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1. I n t r o d u c t i o n  a n d  r e s u l t s  

One of the basic results in extremal set theory was discovered in [1] and 
rediscovered in [2]: For a given number of k-element subsets of an n-set the shadow, 
that  is, the set of ( k -  1)-element subsets contained in at least one of the specified 
k-element subsets, is minimal, if the k-element subsets are chosen as an initial 
segment in the squashed order (see [10]; called colex order in [liD, that  is, a k- 
element subset A precedes a k-element subset B, if the largest element in A A B  

is in B. A closely related result was discovered in [3] and rediscovered in [5]: 
For a given number u C [0,2 n] of arbitrary subsets of an n-set the "Hamming 
distance 1"-boundary is minimal for the initial segment of size u, also called in short 
"u-th initial segment", in the H-order  (of [3]), that  is, if one chooses all subsets 
of cardinality less than n -  k (k suitable) and all remaining subsets of cardinality 
n -  k, whose complements are in the initial segment of the squashed order. 

In this paper we consider sequences and subsequences rather  than sets and 
subsets. 

n 
The basic objects are X n = 1-I x for X = {0,1} and n E N, and operations of 

deletion Vi, V and of insertion Ai, A. Here Vi (resp. Ai)  means tha t  letter i 
(i = 0,1) is deleted (resp. inserted) and V (resp. A) means the deletion (resp. 
insertion) of any letter. 

So for A C X  n we get the down shadow 

(1.1) v A  = {x  n -1  C 22 n-1  : x n -1  is subsequence of some a n C A }  

and the up shadow 

(1.2) A A  = {x  n+l E oT n+l  : some subsequence of x ~+~ is in A}. 
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In other words, v A  are all sequences of length n -  1 obtained by omitting 
any letter in the sequences of A. Then viA are all those sequences obtained by 
omitting the letter i. Clearly, 

(1.3) v A  = V0 A u  v1A 

and analogously 

(1.4) AA = A0A U A1A. 

We describe now our results. 

A. Shadows  for f ixed level a n d  specific l e t t e r  

The g-th level is the set of sequences (or words) 

(1.5) X~={xnEXn:~-~xt=g} " t = l  

We consider sets B C X nn_k of cardinality v, 0 < v < (2), and their shadows 

V0 B, A I B  (the other shadows can be estimated similarily by symmetry). 
The unique binomial representation of v is 

(akk) (ak_l) (a:) 
(1.6) v = + \k- 12 +"" + 

(with a k > a]~_ 1 > . . .  > as > s_> 1). 
Whereas Katona used in [2] and also in [6] the function F: 

(1.7) F(k,v): (kakl)+ \ k _ 2 / +  . + ( s a S l ) ,  

V A 
we  introduce and need here the functions F and F,  which play the analogue roles 
for the new shadow problems: 

V (ak-l" ~ (a 1) {as-l~ 
+ +  \ s - l /  (1.8) 

and 

(1.9) 
A 

+\ k-1 +"+ 
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Theorem 1. For all B C , ~ _  k with [Bl=v 

v 
(i) IVoB] > _ F ( k , v ) ,  

A 
(ii) [AIBt>_F(k,v), 

and 
(iii) both bounds are optimal. 

B. Shadows of a rb i t r a ry  sets  u n d e r  de le t ion  of any  le t t e r  

For any integer u E [0, 2n] we use the unique binomial representation 

(1.10) (:) (:0 u =  + ' " +  k + l  + + ' " +  

(with n > c~ k > ... > at _> t _> 1) and observe that for an initial H-order segment S 
with lsl =~ 

[ V S [ - - ( : - 1 1 ) +  (n  n - ~ ) +  + ( n - l )  ( a  k - l ~  ( a t - l ~  
' k + \ k - 1 / + + k t - 1 /  

V 
(1.11) =G (n,u), say. 

V 
Theorem 2. For every A C X  n, IrA[ ~C(n ,  [A[) and the bound is achieved by the 
]A[-th initiM segment in H-order. 

This result was first obtained by D. E. Daykin and T. N. Danh [8]. We are 
grateful to David for his dramatic story about the complexity of their (first) proof. 
It gave us the impetus to (quickly) find a proof with fairly lengthy calculations with 
binomial coefficients. Subsequently Daykin-Danh gave also another proof, which 
can be found in the collection [9]. Then we gave a very "short proof" in [9] based 
on Lemma 6 of [6] and our inequality (2.5) below. Unfortunately, as was kindly 
pointed out by David, the original proof of (2.5) has an error in equation (6) of [9]. 

C. Shadows of a rb i t r a ry  sets unde r  inser t ion  of any le t te r  

For u in the representation (1.10) we define 

A + ~ ) + ( n +  + ~ ) + ( a k ;  1 ) 1).  
(1.12) G ( n , u ) =  ( : +  n 1 ) + ' " + ( k +  + . . . + ( a t /  
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A 
Theorem a. *For every A CX n, I~AI ~ c  (n, IAI), and the bound is achieved by the 
IA[-th initial segment in H-order. 

Remarks. 
1. It must be emphasized that  the H-order minimizes simultaneously both, the 

lower and the upper shadows. There is no such pJ~enomenon in the Boolean 
lattice for "Kruskal-Katona"-type shadows. I t  has immediate consequences 
for isoperimetric problems. 

2. Theorem 1 can be derived easily from Theorems 2 and 3 like Kruskal-Katona's 
Theorem from Harper's Theorem. 

D. Two isoperimetric inequalities 

It has been emphasized in [7] that isoperimetric inequalities in discrete metric 
spaces are fundamental principles in combinatorics. The goal is to minimize the 
union of a specified number of spheres of constant radius. We speak of an isoperi- 
metric inequality, if this minimum is assumed for a set of sphere-centers, which 
themselves form a sphere (or quasi-sphere, if numbers do not permit a sphere). 

oo 
For any A CoT* = [.J X n and any distance d we define (the union of spheres 

n = 0  

of radius r) 

(1.13) F~(A)=  {x n` E X * : d ( x n ' , a  n) <_ r for some a n ~ A}. 

A prototype of a discrete isoperimetric inequality is the one discovered in [3], 
rediscovered in [5], and proved again in [6]. Here d equals the Hamming distance 
dH and is defined on X n • X n. 

We recall the result. For 

(1.14) G(n,u)= ( : ) +  ( n n - I ) + ' " +  ( ~ ) +  (ka-kl )  + ' ' +  ( t ~ t l )  

and any A CX n 

(1.15) IF~H(A)I > a (n ,  IAI) 

and the bound is achieved by the IAl-th initial segment in H-order (this is a sphere 
h 

of radius k, if IAI= 2 (9)). 
j=0 

* A referee kindly pointed out  to us t h a t  the  equivalence of T h e o r e m  2 and  T h e o r e m  3 can 

be derived wi th  a t heo rem in "Variat ional  principle in discrete ex t remal  problems"  by Bezrukov 

(Reihe Ia format ik  Bericht  t r - r i -94 -152 ,  U n i v e r s i t g t - G H - P a d e r b o r n ) .  
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We define now two distances, ~ and 5, in X*. For xm,y m' E X* ~(xm,y m') 
counts the minimal number of insertions and deletions which transform one word 
into the other. ~(xm,y m') counts the minimal number of operations, if also ex- 

changes of letters are allowed. Thus f(x m, ym') ~ ~(x m, ym'). 
Now observe that  from (1.15) and our Theorems 2 and 3, we get immediately 

two inequalities. 

Corollary 1. For A CX n 
v A 

(i) F~(A) _<g (n, IAI)+ g (n, IAI), 
v A 

(ii) F~(A) <g(n, IA])+g(n, [A])+g(n, IAI), 
and both bounds are achieved by the IA]-th initial segment in H-order. 

Moreover, in Theorem 4 of Section fi we have established those inequalities for 
every radius r. The exact formulation and the proof require a technical setup. 

2. Aux i l i a ry  resu l t s  

A. N u m e r i c a l  inequa l i t i es  

While working on [7] Gyula Katona drew attention to the approach of Eckhoff- 
Wegner [4] to prove Kruskal-Katona via the following inequality for F,  defined in 
(1.7). 

Lemma 1 (see [4]). For k>!,  v~vo§  

(2.1) F(k,v) ~ max(vo, F(k, Vl)) Jr F(k - 1, v0). 

In fact, he used this idea also in his proof of the isoperimetric inequality for 
the Hamming space. He j u s t  had to establish the corresponding inequality for G, 
defined in (1.14). 

Lemma 2 (Lemma 6 of [6]). IfO~u] ~_uo and u~_uo+ul, then 

(2.2) G(n, u) ~ max(u0, G(n:- 1, Ul)) ~ - G i n -  1, uo). 

~7 A V 
The discoveries in the present paper are similar inequalities for F ,  F,  G, and 

A 
G (defined in (1.8), (1.9), (1.11), and (1.12)), which for cardinalit~eS of shadows 
resp. boundaries considered describe their values for segments in the H-order. 

We state first the inequalities for F.  They are proved in the same way as those 
for G below. 
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V V 
F - i n e q u a l i t y :  For k > 1, if v < vo + Vl and vo < F  (k, v), then 

(2.3) 
V x7 
F ( k , v )  < F ( k ,  V l ) - F ~ ( ~ - I , v 0 ) .  

A 
F - i n e q u a l i t y :  For k > 1, if v_<vo +Vl, then 

zk A 
(2.4) F (]r _~ max(v 0 + Vl~ F (~:, Vl))-~- F (~ - ],vo). 

Next we derive the inequalities for G. 

V V 
G- inequa l i t y :  If w~ <_wo <G(n,w) and w <_wo+ wl, then 

(2.5) 
V V V 
G (n,w) <_a ( n -  1,wo)+ a ( n -  1,Wl). 

s 
G- inequa l i t y :  If 0~U 1 <u0,  u~u0-FUl ,  then 

A & A 
(2.6) o (~ ,~ )<  max(~o + ~ ,  a ( ~ -  1,~,1))+ O ( ~ -  1, ~o). 

Proofs. From the definitions of the numerical functions we have 

z2 
G(n, u) + u =G (n, u) for u a s m ( 1 . 1 0 )  

and the equivalence of (2.2) and (2.6) immediately follows. 
Next we show (2.5). For u as in (1.10) denote by gn(u) and rn(u) the smallest 

j with a j  > j  and the number of i's with ai=i  , respectively. 
Let 

~(n 1) A V - = ~ - G ( n , ~ )  

(2.7) = ( : -  ll) -F ' "  + ( k - ~ ) - F  ( a k k - - l )  + . . .  ( a g ~ ( u ) - l ) .  
+ + ~ en(~) 

By (1.11) and (1.14) 

V ( : - 1 1 )  ( n - l )  ( a k - l ~  (c~g~(u)~)  + r n ( u )  
a (n, u) = + ' " +  k + \ k - l /  + " "  + \ gn(U) 

(2.8) = a(n  - 1,~(n - 1)) + rn(u). 

Moreover by the binomial coefficient representation 

n ( ~ ( u )  ~ if at = t =  1 (~) + " "  + (k+~) + ( ~ )  + ' ' "  + 
(2.9) U -t- 1 : (n) -~- ~- (k+l)n __ (~k) -k + ~,~n(u)-l](c~t) .~ (tt~_l) otherwise 
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(1.11) implies 

V ,{ ~ (n, u) otherwise.if at = t =  1 (2.10) G ( n , u + l ) =  ~ ( n , u ) + l  

By the definition of binomial coefficient representation, g(n - 1) in (2.7) is 
non-decreasing in u for fixed n (c.f. (2.9)). 

For wl, w0 and w with 

(2.11) 

and 

(2.12) 

V 
wl < wo < a  (n, u) 

w < w0 + Wl, 

we let w* =w, if r n ( w ) = 0 ,  and otherwise 

n ( ~ n ( w )  
- 

(2.13) = w - rn(w)  + gn(w),  

if the representation of w is 

w =  + ' " +  k1+ l  + \ M ]  + ' " +  

( : )  ( n  i ) ( / 3 k , ~  (/3~n(w)~ (~n(w)- - l )  = + " +  k'+ + \ k ' ] + +  + + 

" +  

Write 

(2.14) w ; = w o + ( w * - w )  and w~=wl .  

Then by the definitions of w*, w;, w~, and (2.10) (used'repeatedly), 

(2.15) rn(W*) = O, 

( 2 . 1 6 )  

and 

v = 3  �9 
G(n,w*) (n, w) + (w* - w) - l, if w*7 ~w, 

v v 
(2.17) G ( n -  1,w~) ~G ( n -  1, wo) + (w* - w) - ~-(w~), 
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where T(w;) = 1, if rn-l(W~))= 0 and w; r wo, and ~-(w~) = 0 otherwise. So, by 
(2.11), (2.14), and (2.16) 

(2.18) w~ < ~; <~ (~, ~*), 
which with (2.7), (2.8) and (2.15) yields 

~ ( n -  2 ) +  G(n-  2 ,~;(n-  2)) = w~- ~ (n -  1, w~) + G(n-  2, ~ ( n -  2)) 

= w~ - -  rn_l(W;) < w~ ~_~ (n, w*) 

(2.19) = V(n - 1,~*(n - 1)). 

Moreover, by the first inequality in (2.18) and the monotonicity of ~ ( n - 1 )  (as 
a function of u), 

(2.20) ~ ( ~  - 2) _< ~ ; ( ~  - 2). 

Now we assume that (2:5) does not hold and derive a contradiction. With 
(2.12) we obtain 

(2.21) 
v V V 

w -  G (n,w) < w o -  G ( n -  1 , w 0 ) + W l -  a ( n -  1,wl).  

When w* # w then by (2.7) and (2.16) the LHS of (2.22) is w -  G (n,w*) + 
( w * - w ) - l = ~ * ( n - 1 ) - I  and by (2.7), (2.14) and (2.17) the RHS of (2.22) is not 

v 
bigger than w 0 -  G ( n -  1, w~) + (w* - w) - T (w~)) + ~  ( n -  2) _ ~ ) ( n -  2) + ~  ( n -  2). 

Thus we have 

(2.22) ~*(~  - 1) < ~ ; ( ~  - 2) + ~ ( n  - 2). 

By our notation in (2.7), (2.21) certainly implies (2.22), when w* = w (so 
~; =~0). 

Finally, with (2.19), (2.20), and (2.22) we obtain from Lemma 2, 

(2.23) G(n - 1,W*(n - 1)) _< G(n - 2,@~(n - 2)) + G(n - 2,@~(n - 2)). 

This implies (2.5) (a contradiction to our assumption), because by (2.8), (2.15), 
and (2.16) the LHS of (2.23) is 

v {b(~,~)+~*-w-1 
G (n,w*) = v 

C (n, w) 

if w r w*, 

if w = w* (note r~(w) = O) 
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and by (2,8), (2.14), and i2.17) the RHS of (2.23) is 

v 
G i n - 1 , w ; ) +  a ( n - 1,w~) - ( r n - l ( w ~ ) +  r n - l ( w { ) )  

~7 v 
_<G (n - 1, wo)+ G (n - 1, Wl) + w* - "u., - T (W;)  -- ( r n _  1 (W;)  -t- rn--1 iW~) ) 

V V {W*- -W--1  if WT~W* 
_ < G ( n - l , w o ) + G ( n - l , w l ) +  0 if w = w * ,  

~7 z~ 
B. A calculus of  iterative applications for G, G, and G 

We present here a rather technical result (Lemma 4 below), which is needed 
only for the proof of Theorem 4. Recall that  for u, 1 < u <  2 n, 

u =  + ' " +  k + l  + + \ k = l , ]  + ' ' ' +  t ' 

a ( n , ~ ) =  + . . . +  + + ~ +\k_l/+...+\t_l/, 
G(n,~) = 

and 
A 
G in, u) = 

(n) (;) 
+ ' " +  k + l  + + k - 1  + ' " +  t - 1  ' 

(: 0+ + (;::)+ 
All these functions are increasing in u and they transform binomial represen- 

tations into binomial representations. This makes it easy to apply them repeatedly. 

v 
We notice that  the representation of G in, u) may be not unique, due to the 

appearance of the term (0~ However, it causes no difficulties to apply the functions, 

V 
because both representations (if they exist) always give the same result, when G, 

zX 
G or G are applied. More specifically, the non-uniqueness happens only when 
c ~ t = t = l  in (1.10), and with the notation i n i u ) = g  (say) in the proof of (2.5), 

o ( ~ , ~ ) =  + " +  k+  + k + \ k - ] / + "  
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= + . . . +  + \ k _ l / + . . . + \ e _ l ] +  = ~  s~y.  

For the first representat ion of v 

G (n - 1 ,  v) = 

a(Tz - 1, ~) = 

( ~ k - l ~  ... ( ~ - ~  - 

and~ 

A n ct k oz~ 2 1 
G ( n - l , v )  = ( : ) + . . . + ( k ) + ( ~ _ l ) + . . . + ( g _ l ) + ( g g - 1 2 ) + . . . + ( ! ) - t - ( 0 ) ,  

and for the second representat ion of v, 

a ( ~ - ~ , ~ ) =  + . . . +  + \ ~ _ 2 1 + . . . + \ e _ ~ / +  , 

- - ( a k - l ' ~  . . .  { a e - 1 )  - (: : ) +  + + , I 
and 

C ( n - l , v ) =  + . . . +  + k - 1  + ' " +  s  + g - 2  " 

They  really have the same values. 

For two functions r ~ :  N - *  N we write r 162  as ~ o r  and thus we can 
define 

(2 .24)  
~7 ~p ~ ~ 
C ( n , - ) : G ( n - p + l , . ) o G ( n - p + 2 , . ) o . . o G ( n , . ) ,  

(2.25) a~ .) = a(~, .) o a ( n ,  .) o . . .  o a ( ~ ,  .), 

and 
A ~ A A 

(2 .26)  a (~, .) =C (~ + 8 - 1, .)o C (~  + 8 - 2, .) o. o C (~, .) 

with p, q, and s factors, respectively. 
vOP Aos ~op 

We can also define G ( n + s , . ) o C  (n,.), G~ etc. 

Direct ly fl'om the definitions the functions in (2.24) - (2.25) can be calculated. 
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L e m m a  3. 

v~ 
(2.27) a 

(2.2s) 

an(] 

(2.29) G (n,u) = + 

With the convention ( k ) = 0  for ~ < 0 

(~'~) = + +  k + l - ;  \ k - p /  \ t - ; i  

n 
G~ (nn) +.. + (k+l_q )+(kakq )+ . . .+ ( ta tq ) ,  

Here (2.28) is well-kn0wn from the isoperimetric theorem in the Hamming 
space. 

Another important property of G-type functions is the commutativity of the 
o-operation: 

V V 
C oC(~, ~) = Co c (n, ~) = 

(2.30) ( n - i ) + " ' + ( n ; l ) + ( k - : ) + [ a k - l ~ \ k - 2 , ]  
+ +  \ ~ - 2 / '  

(2.31) 

and 

(2.32) 

v A A V? 

A A 
Co c (~, ~) = c  oC(n, ~) = 

( n + l ~  [n+l~ ( n + l ) ( a k  -k 1 ~ [at + i'~: 
n + l / + ' " + \ k + l ] +  k + \ k - l J + ' " + \ t - l ] "  

Applying (2.27) - (2.29) and (2.30) - (2.32) repeatedly or by calculation we 
establish general rules. 

Lemma 4. We h~ve 
vOP AOS ~op Aos 
c 0C~ ( ~ , ~ ) = C  o C oC~ 

voP A os AOS voP 
.~G~ o G  (~,~) : G ~  o.G (n,~), 

A ds FoP AOS Vor 
=C oC oC~ oC~ (n,~) 
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+ s \ n + s - p - 1  k + l - p - q  

(oq~ + s - p~ (o~t + s - p~ 
(2.33) + \ k - p - q J  + ' " +  \ t - p - q /  

for u as in (1.10), O<p, q, s. 

3. P r o o f  o f  T h e o r e m  1 

Denote an initial segment in squashed order (see [10]) over X~ by S and write 

for the set of complements of the members of S. Thus S C35~_ k and [51 = ISI = v, 

say. We speak here about  the complementary squashed order or in short about  the 
CS-order. 

We consider first V0 S and A1S. 

Lemma 5. For the initial segment  -S defined above 

_ V 

(i) V o  S is the F ( k , v ) - t h  initial segment  in the CS-order on X n -1  n--lc 

and 
A 

-- ~'n+l (ii) G1S is the F ( k , v ) - t h  initiM segment  in the CS-order on , ,On+l_ k. 

Proof. (i) We use the expansion (1.6) for v and look at any s n ES: 

s t i = 0  for i = 1 , 2 , . . . , k  and 1 < _ t l K t 2 K . . . K t k K _ n .  

By the definition of the CS-order there must be a j such that  for all i E (j, k] 
ti = ai + 1 and for all i <_ j ti <_ aj.  Now suppose that  we delete for some index g 
sty. We can assume that  s t~- i  = 1, because otherwise we can delete Stz-1 and get 

! 
the same subsequence. Let s !n-1 be  t h e  resulting subsequence, t i = ti for i < g and 

t ~ _ l =  Q for i>g .  

f <a j ,  - 1 ,  for i > j ! - i  Choose now j l =  max(g, j )  and notice that  for i G J - -  1, ~i 

G 1  1, and for aHi =0. 

v 
Therefore the resulting subsequence s !n-1 falls into the F (k,v)- th  initial 

segment in CS-order. 

27 
Conversely, given a sequence s m - 1  in 3Y n-1 and in the F (k,v)- th initial 

segment the forgoing argument provides a way to find an s n in the v-th initial 

segment from which s In-  1 is obtainable by deleting a 0. 
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(ii) Use again the s n described above and let s tln+l be obtained by inserting 

t"  -- t g". a 1 before stt,,, i - ~ for i < gtt and " t i = t i + l  for i >  

Then " s . = 0 f o r a l l i a n d f o r i < j "  it< > j .  . _  t~ _ t i _ a i + l ;  for i t i - a i + 2 = ( a i + l ) + l ,  

if we choose jtt = m a x ( j , g -  1). 

A 
Clearly, such an s "n -1  is in the F (k,v)-th initial segment in the CS-order. 

The same argument gives also the reverse implication. I 

Proof  or Theorem 1 (i) and (ii) by induct ion on n. 

The cases n = 1, 2 are done by simple inspection. For any g, m, j ,  C C ~g,  

D C 3 2  m, and E C X  j let 

(3.1) Ci  = { ( C l , . . . , C g _ l ) :  ( e l , . . . , c g ._ l , i )  E C } ( C X g - 1 ) ,  

(3.2) 

and 

D , i =  { ( d l , . . . , d m , i )  : ( d l , . . . , d m )  E D } ( C  X m + I ) ,  

(3.3) E i = { ( e l , . . . , e j ) : e j = i  and ( e l , . . . , e j )  E E } ( c X  j )  

for i=0 ,1 .  

(i) for n > 2. 

Since Bo C Vo B, (VoBi) * i C VoB(i  = 0,1) and (VoBo) * 0 N (VoB1) �9 1 = 0, 
V 

either IvoBI _> 1Bol _>F(k, IBI) or by (2.3) and induction hypothesis (IH) IVo B[ > 
�9 v V v 

IVoBol + IVoB1 [ _>F (k - 1, tBol)+ F (k, IBI[) >F (< IBI), where (*) is justified by 

B 0 C ~  n -1  and B1 r-,~sn-1 
n - k '  "- n - k - l "  

(ii) for n > 2. 

Recall the definition of the operator "A" in (3.3). 

Considering A1B = (AIB1) 1 tO (A1B)0 , ( f l B ) 0  = (~IBO) �9 0, B * 1 C (A1B)I  

and ( A 1 B 1 ) , I C ( A 1 B ) I  , by (2.4) and IH, 

Jzx~Bf _> max(FB1, tAIBlr) + rZX~Bol > 
A A A 

max(lB[, F (k, [B~I))+ F ( k -  1, IBol) _>r (k, IBI). 

(iii) follows by Lemma 5. | 
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4. P r o o f  o f  T h e o r e m  2 

Lemma 6. For the inRial segment S in the H-order A S  equals the G (n, IS])-th 
v 

initial segment in the H-order, and v S  equals the G (n, lsl)-th initial segment in 
H-order. 

Proof.  By  the definitions of the two orders and direct inspection, we first get, tha t  
for some k and m, and the m- th  initial segment S / (of level n -  k) in the CS-order 

(s.1) "--k 

(5.2) 

and 

(5.3) 

n-k (u .+1] 
=- \~_OXg / U 

The rest of the proof  follows from Lemma 5. 

P r o o f  of  Theorem 2 by induct ion on n. For n = 2 the s ta tement  is readily verified, 
From the IH for n - 1  we proceed to n. 

1 1 
Next  observe that ,  by convention (3.1) and (3.2), U ( vA i )* i c  v A ,  A (~7Ai)* 

i=0 i=0 
i = ~ and tha t  therefore 

1 1 v 
IvA[>_ ~ [vAil > _ ~ G ( n -  l,Idit) (by the IH). 

i=0 i=0 

According to the v - inequa l i ty  this can be lower bounded  with the de- 

V 
sired G (n, lAI) , if IA01,1All < G  (n, lAI). Otherwise we have for some i 

V 
I&l =max(IA01, IA l l )> -a (~ ,  IAI) and we are done again, because v A o & .  

The achievability follows from Lemma 6. | 
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5. Proof of Theorem 3 

The proof goes in exactly the same way as the proof of Theorem 1, (ii) (and the 
"AI" part of (iii)), except that here we use (2.6), Lemma 6 and the observations: 

i ~ i i 

AA = (AA)I U (AA)0, (AAi) �9 i C (AA)i and A*i  C (AA)i (for i = 0,1). 

6. G e n e r a l  i s o p e r i m e t r i c  t h e o r e m s  

V A 
We use now the calculus of iterative applications of G, G, and G described in 

Section 2 B. 

Fortunately our Theoremg 2, 3 and Harper's Theorem ([3]) establish the In- 

heritance property for the operations V, A, and F 1 (recall definition (1.13)). In dH 
the sequel, we abbreviate FldH a s  FdH and as F. If S is an initial segment in H- 

order, then so are v S ,  AS, and FdHS. This enables us to apply these theorems 
repeatedly. Formally, we introduce 

(6.1) 

(s.2) 

and 

(6.3) 

yea  = v ( v . . ,  v (vx) . . . ) ,  

AeA = A(A...A(AA).. .) ,  

rJ A= r(r . . . r ( rA). . . )  
= {x n 6 X n : d H ( x  n,a n ) <e  for some' a n 6 A }  

and state the results. 

Proposition 1. For every A C X  n, IA[ =u 
~o~ " 

(i) IveA[>_C (n,u) 
Ao~ 

(ii) [AgAJ_>G (n,u) 

(iii) JreA I_> a~ 
and all these bounds are achieved by the u-th initial segment in H-order. 

Now we turn to the distances 0 and 5 in order to generalize Corollary 1. 
Here operations are combined and the commutative law for the numerical functions 
(Lemma 4 in Section 2) is needed. 

Fortunately this commutative law holds also for the operations V, A, and F! 
Indeed, using the short notation 

v { x  ~ } = v x  ,~, A { x  n } = A x  n, F { x  n } = r x  n, 
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we see that  

(6.4) v { A x  n} = Z~{Vxn}, r{z~x ~} = z~{r~n}, v { r x  ~} = r { w ~ } .  

Therefore the commutative law holds for every A c x n :  

(6.5) v ( A A )  = A(vA) ,  F(AA) = A(FA), v (FA)  = F(vA) .  

Moreover, it is clear that  for every ACYT n 

(6.6) I'~4 C Vl(AgA) = Ae(vgA) for g < n. 

Here strict inclusion can occur: 

(6.7) C(1,0) = {(0,0), (1,0), (1, 1)} # X  2 ---- v (A(1 ,0 ) ) .  

However, strict inclusion does not occur, if S is an initial segment in H-order. 

Proposition 2. If S is an initial segment in H-order, ISI =-% then 

AOl vO~ 
(i) IAe(v~S)I=Ive(A~S)I=a oa (n,~)--a~ 

and 
(ii) A e ( v e S )  = V ~ (Aes )  = r~s .  

Proof. For (i) the first equalities are justified by (6.6) and Proposition 1 and the 
last equality is (the easy) part of Harper's Theorem. The remaining equality follows 
from Lemma 4 with the choices p = s = g, q = 0 and p =' s = 0, q = g, respectively: 
both quantities equal (n) + ... + (k+r~_l) + (ka_k) + ... + (tart). Notice that  (i) and 

(6.6) imply (ii). | 

Now we consider arbitrary sets A C X  n and the distances 0, 6. 

Proposition 3. For any A C X  n, r > 0  and any 6i,e~ (i= l, 2) with 62-61 =gt 2 --6 i 
and 62 < 6~2 

(i) Ve2(AelA)cve'~(AeIA) 

and 
T 

(ii) F~A= U vL(r+e)/2](zxL(r-e)/2jA) 
r - -1  

= U ureA, 
s 

where by convention AOA= v ~  =A.  

Proof. Obviously, for all 6, 

(6.8) A C Vi(AeA) 
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and therefore by the commutative law (6.5) 

V*~(A*~A) c V *~ (~*' (vt~-*~(zJ~-*~A))) = 
vt~ (At, (vt'~-*~ (At~-~A)) = Vt~ (A*~A)), 

and thus (i) is verified. 
Again by (6.5) and the definition of distance t~ 

(6.9) r~A= U (Vr2 (At*A))" 
rl+r~_<r 

Thus by (i) and (6.9) 

T 
r~ : U U (Vr2 (/~rl A)) ---- U (~L(?'d-~)/2J(/~L(T-~)/2JA)) 

r2--rl=s 

r-1 

=U | 

We are now ready to state and prove the main result. 

Theorem 4. For all A C X  n and r >_O 

~o[~j ~[~j 
(i) Ir~Al> ~ G oG (n, lAI) 

~ = - r  

and 

(ii) Ir~Al> E oe Ao, 
_ oG~ lAI)+G oG~ lAI) +G~ IA[), 

where G~176 and both bounds are achieved by the [AI-th initial segment in 
H-order. 

Proof. By our definitions for 0 < t i  ( i=1,2)  and n - t 2  +gl  > 0  

(6.10) V~ ( j1  (r~0A)) c X ~-~+~1. 

(Here F eo is only used for proving (ii).) 
Therefore also 

(6.11) V t 2 ( A t l ( V t ~ 1 6 2  if ~ 1 - ~ 2 ~ - ~  

and (i) as well as its optimality immediately follows from Proposition 3, (6.11) and 
Proposition 1 (applied twice). 
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(ii) Similarly to (6.9), we have also 

(6.12) r~A = U 
rl +r2-l-ro <_r 

and therefore 

"P1 ( ~0 

T 
e( ,,-e e( ~-e, F ~ A. (6.13) r~ADU(v rd.A))u(A rd.A))U d. 

g = l  

Hence (ii) follows fl'om (6.11), (6.13) and Proposition 1 (applied twice). 
Finally, we have to show" that the IAi-th initial segment in H-order S achieves 

equality. 
By Proposition 2 (ii), Proposition 3 (i), (6.12) and (6.11), and by the mono- 

tonicity of A t, V t, F~H in ~he sets it suffices ~o show that  for all parameters 

- r < g < r ~  gL + g ~ + g O = r ,  g2-g~ =g, and gi>_0 for i=0 ,  1, 2 

{v 
e (F~-eS ) ,  if g2 > 61 

Ve2(S!(re~ c Atel(F~-lqS), if e2 < el 
r rS ,  if g2 = gl. 

Let us abbreviate ve,(Ael(reoS)) =L. 
Using Proposition 2 (ii) and Proposition 3 (i) we show the desired inclusions. 

Case ~2 > gl.  

= v e ( r  el (re0S)) = V~(['ex@e0S) = ve(r,'-<s) 
c v e w - e s )  (as e2 > el >_ 0,,- - e2 <_ ~ - e ) .  

Case ~2 < gl.  

L =  Ae'-e2 (Ae2 (V!~ (rgo S)) ) 

= AI6(reo+g~S) = Atgl (pr -hS)  

C AIg](Fr-IglS) (as 0 _ 6 2 < . ~ 1 , r - ~ 1  _< r q - 6 = r -  l~l), 

Case 6s = 6t. 
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