Abstract
Regular pairs behave like complete bipartite graphs from the point of view of bounded degree subgraphs.
Similar content being viewed by others
References
N. Alon, R. Duke, H. Leffman, V. Rödl, andR. Yuster: Algorithmic aspects of the regularity lemma.FOCS,33 (1993), 479–481; Journal of Algorithms,16 (1994), 80–109.
N. Alon andE. Fischer: 2-factors in dense graphs, Discrete Math., to appear.
N. Alon, S. Friedland, G. Kalai: Regular subgraphs of almost regular graphs,J. Combinatorial Theory, B37 (1984), 79–91. See alsoN. Alon, S. Friedland, G. Kalai: Every 4-regular graph plus an edge contains a 3-regular subgraph,J. Combinatorial Theory, B37 (1984), 91–92.
N. Alon andR. Yyster: AlmostH-factors in dense graphs,Graphs and Combinatorics,8 (1992), 95–102.
N. Alon andR. Yuster:H-factors in dense graphs,J. Combinatorial Theory, Ser. B, to appear.
V. Ghvátal, V. Rödl, E. Szemerédi, andW. T. Trotter Jr.: The Ramsey number of a graph with bounded maximum degree,Journal of Combinatorial Theory, B34 (1983), 239–243.
K. Corrádi andA. Hajnal: On the maximal number of independent circuits in a graph,Acta Math. Acad. Sci. Hung.,14 (1963), 423–439.
T. Kővári, Vera T. Sós, andP. Turán: On a problem of Zarankiewicz,Colloq. Math.,3 (1954), 50–57.
P. Erdős andA. H. Stone: On the structure of linear graphs,Bull. Amer. Math. Soc.,52 (1946), 1089–1091.
A. Hajnal andE. Szemerédi: Proof of a conjecture of Erdős,Combinatorial Theory and its Applications vol. II (P. Erdős, A. Rényi and V. T. Sós (eds.), Colloq. Math. Soc. J. Bolyai 4, North-Holland, Amsterdam (1970), 601–623.
J. Komlós, G. N. Sárközy, andE. Szemerédi: Proof of a packing conjecture of Bollobás, AMS Conference on Discrete Mathematics, DeKalb, Illinois (1993),Combinatorics, Probability and Computing,4 (1995), 241–255.
J. Komlós, G. N. Sárközy, andE. Szemerédi: On the Pósa-Seymour conjecture, submitted to theJournal of Graph Theory.
J. Komlós, G. N. Sárközy, andE. Szemerédi: On the square of a Hamiltonian cycle in dense graphs, Proceedings of Atlanta'95,Random Structures and Algorithms,9 (1996), 193–211.
J. Komlós, G. N. Sárközy, andE. Szemerédi: Proof of the Alon-Yuster conjecture, in preparation.
J. Komlós andM. Simonovits: Szemerédi's Regularity Lemma and its applications in graph theory, Bolyai Society Mathematical Studies 2,Combinatorics, Paul Erdős is Eighty (Volume 2), (D. Miklós, V. T. Sós, T. Szőnyi eds.), Keszthely (Hungary) (1993), Budapest (1996), 295–352.
E. Szemerédi: Regular partitions of graphs, Colloques Internationaux C.N.R.S. No 260 −Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), 399–401.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Komlós, J., Sárközy, G.N. & Szemerédi, E. Blow-up Lemma. Combinatorica 17, 109–123 (1997). https://doi.org/10.1007/BF01196135
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01196135