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1. Introduction and results

One of the basic results in extremal set theory was discovered in [1] and
rediscovered in [2]: For a given number of k-element subsets of an n-set the shadow,
that is, the set of (k—1)-element subsets contained in at least one of the specified
k-element subsets, is minimal, if the k-element subsets are chosen as an initial
segment in the squashed order (see [10]; called colex order in [11]), that is, a k-
element subset A precedes a k-element subset B, if the largest element in AAB
is in B. A closely related result was discovered in [3] and rediscovered in [5]:
For a given number u € [0,2"] of arbitrary subsets of an n-set the “Hamming
distance 1”-boundary is minimal for the initial segment of size u, also called in short
“u-th initial segment”, in the H-order (of [3]), that is, if one chooses all subsets
of cardinality less than n— k& (k suitable) and all remaining subsets of cardinality
n—k, whose complements are in the initial segment of the squashed order.

In this paper we consider sequences and subsequences rather than sets and
subsets.

n
The basic objects are X =[]X for L' ={0,1} and n € N, and operations of
deletion v7;, 7 and of insertion A;, A. Here v7; (resp. 4;) means that letter ¢
(t=0,1) is deleted (resp. inserted) and 7 (resp. A) means the deletion (resp.
insertion) of any letter.

So for ACI™ we get the down shadow
(1.1) VA= {2""1ex™ 2" is subsequence of some a” € A}
and the up shadow
(1.2) AA={z" e X" some subsequence of z"*! isin A}.
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In other words, VA are all sequences of length n — 1 obtained by omitting
any letter in the sequences of A. Then v7;A are all those sequences obtained by
omitting the letter 7. Clearly,

(1.3) VA=voAUviA
and analogously

(1.4) ' AA =DgAU N A

We describe now our results.

A. Shadows for fixed level and specific letter

The £-th level is the set of sequences {or words)
TL
(1.5) 7={x”ernzzmt=e}.
t=1

We consider sets B C X_, of cardinality v, 0 <v < (Z), and their shadows
VoB, £ B (the other shadows can be estimated similarily by symmetry).
The unique binomial representation of v is

a o= () () e (7)

(with ag >ap_1>...>as>s>1).
Whereas Katona used in [2] and also in [6] the function F":

(1.7) F(k,v) = (LCL_’“ 1> + (ZS) toet <sa— 1)’

v A
we introduce and need here the functions ¥ and F', which play the analogue roles
for the new shadow problems:

s % (kv) = (‘Zc:f) . (ak;;ig 1> P (ass:11>

and

(1.9) F (kb,0) = (“’“; 1) + <“’“k‘}f1rl> T (“: 1)4
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Theorem 1. For all BCX],_, with |B|=v
. 4
(i) [VoB|2F (k,v),

A
- (i) [AyB[=F (k,v),
and
(iil) both bounds are optimal.

" B. Shadows of arbitrary sets under deletion of any letter

For any integer € [0,2"] we use the unique binomial representation

- (n n oy, oy
w0 am (e () () (2)
(with n>ag >...> 04 >t >1) and observe that for an initial H-order segment S
with |S|=u

7S] = (Z:i) + (Z:;) ot (n;) + (02“:11) T (Off:ll)
(111) =G (n,u), say.

v
Theorem 2. For every ACX", |\7A| >G(n,|A|) and the bound is achieved by the
|A|-th initial segment in H-order.

This result was first obtained by D. E. Daykin and T. N. Danh [8]. We are
grateful to David for his dramatic story about the complexity of their (first) proof.
It gave us the impetus to (quickly) find a proof with fairly lengthy calculations with
binomial coefficients. Subsequently Daykin-Danh gave also another proof, which
can be found in the collection [9]. Then we gave a very “short proof” in [9] based
on Lemma 6 of [6] and our inequality (2.5) below. Unfortunately, as was kindly
pointed out by David, the original proof of (2.5) has an error in equation (6) of [9].

C. Shadows of arbitrary sets under insertion of any letter

For u in the representation (1.10) we define

(1.12) é’(n,u) = (Zii>+<nzl>++(:ill>+<ak; 1)+

4 ap+1
. .
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A
Theorem 3. *For every ACX™, |AA|>G(n,|Al), and the bound is achieved by the
|A|-th initial segment in H-order.

Remarks.

1. It must be emphasized that the H-order minimizes simultaneously both, the
lower and the upper shadows. There is no such phenomenon in the Boolean
lattice for “Kruskal-Katona”-type shadows. It has immediate consequences
for isoperimetric problems.

2. Theorem 1 can be derived easily from Theorems 2 and 3 like Kruskal-Katona’s
Theorem from Harper’s Theorem.

D. Two isoperimetric inequalities

It has been emphasized in [7] that isoperimetric inequalities in discrete metric
spaces are fundamental principles in combinatorics. The goal is to minimize the
union of a specified number of spheres of constant radius. We speak of an isoperi-
metric inequality, if this minimum is assumed for a set of sphere-centers, which
themselves form a sphere (or quasi-sphere, if numbers do not permit a sphere).

(e o]
For any ACX* = |J ™ and any distance d we define (the union of spheres

n=0
of radius r)

(1.13) I(4) = {xnl eX* 1 d(z",a") <r for some a" € A}

A prototype of a discrete isoperimetric inequality is the one discovered in [3],
rediscovered in [5], and proved again in [6]. Here d equals the Hamming distance
dy and is defined on I x X",

We recall the result. For

o7
(%)

(1.14) G(n,u)—_—<Z>+(ni1>+...+<z>+(kcﬁ“l>+._.

and any ACXT™
(1.15) Ta, (A)] = G(n, |4])

+

and the bound is achieved by the |A|-th initial segment in H-order (this is a sphere

k
of radius k, if [A|= 3 (7;))
=0

* A referee kindly pointed out to us that the equivalence of Theorem 2 and Theorem 3 can
be derived with a theorem in “Variational principle in discrete extremal problems” by Bezrukov
{Reihe Informatik Bericht tr-ri-94-152, Universitdt—GH-Paderborn).
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We define now two distances, 6 and 6, in X*. For z™,y™ € XL* 9(:cm,yml)
counts the minimal numb,er of insertions and deletions which transform one word
into the other. &(z™,y™ ) counts the minimal number of operations, if also ex-

changes of letters are allowed. Thus § (:vm,ym') <f(z™,y™).

Now observe that from (1.15) and our Theorems 2 and 3, we get immediately
two inequalities. :

Corollary 1. For AcI™
v A
(i) T5(A) <G (n,|A])+G (n, |A]),
v A
(i) T3(A) <G (n,|A])+G (n,|A])+G(n,] A]),
and both bounds are achieved by the | A|-th initial segment in H-order.

Moreover, in Theorem 4 of Section 6 we have established those inequalities for
every radius r. The exact formulation and the proof require a technical setup.

2. Auxiliary results
A. Numerical inequalities

While working on [7] Gyula Katona drew attention to the approach of Eckhoff-
Wegner [4] to prove Kruskal-Katona via the following inequality for F, defined in
(1.7).

Lemma 1 (see [4]). For k>1, v<wvp+v1,

(2.1) F(k,v) < max(vg, F(k,v1)) + F(k — 1,v0).

In fact, he used this idea also in his proof of the isoperimetric inequality for
the Hamming space. He just-had to establish the corresponding inequality for G,
defined in (1.14).

Lemma 2 (Lemma 6 of [6]). If 0<u; <up and u<wup+ug, then

(2.2) G(n,u) < max(uo, G(n— l,ul)) + G(n - 1,up).

v Ay
The discoveries in the present paper are similar inequalities for F, F, G, and

A
G (defined in (1.8), (1.9), (1.11), and (1.12)), which for cardinalities of shadows
resp. boundaries considered describe their values for segments in the H-order.

We state first the inequaliti'es for F. They are proved in the same way as those
for G below.
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Vv 4
F-inequality: For k> 1, if v <vg+v; and vg<F (k,v), then
v 4 v
(2.3) F (k,v) <F (k,v1)+ F (k- 1,v0).
A
F'-inequality: For k> 1, if v<wvp+wv1, then

A A A
(2.4) F (k,v) < max(vg + v1, F (k,v1))+ F (k — 1,vp).

Next we derive the inequalities for G.

Vv v
G-inequality: If wy <wp <G (n,w) and w<wy+wy, then

Vv \ v
(2.5) G (n,w) <G (n—1wo)+ G (n—1,wy).
A
G-inequality: If 0<uj <wp, u<ug+wug, then
A o A
(2.6) G (n,u) < max{uo +u1, G (n~1,u))+ G (n — 1, up).

Proofs. From the definitions of the numerical functions we have

A .
G(n,u)+u=G (n,u) for u asm (1.10)

and the equivalence of (2.2) and (2.6) immediately follows.

Next we show {2.5). For u as in (1.10) denote by £, (u) and ry,(u) the smallest
J with o; >j and the number of i’s with a; =1, respectively.
Let

u(n — 1) 2 CV; (n,u)

=)o () () e ()

By (1.11) and (1.14)

Z(n,u) = <::1) +.+ (n;l) + (O;Ck__ll) +...+ (jﬁ%):f) + 7n(u)

(2.8) =G(n—La(n —1)) + rn(u).

Moreover by the binomial coefficient representation

o £n(u .
(Z)+"'+(k—7-1)+(kk)+'”+(En(u()ll) fog=t=1
()4t () + () oot (3) 4 () otherwie

7

(2.9) u+1={
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(1.11) implies

v & "
(2.10) G (n’u._l_ 1) — (na 'LL) I oy = t=1

G (n,u)+1 otherwise.

By the definition of binomial coeflicient representation, #(n —1) in (2.7) is
nen-decreasing in v for fixed n {c.f. (2.9)).
For wy, wg and w with

4
(2.11) wy < wg <G (n,u)
and
(2.12) w < wy + wi,

we let w*=w, if rn(w)=0, and otherwise

wt = () - (k,z 1) i (fj;') - (%u))) . (gn‘gj;’_ 1)
(213) =w—rp(w) + Ln(w),

if the representation of w is

w = (Z>++<k,il>+<i’j)++<i3>
=(> ) () () ()

(e,

(2.14) wh = wp + (w* —w) and wi = w;.

Write

Then by the definitions of w*, w§, w}, and (2.10) (used repeatedly),

(2.15) rn(w®) =0,

v v ‘ “ _
(2.16) G (n,w*) =G (n,w) + (W* —w) - 1, if w*#w,
and

(2.17) & n=1,u8) <& (n—1,w0) + (w* — w) — r(wd),
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where 7(wg) = 1, if rp_1(wg) =0 and w # wo, and 7(wf) =0 otherwise. So, by
(2.11), (2.14), and (2.16)
v
(2.18) _ wi < wj <G (n,w*),

which with (2.7), (2.8) and (2.15) yields

v
Wo(n —2) + G(n — 2,W4(n — 2)) = wi~ G (n — L,wl) + G(n — 2,W(n — 2))

\V4
= wj — rp—1(wg) < w§ <G (n,w*)
(2.19) =G(n-1,%*(n - 1)).

Moreover, by the first inequality in (2.18) and the monotonicity of u(n—1) (as
a function of u),

(2.20) wi(n - 2) <wh(n - 2).

Now we assume that (2.5) does not hold and derive a contradiction. With
(2.12) we obtain

v Y v
(2.21) w— G (n,w) <wo— G (n—1,wp) + wi— G (n — 1,w1).
Vv

When w* # w then by (2.7) and (2.16) the LHS of (2.22) is w— G (n,w™) +

(w*—w)—1=w*(n—1)—1 and by (2.7), (2.14) and (2.17) the RHS of (2.22) is not

- .
bigger than wo— G (n—1,wi) +(w* —w) —7(wg) +@; (n—2) <WE(n~2) + w0} (n—2).
Thus we have

(2.22) T (n — 1) <WH(n - 2) +Wi(n —2).

By our notation in (2.7), (2.21) certainly implies (2.22), when w*™ = w (so
wh=wp).

Finally, with (2.19), (2.20), and (2.22) we obtain from Lemma 2,
(223)  G(n-1,w"(n-1)) <G(n-2,w5(n - 2)) + G(n — 2,Wi(n — 2)).

This implies (2.5} {a contradiction to our assumption}, because by (2.8), (2.15),
and (2.16) the LHS of (2.23) is

v
g(n’w*):{g(n,w)—}—w*—w——l if w#w*,
G (n,w) if w=w* (note rp{w) =0)
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and by (2.8), (2.14), and (2.17) the RHS of (2.23) is
v * pu * * *
G (n—1Lwg)+ G (n—1Lw]) - (ra—1(wg) + rn—1(w]))

Y4 v
<G (n =1 wo)+ G (n— Lw) +w* ~w—7(wy) — (ra—1(w) + rp—1(w))

w~-w—-1 if w#uw*

\v4 4
gG(n—l,wo)+G(1z~1,'w1)+{0 if w=w*

AVARVAN
B. A calculus of iterative applications for G, G, and G -

We present here a rather technical result (Lemma 4 below), which is needed
only for the proof of Theorem 4. Recall that for u, 1 <u <27,

= (e () (1) () e (0)
Z(n,u)z <Z:1)++(:;D 4 (n;1> N (C;gk:ll)+"‘+<it_—1l>=
G(n,u) = (:) +ot (kil) +(Z>+<k°f1> ot (t‘i),

and
2N n+1 n+1 ag +1 o 41
G(n,u)—(n+1>+...+<k+1>+< L >+...+( ; )

All these functions are increasing in w and they transform binomial represen-
tations into binomial representations. This makes it easy to apply them repeatedly.

v .
We notice that the representation of G (n,u) may be not unique, due to the

appearance of the term (8) However, it causes no difficulties to apply the functions,
Y
because both representations (if they exist) always give the same result, when G,

A
G or G are applied. More specifically, the non-uniqueness happens only when

at=t=1in (1.10), and with the notation £, (u)=£ (say) in the proof of (2.5),
v _[(n-1 n—1 n—1 ar —1
= (2 e (220 ¢ (1) (2

n ap—1 n £—2 R 1 " 0
£—1 £—-2 1 0
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_(n-—1 o4 n—1 n ap — 1 - ap—1 n £~1\ 2
=l,_1 i k1 /1 [ _o) =V s

For the first representation of v

v
Gn—1,v)=

(Z:Z>++<z:f)+ (o;::;) +...+(02£__22>+<§:;’) +ot (8),
G{n —1,v) =

(Z:D ++<Z:i>+ <a;c"__21>+...+<cze:21>+ <§:§>++(é>
and,

&t = (et () ()2t () (D)= () ()

and for the second representation of v,

Gororo= (55) e (1) () e (054 (55)
sttn= () e ()= () oo (020) < (2)

and

G n—1,0)= <g)+...+(g)+(kajl>+...+(gifl)Jr(efZ).

They really have the same values.

For two functions ¢, 9: N — N we write ¢(¢(-)) as ¥ o ¢(-) and thus we can
define

v v v v
(2.24) G (n,)=Gn-p+1,)oG(n—p+2,-)o...0G(n,),
(2.25) G°U(n, ) =G(n,)oG(n,-)o...0G(n,"),
and

A% JaN VAN AN
(2.26) G (n,)=G(n+s—1,)oG(n+s—2,-)o...0G (n,)

with p, ¢, and s factors, respectively,
vop ) AP A°P
We can also define G (n+s,-)oG (n,:), G°%0G etc.
Directly from the definitions the functions in (2.24) — (2.26) can be calculated.
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Lemma 3. With the convention (];) =0 for £<0
2.27) Z’op( N A o INEIIY SRR R IV s A I T
(2. n,u) = np k+1-p k—p i—p )

(2.28) G(n,u) = (Z) T (k +7;_ q) + <kaﬁcq> et (t itfl)

and
2.29 CA;OS( y= (M) (P () (et
(2.29) muy={ . )t k41 i . )

Here (2.28) is well-known from the isoperimetric theorem in the Hamming
space.

Another important property of G-type functions is the commutativity of the
o-operation:

4 v
G oG(n,u) = Go G (n,u) =

(2.31) (Z) ...

and

A A
Go G (n,u) =G oG(n,u) =

n+1 n+1 n+41 o +1 a+1
2.32 . e _ .
e (o)t i)+ (0 )+ () v (2))
Applying (2.27) — (2.29) and (2.30) — (2.32) repeatedly or by calculation we

establish‘general rules.

Lemma 4. We have

v°P A°S op A0S
G oG% G (n,u)=G oG oG%(n,u)
TP A8 A°S P
=G% G oG (nu)=G%G oG  (n,u):
A0S op AOS or

Vv
=G oG oG%(n,u) =G oG°% G (n,u)
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_(nts—p nts—p n+s—p
- (n+s—p)+(n+s~p—l)+'”+(k+1~p—q)

o (B ()

k—p—q t—p—q

for v as in (1.10), 0<p, ¢, s.

3. Proof of Theorem 1

Denote an initial segment in squashed order (see [10]) over X7 by S and write
S for the set of complements of the members of S. Thus SCX” , and |S|=|S|=v,

say. We speak here about the complementary squashed order or in short about the
CS-order.

We consider first 7S and A4 S.
Lemma 5. For the initial segment S defined above

— 4
(i} VoS is the F(k,v)-th initial segment in the CS-order on X z:}c

and

_ A
(ii) AS is the F (k,v)-th initial segment in the CS-order on 1‘21%_%

Proof. (i) We use the expansion (1.6) for v and look at any s" €S:
s, =0 for 1=1,2,...,k and 1<t <t <... <t <.

By the definition of the CS-order there must be a j such that for all i € (5, k]
ti=a;+1 and for all ¢ <j t; <a;. Now suppose that we delete for some index £
st,- We can assume that s;,_1 =1, because otherwise we can delete S,_3; and get

the same subsequence. Let s™ ™1 be the resulting subsequence, té =1, for i< and
t_q=t; for i>L.
Choose now j’' =max(¢,j) and notice that for i <j'—1, t; <a; —1, for i > ~1

t!_y=a;=(a;—1)+1, and for all i 5}, =0.

K3

Vv
Therefore the resulting subsequence s~ ! falls into the F (k,v)-th initial
segment in CS-order.

Vv
Conversely, given a sequence s~ ! in :rg:}c and in the F (k,v)-th initial
segment the forgoing argument provides a way to find an s™ in the v-th initial
segment from which s"~1 is obtainable by deleting a 0.
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(ii) Use again the s™ described above and let s"™+1 be obtained by inserting
a 1 before sy, t; =t; for i<’ and ]! =t;+1 for 1>2¢".
Then s}, =0 for all i and for i< j" t] <a;+1; for i>j" t] =a;+2=(a;+1)+1,

if we choose j” =max(j,£{—1).

A
Clearly, such an §/"! is in the F' (k,v)-th initial segment in the CS-order.
The same argument gives also the reverse implication. ]

Proof of Theorem 1 (i) and (ii) by induction on n.

The cases n =1, 2 are done by simple inspection. For any ¢, m, j, C c X¢,
DcX™, and ECXI let

(3.1) Ci = {(c1,--yco_1) : (e1,- - ea1,i) € CHC XY,

(3.2) Dxi={(dy,...,dm,5): (d1,...,dm) € D}(C IT™F),
and

(3.3) E; = {(e1,...,€j) 1e; =17 and (e1,...,€;) € E}(C.Z'j)
for i=0,1.

(i) for n>2.
Since By C VB, (VoB;)*1 C veB(i=0,1) and (VgBo)*0N(79B1) *x1 =0,

\v4
either |\79B|>|Bg|>F (k,|B|) or by (2.3) and induction hypothesis (IH) |v/oB|>

*V A v
IVOBU|+|V031IZF (k" L’BDD_*’F(klell) >F (k1IBI)a where (*) is justified by

n—1 n~1
ByCXT—;, and By C'rn—k—l'

(ii) for n>2.
Recall the definition of the operator “A” in (3.3).
Considering A B=(/A1B1)1U(AB)o, (A B)o=(ABo)*0, Bx1C (A, B)1
and (AlBl)*IC(A/l\B)1, by {2.4) and IH,
[818] 2 max(|B, A1 By ]) + 1A Byl =

Fay A A
max(|Bl, F (k,[B1]))+ F (k — 1,|Bo|) >F (k,|B).

(iii) follows by Lemma, 5. |
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4. Proof of Theorem 2

A
Lemma 6. For the initial segment S in the H-order AS equals the G (n,|S|)-th

Y
initial segment in the H-order, and 75 equals the G (n,|S|)-th initial segment in
H-order.

Proof. By the definitions of the two orders and direct inspection, we first get, that
for some k and m, and the m-th initial segment S’ (of level n—k) in the CS-order

n—(k-+1)
(5.1) S=| (J xp|us,
£=0
n—=k
(5.2) AS = ( U I;“) UA,S,
=0
and
n—(k+1)
(5.3) VS = U a7t uves'
£=0

The rest of the proof follows from Lemma, 5.

Proof of Theorem 2 by induction on n. For n=2 the statement is readily verified.
From the IH for n—1 we proceed to n.

1 1
Next observe that, by convention (3.1) and (3.2), | (vA;)xiC VA, (VA=
=0 1=0

i=0 and that therefore

(VA2 3 [VA12 5 & (n- 1 A (by the 1)

According to the s7-inequality this can be lower bounded with the de-
sired Cv?r' (n,|A]), if |Aol,]A1] <g (n,|4]). Otherwise we have for some 1

Y
|A;| =max(|Ao|,|A1]) =G (n,]A4]) and we are done again, hecause 7A D 4;.
The achievability follows from Lemma 6. [ ]
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5. Proof of Theorem 3

The proof goes in exactly the same way as the proof of Theorem 1, (ii) (and the
“A,” part of (iii}), except that here we use (2.6), Lemma 6 and the observations:

AA=(DA)U(DA), (AA)*iC(AA); and Axic (AA); (for i=0,1).

6. General isoperimetric theorems

v A
We use now the calculus of iterative applications of G, G, and G described in
Section 2 B.

Fortunately our Theorems 2, 3 and Harper’s Theorem ([3]) establish the In-
heritance property for the operations v7, A\, and F(liH (recall definition (1.13)). In

the sequel, we abbreviate FcllH as I'q,, and as [. If S is an initial segment in H-

order, then so are 7S, AS, and Ig,S. This enables us to apply these theorems
repeatedly. Formally, we introduce

(6.1) ViA=v(v...v(vA)..),
(6.2) AA= AN ADA). ),
and

ry,A=T(I...T(T4)..)
(6.3) = {a" € X" : dy(z”,a™) <L for some a" € A}
and state the results.

Proposition 1. For every ACX™, |A|=u
' , vof :
(i) IV°AIZG  (n,u)
N4
(ii) |APA|>G (n,u)
(iif) |7, A]>G%(n,u)
and all these bounds are achieved by the u-th initial segment in H-order.

Now we turn to the distances 6 and § in order to generalize Corollary 1.
Here operations are combined and the commutative law for the numerical functions
(Lemma 4 in Section 2) is needed.

Fortunately this commutative law holds also for the operations 7, A, and I'!
Indeed, using the short notation

V{.Z"fl} = V-’L‘n, A{mn} — A.’En, F{:L‘n} = an,
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we see that
(64)  v{oa") = A{va™}, T{Aa"} = AT}, T{l"} = D{ya"}.
Therefore the commutative law holds for every ACX™:
(6.5) V(AA) = A(TA), T(AA) = AT4), v(TA) = [(VA).
Moreover, it is clear that for every ACI™
(6.6) T4A ¢ FHALA) = ALYEA) for £ <.
Here strict inclusion can occur:
(6.7) I'(1,0) = {(0,0),(1,0),(1,1)} #X2 = v(A(1,0)).
However, strict inclusion does not occur, if S is an initial segment in H-order.

Proposition 2. If S is an initial segment in H-order, |S|=u, then
Aot voﬂ
i) (25 TE)=ITHAS)=G oG (n,u)=G"(n,u)=[T"S|
and
(i) AH(TP8)=vH(Als)=T¢s.

Proof. For (i) the first equalities are justified by (6.6) and Proposition 1 and the
last equality is (the easy) part of Harper’s Theorem. The remaining equality follows
from Lemma 4 with the choices p=s=¢, ¢=0 and p=s=0, g =¥, respectively:
both quantities equal (1) +...+ (. 7_p) + (%) +---+ (2%). Notice that (i) and

(6.6) imply (ii). |
Now we consider arbitrary sets ACX™ and the distances 0, 6.

Proposition 3. For any ACX™, r>0 and any {;,£; (i=1, 2) with £y — {1 =10, — 1}

and o <f}

(i) v (ahA)cya(ahA)
and

(i) TpA= () ole+0/2(ale=0/2] 4)

{=—7
—1
='U [(Fharta)u(vharrtay)|uva,
£=0
where by convention NoA=04=4.

Proof. Obviously, for all 2,

(6.8) Acvi(ata
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and therefore by the commutative law (6.5)
vfz(AflA) C vfz (Afl (vﬂlz—fz (AZ’Z—Z2A))) —
v (a8 (58471 ) = vE(0%4)),

and thus (i) is verified.
Again by (6.5) and the definition of distance 8

(6.9) A= |J (v (ama)).

ri+r2<r

Thus by (i) and (6.9)

= LTJ U (V2 (AT A)) = D (VL(T+£)/2J(AL(T_E)/sz))

f=—r r1trg<r l=—1
ro—r1=L
r—1
= U [(Ffat) u (vhara)]uvra N
£=0 .

We are now ready to state and prove the main result.

Theorem 4. For all ACZ™ and r>0

4L r—£
7 v°[—z‘J A[TJ
003412 32 6 oG (nl4)
=7
and
r ol Aof
(i) [T412 3 |G oG Dn [ AD+G oG =O(m 4] | +G7(n,|4),

where G°0(n,u) =u, and both bounds are achieved by the | A|-th initial segment in
H-order.

Proof. By our definitions for 0<¢; (¢=1,2) and n—¥f9+£1 >0
(6.10) ' v (af(rh4)) c xnleth,

(Here "% is only used for proving (ii).)
Therefore also

(611)  v2(ahTRA) Ny (A4T%A) =0, if b -l -4

and (i) as well as its optimality immediately follows from Proposition 3, (6.11) and
Proposition 1 (applied twice).
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(it) Similarly to (6.9), we have also

(6.12) A= |J (v (an(rg,4)
ri+ra+ro<r

and therefore

(6.13) TAD U LI -fA)) U (AHT A)) U Ty, A.

Hence (ii) follows from (6.11), (6.13) and Proposition 1 (applied twice).

Finally, we have to show that the |A}-th initial segment in H-order S achieves
equality.

By Proposition 2 (ii), Proposition 3 (i), (6.12) and (6.11), and by the mono-
tonicity of AY, G, FéH in the sets it suffices to show that for all parameters
—r<t<r, {1+l +Llg=r, b9—L1={, and £; >0 for 1=0, 1, 2

GHITES), i fy > 4
v (a8 (Ths)) c § Altlrrldsy, i gy <oy
I"S, il = 4.
Let us abbreviate /% (Ael (T%S))=L

Using Proposition 2 (i) and Proposition 3 (i) we show the desired inclusions.

Case 09>/,
L=yt (a8 (rhs))
=f (rél (1“203)) = yirathg) = vﬁ(l-\r—fz S)
CVHTTES) (as L2 > 2 0,r — Ly <7 —0),
Case {9 </71.

I = Atz (Aez (v{?z (Ffo S)))
= Altiplottzgy = All(pr—t1g)
c AITHS) (as 0<tp <ty,r— Ly <r+l=1—|4)),

Case 5 =¥5.
L=vh(af(rhs)) =rhths crrs, "
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