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Covering the edges of a random graph by cliques
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1 Introduction

The clique cover number θ1(G) of a graph G is the minimum number of cliques required

to cover the edges of graph G. In this paper we consider θ1(Gn,p), for p constant. (Recall

that in the random graph Gn,p, each of the
(

n
2

)

edges occurs independently with probability

p). Bollobás, Erdős, Spencer and West [1] proved that whp (i.e. with probability 1-o(1) as

n → ∞)

(1− o(1))n2

4(log2 n)
2

≤ θ1(Gn,.5) ≤
cn2 ln lnn

(lnn)2
.

They implicitly conjecture that the ln lnn factor in the upper bound is unnecessary and in

this paper we prove

Theorem 1. There exist constants ci = ci(p) > 0, i = 1, 2 such that whp

c1n
2

(lnn)2
≤ θ1(Gn,p) ≤

c2n
2

(lnn)2
.

Remark 1: a simple use of a martingale tail inequality shows that θ1 is close to its mean

with very high probability.
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Pierre et Marie Curie, Paris

1

http://arxiv.org/abs/1103.4870v1


2 Proof of Theorem 1

We write an ≈ bn if an/bn → 1 as n → ∞.

The lower bound is simple as the number of edges m of Gn,p whp satisfies

m ≈
np2

2

and the size of the largest clique ω = ω(Gn,p) whp satisfies

ω ≈ 2 logb n

where b = 1/p. We may thus choose c1 ≈ (ln b)2p/2.

The upper bound requires more work. Our method does not seem to yield the correct value

for c2 and so we will not work hard to keep c2 small. Let α be some small constant and let

k = ⌊α logb n⌋.

We consider an algorithm for randomly selecting cliques to cover the edges of G = Gn,p. It

bears some relation to part of the algorithm described in Pippenger and Spencer [2]. At

iteration i we randomly select cliques of size ki = ⌊k/i⌋ none of whose edges are covered by

previously chosen cliques. Our idea is to choose these cliques so that at the start of iteration

i the graph Gi formed by the set Ei of edges which have not been covered behaves, for our

purposes, similarly to Gn,pi, pi = pe1−i. That is it will contain about mi =
(

n
2

)

pi edges, it will

have about Ni =
(

n
ki

)

p
(ki

2
)

i cliques of size ki and the intersection of these cliques will be similar

to that for the ki-cliques in Gn,pi. In particular, in both Gn,pi and Gi almost all of the edges

are in about ζi = Ni

(

ki
2

)

/mi ki-cliques.

Now in iteration i we choose a set Ci of ki-cliques from Gi to add to our cover. The available

cliques are chosen independently with probability about 1/ζi. By our assumptions on Gi, an

edge is left uncovered with probability about e−1. With a bit of care we can show that our

assumptions continue to hold for Gi+1 as well.

We do this for i0 = ⌈4 ln lnn⌉ iterations. After this there are about
(

n
2

)

pe(lnn)−4 uncovered

edges and we can add these as cliques of size two to the cover. In iteration i we choose about
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mi/
(

ki
2

)

≈ n2i2pe1−ik−2 cliques and so the total number of cliques used is O(n2/(lnn)2) as

required.

We now need to describe our clique choosing process a little more formally: let Cj,i denote the

set of j-cliques all of whose edges are in Ei. If

cs,j,i =

(

n− s

j − s

)

(bei)(
s
2
)−(j

2
),

then cs,j,i is close to the expected number of cliques in Cj,i which contain a particular fixed

clique in Cs,i.

For a clique S ∈ Cs,i we let

XS,j,i = |{C ∈ Cj,i : C ⊇ S}|

and for integer s ≥ 0,

X∗
s,j,i = max{XS,j,i : S ∈ Cs,i}.

Algorithm COVER

begin

E1 := E(Gn,p); CCOV ER := ∅;

for i =1 to i0 do

begin

A: independently place each C ∈ C⌊k/i⌋,i into CCOV ER with probability

X∗
2,⌊k/i⌋,i

−1;

B: for each u ∈ Ei which is not covered by a clique in Step A, add u

(as a clique of size 2) to CCOV ER with probability ρu where

e−1 −X∗
2
−1 =

(

1−
1

X∗
2

)Xu

(1− ρu),

X∗
2 = X∗

2,⌊k/i⌋,i and Xu = Xu,⌊k/i⌋,i.

3



end

CCOV ER := CCOV ER ∪ Ei0+1.

end

Observe first that the definition of ρu assumes that X∗
2 is large (which it is whp) and so

(

1−
1

X∗
2

)Xu

≥

(

1−
1

X∗
2

)X∗

2

≥ e−1 −X∗
2
−1,

and ρu is properly defined.

The following lemma contains the main core of the proof:

Lemma 1. Let Ei refer to the following two conditions:

(a)

XS,j,i ≤ (1 + βi)cs,j,i, 0 ≤ s ≤ j ≤ k/i and S ∈ Cs,i,

where βi = in−1/4,

(b)

Xu,j,i ≥ (1− γi)c2,j,i, e ∈ Ei and 2 ≤ j ≤ k/i

for all but at most in31/16 edges, where γi = in−1/16.

Then

Pr(E1) = 1− o(n−1), (1)

Pr(Ei+1 | Ei) ≥ 1−O(n−1/16 log n). (2)

We defer the proof of the lemma to the next section and show how to use it to prove Thereom

1. Observe first that
cs+1,j,i

cs,j,i
=

(

j − s

n− s

)

(bei)s, (3)
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and

cs,j,i ≥ n7/8 (4)

when α is small and 0 ≤ s < j ≤ k/i.

Next let Yi and Zi denote the number of ⌊k/i⌋-cliques and edges respectively added to CCOV ER

in iteration i.

E(Yi | Ei) ≤ E

(

X∗
0,⌊k/i⌋,i

X∗
2,⌊k/i⌋,i

∣

∣

∣

∣

Ei

)

≤ (1 + o(1))
c0,⌊k/i⌋,i
c2,⌊k/i⌋,i

≈
n2i2

bk2ei
, (5)

on using (3)

Since Yi is binomially distributed, we see using standard bounds on the tails of the binomial,

that

Pr

(

Yi ≥
2n2i2

bk2ei

∣

∣

∣

∣

Ei

)

≤ n−1.

Thus

Pr

(

i0
∑

i=1

Yi ≥
i0
∑

i=1

2n2i2

bk2ei

∣

∣

∣

∣

E0

)

= O

(

i0 log n

n1/16

)

,

and so

Pr

(

i0
∑

i=1

Yi ≥
i0
∑

i=1

2n2i2

bk2ei

)

= o(1). (6)

Now a simple calculation gives

ρu = O

(

X∗
2 −Xu

X∗
2

)

(7)

and so

E(Zi | Ei) = O(in31/16 + βi|Ei|)

= O(n31/16 lnn).

Thus

Pr(Zi ≥ n63/32 | Ei) = O(n−1/32 lnn)
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and so

Pr(∃1 ≤ i ≤ i0 : Zi ≥ n63/32 | E0) = O(n−1/32(lnn)2)

and

Pr(

i0
∑

i=1

Zi ≥ i0n
63/32) = o(1). (8)

Also

Pr(u ∈ Ei+1 | u ∈ Ei) =

(

1−
1

X∗
2

)Xu

(1− ρu)

< e−1.

Thus

E(|Ei0+1|) = O

(

n2

(lnn)4

)

and

Pr

(

|Ei0+1| ≥
n2

(lnn)3

)

= o(1). (9)

Theorem 1 follows from (6), (8) and (9) and

|CCOV ER| =
i0
∑

i=1

Yi +

i0
∑

i=1

Zi + |Ei0+1|.

As we only use estimates for X∗
0,⌊k/i⌋,i and X∗

2,⌊k/i⌋,i the reader may wonder why it is necessary

to prove Lemma 1(a) for 0 ≤ s ≤ j ≤ k/i. The reason is simply that the lemma is proved by

induction and we use a stronger induction hypothesis than the needed outcome.

3 Proof of Lemma 1

If s = j then XS,j,i = cs,j,i = 1 and so we can assume s < j from now on.

Let us first consider E1. Fix a set S of size s, 0 ≤ s ≤ k. Assume it forms a clique in G.

This does not condition any edges not contained in S. For a set T let Nc(T ) denote the set of

common neighbours of T in G. We can enumerate the set of j-cliques containing S as follows:

choose x1 ∈ Nc(S), x2 ∈ Nc(S ∪ {x1}), . . . , xj−s ∈ Nc(S ∪ {x1, x2, . . . , xj−s−1}). The number
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of choices νt for xt given x1, x2, . . . , xt−1 is distributed as Bin(n − (s − t + 1), ps+t−1). Thus

for 0 ≤ ǫ ≤ 1

Pr

(
∣

∣

∣

∣

νt
(n− s− t+ 1)ps+t−1

− 1

∣

∣

∣

∣

≥ ǫ

)

≤ 2 exp

{

−
ǫ2(n− s− t+ 1)ps+t−1

3

}

≤ 2 exp{−ǫ2n1−α/4}.

Putting ǫ = n−1/3 we see that since there are nO(lnn) choices for x1, x2, . . . , xj−s,

Pr

(
∣

∣

∣

∣

XS,j,0

cs,j,0
− 1

∣

∣

∣

∣

≥ n−1/3+o(1)

)

≤ exp{−n1/4}.

There are nO(lnn) choices for S and (1) follows.

Assume now that Ei holds. We first prove

Lemma 2. Suppose e1, e2, . . . , et ∈ Ei. Then

Pr(et ∈ Ei+1 | e1, e2, . . . , et−1 ∈ Ei+1) = e−1

(

1 +O

(

t lnn

n

))

uniformly for 1 ≤ t ≤ n1/2.

Proof

Pr(et ∈ Ei+1 | e1, e2, . . . , et−1 ∈ Ei+1) ≥ Pr(et ∈ Ei+1) (10)

=

(

1−
1

X∗
2

)Xu

(1− ρu)

= e−1 −X∗
2
−1.

Here u = et, Xu = Xu,⌊k/i⌋,i and X∗
2 = X∗

2,⌊k/i⌋,i and inequality (10) follows from the fact that

knowing e1, e2, . . . et−1 ∈ Ei+1 tells us that certain cliques (and edges) were not chosen for

CCOV ER. On the other hand

Pr(et ∈ Ei+1 | e1, e2, . . . , et−1 ∈ Ei+1) ≤

(

1−
1

X∗
2

)Xu−tX∗

3

(1− ρu) (11)

= (e−1 −X∗
2
−1)

(

1−
1

X∗
2

)tX∗

3

= e−1

(

1 +O

(

tX∗
3

X∗
2

))

,
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where X∗
3 = X∗

3,⌊k/i⌋,i. If Ei holds then X∗
3/X

∗
2 = O(lnn/n).

Inequality (11) follows from the fact that et = u lies in at least Xu − (t − 1)X∗
3 cliques

which contain none of e1, e2, . . . , et−1. This in turn arises from a two term inclusion-exclusion

inequality and the fact that et and ei together lie in at most X∗
3 cliques, for 1 ≤ i ≤ t− 1. �

Now fix a set S ∈ Cs,i and let X = XS,j,i+1 for some j ≤ k/(i + 1). Condition on S ∈ Cs,i+1.

Let CS,j,i = {C ∈ Cj,i : C ⊇ S}. Then on using Lemma 2, we have

E(X) =
∑

C∈CS,j,i

Pr(C ∈ Cj,i+1 | S ∈ Cs,i+1)

= XS,j,i exp

{(

s

2

)

−

(

j

2

)}(

1 +O

(

j4 lnn

n

))

, (12)

= E(XS,j,0) exp

{

(i+ 1)

((

s

2

)

−

(

j

2

))}(

1 +O

(

j4 lnn

n

))

,

by induction on i

= cs,j,0 exp

{

(i+ 1)

((

s

2

)

−

(

j

2

))}(

1 +O

(

j4 lnn

n

))

,

= cs,j,i+1

(

1 +O

(

j4 lnn

n

))

. (13)

We are going to use the Markov inequality

Pr(X ≥ x) ≤
E((X)r)

(x)r
(14)

where (x)r = x(x− 1)(x− 2) . . . (x− r + 1) and r = ⌊n3/8⌋.

Let B(ℓ2, ℓ3, . . . , ℓr) = {(C1, C2, . . . , Cr) : (i) Ct 6= Ct′ for t 6= t′, (ii) Ct ∈ CS,j,i, (iii) |Ct ∩ (C1 ∪

C2 ∪ · · ·Ct−1)| = s+ ℓt, for t, t
′ = 2, 3, . . . , r}. Then

E((X)r) =
∑

ℓ2,ℓ3,...,ℓr

∑

B(ℓ2,ℓ3,...,ℓr)

Pr(C1, C2, . . . , Cr ∈ Cj,i+1 | S ∈ Cs,i+1).

From (12)

Pr(C1 ∈ Cj,i+1|S ∈ Cs,i+1) = exp

{(

s

2

)

−

(

j

2

)}(

1 +O

(

j4 lnn

n

))

8



and

Pr(Ct ∈ Cj,i+1 | C1, C2, . . . , Ct−1 ∈ Cj,i+1) = exp

{(

s+ ℓt
2

)

−

(

j

2

)}(

1 +O

(

j4 lnn

n

))

= exp

{(

s+ ℓt
2

)

−

(

s

2

)}

cs,j,i+1

cs,j,i

(

1 +O

(

j4 lnn

n

))

Also,

|B(ℓ2, ℓ3, . . . , ℓr)| ≤
r
∏

t=1

((

(t− 1)j − s

ℓt

)

X∗
s+ℓt,j,i

)

≤
r
∏

t=1

(rj)ℓt(1 + βi)

(

bs+ℓtjei(s+ℓt)

n

)ℓt

cs,j,i.

Hence,

E((X)r)

crs,j,i+1

≤

(

1 +O

(

(lnn)4r

n

))

∑

ℓ2,ℓ3,...,ℓr

r
∏

t=1

(1 + βi)

(

e(ℓt+2s−1)/2rj2(bei)s+ℓt

n

)ℓt

≤

(

1 +O

(

(lnn)4r

n

))

(1 + βi)
r
∑

ℓ2,ℓ3,...,ℓr

(

rk2e3kb2k

n

)ℓ2+···+ℓt

(15)

≤ (1 + rn−3/4)(1 + βi)
r, (16)

for α sufficiently small.

Hence, using (14),

Pr(X ≥ (1 + βi+1)cs,j,i+1) ≤
2(1 + βi)

rcrs,j,i+1

((1 + βi+1)cs,j,i+1)r
, by (16)

≤ 3

(

1 + βi

1 + βi+1

)r

, using (4)

≤ 3 exp

{

−
r(βi+1 − βi)

1 + βi+1

}

= exp{−n1/8−o(1)}.

There are nO(lnn) choices for S and j and so part (a) of the lemma is proven.

It remains only to deal withXu,j,i+1 for an edge u ∈ Ei. It follows from (13) that ifX = Xu,j,i+1

then

E(X) = c2,j,i

(

1 +O

(

j4 lnn

n

))

, (17)

9



and from (16) that

E(X(X − 1)) ≤

(

1 +
3i

n1/4

)

c22,j,i+1. (18)

Suppose now that Xu,j,i ≥ (1− γi)c2,j,i. Then (17) and (18) imply that

Pr(X ≤ (1− γi+1)c2,j,i+1) =

Pr(E(X)−X ≥ E(X)− (1− γi+1)c2,j,i+1) ≤

Pr

(

E(X)−X ≥ (1− γi)c2,j,i exp

{

1−

(

j

2

)}(

1 +O

(

j4 lnn

n

))

− (1− γi+1)c2,j,i+1

)

=

Pr

(

E(X)−X ≥ (1− γi)c2,j,i+1

(

1 +O

(

j4 lnn

n

))

− (1− γi+1)c2,j,i+1

)

=

Pr
(

E(X)−X ≥ (1− o(1))n−1/16c2,j,i+1

)

≤

(E(X)−X)2

(1− o(1))n−1/8c22,j,i+1

=

E(X(X − 1)) + E(X)−E(X)2

(1− o(1))n−1/8c22,j,i+1

≤

(

1 + 3i
n1/4

)

c22,j,i+1 +
(

1 +O
(

j4 lnn
n

))

c2,j,i+1 − c22,j,i+1

(

1 +O
(

j4 lnn
n

))

(1− o(1))n−1/8c22,j,i+1

≤

≤ 4in−1/8. (19)

Now let Zi+1 denote the number of edges u ∈ Ei+1 for which Xu,j,i+1 ≤ (1 − γi+1)c2,j,i+1 and

Ẑi+1 those u counted in Zi+1 for which Xu,j,i ≥ (1− γi)c2,j,i. Then

Zi+1 ≤ Zi + Ẑi+1

and from (19)

E(Ẑi+1 | Ei) ≤ 4i|Ei|n
−1/8.

So

Pr(Zi+1 ≥ (i+ 1)n31/16 | Ei) ≤ Pr(Ẑi+1 ≥ n31/16 | Ei)

= O(n−1/16 logn).

this completes the proof of Lemma 1.
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