SHADOWS AND ISOPERIMETRY UNDER THE SEQUENCE-SUBSEQUENCE RELATION

RUDOLF AHLSWEDE and NING CAI

Received May 26, 1995
Revised August 23, 1996

1. Introduction and results

One of the basic results in extremal set theory was discovered in [1] and rediscovered in [2]: For a given number of k-element subsets of an n-set the shadow, that is, the set of $(k-1)$-element subsets contained in at least one of the specified k-element subsets, is minimal, if the k-element subsets are chosen as an initial segment in the squashed order (see [10]; called colex order in [11]), that is, a k element subset A precedes a k-element subset B, if the largest element in $A \triangle B$ is in B. A closely related result was discovered in [3] and rediscovered in [5]: For a given number $u \in\left[0,2^{n}\right]$ of arbitrary subsets of an n-set the "Hamming distance 1 "-boundary is minimal for the initial segment of size u, also called in short " u-th initial segment", in the H-order (of [3]), that is, if one chooses all subsets of cardinality less than $n-k$ (k suitable) and all remaining subsets of cardinality $n-k$, whose complements are in the initial segment of the squashed order.

In this paper we consider sequences and subsequences rather than sets and subsets.

The basic objects are $X^{n}=\prod^{n} \mathscr{X}$ for $\mathscr{X}=\{0,1\}$ and $n \in \mathbb{N}$, and operations of deletion ∇_{i}, ∇ and of insertion \triangle_{i}, \triangle. Here ∇_{i} (resp. \triangle_{i}) means that letter i $(i=0,1)$ is deleted (resp. inserted) and ∇ (resp. \triangle) means the deletion (resp. insertion) of any letter.

So for $A \subset X^{n}$ we get the down shadow

$$
\begin{equation*}
\nabla A=\left\{x^{n-1} \in \mathscr{X}^{n-1}: x^{n-1} \text { is subsequence of some } a^{n} \in A\right\} \tag{1.1}
\end{equation*}
$$

and the up shadow

$$
\begin{equation*}
\triangle A=\left\{x^{n+1} \in X^{n+1}: \text { some subsequence of } x^{n+1} \text { is in } A\right\} . \tag{1.2}
\end{equation*}
$$

Mathematics Subject Classification (1991): 02 A 20, 05 D 05, 68 R. 15

In other words, ∇A are all sequences of length $n-1$ obtained by omitting any letter in the sequences of A. Then $\nabla_{i} A$ are all those sequences obtained by omitting the letter i. Clearly,

$$
\begin{equation*}
\nabla A=\nabla_{0} A \cup \nabla_{1} A \tag{1.3}
\end{equation*}
$$

and analogously

$$
\begin{equation*}
\triangle A=\triangle_{0} A \cup \triangle_{1} A \tag{1.4}
\end{equation*}
$$

We describe now our results.

A. Shadows for fixed level and specific letter

The ℓ-th level is the set of sequences (or words)

$$
\begin{equation*}
\mathscr{X}_{\ell}^{n}=\left\{x^{n} \in \mathscr{X}^{n}: \sum_{t=1}^{n} x_{t}=\ell\right\} . \tag{1.5}
\end{equation*}
$$

We consider sets $B \subset X_{n-k}^{n}$ of cardinality $v, 0 \leq v \leq\binom{ n}{k}$, and their shadows $\nabla_{0} B, \triangle_{1} B$ (the other shadows can be estimated similarily by symmetry).

The unique binomial representation of v is

$$
\begin{equation*}
v=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\ldots+\binom{a_{s}}{s} \tag{1.6}
\end{equation*}
$$

(with $a_{k}>a_{k-1}>\ldots>a_{s} \geq s \geq 1$).
Whereas Katona used in [2] and also in [6] the function F :

$$
\begin{equation*}
F(k, v)=\binom{a_{k}}{k-1}+\binom{a_{k-1}}{k-2}+\ldots+\binom{a_{s}}{s-1} \tag{1.7}
\end{equation*}
$$

we introduce and need here the functions $\stackrel{\nabla}{F}$ and $\stackrel{\triangle}{F}$, which play the analogue roles for the new shadow problems:

$$
\begin{equation*}
\stackrel{\nabla}{F}(k, v)=\binom{a_{k}-1}{k-1}+\binom{a_{k-1}-1}{k-2}+\ldots+\binom{a_{s}-1}{s-1} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{\triangle}{F}(k, v)=\binom{a_{k}+1}{k}+\binom{a_{k-1}+1}{k-1}+\ldots+\binom{a_{s}+1}{s} \tag{1.9}
\end{equation*}
$$

Theorem 1. For all $B \subset X_{n-k}^{n}$ with $|B|=v$
(i) $\left|\nabla_{0} B\right| \geq \stackrel{\nabla}{F}(k, v)$,
(ii) $\left|\triangle_{1} B\right| \geq \stackrel{\triangle}{F}(k, v)$,
and
(iii) both bounds are optimal.

B. Shadows of arbitrary sets under deletion of any letter

For any integer $u \in\left[0,2^{n}\right]$ we use the unique binomial representation

$$
\begin{equation*}
u=\binom{n}{n}+\ldots+\binom{n}{k+1}+\binom{\alpha_{k}}{k}+\ldots+\binom{\alpha_{t}}{t} \tag{1.10}
\end{equation*}
$$

(with $n>\alpha_{k}>\ldots>\alpha_{t} \geq t \geq 1$) and observe that for an initial H-order segment S with $|S|=u$

$$
|\nabla S|=\binom{n-1}{n-1}+\binom{n-1}{n-2}+\ldots+\binom{n-1}{k}+\binom{\alpha_{k}-1}{k-1}+\ldots+\binom{\alpha_{i}-1}{t-1}
$$

(1.11) $=\stackrel{\nabla}{G}(n, u)$, say.

Theorem 2. For every $A \subset \mathscr{X}^{n},|\nabla A| \geq \stackrel{\nabla}{G}(n,|A|)$ and the bound is achieved by the $|A|$-th initial segment in H-order.

This result was first obtained by D. E. Daykin and T. N. Danh [8]. We are grateful to David for his dramatic story about the complexity of their (first) proof. It gave us the impetus to (quickly) find a proof with fairly lengthy calculations with binomial coefficients. Subsequently Daykin-Danh gave also another proof, which can be found in the collection [9]. Then we gave a very "short proof" in [9] based on Lemma 6 of [6] and our inequality (2.5) below. Unfortunately, as was kindly pointed out by David, the original proof of (2.5) has an error in equation (6) of [9].

C. Shadows of arbitrary sets under insertion of any letter

For u in the representation (1.10) we define

$$
\begin{equation*}
\Delta(n, u)=\binom{n+1}{n+1}+\binom{n+1}{n}+\ldots+\binom{n+1}{k+1}+\binom{\alpha_{k}+1}{k}+\ldots+\binom{\alpha_{t}+1}{t} \tag{1.12}
\end{equation*}
$$

Theorem 3. *For every $A \subset X^{n},|\triangle A| \geq \stackrel{\triangle}{G}(n,|A|)$, and the bound is achieved by the $|A|$-th initial segment in H-order.

Remarks.

1. It must be emphasized that the H-order minimizes simultaneously both, the lower and the upper shadows. There is no such phenomenon in the Boolean lattice for "Kruskal-Katona"-type shadows. It has immediate consequences for isoperimetric problems.
2. Theorem 1 can be derived easily from Theorems 2 and 3 like Kruskal-Katona's Theorem from Harper's Theorem.

D. Two isoperimetric inequalities

It has been emphasized in [7] that isoperimetric inequalities in discrete metric spaces are fundamental principles in combinatorics. The goal is to minimize the union of a specified number of spheres of constant radius. We speak of an isoperimetric inequality, if this minimum is assumed for a set of sphere-centers, which themselves form a sphere (or quasi-sphere, if numbers do not permit a sphere).

For any $A \subset X^{*}=\bigcup_{n=0}^{\infty} X^{n}$ and any distance d we define (the union of spheres of radius r)

$$
\begin{equation*}
\Gamma_{d}^{r}(A)=\left\{x^{n^{\prime}} \in X^{*}: d\left(x^{n^{\prime}}, a^{n}\right) \leq r \text { for some } a^{n} \in A\right\} \tag{1.13}
\end{equation*}
$$

A prototype of a discrete isoperimetric inequality is the one discovered in [3], rediscovered in [5], and proved again in [6]. Here d equals the Hamming distance d_{H} and is defined on $X^{n} \times X^{n}$.

We recall the result. For

$$
\begin{equation*}
G(n, u)=\binom{n}{n}+\binom{n}{n-1}+\ldots+\binom{n}{k}+\binom{\alpha_{k}}{k-1}+\ldots+\binom{\alpha_{t}}{t-1} \tag{1.14}
\end{equation*}
$$

and any $A \subset X^{n}$

$$
\begin{equation*}
\left|\Gamma_{d_{H}}^{r}(A)\right| \geq G(n,|A|) \tag{1.15}
\end{equation*}
$$

and the bound is achieved by the $|A|$-th initial segment in H-order (this is a sphere of radius k, if $|A|=\sum_{j=0}^{k}\binom{n}{j}$).

[^0]We define now two distances, θ and δ, in X^{*}. For $x^{m}, y^{m^{\prime}} \in X^{*} \theta\left(x^{m}, y^{m^{\prime}}\right)$ counts the minimal number of insertions and deletions which transform one word into the other. $\delta\left(x^{m}, y^{m^{\prime}}\right)$ counts the minimal number of operations, if also exchanges of letters are allowed. Thus $\delta\left(x^{m}, y^{m^{\prime}}\right) \leq \theta\left(x^{m}, y^{m^{\prime}}\right)$.

Now observe that from (1.15) and our Theorems 2 and 3, we get immediately two inequalities.

Corollary 1. For $A \subset X^{n}$
(i) $\Gamma_{\theta}^{1}(A) \leq \stackrel{\nabla}{G}(n,|A|)+\stackrel{\triangle}{G}(n,|A|)$,
(ii) $\Gamma_{\delta}^{1}(A) \leq \stackrel{\nabla}{G}(n,|A|)+\stackrel{\Delta}{G}(n,|A|)+G(n,|A|)$,
and both bounds are achieved by the $|A|$-th initial segment in H-order.
Moreover, in Theorem 4 of Section 6 we have established those inequalities for every radius r. The exact formulation and the proof require a technical setup.

2. Auxiliary results

A. Numerical inequalities

While working on [7] Gyula Katona drew attention to the approach of EckhoffWegner [4] to prove Kruskal-Katona via the following inequality for F, defined in (1.7).

Lemma 1 (see [4]). For $k>1, v \leq v_{0}+v_{1}$,

$$
\begin{equation*}
F(k, v) \leq \max \left(v_{0}, F\left(k, v_{1}\right)\right)+F\left(k-1, v_{0}\right) \tag{2.1}
\end{equation*}
$$

In fact, he used this idea also in his proof of the isoperimetric inequality for the Hamming space. He just had to establish the corresponding inequality for G, defined in (1.14).

Lemma 2 (Lemma 6 of [6]). If $0 \leq u_{1} \leq u_{0}$ and $u \leq u_{0}+u_{1}$, then

$$
\begin{equation*}
G(n, u) \leq \max \left(u_{0}, G\left(n-1, u_{1}\right)\right)+G\left(n-1, u_{0}\right) \tag{2.2}
\end{equation*}
$$

The discoveries in the present paper are similar inequalities for $\stackrel{\nabla}{F}, \stackrel{\rightharpoonup}{F}, \stackrel{\nabla}{G}$, and $\stackrel{\Delta}{G}$ (defined in (1.8), (1.9), (1.11), and (1.12)), which for cardinalities of shadows resp. boundaries considered describe their values for segments in the H-order.

We state first the inequalities for F. They are proved in the same way as those for G below.
$\stackrel{\nabla}{F}$-inequality: For $k>1$, if $v \leq v_{0}+v_{1}$ and $v_{0}<\stackrel{\nabla}{F}(k, v)$, then

$$
\begin{equation*}
\stackrel{\nabla}{F}(k, v) \leq \stackrel{\nabla}{F}\left(k, v_{1}\right)+\stackrel{\nabla}{F}\left(k-1, v_{0}\right) \tag{2.3}
\end{equation*}
$$

$\stackrel{\Delta}{F}$-inequality: For $k>1$, if $v \leq v_{0}+v_{1}$, then

$$
\begin{equation*}
\stackrel{\Delta}{F}(k, v) \leq \max \left(v_{0}+v_{1}, \stackrel{\Delta}{F}\left(k, v_{1}\right)\right)+\stackrel{\rightharpoonup}{F}\left(k-1, v_{0}\right) \tag{2.4}
\end{equation*}
$$

Next we derive the inequalities for G.
$\stackrel{\nabla}{G}$-inequality: If $w_{1} \leq w_{0}<\stackrel{\nabla}{G}(n, w)$ and $w \leq w_{0}+w_{1}$, then

$$
\begin{equation*}
\stackrel{\nabla}{G}(n, w) \leq \stackrel{\nabla}{G}\left(n-1, w_{0}\right)+\stackrel{\nabla}{G}\left(n-1, w_{1}\right) \tag{2.5}
\end{equation*}
$$

$\stackrel{\Delta}{G}$-inequality: If $0 \leq u_{1} \leq u_{0}, u \leq u_{0}+u_{1}$, then

$$
\begin{equation*}
\stackrel{\triangle}{G}(n, u) \leq \max \left(u_{0}+u_{1}, \stackrel{\Delta}{G}\left(n-1, u_{1}\right)\right)+\stackrel{\Delta}{G}\left(n-1, u_{0}\right) \tag{2.6}
\end{equation*}
$$

Proofs. From the definitions of the numerical functions we have

$$
G(n, u)+u=\stackrel{\Delta}{G}(n, u) \text { for } u \text { as } \operatorname{in}(1.10)
$$

and the equivalence of (2.2) and (2.6) immediately follows.
Next we show (2.5). For u as in (1.10) denote by $\ell_{n}(u)$ and $r_{n}(u)$ the smallest j with $\alpha_{j}>j$ and the number of i 's with $\alpha_{i}=i$, respectively.

Let

$$
\begin{align*}
\bar{u}(n-1) & \triangleq u-\stackrel{\nabla}{G}(n, u) \\
& =\binom{n-1}{n-1}+\ldots+\binom{n-1}{k+1}+\binom{\alpha_{k}-1}{k}+\ldots+\binom{\alpha_{\ell_{n}(u)}-1}{\ell_{n}(u)} \tag{2.7}
\end{align*}
$$

By (1.11) and (1.14)

$$
\begin{align*}
\nabla(n, u) & =\binom{n-1}{n-1}+\ldots+\binom{n-1}{k}+\binom{\alpha_{k}-1}{k-1}+\ldots+\binom{\alpha_{\ell_{n}(u)}-1}{\ell_{n}(u)-1}+r_{n}(u) \\
(2.8) \quad & =G(n-1, \bar{u}(n-1))+r_{n}(u) . \tag{2.8}
\end{align*}
$$

Moreover by the binomial coefficient representation

$$
u+1= \begin{cases}\binom{n}{n}+\ldots+\binom{n}{k+1}+\binom{\alpha_{k}}{k}+\ldots+\binom{\ell_{n}(u)}{n_{n}(u)-1} & \text { if } \alpha_{t}=t=1 \tag{2.9}\\ \binom{n}{n}+\ldots+\binom{n}{k+1}+\binom{\alpha_{k}}{k}+\ldots+\binom{\alpha_{t} t}{t}+\binom{t-1}{t-1} & \text { otherwise }\end{cases}
$$

(1.11) implies

$$
\stackrel{\nabla}{G}(n, u+1)= \begin{cases}\stackrel{\nabla}{G}(n, u) & \text { if } \alpha_{t}=t=1 \tag{2.10}\\ \nabla(n, u)+1 & \text { otherwise }\end{cases}
$$

By the definition of binomial coefficient representation, $\bar{u}(n-1)$ in (2.7) is non-decreasing in u for fixed n (c.f. (2.9)).

For w_{1}, w_{0} and w with

$$
\begin{equation*}
w_{1} \leq w_{0}<\stackrel{\nabla}{G}(n, u) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
w \leq w_{0}+w_{1} \tag{2.12}
\end{equation*}
$$

we let $w^{*}=w$, if $r_{n}(w)=0$, and otherwise

$$
\begin{align*}
w^{*} & =\binom{n}{n}+\ldots+\binom{n}{k^{\prime}+1}+\binom{\beta_{k^{\prime}}}{k^{\prime}}+\ldots+\binom{\beta_{\ell_{n}(w)}}{\ell_{n}(w)}+\binom{\ell_{n}(w)}{\ell_{n}(w)-1} \\
& =w-r_{n}(w)+\ell_{n}(w) \tag{2.13}
\end{align*}
$$

if the representation of w is

$$
\begin{aligned}
w= & \binom{n}{n}+\ldots+\binom{n}{k^{\prime}+1}+\binom{\beta_{k^{\prime}}}{k^{\prime}}+\ldots+\binom{\beta_{s}}{s} \\
= & \binom{n}{n}+\ldots+\binom{n}{k^{\prime}+1}+\binom{\beta_{k^{\prime}}}{k^{\prime}}+\ldots+\binom{\beta_{\ell_{n}(w)}}{\ell_{n}(w)}+\binom{\ell_{n}(w)-1}{\ell_{n}(w)-1}+ \\
& \ldots+\binom{\ell_{n}(w)-r_{n}(w)}{\ell_{n}(w)-r_{n}(w)}
\end{aligned}
$$

Write

$$
\begin{equation*}
w_{0}^{*}=w_{0}+\left(w^{*}-w\right) \text { and } w_{1}^{*}=w_{1} \tag{2.14}
\end{equation*}
$$

Then by the definitions of $w^{*}, w_{0}^{*}, w_{1}^{*}$, and (2.10) (used repeatedly),

$$
\begin{equation*}
r_{n}\left(w^{*}\right)=0 \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
\stackrel{\nabla}{G}\left(n, w^{*}\right)=\stackrel{\nabla}{G}(n, w)+\left(w^{*}-w\right)-1, \text { if } w^{*} \neq w \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\stackrel{\nabla}{G}\left(n-1, w_{0}^{*}\right) \leq \stackrel{\nabla}{G}\left(n-1, w_{0}\right)+\left(w^{*}-w\right)-\tau\left(w_{0}^{*}\right) \tag{2.17}
\end{equation*}
$$

where $\tau\left(w_{0}^{*}\right)=1$, if $r_{n-1}\left(w_{0}^{*}\right)=0$ and $w_{0}^{*} \neq w_{0}$, and $\tau\left(w_{0}^{*}\right)=0$ otherwise. So, by (2.11), (2.14), and (2.16)

$$
\begin{equation*}
w_{1}^{*} \leq w_{0}^{*} \leq \stackrel{\nabla}{G}\left(n, w^{*}\right) \tag{2.18}
\end{equation*}
$$

which with (2.7), (2.8) and (2.15) yields

$$
\begin{align*}
\bar{w}_{0}^{*}(n-2)+G\left(n-2, \bar{w}_{0}^{*}(n-2)\right) & =w_{0}^{*}-\stackrel{\nabla}{G}\left(n-1, w_{0}^{*}\right)+G\left(n-2, \bar{w}_{0}^{*}(n-2)\right) \\
& =w_{0}^{*}-r_{n-1}\left(w_{0}^{*}\right) \leq w_{0}^{*} \leq \stackrel{\nabla}{G}\left(n, w^{*}\right) \\
& =G\left(n-1, \bar{w}^{*}(n-1)\right) . \tag{2.19}
\end{align*}
$$

Moreover, by the first inequality in (2.18) and the monotonicity of $\bar{u}(n-1)$ (as a function of u,

$$
\begin{equation*}
\bar{w}_{1}^{*}(n-2) \leq \bar{w}_{0}^{*}(n-2) \tag{2.20}
\end{equation*}
$$

Now we assume that (2.5) does not hold and derive a contradiction. With (2.12) we obtain

$$
\begin{equation*}
w-\stackrel{\nabla}{G}(n, w)<w_{0}-\stackrel{\nabla}{G}\left(n-1, w_{0}\right)+w_{1}-\stackrel{\nabla}{G}\left(n-1, w_{1}\right) . \tag{2.21}
\end{equation*}
$$

When $w^{*} \neq w$ then by (2.7) and (2.16) the LHS of (2.22) is $w-\stackrel{\nabla}{G}\left(n, w^{*}\right)+$ $\left(w^{*}-w\right)-1=\bar{w}^{*}(n-1)-1$ and by (2.7), (2.14) and (2.17) the RHS of (2.22) is not bigger than $w_{0}-\stackrel{\nabla}{G}\left(n-1, w_{0}^{*}\right)+\left(w^{*}-w\right)-\tau\left(w_{0}^{*}\right)+\bar{w}_{1}^{*}(n-2) \leq \bar{w}_{0}^{*}(n-2)+\bar{w}_{1}^{*}(n-2)$.

Thus we have

$$
\begin{equation*}
\bar{w}^{*}(n-1) \leq \bar{w}_{0}^{*}(n-2)+\bar{w}_{1}^{*}(n-2) . \tag{2.22}
\end{equation*}
$$

By our notation in (2.7), (2.21) certainly implies (2.22), when $w^{*}=w$ (so $w_{0}^{*}=w_{0}$).

Finally, with (2.19), (2.20), and (2.22) we obtain from Lemma 2,

$$
\begin{equation*}
G\left(n-1, \bar{w}^{*}(n-1)\right) \leq G\left(n-2, \bar{w}_{0}^{*}(n-2)\right)+G\left(n-2, \bar{w}_{1}^{*}(n-2)\right) . \tag{2.23}
\end{equation*}
$$

This implies (2.5) (a contradiction to our assumption), because by (2.8), (2.15), and (2.16) the LHS of (2.23) is

$$
\nabla\left(n, w^{*}\right)=\left\{\begin{array}{ll}
\nabla \\
G \\
\nabla & n, w)+w^{*}-w-1
\end{array}\right) \text { if } w \neq w^{*}, \quad \begin{array}{ll}
\vec{G}(n, w) & \text { if } w=w^{*}\left(\text { note } r_{n}(w)=0\right)
\end{array}
$$

and by (2.8), (2.14), and (2.17) the RHS of (2.23) is

$$
\begin{gathered}
\stackrel{\nabla}{G}\left(n-1, w_{0}^{*}\right)+\stackrel{\nabla}{G}\left(n-1, w_{1}^{*}\right)-\left(r_{n-1}\left(w_{0}^{*}\right)+r_{n-1}\left(w_{1}^{*}\right)\right) \\
\leq \nabla \cdot \nabla\left(n-1, w_{0}\right)+\stackrel{\nabla}{G}\left(n-1, w_{1}\right)+w^{*}-w-\tau\left(w_{0}^{*}\right)-\left(r_{n-1}\left(w_{0}^{*}\right)+r_{n-1}\left(w_{1}^{*}\right)\right) \\
\leq \stackrel{\nabla}{G}\left(n-1, w_{0}\right)+\stackrel{\nabla}{G}\left(n-1, w_{1}\right)+ \begin{cases}w^{*}-w-1 & \text { if } w \neq w^{*} \\
0 & \text { if } w=w^{*},\end{cases}
\end{gathered}
$$

B. A calculus of iterative applications for $\stackrel{\nabla}{G}, \stackrel{\Delta}{G}$, and G

We present here a rather technical result (Lemma 4 below), which is needed only for the proof of Theorem 4. Recall that for $u, 1 \leq u \leq 2^{n}$,

$$
\begin{aligned}
u & =\binom{n}{n}+\ldots+\binom{n}{k+1}+\binom{\alpha_{k}}{k}+\binom{\alpha_{k-1}}{k-1}+\ldots+\binom{\alpha_{t}}{t}, \\
\nabla(n, u) & =\binom{n-1}{n-1}+\ldots+\binom{n-1}{k+1}+\binom{n-1}{k}+\binom{\alpha_{k}-1}{k-1}+\ldots+\binom{\alpha_{t}-1}{t-1}, \\
G(n, u) & =\binom{n}{n}+\ldots+\binom{n}{k+1}+\binom{n}{k}+\binom{\alpha_{k}}{k-1}+\ldots+\binom{\alpha_{t}}{t-1},
\end{aligned}
$$

and

$$
\stackrel{\Delta}{G}(n, u)=\binom{n+1}{n+1}+\ldots+\binom{n+1}{k+1}+\binom{\alpha_{k}+1}{k}+\ldots+\binom{\alpha_{t}+1}{t}
$$

All these functions are increasing in u and they transform binomial representations into binomial representations. This makes it easy to apply them repeatedly.

We notice that the representation of $\stackrel{\nabla}{G}(n, u)$ may be not unique, due to the appearance of the term $\binom{0}{0}$. However, it causes no difficulties to apply the functions, because both representations (if they exist) always give the same result, when $\stackrel{\nabla}{G}$, G or $\stackrel{\Delta}{G}$ are applied. More specifically, the non-uniqueness happens only when $\alpha_{t}=t=1$ in (1.10), and with the notation $\ell_{n}(u)=\ell$ (say) in the proof of (2.5),

$$
\begin{aligned}
\stackrel{\nabla}{G}(n, u)= & \binom{n-1}{n-1}+\ldots+\binom{n-1}{k+1}+\binom{n-1}{k}+\binom{\alpha_{k}-1}{k-1}+\ldots \\
& +\binom{\alpha_{\ell}-1}{\ell-1}+\binom{\ell-2}{\ell-2}+\ldots+\binom{1}{1}+\binom{0}{0}
\end{aligned}
$$

$$
=\binom{n-1}{n-1}+\ldots+\binom{n-1}{k}+\binom{\alpha_{k}-1}{k-1}+\ldots+\binom{\alpha_{\ell}-1}{\ell-1}+\binom{\ell-1}{\ell-2} \triangleq v \text { say }
$$

For the first representation of v

$$
\begin{aligned}
& \nabla(n-1, v)= \\
& \binom{n-2}{n-2}+\ldots+\binom{n-2}{k-1}+\binom{\alpha_{k}-2}{k-2}+\ldots+\binom{\alpha_{\ell}-2}{\ell-2}+\binom{\ell-3}{\ell-3}+\ldots+\binom{0}{0} \\
& G(n-1, v)= \\
& \quad\binom{n-1}{n-1}+\ldots+\binom{n-1}{k-1}+\binom{\alpha_{k}-1}{k-2}+\ldots+\binom{\alpha_{\ell}-1}{\ell-2}+\binom{\ell-2}{\ell-3}+\ldots+\binom{1}{0}
\end{aligned}
$$

and,
$\stackrel{\Delta}{G}(n-1, v)=\binom{n}{n}+\ldots+\binom{n}{k}+\binom{\alpha_{k}}{k-1}+\ldots+\binom{\alpha_{\ell}}{\ell-1}+\binom{\ell-1}{\ell-2}+\ldots+\binom{2}{1}+\binom{1}{0}$,
and for the second representation of v,

$$
\begin{aligned}
& \nabla(n-1, v)=\binom{n-2}{n-2}+\ldots+\binom{n-2}{k-1}+\binom{\alpha_{k}-2}{k-2}+\ldots+\binom{\alpha_{\ell}-2}{\ell-2}+\binom{\ell-2}{\ell-3} \\
& G(n-1, v)=\binom{n-1}{n-1}+\ldots+\binom{n-1}{k-1}+\binom{\alpha_{k}-1}{k-2}+\ldots+\binom{\alpha_{\ell}-1}{\ell-2}+\binom{\ell-1}{\ell-3}
\end{aligned}
$$

and
$\stackrel{\Delta}{G}(n-1, v)=\binom{n}{n}+\ldots+\binom{n}{k}+\binom{\alpha_{k}}{k-1}+\ldots+\binom{\alpha_{\ell}}{\ell-1}+\binom{\ell}{\ell-2}$.
They really have the same values.
For two functions $\phi, \psi: \mathbb{N} \rightarrow \mathbb{N}$ we write $\psi(\phi(\cdot))$ as $\psi \circ \phi(\cdot)$ and thus we can define

$$
\begin{align*}
& \nabla_{G}^{\circ p}(n, \cdot)=\stackrel{\nabla}{G}(n-p+1, \cdot) \circ \stackrel{\nabla}{G}(n-p+2, \cdot) \circ \ldots \circ \stackrel{\nabla}{G}(n, \cdot), \tag{2.24}\\
& G^{\circ q}(n, \cdot)=G(n, \cdot) \circ G(n, \cdot) \circ \ldots \circ G(n, \cdot) \tag{2.25}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta_{G}^{\circ s}(n, \cdot)=\stackrel{\Delta}{G}(n+s-1, \cdot) \circ \stackrel{\Delta}{G}(n+s-2, \cdot) \circ \ldots \circ \stackrel{\Delta}{G}(n, \cdot) \tag{2.26}
\end{equation*}
$$

with p, q, and s factors, respectively.
We can also define $\nabla^{\circ p}(n+s, \cdot) \circ \stackrel{\Delta}{G}^{\circ s}(n, \cdot), G^{\circ q_{\circ}} \stackrel{\Delta}{G}^{\circ p}$ etc.
Directly from the definitions the functions in (2.24) - (2.26) can be calculated.

Lemma 3. With the convention $\binom{k}{\ell}=0$ for $\ell<0$

$$
\begin{array}{r}
\nabla_{G}^{\circ p}(n, u)=\binom{n-p}{n-p}+\ldots+\binom{n-p}{k+1-p}+\binom{\alpha_{k}-p}{k-p}+\ldots+\binom{\alpha_{t}-p}{t-p} \\
G^{\circ q}(n, u)=\binom{n}{n}+\ldots+\binom{n}{k+1-q}+\binom{\alpha_{k}}{k-q}+\ldots+\binom{\alpha_{t}}{t-q} \tag{2.28}
\end{array}
$$

and

$$
\begin{equation*}
\stackrel{\Delta}{G}^{\circ s}(n, u)=\binom{n+s}{n+s}+\ldots+\binom{n+s}{k+1}+\binom{\alpha_{k}+s}{k}+\ldots+\binom{\alpha_{t}+s}{t} \tag{2.29}
\end{equation*}
$$

Here (2.28) is well-known from the isoperimetric theorem in the Hamming space.

Another important property of G-type functions is the commutativity of the o-operation:

$$
\stackrel{\nabla}{G} \circ G(n, u)=G \circ \stackrel{\nabla}{G}(n, u)=
$$

$$
\begin{equation*}
\binom{n-1}{n-1}+\ldots+\binom{n-1}{k}+\binom{n-1}{k-1}+\binom{\alpha_{k}-1}{k-2}+\ldots+\binom{\alpha_{t}-1}{t-2} \tag{2.30}
\end{equation*}
$$

$$
\stackrel{\nabla}{G} \circ \stackrel{\Delta}{G}(n, u)=\stackrel{\Delta}{G} \circ \stackrel{\nabla}{G}(n, u)=
$$

$$
\begin{equation*}
\binom{n}{n}+\ldots+\binom{n}{k+1}+\binom{n}{k}+\binom{\alpha_{k}}{k-1}+\ldots+\binom{\alpha_{t}}{t-1} \tag{2.31}
\end{equation*}
$$

and
$G \circ \stackrel{\Delta}{G}(n, u)=\stackrel{\triangle}{G} \circ G(n, u)=$
(2.32) $\quad\binom{n+1}{n+1}+\ldots+\binom{n+1}{k+1}+\binom{n+1}{k}+\binom{\alpha_{k}+1}{k-1}+\ldots+\binom{\alpha_{t}+1}{t-1}$.

Applying (2.27) - (2.29) and (2.30) - (2.32) repeatedly or by calculation we establish general rules.

Lemma 4. We have

$$
\begin{aligned}
& \nabla^{\circ p} \circ G^{\circ q} \circ \Delta^{\circ s}(n, u)=\nabla^{\circ p} \circ \Delta^{\circ s} \circ G^{\circ q}(n, u) \\
& =G^{\circ q} \circ \nabla^{\circ p} \circ \Delta^{\circ s}(n, u)=G^{\circ q} \Delta^{\circ s} \Delta^{\circ s} \circ \nabla^{\circ p}(n, u) \\
& =\triangle^{\circ s} \circ \nabla^{\circ p} \\
& =G \circ G^{\circ \rho}(n, u)=\Delta^{\circ s} \circ G^{\circ q} \circ \nabla^{\circ r}(n, u)
\end{aligned}
$$

$$
\begin{align*}
= & \binom{n+s-p}{n+s-p}+\binom{n+s-p}{n+s-p-1}+\ldots+\binom{n+s-p}{k+1-p-q} \\
& +\binom{\alpha_{k}+s-p}{k-p-q}+\ldots+\binom{\alpha_{t}+s-p}{t-p-q} \tag{2.33}
\end{align*}
$$

for u as in (1.10), $0 \leq p, q, s$.

3. Proof of Theorem 1

Denote an initial segment in squashed order (see [10]) over X_{k}^{n} by S and write \bar{S} for the set of complements of the members of S. Thus $\bar{S} \subset X_{n-k}^{n}$ and $|\bar{S}|=|S|=v$, say. We speak here about the complementary squashed order or in short about the CS-order.

We consider first $\nabla_{0} \bar{S}$ and $\triangle_{1} \bar{S}$.
Lemma 5. For the initial segment \bar{S} defined above
(i) $\nabla_{0} \bar{S}$ is the $\stackrel{\nabla}{F}(k, v)$-th initial segment in the CS-order on X_{n-k}^{n-1} and
(ii) $\Delta_{1} \bar{S}$ is the $\stackrel{\triangle}{F}(k, v)$-th initial segment in the CS-order on X_{n+1-k}^{n+1}.

Proof. (i) We use the expansion (1.6) for v and look at any $s^{n} \in \bar{S}$:

$$
s_{t_{i}}=0 \text { for } i=1,2, \ldots, k \text { and } 1 \leq t_{1}<t_{2}<\ldots<t_{k} \leq n
$$

By the definition of the CS-order there must be a j such that for all $i \in(j, k]$ $t_{i}=a_{i}+1$ and for all $i \leq j t_{i} \leq a_{j}$. Now suppose that we delete for some index ℓ $s_{t_{\ell}}$. We can assume that $s_{t_{\ell}-1}=1$, because otherwise we can delete $S_{t_{\ell}-1}$ and get the same subsequence. Let $s^{\prime n-1}$ be the resulting subsequence, $t_{i}^{\prime}=t_{i}$ for $i<\ell$ and $t_{i-1}^{\prime}=t_{i}$ for $i>\ell$.

Choose now $j^{\prime}=\max (\ell, j)$ and notice that for $i \leq j^{\prime}-1, t_{i}^{\prime} \leq a_{j^{t}}-1$, for $i>j^{\prime}-1$ $t_{i-1}^{\prime}=a_{i}=\left(a_{i}-1\right)+1$, and for all i $s_{t_{i}^{\prime}}^{\prime}=0$.

Therefore the resulting subsequence $s^{\prime n-1}$ falls into the $\stackrel{\nabla}{F}(k, v)$-th initial segment in CS-order.

Conversely, given a sequence $s^{r n-1}$ in X_{n-k}^{n-1} and in the $\stackrel{\nabla}{F}(k, v)$-th initial segment the forgoing argument provides a way to find an s^{n} in the v-th initial segment from which $s^{\prime n-1}$ is obtainable by deleting a 0 .
(ii) Use again the s^{n} described above and let $s^{\prime \prime n+1}$ be obtained by inserting a 1 before $s_{t_{\ell^{\prime \prime}}}, t_{i}^{\prime \prime}=t_{i}$ for $i<\ell^{\prime \prime}$ and $t_{i}^{\prime \prime}=t_{i}+1$ for $i \geq \ell^{\prime \prime}$.

Then $s_{t_{i}^{\prime \prime}}^{\prime \prime}=0$ for all i and for $i \leq j^{\prime \prime} t_{i}^{\prime \prime} \leq a_{i}+1$; for $i>j^{\prime \prime} t_{i}^{\prime \prime}=a_{i}+2=\left(a_{i}+1\right)+1$, if we choose $j^{\prime \prime}=\max (j, \ell-1)$.

Clearly, such an $s^{\prime \prime n-1}$ is in the $\stackrel{\Delta}{F}(k, v)$-th initial segment in the CS-order. The same argument gives also the reverse implication.

Proof of Theorem 1 (i) and (ii) by induction on n.
The cases $n=1,2$ are done by simple inspection. For any $\ell, m, j, C \subset X^{\ell}$, $D \subset X^{m}$, and $E \subset X^{j}$ let

$$
\begin{equation*}
C_{i}=\left\{\left(c_{1}, \ldots, c_{\ell-1}\right):\left(c_{1}, \ldots, c_{\ell-1}, i\right) \in C\right\}\left(\subset X^{\ell-1}\right) \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
D * i=\left\{\left(d_{1}, \ldots, d_{m}, i\right):\left(d_{1}, \ldots, d_{m}\right) \in D\right\}\left(\subset x^{m+1}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{E}_{i}=\left\{\left(e_{1}, \ldots, e_{j}\right): e_{j}=i \text { and }\left(e_{1}, \ldots, e_{j}\right) \in E\right\}\left(\subset \mathcal{X}^{j}\right) \tag{3.3}
\end{equation*}
$$

for $i=0,1$.
(i) for $n>2$.

Since $B_{0} \subset \nabla_{0} B,\left(\nabla_{0} B_{i}\right) * i \subset \nabla_{0} B(i=0,1)$ and $\left(\nabla_{0} B_{0}\right) * 0 \cap\left(\nabla_{0} B_{1}\right) * 1=\emptyset$, either $\left|\nabla_{0} B\right| \geq\left|B_{0}\right| \geq \stackrel{\nabla}{F}(k,|B|)$ or by (2.3) and induction hypothesis (IH) $\left|\nabla_{0} B\right| \geq$ $\left|\nabla_{0} B_{0}\right|+\left|\nabla_{0} B_{1}\right| \stackrel{* ~}{\stackrel{\nabla}{F}}\left(k-1,\left|B_{0}\right|\right)+\stackrel{\nabla}{F}\left(k,\left|B_{1}\right|\right) \geq \stackrel{\nabla}{F}(k,|B|)$, where $(*)$ is justified by $B_{0} \subset X_{n-k}^{n-1}$, and $B_{1} \subset X_{n-k-1}^{n-1}$.
(ii) for $n>2$.

Recall the definition of the operator " \wedge " in (3.3).
Considering $\triangle_{1} B=\left(\widehat{\triangle_{1} B_{1}}\right)_{1} \cup\left(\widehat{\triangle_{1} B}\right)_{0},\left(\widehat{\triangle_{1} B}\right)_{0}=\left(\triangle_{1} B_{0}\right) * 0, B * 1 \subset\left(\widehat{\triangle_{1} B}\right)_{1}$ and $\left(\triangle_{1} B_{1}\right) * 1 \subset\left(\widehat{\triangle_{1} B}\right)_{1}$, by (2.4) and IH ,

$$
\begin{gathered}
\left|\triangle_{1} B\right| \geq \max \left(|B|,\left|\triangle_{1} B_{1}\right|\right)+\left|\triangle_{1} B_{0}\right| \geq \\
\max \left(|B|, \stackrel{\rightharpoonup}{F}\left(k,\left|B_{1}\right|\right)\right)+\stackrel{\Delta}{F}\left(k-1,\left|B_{0}\right|\right) \geq \stackrel{\Delta}{F}(k,|B|)
\end{gathered}
$$

(iii) follows by Lemma 5 .

4. Proof of Theorem 2

Lemma 6. For the initial segment S in the H-order $\triangle S$ equals the $\stackrel{\triangle}{G}(n,|S|)$-th initial segment in the H-order, and ∇S equals the $\stackrel{\nabla}{G}(n,|S|)$-th initial segment in H-order.

Proof. By the definitions of the two orders and direct inspection, we first get, that for some k and m, and the m-th initial segment S^{\prime} (of level $n-k$) in the CS-order

$$
\begin{align*}
& S=\left(\bigcup_{\ell=0}^{n-(k+1)} X_{\ell}^{n}\right) \cup S^{\prime}, \tag{5.1}\\
& \Delta S=\left(\bigcup_{\ell=0}^{n-k} X_{\ell}^{n+1}\right) \cup \triangle_{1} S^{\prime}, \tag{5.2}
\end{align*}
$$

and

$$
\begin{equation*}
\nabla S=\left(\bigcup_{\ell=0}^{n-(k+1)} X^{n-1}\right) \cup \nabla_{0} S^{\prime} \tag{5.3}
\end{equation*}
$$

The rest of the proof follows from Lemma 5.
Proof of Theorem 2 by induction on n. For $n=2$ the statement is readily verified. From the IH for $n-1$ we proceed to n.

Next observe that, by convention (3.1) and (3.2), $\bigcup_{i=0}^{1}\left(\nabla A_{i}\right) * i \subset \nabla A, \bigcap_{i=0}^{1}\left(\nabla A_{i}\right) *$ $i=\emptyset$ and that therefore
$|\nabla A| \geq \sum_{i=0}^{1}\left|\nabla A_{i}\right| \geq \sum_{i=0}^{1} \stackrel{\nabla}{G}\left(n-1,\left|A_{i}\right|\right)$ (by the IH).
According to the ∇-inequality this can be lower bounded with the desired $\stackrel{\nabla}{G}(n,|A|)$, if $\left|A_{0}\right|,\left|A_{1}\right|<\stackrel{\nabla}{G}(n,|A|)$. Otherwise we have for some i $\left|A_{i}\right|=\max \left(\left|A_{0}\right|,\left|A_{1}\right|\right) \geq \stackrel{\nabla}{G}(n,|A|)$ and we are done again, because $\nabla A \supset A_{i}$.

The achievability follows from Lemma 6.

5. Proof of Theorem 3

The proof goes in exactly the same way as the proof of Theorem 1, (ii) (and the " \triangle_{1} " part of (iii)), except that here we use (2.6), Lemma 6 and the observations: $\triangle A=(\widehat{\triangle A})_{1} \cup(\widehat{\triangle A})_{0},\left(\triangle A_{i}\right) * i \subset(\widehat{\triangle A})_{i}$ and $A * i \subset(\widehat{\triangle A})_{i}($ for $i=0,1)$.

6. General isoperimetric theorems

We use now the calculus of iterative applications of $\stackrel{\nabla}{G}, \stackrel{\Delta}{G}$, and G described in Section 2 B.

Fortunately our Theorems 2,3 and Harper's Theorem ([3]) establish the Inheritance property for the operations ∇, \triangle, and $\Gamma_{d_{H}}^{1}$ (recall definition (1.13)). In the sequel, we abbreviate $\Gamma_{d_{H}}^{1}$ as $\Gamma_{d_{H}}$ and as Γ. If S is an initial segment in H_{-} order, then so are $\nabla S, \triangle S$, and $\Gamma_{d_{H}} S$. This enables us to apply these theorems repeatedly. Formally, we introduce

$$
\begin{align*}
& \nabla^{\ell} A=\nabla(\nabla \ldots \nabla(\nabla A) \ldots) \tag{6.1}\\
& \triangle^{\ell} A=\triangle(\triangle \ldots \triangle(\triangle A) \ldots) \tag{6.2}
\end{align*}
$$

and

$$
\begin{align*}
\Gamma_{d_{H}}^{\ell} A & =\Gamma(\Gamma \ldots \Gamma(\Gamma A) \ldots) \\
& =\left\{x^{n} \in X^{n}: d_{H}\left(x^{n}, a^{n}\right) \leq \ell \text { for some: } a^{n} \in A\right\} \tag{6.3}
\end{align*}
$$

and state the results.
Proposition 1. For every $A \subset \mathscr{X}^{n},|A|=u$
(i) $\left|\nabla^{\ell} A\right| \geq \nabla^{\circ \ell}(n, u)$
(ii) $\left|\triangle^{\ell} A\right| \geq \square^{\circ \ell}(n, u)$
(iii) $\left|\Gamma_{d_{H}}^{\ell} A\right| \geq G^{\circ \ell}(n, u)$
and all these bounds are achieved by the u-th initial segment in H-order.
Now we turn to the distances θ and δ in order to generalize Corollary 1. Here operations are combined and the commutative law for the numerical functions (Lemma 4 in Section 2) is needed.

Fortunately this commutative law holds also for the operations ∇, \triangle, and Γ ! Indeed, using the short notation

$$
\nabla\left\{x^{n}\right\}=\nabla x^{n}, \triangle\left\{x^{n}\right\}=\triangle x^{n}, \Gamma\left\{x^{n}\right\}=\Gamma x^{n}
$$

we see that

$$
\begin{equation*}
\nabla\left\{\triangle x^{n}\right\}=\triangle\left\{\nabla x^{n}\right\}, \Gamma\left\{\triangle x^{n}\right\}=\triangle\left\{\Gamma x^{n}\right\}, \nabla\left\{\Gamma x^{n}\right\}=\Gamma\left\{\nabla x^{n}\right\} \tag{6.4}
\end{equation*}
$$

Therefore the commutative law holds for every $A \subset \mathscr{X}^{n}$:

$$
\begin{equation*}
\nabla(\triangle A)=\triangle(\nabla A), \Gamma(\triangle A)=\triangle(\Gamma A), \nabla(\Gamma A)=\Gamma(\nabla A) \tag{6.5}
\end{equation*}
$$

Moreover, it is clear that for every $A \subset X^{n}$

$$
\begin{equation*}
\Gamma^{\ell} A \subset \nabla^{\ell}\left(\triangle^{\ell} A\right)=\triangle^{\ell}\left(\nabla^{\ell} A\right) \text { for } \ell \leq n \tag{6.6}
\end{equation*}
$$

Here strict inclusion can occur:

$$
\begin{equation*}
\Gamma(1,0)=\{(0,0),(1,0),(1,1)\} \neq X^{2}=\nabla(\triangle(1,0)) \tag{6.7}
\end{equation*}
$$

However, strict inclusion does not occur, if S is an initial segment in H-order.
Proposition 2. If S is an initial segment in H-order, $|S|=u$, then
(i) $\left|\triangle^{\ell}\left(\nabla^{\ell} S\right)\right|=\left|\nabla^{\ell}\left(\triangle^{\ell} S\right)\right|=\triangle^{\circ \ell} \quad \circ \nabla^{\circ \ell}(n, u)=G^{\circ \ell}(n, u)=\left|\Gamma^{\ell} S\right|$
and
(ii) $\Delta^{\ell}\left(\nabla^{\ell} S\right)=\nabla^{\ell}\left(\triangle^{\ell} S\right)=\Gamma^{\ell} S$.

Proof. For (i) the first equalities are justified by (6.6) and Proposition 1 and the last equality is (the easy) part of Harper's Theorem. The remaining equality follows from Lemma 4 with the choices $p=s=\ell, q=0$ and $p=s=0, q=\ell$, respectively: both quantities equal $\binom{n}{n}+\ldots+\binom{n}{k+1-\ell}+\binom{\alpha_{k}}{k-\ell}+\ldots+\binom{\alpha_{t}}{t-\ell}$. Notice that (i) and (6.6) imply (ii).

Now we consider arbitrary sets $A \subset X^{n}$ and the distances θ, δ.
Proposition 3. For any $A \subset X^{n}, r>0$ and any $\ell_{i}, \ell_{i}^{\prime}(i=1,2)$ with $\ell_{2}-\ell_{1}=\ell_{2}^{\prime}-\ell_{1}^{\prime}$ and $\ell_{2}<\ell_{2}^{\prime}$
(i) $\nabla^{\ell_{2}}\left(\triangle^{\ell_{1}} A\right) \subset \nabla^{\ell_{2}^{\prime}}\left(\triangle^{\ell_{1}^{\prime}} A\right)$
and
(ii) $\Gamma_{\theta}^{r} A=\bigcup_{\ell=-r}^{r} \nabla^{\lfloor(r+\ell) / 2\rfloor}(\triangle\lfloor(r-\ell) / 2\rfloor A)$

$$
=\bigcup_{\ell=0}^{r-1}\left[\left(\nabla^{\ell}\left(\triangle^{r-\ell} A\right)\right) \cup\left(\nabla^{\ell}\left(\triangle^{r-1-\ell} A\right)\right)\right] \cup \nabla^{r} A
$$

where by convention $\triangle^{0} A=\nabla^{0} A=A$.
Proof. Obviously, for all ℓ,

$$
\begin{equation*}
A \subset \nabla^{\ell}\left(\triangle^{\ell} A\right) \tag{6.8}
\end{equation*}
$$

and therefore by the commutative law (6.5)

$$
\begin{aligned}
& \nabla^{\ell_{2}}\left(\triangle^{\ell_{1}} A\right) \subset \nabla^{\ell_{2}}\left(\triangle^{\ell_{1}}\left(\nabla^{\ell_{2}^{\prime}-\ell_{2}}\left(\triangle^{\ell_{2}^{\prime}-\ell_{2}} A\right)\right)\right)= \\
& \nabla^{\ell_{2}}\left(\triangle^{\ell_{1}}\left(\nabla^{\ell_{2}^{\prime}-\ell_{2}}\left(\triangle^{\ell_{1}^{\prime}-\ell_{1}} A\right)\right)=\nabla^{\ell_{2}^{\prime}}\left(\triangle^{\ell_{1}^{\prime}} A\right)\right)
\end{aligned}
$$

and thus (i) is verified.
Again by (6.5) and the definition of distance θ

$$
\begin{equation*}
\Gamma_{\theta}^{r} A=\bigcup_{r_{1}+r_{2} \leq r}\left(\nabla^{r_{2}}\left(\triangle^{r_{1}} A\right)\right) \tag{6.9}
\end{equation*}
$$

Thus by (i) and (6.9)

$$
\begin{aligned}
\Gamma_{\theta}^{r} & =\bigcup_{\ell=-r}^{r} \bigcup_{\substack{r_{1}+r_{2} \leq r \\
r_{2}-r_{1}=\ell}}\left(\nabla^{r_{2}}\left(\triangle^{r_{1}} A\right)\right)=\bigcup_{\ell=-r}^{r}\left(\nabla^{\lfloor(r+\ell) / 2\rfloor}\left(\Delta^{\lfloor(r-\ell) / 2\rfloor} A\right)\right) \\
& =\bigcup_{\ell=0}^{r-1}\left[\left(\nabla^{\ell}\left(\triangle^{r-\ell} A\right)\right) \cup\left(\nabla^{\ell}\left(\Delta^{r-1-\ell} A\right)\right)\right] \cup \nabla^{r} A .
\end{aligned}
$$

We are now ready to state and prove the main result.
Theorem 4. For all $A \subset X^{n}$ and $r \geq 0$
(i) $\left|\Gamma_{\theta}^{r} A\right| \geq \sum_{\ell=-r}^{r} \nabla^{\circ\left\lfloor\frac{r+\ell}{2}\right\rfloor} \circ \stackrel{\Delta}{G}_{\left\lfloor\frac{r-\ell}{2}\right\rfloor}(n,|A|)$
and
(ii) $\left|\Gamma_{\delta}^{r} A\right| \geq \sum_{\ell=1}^{r}\left[\begin{array}{l}\nabla^{\circ \ell} \\ G\end{array} G^{\circ(r-\ell)}(n,|A|)+\stackrel{\triangle}{G}^{\circ \ell} \circ G^{\circ(r-\ell)}(n,|A|)\right]+G^{\circ r}(n,|A|)$,
where $G^{\circ 0}(n, u)=u$, and both bounds are achieved by the $|A|$-th initial segment in H-order.

Proof. By our definitions for $0 \leq \ell_{i}(i=1,2)$ and $n-\ell_{2}+\ell_{1} \geq 0$

$$
\begin{equation*}
\nabla^{\ell_{2}}\left(\triangle^{\ell_{1}}\left(\Gamma^{\ell_{0}} A\right)\right) \subset X^{n-\ell_{2}+\ell_{1}} \tag{6.10}
\end{equation*}
$$

(Here $\Gamma^{\ell_{0}}$ is only used for proving (ii).)
Therefore also

$$
\begin{equation*}
\nabla^{\ell_{2}}\left(\triangle^{\ell_{1}}\left(\Gamma^{\ell_{0}} A\right)\right) \cap \nabla^{\ell_{2}^{\prime}}\left(\triangle^{\ell_{1}^{\prime}}\left(\Gamma^{\ell_{0}^{\prime}} A\right)\right)=\emptyset, \quad \text { if } \ell_{1}-\ell_{2} \neq \ell_{1}^{\prime}-\ell_{2}^{\prime} \tag{6.11}
\end{equation*}
$$

and (i) as well as its optimality immediately follows from Proposition 3, (6.11) and Proposition 1 (applied twice).
(ii) Similarly to (6.9), we have also

$$
\begin{equation*}
\Gamma_{\delta}^{r} A=\bigcup_{r_{1}+r_{2}+r_{0} \leq r}\left(\nabla^{r_{2}}\left(\triangle^{r_{1}}\left(\Gamma_{d_{H}}^{r_{0}} A\right)\right)\right) \tag{6.12}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\Gamma_{\delta}^{r} A \supset \bigcup_{\ell=1}^{r}\left(\nabla^{\ell}\left(\Gamma_{d_{H}}^{r-\ell} A\right)\right) \cup\left(\Delta^{\ell}\left(\Gamma_{d_{H}}^{r-\ell} A\right)\right) \cup \Gamma_{d_{H}}^{r} A \tag{6.13}
\end{equation*}
$$

Hence (ii) follows from $(6.11),(6.13)$ and Proposition 1 (applied twice).
Finally, we have to show that the $|A|$-th initial segment in H-order S achieves equality.

By Proposition 2 (ii), Proposition 3 (i), (6.12) and (6.11), and by the monotonicity of $\Delta^{t}, \nabla^{t}, \Gamma_{d_{H}}^{t}$ in the sets it suffices to show that for all parameters $-r \leq \ell \leq r, \ell_{1}+\ell_{2}+\ell_{0}=r, \ell_{2}-\ell_{1}=\ell$, and $\ell_{i} \geq 0$ for $i=0,1,2$

$$
\nabla^{\ell_{2}}\left(\triangle^{\ell_{1}}\left(\Gamma^{\ell_{0}} S\right)\right) \subset \begin{cases}\nabla^{\ell}\left(\Gamma^{r-\ell} S\right), & \text { if } \ell_{2}>\ell_{1} \\ \triangle^{|\ell|}\left(\Gamma^{r-|\ell|} S\right), & \text { if } \ell_{2}<\ell_{1} \\ \Gamma^{r} S, & \text { if } \ell_{2}=\ell_{1}\end{cases}
$$

Let us abbreviate $\nabla^{\ell_{2}}\left(\triangle^{\ell_{1}}\left(\Gamma^{\ell_{0}} S\right)\right)=L$.
Using Proposition 2 (ii) and Proposition 3 (i) we show the desired inclusions. Case $\ell_{2}>\ell_{1}$.

$$
\begin{aligned}
L & =\nabla^{\ell_{2}-\ell_{1}}\left(\nabla^{\ell_{1}}\left(\triangle^{\ell_{1}}\left(\Gamma^{\ell_{0}} S\right)\right)\right) \\
& =\nabla^{\ell}\left(\Gamma^{\ell_{1}}\left(\Gamma^{\ell_{0}} S\right)\right)=\nabla^{\ell}\left(\Gamma^{\ell_{1}+\ell_{0}} S\right)=\nabla^{\ell}\left(\Gamma^{r-\ell_{2}} S\right) \\
& \subset \nabla^{\ell}\left(\Gamma^{r-\ell} S\right)\left(\text { as } \ell_{2}>\ell_{1} \geq 0, r-\ell_{2} \leq r-\ell\right)
\end{aligned}
$$

Case $\ell_{2}<\ell_{1}$.

$$
\begin{aligned}
L & =\Delta^{\ell_{1}-\ell_{2}}\left(\triangle^{\ell_{2}}\left(\nabla^{\ell_{2}}\left(\Gamma^{\ell_{0}} S\right)\right)\right) \\
& =\Delta^{|\ell|}\left(\Gamma^{\ell_{0}+\ell_{2}} S\right)=\Delta^{|\ell|}\left(\Gamma^{r-\ell_{1}} S\right) \\
& \subset \Delta^{|\ell|}\left(\Gamma^{r-|\ell|} S\right) \quad\left(\text { as } \quad 0 \leq \ell_{2}<\ell_{1}, r-\ell_{1} \leq r+\ell=r-|\ell|\right)
\end{aligned}
$$

Case $\ell_{2}=\ell_{1}$.

$$
L=\nabla^{\ell_{1}}\left(\triangle^{\ell_{1}}\left(\Gamma^{\ell} S\right)\right)=\Gamma^{\ell_{0}+\ell_{1}} S \subset \Gamma^{r} S
$$

References

[1] J. B. Kruskal: The number of simplices in a complex, in: Mathematical optimization Techniques, Berkeley and Los Angeles, 1963, 251-278.
[2] G. Katona: A theorem on finite sets, in: Theory of Graphs Proc. Colloq. Tihany 1966, Akadémiai Kiadó, 1968, 187-207.
[3] L. H. Harper: Optimal numberings and isoperimetric problems on graphs, J."Combin. Theory, 1 (1966), 385-393.
[4] J. Eckhoff and G. Wegner: Über einen Satz von Kruskal, Periodica Math. Hungar., Vol 6 (2) (1975), 137-142.
[5] R. Ahlswede, P. GÁcs, and J. Körner: Bounds on conditional probabilities with applications in multiuser communication, 2. Wahrsch. und Verw. Gebiete, Vol. 34 (1976), 157-177.
[6] G. Katona: The Hamming sphere has minimum boundary, Studia Sci. Math. Hungar., 10 (1975), 131-140.
[7] R. Ahlswede and G. Katona: Contributions to the geometry of Hamming spaces, Discrete Math, 17 (1977), 1-22.
[8] D. E. Daykin: Oral communication.
[9] R. Ahlswede: Report on work in progress in combinatorial extremal theory: Shadows, AZ-identities, matching, SFB 343 Diskrete Strukturen in der Mathematik, Universität Bielefeld, Preprint (Ergänzungsreihe).
[10] I. Anderson: Combinatorics of Finite Sets, Clarendon Press, Oxford, 1987.
[11] B. Bollobás: Combinatorics, Cambridge University Press, 1986.

```
Rudolf Ahlswede
Universität Bielefeld
Fakultät für Mathematik
Postfach 100131
33501 Bielefeld
Germany
hollmann@mathematik.uni-bielefeld.de
```

Ning Cai
Universität Bielefeld
Fakultät für Mathematik
Postfach 100131
33501 Bielefeld
Germany
cai@mathematik.uni-bielefeld.de

[^0]: * A referee kindly pointed out to us that the equivalence of Theorem 2 and Theorem 3 can be derived with a theorem in "Variational principle in discrete extremal problems" by Bezrukov (Reihe Informatik Bericht tr-ri-94-152, Universität-GH-Paderborn).

