*||w| < 2" — 1}, with n = %0,
Q5= {<b, & &, D, <D, By>|be {1, 2}, (D, B>€Qy x}
and
Oy =0, U by, Udys,
where the sets of transitions d,; are defined as follows:

0, consists of all transitions

(<3, h, O', @9 <D9 B>>: d, d, <3’ h, O-, @a <D19 B1>><3: hr G’ Q’ <Dk’ Bk>>)
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where

L4 (<D9 B>, a, a, <D1’ B1>”'<Dk9 Bk>)€51 and
oD, D,...D¢o.

d,, consists of all transitions

(<1’ ha g, D, <Da B>>’ a, a, <b1, h 15 o-la Dlv <D1’ B1>>”'
<bk9 h : ka 0-,7 Dka <Dk9 Bk>>)

with ¢’ = ¢ U {D} and b; e {1, 2} where

L4 (<D’ B>’ a, a, <D19 B1>.“<Dk7 Bk>)661 and
[ D, Dl""’Dkéa' .

0,3 consists of all transitions

(<b9 h, g, DI, <D7 B>>’ a, a, <39 h7 O-,a ga <D19 Bl>> o <3, ha OJ, g’ <Dj—1’ Bj—1>>
<b/, h; o, D,’ <Dj9 BJ>><39 h: o, g7 <Dj+ 1> Bj+ 1>> e <39 h, o, g’ <Dk’ Bk>>)
with k> 0,06 =0 U {D'}, be {0, 2} and b'€ {0, 1, 2} where

L4 (<D9 B>a a, a, <Dls B1>”'<Dk; Bk>)6619
e D',D,D,,...,D.¢o, and
o if b e{1, 2}, then D' = D;.

The first set of transitions describes how M, processes nodes outside the set
of prefixes of designated nodes O; the second and third sets give the behavior at
nodes from O, and at prefixes from nodes in O which are themselves not in O,,
respectively. In particular, transitions chosen at leaves are either from the first or
the second set. Clearly, |M,| < 2™ for some constant ¢ > 0, and M, can be
constructed in time 22"

Fact7. Let @ be an accepting computation of M, for some t € Ty, r € O(t), and ¢(r)
is a {b, h, o, D', {D, B))-transition. Then:

@) D= DJr).
(i) If b =0, then r is a prefix of some node in O but r ¢ O.
Ifb=1, thenreO,.
If b =2, thenre O\O;.
If b = 3, then r is not a prefix of any node in O.
(iil) If be {1, 2}, then type(r) = h.

Finally, we need an auxiliary FST M ; which computes the kernel of a guessed
proper computation ¢ of M? and, while doing so, produces T,(¢) as output. Similar
to M,, it memorizes leftmost latest occurrences—but now of states of M3
Therefore, it again has one component holding a flag from {0, 1,2, 3}, one
component in which the kernel is computed, one component holding the set of
forbidden states (of M?), one component for the state (of M3) actually processed,
and one component in which a computation of M3 is simulated.
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We are only interested in the behavior of M5 on proper trees from T(x,).
For simplicity we assume the labels of nodes on the (unique) path to leaf x, already
contain some tag j indicating which subtree at this node contains x,. Such trees
are said to have a designated branch. Formally, let £:= X U {} U {(a,j)|a€Z,
1 <j < p(a)} where the rank of * is 0 and the rank of (g, j) equals the rank of a.
t € Tz has a designated branch r iff the following three properties hold:

(@) t(r) = =,
(i) for every prefix rj of r, t(r') = (a, j) for some ae X, and
(iii) #(')e X whenever ¢’ is not a prefix of r.

We construct an FST M, = (03, X, A U {x}, 83, Q5 ) With
0;:=1{0,1,2,3} x C x 2% x (Q* U {L1}) x 03,
where C is the set of subtrees of kernels of proper (z, z)-computations of M3,

Q5= {<b, 0, B, z, z)|be {1, 2}, p € C is a proper (z, z')-computation
for some z’ € @3},

and
oy =38 ud".

The set of transitions & defines the behavior of M, on the designated path, ie.,
for nodes labeled with * or (q, j) for some a € X, whereas 6" defines the behavior
on the remaining nodes, i.e., those labeled by some a e . The construction is based
on ideas similar to those used for M,. Therefore, we omit presenting it explicitly
but state the desired properties of M5. M, can be constructed in time 22" with
IM;| < 22" for some constant ¢ > 0 such that Fact 8 holds.

Fact 8. Assume te Ty is a tree with a designated branch r, and t' € Ty(x,) is the
proper tree obtained from t by replacing the labels (a, j) with a and * with x. Then,
Jfor every s € Ty(x,), the following two statements are equivalent:

(1) A <b, ¥, &, z, z)-computation of M, for t exists with be {1,2} producing
output s[*].
(2) Some (z, z')-computation @ of M? for t’ exists such that y = cp and Ty(¢p) = s.

Given constructions for M, and M;, FST M, = (Q,, Z, A, 4, Q, ¢) is defined
as follows (for comments see below):

Qv:= ry X QZ X [Q3UQ]:

where I, is the set of all subtrees of y, and the union in the third factor is meant
to be disjoint.

Q'y,F:= {('}’, Z, ‘1)!26 QZ,F}
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provided one of the following conditions hold:

®Y=4q.
L4 V = <qa h> T>('}’1, -'-ayk)a and
o y=Xq h ¥, O0y,...,7)and h #e.

It remains to consider specifications y = <{q, h, ¥, ©2(y4, ..., 7)) where h=¢. If
T(M,) # &, Y must be a (4. p)-computation of M* where § = <r, g, ') for some
r, ¥'€Q. Then

0, 5= {(7, 2,226 Qs 5, 2 =<b, ¥, &, 3, G € Qs,F}-
0, consists of five groups of transitions, namely,
5y:= 5),'1 Ut 5%5,
where 6, ; are defined as follows:
0,1 consists of all transitions ({¥', z, 4), a, 5, {¥', z1, ;) - {Y', 2, q,.») where
® (z,a,a,2," " 2)€ED,,
e z=2{_, h,_,,_ > for some h not occurring in y'(¢), and
®(q,a,5q; €D
0, , consists of all transitions (¥, z, 2>, a, s, <Y', zy, 21> - ¥, %, 2;») where
® (z,a,a,z," " "2,)€0,, and
eforz=<b,_,_,_, > (Z,a5 2, z)€d; provided b = 3, and
(@, (a,)) s,z z) €05
provided (be {0, 1,2} and z; = <V, _, _, _, _> with b’ € {0, 1, 2}).
0, 3 consists of all transitions ({y', z, 2>, a, 5, {Y, 2, 21 ) " <Y/, 2, ziy) Where
® (z,a,a,2, " z,)€d,, and

g '}), = <q5 ha !/15 T>(?1’ ey yk) Where ‘ﬁ iS a (proper) (<p-— 1> pOa p1>5 <P,— 1 pi)y p,1>)-
computation, z = (2, h, _, _, %, z;= <b, _, _, _, ) with be {0, 1}, 2 = p,,
and (zo, (@, )), 5, 2} -~ z}) € 65 with

Zg = <b,5 '10, Q, <p—1’ Pos p1>= <p——1a Do p1>> fOI' b, € {1’ 2}
0, 4 consists of all transitions ((¥', z,q', a, 8, <71, 21, 41> " {V» Zx»> 4iy) Where
® (z,a,a,2, " z,)€ 05,

o v ={q,h 1), ..., ) where t =(q’, a, 5,4, """ q;), and
e z=<{Lh,_, _, ).

Finally, 6, 5 consists of all transitions ((y,z,2), 4,5, 1,21, 410" Vs> Ze» Qi)
where
® (z,a,a,z, " z,)€0,,
o V' =g, h, Ty, ..., ) where ¥ is a (p, g)-computation, © = (g, a, 5,
q; - q), and ¢ is the second component of g, and

®z= <1a ha —7-—9-—> and Z’ = <13 xla — qa q>~
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{As usual, we indicated components of states on which no restriction is imposed
by “_".

M, conceptually runs top-down an input tree ¢. In its first component M,
keeps track of the subtree y' of y which still has to be checked. In its second
component M, simulates M,. The computation here is independent of y. The third
component is used to check a guessed computation of M against y. It is this
component which produces the output of M,.

In detail, the third component operates on a given input tree ¢ with a
designated set of nodes O as follows. If y = q the third component of M, simulates
M, for t. For this, M, uses transitions from group 4, ;.

Assume y¢Q. Let y=<{q, k..., and t=ta(u,,...,u,) where
t,/0 = x; for the node o€ 0, of type h. Then the third component of M, first
simulates a computation of M, for ¢,. This is again done by means of transitions
from J, ;. At node o, t is applied using a transition from J, ,. For every subtree
u;, M, continues as M,,.

Flnally, lety = <q, h W, (1, ..., v and t = tt,a(uy, ..., u,) where t,, £, are
proper, t,/o = X, and t,¢,/succ(o) = x, for the (unique) node o€ O\O, of type h.
Assume ¥ is a ({p_1, Po> P1)> {P'-1, P, P1y)-computation of M> and 7 is a
po-transition of M. Then the third component of M, first simulates a (g, go)-
computation of M for t, using transitions from 6, ,. For t, it simulates a
(P_ 1, Po> P10» <P~ 1, Py, P1)-computation ¢ of M* whose kernel is i and pro-
duces output Ty(¢p); this is done using, for the third component, states and
transitions from M, i.e., by means of transitions from é, ; and 6, ,. Finally, at
node succ(o), T is applied using transitions from 4, 5, and M, continues with
subtrees u; as M, .

Since M can be constructed in time 27" with IM,| <2% " for some ¢ > 0
this completes the proof of Theorem 6.2. O

From Theorems 6.1 and 6.2 and their corresponding size versions we conclude
the main theorem of this section.

Theorem 6.4. Assume M and M’ are FSTs.

(@) If sval(M") is finite, then it can be decided in space 22 hether or
not (M) = Q(M).
(i) If val(M’) is finite, then it can be decided in nondeterministic time 2

whether T(M) & T(M").

22POly M|+ 1M

Proof of (ii). Without loss of generality, assume the input and output signatures
of M are disjoint. Then the algorithm is as follows:

(1) Decompose T(M’) into a union T(4,) U --- U T(Ag) where K < 22" and
M ; are single-valued FSTs of size at most 22" where P is the polynomial
independent of M given by Theoremﬂ6.2. _

(2) Forj=1,...,K, compute an FTA M; with L(M)) = T;\L(M)).

(3) Guess asubset I = {1,..., K}.
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(4) Guess a witness (t, s)e Ty x T, and verify that:
e (t, 5)e T(M),
o Vj¢l, te (M), and
e Vjel, 3 accepting computation ¢; of M; for ¢ such that s # T(p)).

By Theorem 6.2, step (1) can be performed in deterministic time 22", Step 2
can be implemented by using the standard subset construction. This needs time
227" vielding FTAs M ; of size at most 22" Clearly, LM) < L(M DU LM)
for every j. Therefore we can apply Theorem 6.1 to deduce that it suffices in step
4 to guess a witness of depth 22" for some polynomial P’ in order to let the
algorithm accept iff T(M) & T(M’). By using similar ideas as in the algorithm from
the proof of Theorem 2.2(ii), the verification part of step (4) can be executed in
nondeterministic time 227 .

The proof of (i) is analogous where Theorems 6.1S and 6.2S are used instead
of Theorems 6.1 and 6.2, respectively. O

As a corollary of Theorems 5.7 and 6.4 we obtain:

Corollary 6.5. Assume M and M’ are FSTs.

() If sval(M) is finite, then it can be decided in space 22D hether or
not (M) = Q(M").
(i) If val(M) is finite, then it can be decided in nondeterministic time

whether T(M) # T(M').

222P°ly(lMl+IM’l)

7. Conclusion

We showed that equivalence is decidable for finite-valued transducers. We pre-
sented Properties (F1) and (F2) of an FST M which precisely characterize
finite-valuedness of M and derived an upper bound on the depth of a witness ¢
such that M does not have Property (F1) or (F2) for ¢ provided val(M) = co. This
allowed us to derive a nondeterministic polynomial-time algorithm to decide
whether M is not finite-valued. The question arises whether or not this is the best
time complexity that can be hoped for. It turns out that this is not the case. In
[Se2] it is shown that, in fact, finite-valuedness of FSTs can be decided in
deterministic polynomial time. The polynomial decision procedure is based on a
polynomial-time algorithm deciding whether or not an FST is single-valued.

Several questions remain open. The decomposition described in Section 6
decomposes a finite-valued FST M into a possibly double-exponential number of
single-valued FSTs—even if the valuedness of M is small (say, 2). In [W5]
it is shown that NGSMs of valuedness k in fact can be decomposed into k
single-valued NGSMs. It is not clear whether a similar result holds for FSTs as
well. Finally, it is also open whether the results of [W3] can be carried over to
FSTs, ie., if it is decidable for FSTs M and M’ whether or not T(M) = T(M')
provided sval(M') < co.
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Appendix

The following basic proposition of Ramsey Theory is taken from [GRS, Chap. 1,
Theorem 17]. We sketch a proof of it in order to get an estimation of the numbers
involved.

For set S let [S]* denote the set {{s, s’} = S|s # 5’} where we simply write
[n]*if S = {1,...,n}. Assume C is a finite set of colors of cardinality k. Any map
p: [8]? - C is called k-coloring of [S]?. A k-coloring p defines a partition of [S]?
into sets p~(c), ce C.

Proposition A. For every m > 2 and every ke N, some ne N exists such that, for
every k-coloring p of [n]?, [S1*> < p~Y(c) for some ceC and S<{l,...,n} of
cardinality m.

Let R(m; k) denote the least such number ne N. Then

R(m; k) < 3-((m — k).
Proof (Sketch). Without loss of generality, we may assume that, for all involved
k-colorings, C = {1,...,k}. For k>1 and a; > 2, define R(ay,...,a) as the
minimal number 7 such that, for every k-coloring p of [n]?, [S]> < p~ !(j) for some
jeCand S < {1,...,n} of cardinality a;.

Clearly, R(m; k) = R(m, ..., m) where m is taken k times. The following facts
are easy to prove:

R(ay, ..., &) = R(ay)s - - . » Qngy) for every permutation 7, (1)

R(Z, az,...,ak) = R(az,...,ak), (2)

k
R(ay,...,a)< Y R(@ay,....,00_y, 8, — 1, 4;41,...,4) for k=2, (3)

R(a;) = a;. @

We prove, for k > 1 and a; > 3,
k
Rag,....,a) < 3-( (aj——Z))!. &)
ji=1

The bound in (5) obviously implies the assertion. Estimation (5) is proved by
induction on k and, for every k > 2, by induction on ) %_, a;.
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Base of induction (k = 1). Then
R(ai) = al S 3 * (a1 —_ 2)'
Induction step (k > 2).

k
R(@y,...,a) < Y, R@ay,...,a;—1,...,4) by(3)

i=1
k

< f 3'<Z (aj—z)—1>z by (1) and (2),
=1 j

j i=1

where the induction hypothesis for the same k but a smaller total sum of the
coefficients is used for those summands where a; — 1 > 2, and the induction
hypothesis for k — 1 for the remaining ones

=k-3-<i (aj—z)—1>1
j=1

IA

3<i (aj_2)>'<i (a}-—2)—1>! since a; > 3 for all j

j=1 j=1

=3-<i(a,-—2))! O
i=1
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