THE DESIGN AND IMPLEMENTATION OF A PRIVATE

MESSAGE SERVICE FOR MOBILE COMPUTERS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
David Anthony Cooper

August 1995



© David Anthony Cooper 1995

ALL RIGHTS RESERVED



THE DESIGN AND IMPLEMENTATION OF A PRIVATE MESSAGE

SERVICE FOR MOBILE COMPUTERS

David Anthony Cooper, Ph.D.

Cornell University 1995

Even as wireless networks create the potential for access to information from mobile
platforms, they pose a problem for privacy. In order to retrieve messages, users
must periodically poll the network. The information that the user must give to
the network could potentially be used to track that user. However, the movements
of the user can also be used to hide the user’s location if the protocols for sending
and retrieving messages are carefully designed.

In this thesis, we will present a protocol for a replicated memory service which
allows users to read from memory without revealing which memory locations they
are reading. Unlike previous protocols, this protocol is efficient in its use of com-
putation and bandwidth. We will then show how this protocol can be used in
conjunction with existing privacy preserving protocols to allow a user of a mobile
computer to maintain privacy despite active attacks.

Allowing users to retrieve messages anonymously introduces a new problem. In
order to limit memory usage, it is necessary to remove old messages from the

system. However, since users may become disconnected from the network for



periods of time, it is important that the system hold onto messages until they
have been retrieved by their intended recipients. The result is a conflict between
the system’s need for information and users’ desire for privacy. We will present
the design of a vacation service which we have developed which stores messages
for users which are disconnected which does not require users to reveal any private
information.

Finally, we will describe the implementation of the private message service
and discuss the performance estimates that we derived for the system based on
experimental results. As we will show, the potential throughput of the private

message service is reasonable.



Biographical Sketch

David Cooper was born on March 8, 1968 in Boston, Massachusetts where he lived
until he was 5. From there he moved to Greenville, South Carolina where he lived
for 3 years. Next, he moved to Carmel, Indiana where he lived for 4 years. At age
12, he moved to Pittsburgh, Pennsylvania where he lived until coming to Cornell
in 1986. He received his B.S. degree in Computer Science in May 1990, his M.Eng.

degree in May 1991, and his M.S. degree in January 1994.

il



Acknowledgements

More than anyone else, Ken Birman was responsible for guiding me through my
final years at Cornell. His advice and encouragement as I struggled through my
research were invaluable. I would also like to thank Dexter Kozen, Miriam Leeser,
and Sam Toueg who served on my committee and provided much support.

I was also fortunate to have the support of many friends and colleagues. Mike
Reiter, through his own research, developed many concepts which proved useful to
my own research. Guerney Hunt gave me a lot of advice which helped me to make
my way through the Ph.D. program. I also received a lot of help from many other
members of the Horus group.

Anindya Basu, Mike Cox, and Ashvin Dsouza were always around when I
needed to take a break from work and were always willing eat my food when-
ever I had the urge to cook. Tom Olsen provided me with the original “Carrot
Cake Fan Club” and Michellé Mock provided me with the opportunity to prepare
“Death by Chocolate”.

I would also like to thank the many people who had to put up with me either
as an officemate or a housemate over the years and who had to deal with my
periodic bouts of frustration: Vipin Bansal, Anindya Basu, Mike Cox, Ashvin

Dsouza, Xiaolin Ge, Paula Gorden, Pei-Hsin Ho, Joon Ho Lee, Jerry Liu, Karen

v



Middaugh, Ranjana Murthy, Mark Ollis, Tom Olsen, Glenda Van Oort, Sam Paik,
Chris Staffa, Kristen Summers, King Tan, Bruce Watler, and Bing Zhang.
Finally, I would like to thank my family who patiently supported me through
my many years in school.
This work was supported by ARPA/ONR grant N00014-92-J-1866 and a grant
by Siemens Corp. The views expressed herein are those of the authors and do not

represent the opinions of ARPA/ONR or Siemens Corp.



Table of Contents

1 Introduction

1.1 What is Mobile Computing? . . . . . . . .. ... ... ...
1.2 Privacy . . . . . . e e
1.3 Related work . . . . . . . ...
1.4 Thesis Contributions . . . . . . .. ... ... o Lo
1.5 Thesis Organization. . . . . . ... ... .. ... ...,

2 System Model

2.1 Mobile Computers . . . . . . . .. ... L
2.2 Base Stations . . . .. ..o L
2.3 The Network . . . . . . . . . . . .
24 MeSsages . . . ...
3 The Private Message Service
3.1 Imtroduction . . . . . . . ..o
3.2 Content Privacy . . . . . . . ...
3.2.1 Encryption . . ... ... Lo L
3.2.2 Authentication . . . .. .. ..o
3.3 Unlinkability of Sender and Recipient . . . . . . .. ... ... ...
3.4 Location Privacy while Sending a Message . . . . ... ... . ...
3.5 A Memory Service with a Blinded Read Operation . . ... . ...
3.5.1 Reading from Memory . . . ... ... ... .. .......
3.5.2 Writing to Memory . . . . . ... ... oo oL
3.6 Retrieving a Message . . . . . . .. ... o 0oL
3.6.1 Sending a Message to the Message Service . . . ... . ...
3.6.2 Reading fromaTable. . . . . .. ... ... ... ... .
3.6.3 Choosing a Hash Function . . . . . .. ... ... ... ...
3.6.4 Garbage Collection . . . . . .. .. ... ... ...
3.7 Ending a Conversation . . . .. ... ... ... ... ... .. ...

4 Dealing with Failures
4.1 Introduction . . . . . . . . . . ..o
4.2 Crash Failures . . . . . . . . . . . . . oo

vi

11
11
12
14
16

18
18
21
21
23
25
29
32
33
40
43
43
45
47
48
49



4.2.1
4.2.2
4.2.3
4.2.4

Agreeing on Group Membership . . . . . . ... ...
The MIX-Network . . . ... ... ... ... ........
The Message Service - Receiving Messages from Users . . . .
The Message Service - Retrieving . . . . ... ... .. ...

4.3 Malicious Failures . . . . . . . . . . e

4.3.1

Servers Lying to Users . . . . .. .. .. .. .. .......

5 The Vacation Service
5.1 Introduction . . . . . . . . ...
5.2 The Problem of Privacy . . . .. ... ... .. ... ........
5.3 A Simple Solution . . . . . . ..o Lo oL
5.4 A Solution which does not Prevent Efficient Message Reading . . .
5.5 The Final Solution . . . . . .. ... ... .. ... ...

5.5.1

Limiting Storage Space . . . . . . . . .. ... ... ...

6 The Implementation and Performance
6.1 Introduction . . . . . . . . . ..o
6.2 Horus and the Communications Infrastructure . . . . . . . . . . ..
6.3 The Message Servers . . . . . . . . .. . ...
6.4 The MIX Servers . . . . . . . . . . . . . .
6.5 The Users . . . . . . . . . . o

6.5.1
6.5.2

The Message Client Layer . . . . . ... ... ... .....
The Applications Layer . . . . . . . .. ... ... ... ...

6.6 The Authentication Service . . . . . . . . . . . . . . ... ....
6.7 The Time Service . . . . . . . . . . L,
6.8 Performance . . . . . . . ..o

6.8.1
6.8.2

Actual Performance . . . . . . . ... ... ... ...
Expected Performance . . . . .. .. ... ... ...

7 Conclusions
7.1 Future Work . . . . . . . . . e

Bibliography

vii

65
65
66
67
68
69
70

73
73
74
77
80
82
82
86
90
93
94
95
97

100
101

104



List of Figures

1.1
2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Examples of Mobile Computing Devices . . . . . ... ... . ... 3
The Message Repository . . . . . . . .. .. ... L. 13
The Private Message Service . . . . . . . ... .. ... ... ... 19
A MIX-Network . . . . .. . . .. . ... ... 31
Sample Bit-Vectors fort =2,p=1 . . . . . ... ... ... ... 35
Bit-Vector Protocol . . . . . .. ... o oo 36
Probabilities for m = 1024 . . . . . . .. . ... oL 40
A Sequence of Message Tables . . . .. ... ... ... ...... 44
A Sequence of Table Digests. . . . . . . .. ... ... ... .... 45
Coordinator Based Totally Ordered Multicast . . . . . ... .. .. 58
Group Structure . . . . . . .. ... e 75
Horus Protocol Stacks . . . . .. .. .. .. ... ... . 76
The user process . . . . . . . . i i e e 82
The Directory of Users . . . . . . . .. . . ... ... .. ...... 87
The Send Window . . . . . . . . . ... ... L. 88
Sending a Message . . . . . . . ... ... Lo 89
An Incoming Message . . . . . . . ... ... 90

viil



Chapter 1

Introduction

Privacy in one’s associations... may in many circumstances be indis-
pensable to freedom of association, particularly where a group espouses
dissident beliefs. — JUSTICE JOHN HARLAN, DELIVERING THE DECI-
SION OF THE SUPREME COURT, NAACP v. ALABAMA (1958) [Hen92]

Most people, as a general rule, have both a desire and a need for privacy. While
there are many laws in place to guarantee people’s right to privacy, the existence
of these laws is not always sufficient to prevent the unauthorized collection, by
both legal and illegal means, of large amounts of private information about in-
dividuals [Bur83|. In some cases, branches of the federal government itself have
been involved in widespread interception of telephone conversations [Bur83] and
telegrams [GII76].

While the protection of private information has always been a concern, the in-
creased use of computers and electronic communications to transmit, collect, and
collate private information has significantly increased the amount of private in-
formation that may be collected. An “eavesdropper” has the potential to acquire

private information about someone whenever that person uses the telephone, pur-



chases something with a credit card, buys an airline ticket, checks into a hotel,
connects to an on-line service, etc. With the introduction of mobile computing
devices, the threat will only increase.

Since legal protections have not sufficiently protected, and will not sufficiently
protect, the privacy needs of individuals, technical solutions to the problem must
be made available. While a strictly technical solution to the problem of privacy is
not possible, it may, when coupled with improved legal protections, greatly reduce

the availability of private information about individuals.

1.1 What is Mobile Computing?

Mobile computers are portable computers that have wireless communications abil-
ities. When used in combination with base stations connected to a static network,
mobile computers provide a powerful means of communication for people who are
on the move. There are currently several types of mobile computers ranging from
general purpose devices such as laptop and palmtop computers to special purpose
devices such as cellular phones, pocket pagers, and active badges (see figure 1.1).
While mobile computing has much in common with static (or non-mobile) com-
puting, there are several essential differences which lead to novel problems [BAI93,
BIV92,I1B93a,IB93b,IB93c,DFM91,SD91,Kat94,F794].

Since size and weight are of major concern in mobile devices and the devices
must run off of batteries, power consumption is of major concern. This affects all
aspects of the device: the CPU, the display, the disk drive, the memory, etc. One
result of the power consumption problem is that CPUs on mobile computers tend to

be slower than on static computers since power consumption tends to increase with



Pocket Pager Laptop Computer

Palmtop
Computer

Figure 1.1: Examples of Mobile Computing Devices

clock rate. Also, in order to save both space and power consumption, memories
on mobile computers tend to be relatively small. As a result of these concerns,
protocols involving mobile computers try to push as much of the computation and
storage onto the static computers as possible.

The use of wireless communications between mobile computers and base sta-
tions on the static network also poses many problems. First, both sending and
receiving messages consume battery power. For this reason, the communication
overhead of protocols must be carefully considered. This problem is further com-
plicated by the fact that sending messages consumes more power than receiving
messages. With wireless communications, there is also the need to allocate band-
width usage [ZY89,2Y91,YW93,PSS95).

Mobility imposes problems since wireless communications have limited range.
As users move, their computers become disconnected from the base stations with
which they are communicating and eventually reconnect to other base stations

once they move within range of these stations. This leads to several problems.



First, mobile computers may become completely disconnected from the network
for periods of time. Whenever possible, information that users may want should be
cached on their mobile computers to minimize the visible effects of disconnection.
Second, as mobile computers switch from base station to base station, there will
be a need to reallocate communications channels. Finally, any messages being
sent to a mobile computer will need some way to find the computer despite its

unpredictable movements through the network [BP,Joh93,Per,Rek,TT93].

1.2 Privacy

In some cases, the sole purpose for carrying a mobile computer is to allow others
to quickly locate the carrier (e.g. an active badge location system [WHFaG92]). In
most cases, however, people carry mobile computers in order to send and receive
information. While this may include messages from other users who are trying
to contact them, it is not necessary, in general, to locate someone in order to
contact that person. However, without proper care the messages that a mobile
computer sends and receives in order to collect and disseminate information may
inadvertently leak private information about the computer’s owner to the person
with whom the owner is communicating as well as to eavesdroppers.

In designing a system which preserves privacy for mobile users, we found it
useful to partition privacy into three semi-independent components. The first is
content privacy which is preserved if an attacker ! is unable to extract the plain-text
of the data sent from one computer to another. Content privacy can be maintained

through the proper use of message encryption and signatures.

! Throughout the thesis, when we refer to an attacker, we mean any entity which attempts to
acquire information that it is not intended to receive. In all cases, an attacker will be assumed
to be limited to polynomial time computations.



Even if the data portion of a message is encrypted, an attacker may be able
to obtain useful information. By observing the addressing information attached
to messages, the attacker may be able to determine who is communicating with
whom. Since the network needs to have some means of getting messages to their
intended recipients, addressing information can not simply be encrypted along
with the message data. One way to solve this problem is to send messages through
intermediary computers which secretly pass messages from one computer to another
(an example of this is a MIX-network [Cha81,PP89] which will be discussed later
in the thesis). However, in a mobile network, it is possible to take advantage of
the computers’ mobility to design a more efficient protocol to hide this information
from an attacker than is possible in a static network.

The third type of privacy is location privacy. Just as with cellular telephones,
many people will soon begin to carry mobile computers with them wherever they
go. While the users of these computers will wish to be able to receive messages
from others at any time, they may not want others to be able to locate them.
In addition to determining who is communicating with whom, an attacker may
attempt to use traffic analysis to electronically “stalk” users. As we will show
later, a MIX-network can be used by a computer that wishes to send a message
while hiding its location.

While a MIX-network can also be used to allow a computer to receive a message
while hiding its location, it is not very efficient. We will present a technique which
will allow a computer to read from a shared memory in such a way that an attacker

will be unable to determine which piece of information is being read. We will also



show how this protocol can be used to create a message service that will allow

mobile computers to read messages without revealing their location.

1.3 Related work

Message encryption and signatures are essential to all security and privacy schemes.
There are two basic types of encryption schemes, symmetric and asymmetric. In
a symmetric (secret key) scheme, the same key is used for both encryption and
decryption. In most cases, the secret key is known to a pair (or group) of commu-
nicating parties and kept hidden from all outsiders. While there are many different
secret key encryption schemes, the most well known is DES [DES77]. In an asym-
metric (public key) scheme, the encryption and decryption keys are distinct. In
addition, it is infeasible for someone who only knows the encryption key to de-
termine the value of the decryption key. In most cases, the encryption (public)
key is made widely available while the decryption (private) key is known only to
a single user (its owner). An example of a public key scheme is RSA [RSA78|. As
with most public key encryption schemes, RSA can also be used to sign messages.
Messages are signed using the decryption key and verified using the encryption key.

There are several papers which describe protocols for maintaining the unlink-
ability of message senders and recipients. The concept of a MIX-network was
introduced by David Chaum in [Cha81]. A MIX-network takes in a batch of mes-
sages and scrambles them so that an attacker can not match incoming messages
with outgoing messages. There are several other papers describing variations of
the original scheme [PTK93,PPW91,PW87,RS93]. The protocols in [Cha81,PTK93]

have security problems which were corrected in [Pfi94,PP89].



In [Cha88], David Chaum presents an information theoretically secure tech-
nique for preserving the unlinkability of the sender and the recipient of a message.
This paper describes a protocol for creating a virtual network in which computers
can send messages anonymously. Every computer can read every message (although
they may be encrypted), but no computer is able to determine the sender of any
message. Since messages are broadcast to every computer, recipient anonymity is
also guaranteed. While this technique is secure, it requires that every computer
send and receive a large volume of data as well as share a large amount of se-
cret data. This technique is also not well suited for mobile computers which may
frequently disconnect from the network.

In [BCR87|, Brassard, Crepeau, and Robert present a technique which allows a
computer to read from a database without revealing which piece of information it
is reading. In addition, it guarantees that the reading computer will only be able
to read one piece of information. In the protocol, the entire content of the database
is transferred to the reader in an encrypted form. The reader and the database
then engage in a zero-knowledge protocol to enable the reader to decrypt one of
the database entries. Since our protocol does not limit the amount of information
that a reader can acquire, our memory service could be implemented by simply
sending the entire contents of memory unencrypted. In section 3.5, we will present
a protocol which satisfies our more limited requirements and has a small bandwidth
overhead.

There has been some work in the area of privacy for mobile computers. In [AD94,
BCY93,Car94], protocols are presented which encrypt messages that are sent along

wireless links thus preventing an attacker from using the contents of these mes-



sages to locate users. The main goal of the protocols in these papers is to limit
the computational overhead of the mobile computers. While these protocols will
maintain the unlinkability of message senders and recipients as well as the location
privacy of mobile computers, they assume that the static network is secure.

Uwe Wilhelm addresses some of these problems in [Wil95] by compartmental-
izing information and dividing the separate pieces of information among distinct
administrative domains. An attacker which is unable to obtain information from
each of the administrative domains will gain no useful information. While the

design has a smaller overhead than our system, it is not as resilient to corruption.

1.4 Thesis Contributions

This thesis presents a set of protocols which implement the core of a private message
service for mobile computers. Our main interest in designing the private message
service was to support secure e-mail exchanges between pairs of users of mobile
computers. However, these protocols can also be used for any interaction between
mobile computers or between static and mobile computers as long as there are no
latency or bandwidth requirements (i.e. our protocols, in their current form, will
not work for real-time audio or video). As an example, our protocols could be used
to allow a user of a mobile computer to interact with an on-line database without
revealing his/her identity or location. It could also be used to interact with a bank
computer without revealing the user’s location to the bank or revealing the user’s
identity to an attacker.

While most of the previous solutions to the problems of security and privacy

in a network of mobile computers assume that the static network is secure, we



assume that all communications links (both wired and wireless) can be read by an
attacker. In addition, we consider the possibility that an attacker may be able to
corrupt some of the servers in the system, where the purpose of the attack is either
to eavesdrop or to actively interfere with the system.

Disconnection of users from the network can pose problems for a message ser-
vice. Users may not be available to read messages that are sent for them at the
time that the messages are sent. In order to deal with this, the system should hold
onto messages for users until they have been read. However, this is complicated
by the anonymity that is built into our system to preserve users’ privacy. In this
thesis, we address the conflict between users’ privacy and the need of the system
to acquire information in order to properly dispose of messages which have already
been read by their intended recipients.

The thesis discusses issues related to the implementation of the private message
service. We also discuss the implementation of the authentication and time servers
in the system and our reasons for choosing the particular protocols that were used
to implement these services. Finally, we discuss the performance of our system
as well as speculate on the performance achievable by the system with proper

hardware support.

1.5 Thesis Organization

Many of the ideas presented in this thesis have been published elsewhere [CB95a,
CB95b]. Chapter 2 describes the system model in which system is intended to
operate. In chapter 3 we describe the protocols for the core services of the private

message service. In order to simplify the presentation of the protocols, chapter 3



10

does not deal with malicious failures. The handling of these types of failures
is discussed in chapter 4. Chapter 5 describes techniques for dealing with the
disconnection of users. Chapter 6 describes the implementation of the private
message service and discusses the performance of the system. Chapter 7, concludes

the thesis.



Chapter 2

System Model

A wireless network for mobile computers consists of two distinct parts: the static
network and the mobile computers. The static network consists of a collection
of static (non-mobile) computers which are connected by wired communications
channels. Among the static computers are servers, network routers, and base
stations. Base stations are computers that are part of the static network and that
are also capable of wireless communication. The base stations constitute the link

between the static network and the mobile computers.

2.1 Mobile Computers

There are many different types of mobile computers. In this thesis, however, we
are only interested in computers which are capable of both sending and receiving
messages. This could include receive-only devices such a pocket pagers as long
as the devices are capable of sending request messages to the network in order to
retrieve messages for their users.

Mobile computers interact with each other and with the static network by send-

11



12

ing messages to and receiving messages from base stations. Since wireless commu-
nications signals have limited range, a mobile computer and a base station must be
sufficiently close in order to be able to communicate with each other. Since users
move over time, their mobile computers will move in and out of communication
range with different base stations at different times. At times, a mobile computer
may be too far away to communicate with any base station. If a mobile computer
can not communicate with any base station, then it is said to be disconnected from
the network.

It is a basic assumption of our system that the wireless network will service
a large number of users (i.e. the owners of the mobile computers). It is further
assumed that these users will move around in ways that are unpredictable to an
attacker (it is not possible for our protocols to hide a user’s location from an
attacker which has a priori knowledge of the user’s movements). The basic premise
behind these assumptions is that an attacker should be incapable of determining the
location of a particular user unless that user is spotted, by the attacker, sending or
receiving a message which allows the attacker to identify the user. In other words,
users are assumed to be anonymous by default. Starting from this assumption, a
user’s privacy can be maintained as long as the protocols for the private message
service do not force the user to send (receive) any messages which might reveal the

identity of the sender (recipient).

2.2 Base Stations

A base station is a network router that has a wireless connection. Due to the

limited range of wireless communications, only mobile computers which are within



13

Message
Repository

Figure 2.1: The Message Repository

a certain distance from a base station will be able to communicate with that base
station. Any mobile computer which is within communications range of a base
station is said to be in the area of that base station. At any given time, if a
mobile computer is within range of at least one base station, it will be connected
to exactly one base station. In the future, when we refer to the location of a user,
we will mean the area which is within range of the base station with which the
user’s mobile computer is connected.

A mobile computer sends a message by attaching a header to the message with
the destination address and then forwarding the message to the nearest base station
which routes the message towards its destination. In our system, the destination
of a message from a mobile computer will always be a server on the static network.
If the message is intended for another mobile computer, then it will be sent to a
message repository from which the intended recipient will retrieve the message (see

figure 2.1).



14

When a mobile computer wishes to retrieve a message from the message reposi-
tory, it sends a request message to the repository and the repository responds with
the requested message. Whenever a mobile computer wishes to send a query for
which it expects a response, it must use an RPC. The request will be sent to the
appropriate server and the server will respond by sending its reply message to the
base station from which the query originated. If the mobile computer moves to
another base station before the reply arrives then it must re-send its request. If
mobile computers move from base station to base station quickly relative to the
round-trip time of an RPC, the server can send its reply to all of the base stations
whose areas are neighbors of the area from which the request originated in addition

to the originating base station.

2.3 The Network

In our system, we assume that all of the communication links (both wireless and
wired) can be read by an attacker. In addition to eavesdropping, an attacker
may attempt to disrupt the system by deleting or modifying users’ messages or
by creating bogus messages. While it is not possible to prevent an attacker from
modifying or creating messages, it is possible to detect this behavior. All messages
can be “signed” by their senders. The recipients of these messages can then check
the signatures to verify that the messages actually came from the proper sources
and that the messages have not been modified. If the signatures on the messages
can not be verified, then the messages can be discarded and treated in the same way
as lost messages are treated. If an attacker is able to modify or delete a significant

number of messages within the network, then it may be able to prevent users from



15

exchanging messages. This will not, however, allow the attacker to obtain any
private information or trick users into accepting bogus messages. Techniques for
preventing this type of denial of service attack are outside the scope of this thesis.
In this thesis, we will assume that attackers are unable to modify or delete messages.
We will further assume that timestamps and nonces are used as appropriate to
prevent message replay attacks.

Unlike communication links, servers are considered to be secure. An attacker
can read messages that go into or come out of a server but does not have access
to the contents of the server’s memory. In some cases, however, the security of a
server may be compromised. This can happen in one of two ways. If an attacker is
able to obtain the private decryption key of a server, then it will be able to decrypt
any messages that are intended for that server. This would give the attacker access
to any secret information to which the server is privy.

The second way in which an attacker could corrupt a server would be by gaining
full access to the server. This would allow the attacker to obtain the server’s
private decryption key (along with any other information in the server’s memory).
In addition to using its access to eavesdrop, an attacker may use its access to a
server to change the protocol which the server executes. By forcing the server to
behave maliciously, the attacker may be able to feed incorrect information to users
as well as to other servers.

Whenever the security of a server has been compromised, we will say that
that server has been corrupted. In chapter 3, we will describe ways to deal with

servers which have been corrupted by attackers which only eavesdrop on corrupted



16

servers. In chapter 4, we will discuss techniques for dealing with servers that behave

maliciously as a result of corruption by an attacker.

2.4 Messages

Since the messages that a user sends may contain information which could identify
it to the intended recipients of those messages, users must have some way to send
messages while hiding the locations from which they send the messages. Similarly,
there needs to be a way for users to retrieve messages without revealing their
locations. Since an attacker can observe all of the communications links in the
network, it is only possible to hide the source (or destination) of a message from
an attacker if it is possible to “confuse” the attacker through the use of other
messages in the network. In order to accomplish this, users (as a whole) must
produce and consume a large number of messages.

In order to guarantee that there will be enough messages in the network at
any given time to ensure that the origins of users’ messages can be hidden, there
are certain servers within the network which buffer messages and do not forward
the messages until their buffers are filled. In order to limit an attackers ability
to pinpoint the origin of a message to one of a thousand possible locations, there
must be at least one thousand messages in the network at the same time as the
message whose origin is to be hidden. In order to guarantee this, each of the
server’s buffers will hold at least one thousand messages. So, while a temporary
reduction in message traffic may not threaten the privacy of the system, it will

increase the amount of time necessary to fill the servers’ buffers and thus increase



17

the amount of time between when a user sends a message and when that message
is available to be retrieved.

Just as there must be a large volume of message traffic in order to hide the
origins of messages, it must be impossible for an attacker to distinguish one message
from another. In particular, an attacker should not be able to match the encrypted
version of a message with the plain-text version of that message unless it has access
to the key used to encrypt the message. Since the lengths of a message and the
encrypted version of that message are similar in many encryption schemes, it is
important that all messages sent or received by mobile computers be of the same
length. Whenever a user wishes to send a message of a length that does not
conform to the standard length, that message must be segmented into packets
and/or padded so that the resulting messages sent through the private message

service are of the proper length.



Chapter 3

The Private Message Service

3.1 Introduction

In this chapter, we present the protocols for the core of the private message ser-
vice. The private message service actually consists of several services which work
together to provide privacy to users of mobile computers. These services are the
message service, the MIX-network, and the vacation service. In addition, there
is a time service and an authentication service which help to support the other
services. The message service and the MIX-network comprise the core of the pri-
vate message service and will be discussed in this chapter. The vacation service,
which provides a vital service to users of the private message service which may
become disconnected from the network for extended periods of time, will be dis-
cussed in chapter 5. Finally, the time and authentication services will be discussed
in chapter 6.

As was described in section 1.2, there are three basic types of privacy. The first,

content privacy, involves preventing an attacker from determining the contents of

18



19

Insecure Send 3 /
’m Insecure Read

Secure Send \
%@\ﬁ/\ Message

Service

Create
Requests

1

Secure Read

Vacation Service

Combine
Replies

|
|

Figure 3.1: The Private Message Service

secret messages. Content privacy is protected by using end-to-end encryption and
is described in section 3.2.

The basic structure of the private message is depicted in figure 3.1. The message
service acts as a message repository for all messages intended for mobile computers.
A message is sent to a mobile computer by attaching a label ! to the message and
sending it to the message service. Once the intended recipient of the message
discovers that there is a message in the message service with a label in which it is
interested, it can retrieve the message from the message service (along with anyone
else). As will be shown later, the message service has been designed to allow users
to read from the message service in such a way that no one can determine which
message the user is reading.

Since message labels are used by users to determine which messages to read
from the message service, it is important to avoid having the same label used in
two different conversations at the same time. While such a collision will not lead
to a breach in the security or privacy of the system, it will affect performance. As

will be shown later, for privacy reasons, many of the labels that are used in the

1A label in our system is equivalent to a visible implicit address in [PW87)].



20

system are chosen by users at random. Since there is no centralized mechanism
to prevent collisions, message labels should be large enough to make the chances
of two users choosing the same label at approximately the same time acceptably
small. As will be shown in section 3.3, the inability of an attacker to determine
who is communicating with whom is maintained by the careful choice of message
labels.

The final type of privacy, location privacy, is maintained through the joint ef-
fort of the message service and the MIX-network. The message service, by allowing
users to read messages without revealing which messages they are reading, allows
users to remain anonymous when they are reading messages, thus effectively keep-
ing their location hidden. The MIX-network, on the other hand, takes in batches
of messages and scrambles them together. The result is that it is impossible for an
attacker to determine the origin of any message in the batch and thus an attacker is
unable to determine the location of any of the message senders. The MIX-network
will be described in section 3.4.

As will be shown later, depending on the perceived threat at the moment, a
user may be able to save some computation and communication by avoiding the
use of some of the privacy enhancing mechanisms. For example, the MIX-network
is not necessary when sending a message to a user which is trusted by the message
sender. In many cases, a user can also save some time when retrieving a message

if the user trusts the message’s sender.



21
3.2 Content Privacy

The primary concern in designing a system which provides privacy for users is to
ensure that users can communicate with each other while preventing others from
determining what they are saying. This is accomplished by using a two step process.
First, the contents of messages are obscured (encrypted) to prevent eavesdroppers
from reading the contents of the messages sent between the users. Second, the
identities of the users are verified (authentication) to prevent an attacker from
impersonating one of the users. Encryption and authentication will be described

in some detail below.

3.2.1 Encryption

The contents of messages sent over insecure communications channels are hidden
using encryption (see [Bra88,Sim92]). Say that one user, p, wishes to send a
message, m, to another user, ¢, in such a way that an eavesdropper will be unable
to determine the value of m. First (in a way to be described later), p and ¢ will agree
on a pair of functions, £ and D, which satisfy the property that D(E(m)) = m
for all m € M (where M is the set of all possible messages). In addition, it must
be impossible (or at least computationally infeasible) to compute m from E(m)
without knowledge of D.

There are two basic types of encryption schemes. The first is secret key, or
symmetric, encryption (e.g. DES [DES77]). In such a scheme, the participants in
a conversation choose a key, K, which is known only to them. The message sender

uses the function Eg_ to encrypt messages and the receiver uses D, to decrypt



22

them. Secret key encryption schemes are generally much faster than public key
encryption schemes. As a result, they tend to be used whenever possible.

The major problem with secret key encryption schemes is the need to agree on
the key. Since the value of the key must remain secret, it can not be transmitted,
unencrypted, over an insecure communications channel. This problem is solved by
public key, or asymmetric, encryption schemes (e.g. RSA [RSA78]). In a public key
encryption scheme, a user, g, that wishes to receive private messages chooses two
keys, Kq and K 1 (K, is the encryption function, E, and K, is the decryption
function, D). The encryption key, Ky, is called the public key and can be made
widely available. The decryption key, K- 1 is called the private key and is known
only to ¢. A user, p, wishing to send a message, m, to ¢, computes Ky(m) and
sends to the result to g. Upon receipt, ¢ can use its private key, K 1 to compute
K7L (Ky(m)) = m.

Using a combination of public and secret key encryption schemes, it is possible
to develop a protocol which has most of the efficiency advantages of using secret
key encryption while also avoiding the key exchange problem that goes along with
such schemes. Say that a user, p, wishes to communicate with another user, gq.
First, p chooses a secret key, K, which it encrypts using ¢’s public key, K,. Next,
p encrypts the initial message, my, that it wishes to send using K and sends
Kq(Ks), Ks(m1) to ¢. Upon receipt, g uses K; ' to extract K from K,(K;) and
uses K to extract my from Kg(m). Subsequent messages sent from p to ¢ or from
g to p can be encrypted using K.

The scheme shown above has two basic shortcomings. First, there needs to be

some way for p to get ¢’s public key. While secrecy is not an issue (as it is with



23

the secret keys), public key distribution must still be handled very carefully. An
attacker, a, wishing to read messages intended for some other user, u, may attempt
to impersonate u by convincing users in the system that its public key is «’s public
key. If a is successful, users wishing to send messages to u will use a’s public key
instead of u’s public key and a will be able to read the messages instead of u.

In most systems, users get the public keys of other users by consulting a direc-
tory service which is responsible to maintaining and distributing the public keys
of users within the system. There are two basic ways in which an attacker could
cause a user to receive an incorrect key. First, the attacker could gain control of the
directory service and force the service to distribute incorrect information. Second,
it could attempt to impersonate the directory service. Later in the thesis, we will
describe a technique for designing an authentication service which can be used to

distribute keys which makes such attacks difficult.

3.2.2 Authentication

As long as the authentication service is set up properly, p can begin a conversation
with ¢ and be confident that ¢ will be the only user receiving the messages that
p sends to it. However, using the protocol shown above, ¢ has no way of knowing
that the messages it is receiving actually came from p. In order for ¢ to be able to
verify the origins of the messages that it receives, p must have some way to “sign”
messages that can be verified by q.

In order for a digital signature scheme to be effective it must be able to prevent
an attacker, a, from creating a message along with a signature for that message
such that the message appears to have been signed by another user, u. The digital

signature scheme must also prevent a from modifying a valid message which was



24

signed by u in such a way that it appears that u signed the modified message.
More formally, a digital signature scheme consists of a signature function, Sk, and
a verification predicate Vk such that Vi (m,s) holds iff s = Sk (m). In addition,
it must be computationally infeasible for an attacker to compute Sk (m) from m
without knowledge of K even if the attacker has access to several < m, Sg(m) >
pairs.

Just as with encryption schemes, there are both secret key and public key
signature schemes. Both types center around the use of one-way hash functions 2.
In some cases, the hash function itself can serve as the signature function. If the
hash function, h, can take two arguments, m and K, such that it is infeasible
to compute h(m, K) without knowledge of K, then we can make the signature
function Sg(m) = h(m, K) (for a secret key signature function). The verification
predicate Vi (m,s) would be “s = Skg(m)”. The inability to compute h(m, K)
without knowledge of K would prevent an attacker from creating signatures for
messages and the one-way property of the hash function would prevent an attacker
from creating new messages which have the same signatures as properly signed
messages.

An alternative is to use an encryption scheme in combination with a one-way
hash function 2. In the case of secret key encryption, the signature would be
Ek(h(m)) which could be verified by the recipient by re-computing the signature
for m and comparing the result to the signature attached to the message.

Public key signature schemes work in a similar fashion. In many cases (such as

RSA), the encryption and decryption functions in a public key encryption scheme

2A hash function, h, is one-way if, given h(m) for some m, it is infeasible to find an m’' # m
such that h(m) = h(m').
3Not all encryption functions are suitable for use in digital signature schemes.



25

can be reversed (e.g. Ky(K;'(m)) = K7 (Kq(m)) = m). Thus, ¢ can sign a
message m by computing K '(h(m)). While it is infeasible for anyone but m
to compute Kq_l(h(m)), anyone with access to ¢’s public key, K, can verify the
signature s of m by verifying that K,(s) = K (K" (h(m))) = h(m).

Using a combination of public and secret key signature schemes, it is possible to
efficiently authenticate messages sent between users. In general, messages will be
signed and verified using a secret key scheme (just as is the case with encryption).
In order to start the process, the users will need to agree on a key (which can be
accomplished in the same way as was done for encryption). A public key signature

scheme, however, will need to be used to sign the secret keys that are sent at the

initiation of a conversation.

3.3 Unlinkability of Sender and Recipient

The section above describes how two users can establish a conversation and com-
municate in such a way that no one else can determine what they are saying to
each other. In many circumstances, however, the users may also wish to prevent
other people from determining that they are communicating at all. In order to
prevent an attacker from acquiring this information, it must be possible to hide
the identity of at least one participant in each conversation that is taking place in
the system.

A solution to this problem was first proposed by David Chaum in [Cha81] and
was later refined in [Pfi94,PIK93,PP89,PPW91,PW87,RS93]. The basic idea be-
hind these schemes is to use servers (called MIXes) which are responsible for read-

ing in batches of messages and reordering them in such a way that it is impossible



26

for an attacker to determine the correspondence between incoming and outgoing
messages. Since the technique involves using public key encryption/decryption for
each message, it computationally expensive.

The papers cited above all deal with preventing an attacker from linking the
senders and recipients of messages in a static network. In a static network, since
users’ locations within the network can not be hidden from an attacker, it is im-
possible for a user to send or receive a message anonymously 4. As a result, in
order to prevent an attacker from determining the identities of both the sender
and recipient of a message, it is necessary to hide the path of the message through
the network. This is the responsibility of the MIXes.

With mobile computers, if users can keep their locations hidden °, then it is
possible to set up a system in which they send and receive messages anonymously.
In order to do this, there must be a way to send a message within the network which
does not contain any information (in plain-text) which might allow an attacker to
determine the identity of either the sender or the intended recipient of the message.

The key to sending messages anonymously is based on the routing mechanism
used in the system. A message is sent to a mobile computer by attaching the
recipients “address” to the message and sending the message to the message service.
Once the message service has the message, the intended recipient sends a request
to the service for messages with that “address” and the service sends any such
messages in response. Unlike in a static network, the “address” is not used by

the system to locate the intended recipient. (Since the “address” does not need to

It may be possible for a user to hide the destination (or source) of a message being sent (or
received) along with the contents of the message, but the user can not hide the fact that it is
sending (or receiving) a message.

A technique for accomplishing this will be shown later in this chapter.



27

convey any information about intended recipient, in the future we will simply refer
to it as a label to emphasize that it has no special meaning).

In order to successfully transfer a message from sender to recipient, it is only
necessary that the sender attach a label to the message which the intended recipient
will eventually use to request messages from the message service. Since the value
of the label is meaningless to the network, it is possible to have private labels
(similar to secret keys). However, just as with encryption, the use of public labels
is necessary to initiate conversations 6.

In order to allow for the initiation of conversations between users, each user
has a public label which is stored in an on-line directory 7. The directory service is
similar to the authentication service of the last section (in fact the authentication
service can be used to distribute public labels as well as public keys). However,
since the corruption of the directory service will not lead to a breach of security or
privacy, the directory service does not need to be as secure as the authentication
service 8.

Let’s say that one user, p, wishes to initiate a conversation with another user,
q. First, p will look up ¢’s public label, [, (along with ¢’s public key, K;). Next, p
will attach [, to the initiation message and send it to the message service. Since g

is always on the lookout for initiation messages, ¢ will eventually make a request

to the message service for messages with label /; and will receive p’s initiation

61t is possible to avoid the use of public labels by using a technique such as Difie-Hellman key
agreement [DH76] to establish private labels to initiate conversations, however, it is not practical
for systems with a large number of users.

"Some users may choose not to have a public label (this would be equivalent to having an
unlisted phone number). Alternatively, some users may have multiple public labels under multiple
aliases.

8 An attacker, by corrupting the directory service, may be able to prevent users from beginning
new conversations, but will not be able to compromise the security or privacy of the system.



28

message. Since [, is a public label, anyone observing network traffic will be able to
determine that some user is attempting to begin a conversation with ¢, but since
p can send the message anonymously, no one (except possibly ¢) will know that p
sent the message.

Since ¢’s identity is revealed in the initiation message, it is necessary, in order
to prevent an attacker from determining that p and ¢ are communicating with each
other, to keep p’s identity hidden. This can be done by using private labels. In
the initiation message, p will include a random number, r;, which can be used by
g to send a reply message. If ¢ wishes to send a reply to the initiation message,
it can send the message to the message service using the label r;. Since p created
r1, p will know to request messages with that label from the message service and
will, therefore, receive the reply message. In all future messages, sent by either p
or g, the sender can include a new random number to be used as the label for any
reply message sent by the other user.

While it is not necessary to use a new random value for each message sent in a
conversation, doing so will reduce the amount of information that an attacker will
be able to infer about a conversation (such as the number of messages exchanged
between ¢ and some anonymous user). For this reason, the random labels used
in this scheme should, if possible, be generated using a source of truly random
numbers. If no source of truly random numbers is available, then a cryptographi-
cally strong pseudo-random number generator should be used [ILL89,BM84,BM82,

VV83,BBS86,5ha81,BBS82).



29
3.4 Location Privacy while Sending a Message

In the previous section, we described how to prevent an attacker from determining
the identities of both parties in a conversation by using private message labels to
help make conversation participants anonymous. While the use of private labels
helps to hide users’ locations, it is not sufficient. In this section, we will deal with
the problem of sending messages without the risk of revealing one’s location and
in the next section, we will deal with receiving messages.

While a user will never include information about its own identity, in plain-
text, in a message that it sends to another user, its identity may be known to the
intended recipient of the message. This will be the case, in a conversation, if the
user was not the conversation initiator or if the user was the initiator but revealed
its identity to the other participant. Since communications links are not secure, it
is possible to determine the location from which any message was sent. While this
information will not be useful to most eavesdroppers (since they will not know the
identity of the sender), it may be useful to the intended recipient of the message.
Therefore, if the sender is concerned about hiding its location from the intended
recipient of a message that it is sending, it must work to prevent the recipient from
determining the location from which it sends the message.

One solution to this problem is to use a MIX-network [Cha81] (as was described
briefly in the previous section). The purpose of a MIX is to make it impossible for
an attacker to determine the correspondence between the sources and destinations
of the messages that pass through the MIX. This is accomplished using encryption
and message batching.

A user, wishing to protect its location from another user with which it is having



30

a conversation, prepares any messages that it wishes to send to that user by en-
crypting the messages with the public key of a MIX, Kj;. The user will then send
the result, Kps(l,m,S), to the MIX (in the formula, [ is the label for the message,
m is the message, and S is the address of the message repository). Upon receipt,
the MIX decrypts the message. Once the MIX has received enough messages to
fill a batch (say 1000 messages), it reorders the messages and sends each message
to its destination.

As written above, an attacker could determine the correspondence between
incoming and outgoing messages by simply re-encrypting each of the messages. In
order to prevent this, some form of nondeterminism must be introduced into the
encryption function. This can be accomplished by encrypting some random data
along with the message which the MIX will remove after decryption (as is shown
in [PP89], the way in which the random data is incorporated is important to the
security of the system).

In order to prevent another type of attack, the MIX must be responsible for
preventing message replays. Since the same input to a MIX produces the same
output (i.e. decryption is deterministic), an attacker could locate a specific message
from an input batch in an output batch by re-sending the message. Since the input
message will produce the same output both times, it can be located in the output
by taking the intersection of the outputs of the two batches in which the message
was sent (assuming no other attacker is attempting a replay attack from the same
batch at the same time). By preventing the attacker from re-sending the message
through the MIX, this type of attack is blocked.

The above scheme for hiding the location a message sender from the message’s



Mix, @ batches
o discards repeats
@ changes order
@ changes encoding

Mix,, @ batches
® discards repeats
® changes order
® changes encoding

O Uo

Figure 3.2: A MIX-Network

intended recipient will work as long as the MIX is not corrupt. If the intended
recipient is able to read the contents of the MIX’s memory or knows the MIX’s
private key, then the correspondence between messages coming into and going out
of the MIX will not be hidden from that user. In order to make it more difficult
for an attacker to gain useful information, a MIX-network can be created using a
set of MIXes in such a way that an attacker would not gain any information unless
it corrupts all of the MIXes in the network (see figure 3.2).

A MIX-network consists of a chain of MIXes, each operating as described above.
As an example, if there are three MIXes, M7, My, and M3, then the user would send
K, (K (K (1, m, S), M3), M) to My. My would decrypt the message and send
Ky, (K, (1, m, S), M3) to My which would decrypt that and send Ky, (I, m, S) to
Ms. Finally, M3 would send (I,m) to S. As long as at least one of the MIXes is

not corrupted, the location of the sender will remain hidden.



32

3.5 A Memory Service with a Blinded Read
Operation

Just as the protocol of the previous section is necessary to protect the location
of a message sender from the message’s intended recipient, a technique is needed
to protect a user’s location when it is attempting to retrieve a message from the
message service. Such a technique is needed in two cases. First, when a user
makes a request to the message service for an initiation message. Since the label
on the message is publically known, anyone observing network traffic will be able to
identify the requesting user and will also be able to determine that user’s location.
In addition, just as in the previous section, a user’s attempt to request a message
with a private label can be used by the sender of that message to locate the
recipient.

One way to hide a users location would be to use a MIX-network as in the
previous section. A user would send a request message through the MIX-network
to the message service. This would get the request message to the message service
without anyone being able to determine from where the request originated. In order
to be able to receive the response from the message service, the request message
would need to include an anonymous return address [Cha81,PPW91,PP89] to be
used by the message service to send the response (which also goes through the
MIX-network). Since both the request and the response go through the MIX-
network, the cost of retrieving a message, using this technique, would be twice the
cost of sending a message.

The basic problem with the above technique is that the user must inform the

message service of the label in which it is interested. Since providing this label



33

to the message service may reveal the user’s identity, the user must use the MIX-
network to hide its location. In order to avoid the need for the user to hide its
location, the user must be able to hide its identity. This can be accomplished by
using a protocol which allows the user to retrieve messages of interest from the
message service without revealing which messages it is retrieving.

In this section, we will describe a protocol for a replicated shared memory which
will allow a computer (whether mobile or not) to perform a blinded read operation
(one in which an attacker is unable to determine which position in memory is being
read). In the next section, we will show how a modified version of this memory can
be used to create the message service. Unlike previous protocols, ours is efficient
in its use of both bandwidth and computation.

A memory service (the replicated shared memory) consists of a set of n memory
servers each of which has an array of m cells labeled M[0], M[1],..., M[m —1]. As
in the previous section, we will assume that an attacker may be able to corrupt
some, but not all, of the servers. For this section, we will assume that an attacker

is able to corrupt at most ¢ < n of the servers.

3.5.1 Reading from Memory

The technique for reading from memory is similar in nature to secret sharing
(see [Sim92]). In a (k,n) secret sharing scheme, a user generates n shares of a
data value and distributes one share to each of n servers. The system is designed
so that any k£ shares can be used to regenerate the original value while fewer than
k shares reveals no (or very little) information about the original value. Thus,

secret sharing schemes allow users to store backups of private information (to help



34

prevent accidental loss) while minimizing the risk of revealing that information to
others.

In our scheme for a blinded read operation, there are n servers which hold
copies of the memory. A user wishing to read the value of one of the cells in the
memory constructs a set of ¢t + 1 formulas, fi, fa,..., fi+1, and sends each formula
to different server. Each server evaluates the formula that it receives and sends
the response back to the user. The user then combines the responses from all of
the servers to determine the value of the cell that it wished to read. Just as in
the secret sharing schemes, an attacker which is able to obtain at most ¢ of the
formulas/responses will gain no (or very little) information about which cell the
user read.

For this section, we will assume that only read operations are performed and
that the contents of the servers’ memories are the same. Say that a user wishes
to perform a blinded read operation to read the value in cell p of the memory.
The user begins by creating a set of ¢ + 1 bit-vectors of length m, Vi, Va, ..., Viy1.
Bit-vectors Vi, Vs, ..., V; should be created at random. Using these bit-vectors,

the user computes Vy41 as:

t
‘/H—l =Ip®@Vz

3=1
where
o Joiti#p
Ip[J] =
1 ifj=0p

The result is a set of ¢ 4 1 bit-vectors which satisfy V1 @ Vo @ ... ® Vi41 = I, (an

example of such a set is shown in figure 3.3).



35

vector bit position
1 2 3 4 5 m—1
Vi O|1|1{0{1]0]--- 0
Vs 1{1(0j1]|1({0]--- 1
Vs 1{1(1{1]0([O0]:-- 1
VieVod Vs |0O|1]0(0[0|0 (- 0

Figure 3.3: Sample Bit-Vectors fort =2,p=1

Using these bit-vectors, the formulas f1, f2,..., ft+1 are defined as:
fi= @ Ml
Vjlil=1
In order to prevent an attacker from learning the values of the bit-vectors, the user
creates a set of ¢ + 1 secret keys, encrypts each key with the public key of one of
the memory servers, encrypts each bit-vector with one of the secret keys, and sends
the results to the appropriate servers. Each server decrypts the message, computes
a response by evaluating the formula defined by the bit-vector it receives, encrypts
the response with the secret key that was used to encrypt the bit-vector that it
received, and sends the response to the user. The user then computes the value in

cellpasr @ro® ... Hreyr1 (see figure 3.4).
Security of Blinded Read
Lemma 1 If each of the bits in the t random bit-vectors are set to 1 with probability

% then an attacker which has access to at mostt of the requests/responses associated

with the bit-vectors will gain no information about which cell the client is reading.



Client Server, Server, | « « «| Server,,

1. Choose V[, V;, ...,V such that

t+1

VI@VZ@‘”@VHIZI[J §\S I
2.r1=@M[i] rz=@M[i] o o0 rt+1=@M[i]

Vil =1 Vlil=1 | Wali=l
/ — /
— e //
3.answer=r@rd---Or,, =]

Figure 3.4: Bit-Vector Protocol

Proof: Since the first ¢ bit-vectors are chosen independently of the cell being read,
an attacker will gain no information unless it has access to the ¢ + 1% bit-vector.
We will, therefore, assume that the attacker has the ¢ + 1%¢ bit-vector along with
t —1 of the ¢t random bit-vectors. Let’s call the bit-vectors that the attacker knows
Vi, Vy,...,V/ and the bit-vector that it doesn’t know V".

Say that the client is reading the value of cell p.

ecasel: i=0p
Since this is the cell being read, we know that V{[p] ® Vi[p] @ ... ® V}[p] ®
V"[p] = 1. Since V"[7] is equally likely to be 0 or 1 and V{[i] & V3[i| & ... ®

VI[i] = =V"[q], V{[i] @ V5[i] @ ... & V/[i] is also equally likely to be 0 or 1.

e case 2: 1 #p
Since this is not the cell being read, we know that V{[i]® V5[i]®...® V/[i] &
V"[i] = 0. Since V"[7] is equally likely to be 0 or 1 and V{[i] ® V3[i| & ... P

Vi[i] = V"[i], Vi[i] @ Va[i] @ ... @ V{[d] is also equally likely to be 0 or 1.

Since, for each position, the value of V{[i]® Vy[i]®...® V/[i] is equally likely to be 0



37

or 1 whether it is the position being read or not, the attacker gains no information

about which cell is being read.

Sparse Bit-vectors

As was shown in lemma 1, if the bits in the random bit-vectors are truly chosen at
random (i.e. each bit is equally likely to be either a 0 or a 1), then an attacker which
sees at most ¢ of the bit-vectors will gain no information about the position being
queried. However, using such bit-vectors, each memory server will, on average,
have to exclusive-or together % values. This can be computationally expensive for
the memory servers if the memories have a large number of cells or if the cells are
large (in the next section, each cell will contain a message).

One way to reduce the amount of work necessary to compute a response is to
create random bit-vectors with fewer 1’s. Instead of setting each bit to 1 with
probability %, each bit could be set to 1 with probability ¢ < % This will decrease
the computation time but will increase the amount of information that an attacker
can infer. The value for ¢ must, therefore, be chosen carefully.

The specific value of ¢ to use in any given system will be based on the available
computational power and the security needs of the system. However, in order to
choose a proper value for ¢, it is important to know the amount of information
that may leak to an attacker when any given value is chosen for ¢. In order to do
this, we must look at the set of bit-vectors from an attackers point of view 9.

As was mentioned in the proof of lemma 1, an attacker will gain no information
unless it has access to the bit-vector V41 since the all of the other bit-vectors are

created independently of the cell to be read. We will, therefore, assume that the

9We would like to thank Anindya Basu, Sayandev Mukherjee, and Michael Turmon for their
help in deriving the probability distributions which are presented in the formulas below.



38

attacker has access to V341 along with £ — 1 of of the remaining bit-vectors. We
will call the ¢ bit-vectors that the attacker knows V{, V..., V/ and the remaining
bit-vector V.
In order to simplify the derivation, we will need the following definitions:

C=VieVia...eV/

So={i| C[i| =0}

S1={i]| Cli|=1}

Sh={i | V"[il = 0}

Sy ={i | V'l = 1)

0 ifj#p

1 ifj=p

Ip[j] =

Due to the way that bit-vectors are created, we know that V" = C & I,.
Given knowledge of C, the attacker knows that the only possible values for V" are
C®ly,CPI,...,C& Iy and that the user is reading position j iff V"' = C@ I;.
Since the attacker knows the way in which V" was chosen (i.e. knows the value of
¢), it can compute the a priori probabilities that each of the possible values of V"
was chosen as the actual value for V" and use these probabilities to compute the

a posteriori probabilities for each of the possible values using the formula '°:

a priori probability that V" = C @ I;
m—1
Z a priori probability that V' =C @ I fi
J=0

PV"'=CaI)=

The a priori probability that V" = C & I, for each i, can be computed as follows:

10We are assuming, for simplicity, that, from the attackers point of view, the a priori prob-
ability of each position being read by the user is the same. Consideration of other probability
distributions is straightforward and is left as an exercise to the reader.



39

e case 1: 1€ 5y
In this case, |Sy| = |So| — 1 and |S7| = |S1] + 1. From this we can conclude

that the a priori probability that V" = C @ I; is ol511H+1(1 — )ISol-1,

e case 2: 1 € 51
In this case, |Sj| = |So| + 1 and |S]| = |S1| — 1. From this we can conclude

that the a priori probability that V" = C & I; is ol51=1(1 — )ISol+1,

Using the above formulas, we get:

Spl+1 Spl-1
ISt (1_)I50l

S0 10151 (1—@)1S0T=1 4[5 |[S11-1 (1— ) [SoT+T if i € So
[S11-1¢1_,)IS0l+1
® (1-¢) e .
L |SO|(plsl|+1(1_¢)|SO|_1+|SI|¢|51|_1(1—(,0)|SO|+1 if ¢ (= Sl
( o° "
S FIS=p? 1€ S0
2
(1) ifie s

L [Sol@?+[S11(1—¢)?

Since the values for P(V" = C & I;) depend on |Sp| and |S1]|, the actual prob-
ability distribution that an attacker will be able to infer can not be calculated a
priori (except in the special cases of ¢ = 0,9 = %, and ¢ = 1). However, using
¢, we can estimate the values for |Sp| and |S1| and use these values to estimate
P(V" =C @& I;). Since, V" = C @ I, (for some p), we know that C[i] = V"[i] for
m — 1 values of i (i # p) and C[i] = =V"[i] for 1 value of i (i = p). We know that
V" [i] will be set to 1 with probability ¢ and to 0 with probability 1 — ¢. Therefore,
we can expect that of the m — 1 positions for which C[i] = V"[i], ¢(m — 1) will be

in S7 and (1 — ¢)(m — 1) will be in Sp. The remaining position, p, will be in Sy



40

S Sy

e | Po |:So] P 15
0 0 1023 | 1 1

g | 43022 | 1012.78 | 38 | 11.22
2o || Sout | 9208 | 3933 | 103.2
1| L2855 | 818.6 | 3291 | 205.4
20 %5282 | Ti6.4 | 222 | 307.6
2 | %568 | 614.2 | L2 | 409.8
2l ot | 512 | o | 512

Figure 3.5: Probabilities for m = 1024

with probability ¢ and in S; with probability 1 — ¢. Combining these, we get can
estimate |Sp| = ¢ + (1 — ¢)(m — 1) and |S1| = (1 — ¢) + @(m — 1).

In figure 3.5, we show some sample values for P(V" = C & I;),|So|, and |S1]
for a memory with 1024 cells (in the figure, P; = P(V" = C @ I;) for any i € S;).
The values for Py, |So|, Pi, and |S1| were computed using the formulas which were
derived above to estimate |Sg| and [S1|. In the case of ¢ = 15, there is a 99%
chance that the position being read is in S; and we can expect that |S7| ~ 11.22.
While there is a chance that the user is reading one of the approximately 1012.78
positions in Sy, it is very unlikely. So, while seeing ¢ of the ¢ + 1 bit-vectors does
not allow the attacker to rule out any of the positions entirely (for 0 < ¢ < 1), if ¢
is relatively small (or large), the attacker will be able to extract a relatively small

group of positions such that the cell being read is highly likely to be in that group.
3.5.2 Writing to Memory

Given the protocol for performing blinded read operations, the protocol for writing

to memory is relatively straightforward. The main concern in designing a protocol



41

for writing to memory is to ensure that the contents of the memories of the different
servers remain consistent. The protocol in figure 3.4 assumes that the contents of
each server’s memory will be the same. If the responses to the bit-vectors are
computed using cell values that differ from server to server, the computed value
for the desired cell will be incorrect. As an example, consider the bit-vectors in

figure 3.3. The responses from the 3 servers will be

r = Ml[l]@Ml[Q]@M1[4]
T2 = M>[0] © Ma[l] © M3[3] © Ma[4] © Ma[m — 1]

Ty = Mg[O] D Mg[l] @ M3[2] &) Mg[?)] D Mg[m — 1]
and the computed answer will be

Ms[0] & M3[0]®
Mi[1] & My[1] & Ms[l]®
Mi[2] & M3[2|®
My[3] & Ms[3]&
M [4] @ Ma[4]®
Ms[m — 1] & Ms[m — 1]

aANSWer =

If My = My = M3 then the above equation will reduce to answer = M[1]. However,
if My[3] # M3[3] for some reason (perhaps a write operation is in progress), then
answer = M[1] & Ms[3] & M3[3] # M][1].

There are two ways that the above situation could occur. The first is if two
write operations are performed concurrently. Say that there are two operations,
wi = M([3] := 2 and wy = M[3] := 5, that server 2 performs w; before ws, and that
server 3 performs wy before wy. If, after these write operations have completed,

the read operation depicted in figure 3.3 is performed, the result will be:



42

answer = M][1] ® M3[3] & M3][3]

= M[l]¢e562

= M[]e7
(i.e. the 3 least significant bits of M[1] will be flipped). In order to prevent this type
of problem, we must ensure that all write operations are performed by every server
in the same order. This can be accomplished by using a multicast protocol which
guarantees totally ordered delivery to distribute write requests [BSS91,CASD85,
CM84].

In some cases, it may be necessary to protect against the possibility of malicious
users. If this is the case, the multicast protocol must protect against the possibility
of a user either sending different values to different servers or of a user causing write
operations to be performed in different orders at different machines. This can be
most easily accomplished by having users send update requests to a single server
which will multicast the requests to the other servers. (Servers must also sign
their messages in order to prevent a user from impersonating a server). The use
of an appropriate multicast protocol can prevent a malicious user from corrupting
memory by causing the values in the memories of the servers to differ. However,
a user may still be able to corrupt memory by simply writing bad values into the
cells. While this can not be entirely prevented, the problem can be mitigated by
using some form of access control mechanism *!.

The second way in which a user could receive a bad value in response to a

blinded read operation would be if a read operation was performed concurrently

1 As this type of attack will not be relevant in our use of the memory service, we will not
discuss the use of access control mechanisms.



43

with a write operation. There are two ways around this problem. The first is to
bundle the request messages and use a totally ordered multicast to send them to

the servers 12.

The second option is to prevent read and write operations from
executing concurrently. In our system, read operations on a memory are delayed
until all write operations have been completed. As a result, read requests can

be sent as unordered unicast messages to a subset of the servers thus completely

avoiding the cost of multicasting a bundled set of requests to all of the servers.

3.6 Retrieving a Message

The message service acts as intermediate storage for messages intended for mobile
computers (as shown in figure 3.1). Messages are sent to the service either directly
or through a MIX-network and are eventually retrieved by the intended recipient.
In this section, we will show how to use the memory service of section 3.5 to
implement a message service which will enable users to read messages without

revealing their identities.

3.6.1 Sending a Message to the Message Service

Messages are sent to the servers using a totally ordered multicast (as was de-
scribed in section 3.5.2). At each server, arriving messages are placed in a list in
the order in which they are delivered. This list is stored in a series of tables each
of which holds m messages (i.e. the i** message delivered is stored in table (i — 1)
div m in cell (i — 1) mod m). Figure 3.6 shows the first 4 tables for a message

service in which m = 5. There is a tradeoft that must be considered when choosing

12Notice that since read requests do not change the states of the memories, the delivery of read
requests need only be totally ordered with respect to write requests and not with respect to each
other.



44

table 0 table 1 table 2 table 3
lo, mo ls, ms l10, m10 l15,m15
l1, m1 lg, me 11, m11 l16,m16
la, m2 l7,m7 l12,m12 li7, ma17
ls, ms3 I, mg l13,m13 l18,m18
la, m4 lg, mg l14,m14 l19,m19

Figure 3.6: A Sequence of Message Tables

a table size. On the one hand, the amount of effort needed to read a cell from a
table is proportional to the size of the table (the client must create and encrypt
bit-vectors of length m and the servers must decrypt the bit-vectors and exclusive-
or together ¢m messages). In addition, as will be described later, users must wait
until a table has been filled before reading the messages in that table. Therefore,
as m increases, the time between when a message arrives at the message service
and when it can be read from the service increases. On the other hand, as will be
described later, as m increases, the amount of privacy increases for users who are
reading messages.

Once a table has been filled, users may read messages from that table. In order
to enable message reading, a digest of the table’s contents is created and sent to
all of the mobile computers. The digest of a table is h(ly), h(l1), ..., A(l;—1) where
lo,li,-..,ln—1 are the labels attached to the messages in each position of the table
and h is a hash function (figure 3.7 shows the table digests for the 4 tables shown
in figure 3.6).

Since every user will need to see the digest for every table, table digests are



45

digest 0 digest 1 digest 2 digest 3
h(lo) h(ls) h(l10) h(l15)
h(ly) h(ls) h(l11) h(l16)
h(l2) h(l7) h(l12) h(l17)
h(ls) h(ls) h(l13) h(l1s)
h(ls) h(lg) h(l14) h(l19)

Figure 3.7: A Sequence of Table Digests

broadcast to mobile computers. Once a table is filled and its digest computed, the
digest is sent to all of the base stations (using a multicast protocol for the static
network). Upon receipt, each base station broadcasts the digest over its wireless
link. Some of the mobile computers will not receive the broadcast (for example,
those that are disconnected from the network). Therefore, the base stations will
also maintain a local copy of the digest and resend it as necessary to ensure that
every mobile computer receives the digest (see [AB93,DFM91] for more information

on multicasting in mobile networks).

3.6.2 Reading from a Table

Each user will have a list of message labels in which it is interested, (Ig, 0}, ..., ).
This list includes the labels for reply messages that the user is expecting from
ongoing conversations as well as the user’s public label. When the user receives a
digest, it will look for A(ly), h(1}), ..., h(l}) in the list h(lp), h(l1),. -, A(lm=1). If
the user finds some ¢ and j for which h(l;) = h(l;) then it will read the message

from cell 7 of the table.



46

Users can read messages from the message service in one of two ways. If I} is a
private label and the user trusts the message sender (or the message sender does
not know the identity of the recipient), then it can send a request to one of the
servers containing the pair (k, j) where k is the number of the table to be read and
j is the number of the cell within that table which contains the message (since the
user is not attempting to hide which cell it is reading, there is no need to encrypt
either the request or the response in this case). If the label to be read is public or
if the user does not trust the message sender, then it must use the blinded read
operation from section 3.5. The mobile computer will create ¢ + 1 bit-vectors of
length m and send each bit-vector, along with the number of the table to read, to
a different message server. Since mobile computers can not read from tables until
after they are filled (i.e. after the last write operation has completed), the request
messages do not need to be bundled and the totally ordered multicast protocol is
not needed.

Once the user has read in the message, it must check that the message it has
received has the correct label. Before reading in the message, the user was only

able to see h(l;) and it may bg) thah(#f} but |’ # [;. If the labels do

match, then the user will attempt the decrypt the message using the key that is
appropriate for the message. Since users choose private labels independently, there
is a small chance that the message was not intended for the user despite having
the correct label. If this is the case, then the user will detect this when attempting

to decrypt the message and will discard the message without delivering it.



47

3.6.3 Choosing a Hash Function

Unlike the scheme in section 3.5, the message service can not be set up in such
a way that an attacker gains no information about which message a user is at-
tempting to read. Since, by corrupting just one message server, an attacker can
determine from which table a user is reading, the uncertainty about which message
the user is reading is limited by the size of the table, m. However, since users may
read messages that are not intended for them, an attackers uncertainty about the
identity of a user reading a message may be greater that its uncertainty about
which message is being read.
If the hash function, A, used in creating message digests is the identity function

phen hlkrhbuilliiseveeans shedse where A (!

ave messages intended for them in a table will read

hoose the same return “address” label at about the

1 in a message that was not intended for it, but this

since an attacker can determine the locations from

7ill have a list of (at most) m locations from which

if the attacker knows the identity of the intended

abel [;, it will know that that user is in one of m

hen the attacker will have gained useful information

an not be made large enough to sufficiently confuse

on must be chosen which will force some users to

1at were not intended for them.

the total number of message labels in which every

ve choose a hash function, h, which maps message



48

labels to values between 0 and 31,999, then there will be, on average, two message
labels which hash to each value. If m = 1024, then there will be approximately
2048 requests to the message service. Of these, 1024 will be from the intended
recipients of the messages in the table and 1024 will be from randomly chosen
users. Thus, an attacker seeing a user read a message from the table will know
that there is only a 50% chance that the user is the intended recipient of one of

the messages in the table.

3.6.4 Garbage Collection

In an infinite run of the system, an infinite number of messages will be sent to the
message service. It is, therefore, essential to have some mechanism for removing
old messages from the system. Ideally, a message should be deleted after it has
been read by its intended recipient. However, since the message servers will, in
general, not know whether or not a message has been read and since messages may
be read by users other than the intended recipient, the message servers will not
know when a message has been read by the intended recipient.

An approximate solution is to delete messages after some period of time, A,
has passed. In our system, a table is left intact until its newest message has been
in the system for time A at which point the entire table is deleted. If A is chosen
properly, then every computer will have sufficient time to retrieve all messages
intended for it while the number of tables stored in the system at any one time is
manageable.

In some cases, a user will be disconnected from the network for a long period
of time. This can happen if the user moves outside of the range of all of the base

stations or if the user’s computer is turned off to conserve battery power. In either



49

case, if the user is disconnected for too long, it may miss some of the messages that
were sent to it. In order to avoid this, we have developed a vacation service.

If a user is expecting a message and is afraid that it may miss the message
as a result of being disconnected for some time greater than A, then the user
will register the label associated with that message with the vacation service. If
necessary, the vacation service will store a copy of the message and will hold onto
that message until the user has reconnected and will resend the message to the
message service so that the user can retrieve it. Protocols for implementing the

vacation service will be described in detail in chapter 5.

3.7 Ending a Conversation

Until this point, we have treated a conversation as a sequence of messages with
a beginning but with no end. In practice, most conversations will only last for a
short period of time. Many other conversations will be sporadic in nature, with
periods of high message traffic followed by long periods with no traffic. Since a
mobile computer, for each conversation, must store label and key information and
check every table digest for a message, it is inefficient to have a large number of
conversations when most of them are inactive.

There are two basic ways in which a conversation can be ended. If one partici-
pant in a conversation, when sending a message, does not wish to receive a reply
message, then that user can replace the return “address” label in the message with
an “end of conversation” marker. After sending this message, the sender can erase
from its memory any information about the conversation and the recipient can do

the same upon receipt of the message.



50

In many cases, however, the sender of a message will not know whether or not
that message will be the last message in the conversation. In this case, the sender
can add an expiration time to the return “address” label. The basic idea is that if
the recipient has not sent a reply message by the time the return “address” label
expires, the sender will consider the conversation to have ended and will erase the
return “address” label and the session key for the conversation from its memory.

There are two complications which must be dealt with in using return “address”
labels with expiration times. The first is that the clocks of the sender and recipient
will not be perfectly synchronized and the second is that there will be a delay
between when a user sends a message and when that message can be retrieved
from the message service. While it is impossible to have perfectly synchronized
clocks, there are several protocols which achieve partial synchronization [SWLIO,
Rei93,RBvR94]. The basic idea behind all of the clock synchronization protocols is
that the clients (those wishing to have their clocks synchronized with each other)
periodically communicate either with each other or with a clock synchronization
service. At these times, the clients receive estimates of the current time which they
use to reset their own clocks. The result of the synchronization step for each client
will be that its local clock is approximately synchronized either with the other
clients or with the clock service (since message delivery times may vary, the degree
to which the local clocks differ can only be limited by the uncertainty in message
delivery times). After clients have reset their clocks, as a result of variances in the
rates of the local clocks of the different machines, the differences in the local clocks
may increase over time necessitating another round clock synchronization.

In [RBvR94,Rei93], every client’s clock periodically synchronizes with a single



51

server whose local clock is treated as a source of real time. Clients periodically
send a request to the server for the current time and use this value, along with
estimates of the minimum and maximum possible message delivery delays and the
actual round-trip time to get a response, to compute a range of clock values (the
range of values is the smallest possible range which is guaranteed to include the real
time). After synchronization, the range is determined by using the range at the
time of synchronization, the amount of time that has passed since synchronization
according to the local clock, and an estimate of the maximum possible clock drift.

Using the protocol of [RBvR94,Rei93|, expiration times for return “address”
labels can be used as follows. When a user, p, sends a message to another user,
g, it includes an expiration time, e, for the return “address” label. Using the
expiration time, ¢ will know that p will only be guaranteed to receive its message
if it sends the reply by time Hy(t,) < e (where Hgy(t,) is ¢’s upper bound of the
range of possible values of the master clock when ¢’s local local clock reads t,). If
we assume a maximum delivery delay of ¢ time units, then any reply message sent
by time H,(t,) will arrive at the message service by time H,y(t,) + 6.

Whenever a table in the message service becomes filled, one of the message
servers will broadcast the digest for the table along with the time that the last
message arrived in the table (the time used will be Ly,s(tms) < t where Lys(tms)
is the message server’s lower bound of the range of possible values of the master
clock when the message server’s local clock read t¢,,s). Based on the properties
of the clock synchronization algorithm, we know that at real time ¢, Hy(t,) >t
and Lgm(tsm) < t (where ¢, is the value of p’s local clock at real time ¢ and tgp,

is the value of the message server’s local clock at read time t). Therefore, we can



52

conclude that at any given time, Lgp(tsm) + 6 < Hy(ty) + 0. As a result, once p
has received a message digest with a timestamp greater than e + ¢, p will know
that there will be no messages in any future tables from p which were sent before
Hg(tq) read e and therefore p can treat the return “address” label as expired and

erase the label and the session key for the conversation from its memory.



Chapter 4

Dealing with Failures

4.1 Introduction

In chapter 3, we made the assumption that servers do not crash. While operating
under this assumption simplified the protocols, it is not a reasonable assumption
for most systems. Even though crashes are relatively infrequent, any system which
runs for very long periods of time will be likely to experience some server crashes
over the lifetime of the system. Since it is not reasonable to expect users to accept
either an extended period of time in which messages are unavailable (while the
crashed servers are rebooted) or the loss of messages by the system, the private
message service should be designed to remain available despite a limited number
of server crashes.

In many cases, it may be deemed necessary to prepare for the possibility of
malicious failures. An attacker which is able to corrupt some of the servers, while
unable to compromise users’ privacy, may be able to prevent users from receiving

messages (denial of service attack) by causing the servers it has corrupted to behave

53



54

incorrectly. This incorrect behavior could take the form of lying to users when
responding to request messages or attempting to disrupt other servers.

Many protocols have been developed to solve various problems in distributed
computing in system models in which processes may crash or behave maliciously.
In this chapter, we will briefly describe some of the relevant protocols and will
show how these protocols can be used to design a private message service which

tolerates failures.

4.2 Crash Failures

There are two basic things that need to be done in order to tolerate crash failures.
The first is to ensure that operational sites agree about which sites are operational
and which are not and the second is to ensure that there is sufficient redundancy

to be able to maintain functionality despite the unavailability of the crashed sites.

4.2.1 Agreeing on Group Membership

Even if all of the servers which are responsible for providing a particular service
are honest, it can still be difficult for the servers to agree on the status of each
of the servers in the group. The basic problem is the inability to distinguish
between a server which is temporarily overloaded and therefore nonresponsive and
one that has crashed. Instead of actually determining whether or not a server has
crashed, a server will usually guess that another server has crashed if a period of
nonresponsiveness lasts longer than some predetermined timeout period. However,
since these guesses can sometimes be inaccurate, it is possible that a server p will
guess that another server g has crashed while all other servers still believe that ¢

is operational.



55

Since disagreement on which servers have crashed may cause many protocols
to behave incorrectly, it is important to have a mechanism available to ensure that
there is a set of operational servers all of whom agree about which servers are
operational and which are not. A solution to this problem can be found in [Ric92].
The basic idea behind this protocol is that when one server decides that another
has crashed, it informs a coordinator which is responsible for informing all of the
other servers of the crash and for coordinating the removal of that server from the
group. In addition, there are mechanisms for handling the failure of the coordinator
in such a way that a new coordinator takes over while still maintaining agreement
of the group membership.

Since it is useful for both availability and efficiency to have as many operational
servers as possible at any one time, it is important to have a mechanism to allow
servers which have crashed (or which were erroneously believed to have crashed)
to rejoin the group. There are things that must be done when a server wishes to
rejoin the group. First, the other servers must be informed about the new member
so that they can each add the new member to their view of the group membership.
Second, the state of the new server must be set to be consistent with that of the
other servers 1.

Since users (or clients) remain anonymous, it is not possible for the servers to
maintain status information about them. However, none of the protocols in the
private message service require this information for correctness. On the other hand,
users will need to know which servers are operational in order to decide to which

servers they should send requests. While it is not necessary that the beliefs of the

'In the case of the message servers, this would mean sending the new server a copy of every
message that has been received but not yet deleted along with the organization of these messages
into tables.



56

users agree with the beliefs of the servers (or with each other), it will, in general,

be most convenient for the servers to broadcast status changes to the users.
4.2.2 The MIX-Network

The MIX-network, when used, sits between users and the message service (when
the users are sending messages). It is, therefore, the responsibility of the MIX-
network to ensure that any messages that it receives are delivered to the message
service. In the scheme presented in chapter 3, at any point in time, each message
was held by only one MIX server. Since the result of this server crashing would be
the loss of all of the messages that the server was holding, this scheme needs to be
enhanced in order to satisfactorily handle crash failures.

One solution would be to make users responsible for ensuring that their mes-
sages arrive at the message service. This could be accomplished in one of two
ways. The first would be to use acknowledgements. A message sent by a user
would propagate through the chosen chain of MIXes until it reached the message
service. Using the same chain, in reverse, an acknowledgement would be sent back
to the user. If the user receives a message declaring that one of the MIXes in
the chain that it was using has crashed and has not received an acknowledgement,
then it will choose a new set of MIXes to form a chain and resend the message.
The major problem with this technique is that the user may have moved or be-
come disconnected between the time that it sent the message and the time that
the acknowledgement arrives.

Since messages in the message service can be read by anyone, users could deter-
mine whether or not their messages have arrived at the message service by looking

for the message in the message service directly instead of waiting for an acknowl-



57

edgement. While this avoids some of the problems of the first technique, it still
has several problems of its own. First, if a user becomes disconnected from the
network soon after sending a message which is lost by the MIX-network as a result
of a crash, the message will not arrive at the message service (and be available
to the intended recipient) until the sender becomes reconnected to the network.
Second, since users will need to read every message that they send to the message
service, the message servers will have to perform extra work, thus reducing the
number of messages that the service can handle.

In order to avoid these problems, the MIX-network should take responsibility
for ensuring that messages are not lost even when some of the MIX servers crash.
Since it is impossible to design a system which can handle any number of crashes,
one must first determine how many simultaneous crashes the system should be able
to handle without losing any messages. In order to handle up to ¢ simultaneous
crashes, each server should have ¢ backups. Each backup should have a copy of
the server’s private key (or access to it) and should receive copies of every message
sent to the server. If the server crashes, then one of the backups (having all of
the necessary information) can take over the job of the server until it has been
rebooted. Another solution is to design the MIX-network so that servers which

have crashed can be bypassed [PW87].

4.2.3 The Message Service - Receiving Messages from
Users

The message service has three responsibilities towards incoming messages. It must

ensure that none of the messages are lost, that they are delivered to all of the



58

User or

MIX m Server 0 Server1 Server2 Server3

-
T

m
\
]
ack //
ack a/ck

ack

Figure 4.1: Coordinator Based Totally Ordered Multicast

operational message servers in the same order, and the every user receives a copy
of every table digest so that they will know about the messages.

Messages are sent to the message servers using a totally ordered multicast
protocol [CASD85,Bir93]. One way to avoid the problem of lost messages is to
wait until all of the message servers have received the multicast before sending an
acknowledgement to the message sender (as in figure 4.1). In the protocol depicted
in figure 4.1, server 0 acts as a coordinator which is responsible for forwarding
messages to the other servers and for acknowledging the receipt of messages on
behalf of the servers. Totally ordered message delivery is guaranteed by having
the coordinator forward messages in the order in which it delivers the messages
using a multicast which guarantees FIFO delivery. If the coordinator ever fails,

a new coordinator takes over. This new coordinator first checks for any messages



59

that were sent to some servers but not others and ensures that these messages are
received by all of the servers in the correct order after which it can handle new

messages as normal.

4.2.4 The Message Service - Retrieving

The protocol for retrieving a message from the message service does not need to
change substantially in order to tolerate server crashes. Since request messages do
not change the states of the servers, a user which sent a request to a server which
failed can simply send the request to another server. If the user is attempting to
perform a blinded read (using the bit-vector technique), then the user must be
careful when choosing a new server to which to send the request. If we assume
that up to ¢; servers may become corrupted, then it is important to ensure that
no set of ¢; servers will see all of the bit-vectors used to make a request. Since, for
efficiency reasons, the user will only create ¢; + 1 bit-vectors, the user must ensure
that no server sees more than one of the bit-vectors. Therefore, if up to ¢ty servers
could be unavailable at any given time, there must be at least ¢; + 2 + 1 message
servers in order to guarantee that users will always be able to safely perform a

blinded read.

4.3 Malicious Failures

The possibility of malicious failures adds several new complications to the design
of the private message service. In addition to the need to deal with the possibility
of crash failures, the protocols must contend with the possibility that some of the
servers may send messages with incorrect information. This possibility has a large

effect not only on the users which need to ensure that they receive the correct



60

information when they attempt to retrieve messages but also on the servers which
need accurate group membership information and need to guarantee that the states
of all of the (correct 2) servers remain consistent.

The basic technique for handling malicious servers is to ensure that there will
be enough correct servers available to “out vote” the malicious ones, thus allowing
users (and other servers) to determine which information is correct and which is
incorrect. In order ensure that in a system with a majority of correct servers that
the correct servers will always out vote the malicious servers, we must prevent
malicious servers from impersonating correct servers. Otherwise, the malicious
servers could “steal” votes from correct servers in order to make it appear that
a majority of the servers (and thus at least one correct server) agreed on some
incorrect value causing a user (or server) to accept the value as correct.

In this section, we will describe the changes that need to be made to the message
service in order to tolerate a limited number of malicious failures among the mes-
sage servers. The message service uses three basic protocols each of which must be
modified. In section 4.2, we described protocols for maintaining consistent group
membership information and for providing totally ordered multicast in a system in
which crash failures are possible. In 1994, Michael Reiter developed protocols for
solving these problems in systems in which a limited number (less than one-third)
of the servers fail. The details of these protocols are beyond the scope of the thesis

and can be found in [Rei94a,Rei94b).

2In this context, a server is correct if it is both honest and operational.



61

4.3.1 Servers Lying to Users

Given the protocols for group membership and totally ordered multicast, the only
remaining protocol which needs to be altered is the one used by users to retrieve
messages from the message service. There are two basic ways to ensure that users
will get correct responses. The first is to have each user make every request to
several servers and take the majority response as the correct response. This will
work as long as a majority of the servers which respond to any given request are
correct.

The problem with the first technique is that it is very expensive. In a system
which can tolerate at most one malicious server, every request message will have
to be sent to three different servers. This will reduce the effective throughput of
the message service by a factor of one-third and will require every user to encrypt
every request using the keys of three different servers. In addition, all of this extra
work will be required even if there are no malicious servers.

In order to avoid the use of a voting scheme, there must be some means by which
a user can distinguish between a correct response and an incorrect response when
looking at the response of a single server (or set of servers). (As we will show later,
the system can be both safe and live as long as a user never mistakes an incorrect
response for a correct one. Occasional mistakes in the other direction can be
tolerated.) In our system, users are requesting messages from the message service.
Since these messages are created by other users (and not by the message service),
users sending their messages to the message service can sign their messages. If a

user p receives a message from the message service which is supposed to be from



62

g but which has not been properly signed by g, then p will know that either the
message did not come from ¢ or that ¢’s message has been altered.

Even before a user can verify the signature on a message that it receives, it
must know that the message has arrived at the message service so that it will
know to retrieve it. In our system, users rely on the table digests to inform them
of the possibility of a message being available. Since table digests are created by
the message service and there is no way for users to distinguish a correct digest
from an incorrect digest, all digests must be broadcast using the voting technique.
In order to tolerate up to ¢ malicious failures, each digest must be broadcast by
at least 2¢ + 1 message servers. Each user will receive all of the copies and accept
the majority response as the correct value. In order to prevent one server from
impersonating another, all table digests must be signed by the servers.

In section 3.6, each entry of the table digest was of the form h(l) where [
was the label attached to the message and h was a hash function. If a user was
looking for a message with label /; and h(l;) = h(l) then the user would read in
the corresponding message, < I,m >, and check to see if [ = [. If I; # [, then
the user would discard the message. If we assume that some servers may lie, then
it is possible that the user will receive < I',m’ > from the servers where ' # [
but A(l") = h(l). If this is the case, then the user will not be able to determine if
< I';m' > is a valid message for another user or if the server(s) which responded
to its request lied. Whenever a user is unable to distinguish between these two
scenarios, it will have to assume that the servers lied and revert to the voting
technique to either get the correct response or very that the original response was

correct.



63

In order to minimize the chances that a user will need to revert to the vot-
ing technique, we must prevent servers from undetectably sending messages with
incorrect labels. There are two ways to do this. The first is to use the identity
function for A and the second is to use a one-way hash-function. Since the use of
a one-way function will not (substantially) reduce the size of table digests and will
increase computational overhead, we recommend using the identity function. By
using the identity function, since the user knows that the digests are correct, the
user will know if the value that it reads from the message service, < I',m' > has
an incorrect label. If I’ does not match the label from the digest, then at least one
of the servers which the user contacted lied and the user will have to revert to the
voting technique to retrieve the correct message. If I’ is the correct label, then the
user will check the signature on the message. If the signature is valid, then the user
will know (with very high probability) that it has received the correct message. If
the signature on a message is invalid, then the user will have to use the voting
technique to read the message.

There are several reasons that a user, waiting for a message with label [ from
another user ¢, could receive a message of the form < [,m > from the message
service in which m is not properly signed by ¢. One possibility is that it did
not receive the proper response from the message service (which is the reason for
reverting to the voting technique in order to verify the response). However, it may
be the case that the response from the message service was correct. This could
happen in one of two ways. First, m could be a valid message intended for another
user. Since it will not be possible for the user to determine whether m is an invalid

message or a valid message intended for another user, the user will have to use



64

the voting technique to read in the message and verify that m was the correct
response. Since this should only happen in cases in which two users choose the
same return “address” label at approximately the same time, this should occur
very infrequently and so should not impact performance.

Another reason that a user might receive a correct response from the message
service which does not seem to carry a valid signature would be if another user sent
a bogus message to the message service. This is most likely to happen if the label
on the message is the user’s public label. A user, p, wishing to “harass” another
user, g, could send a large number of bogus messages to the message service with
q’s public label. Since ¢ will not be able to distinguish between a bogus message
sent to the message service and an incorrect response from the message service, it
will have to read in the each message, determine that the signature is invalid, and
then read each message again using the voting technique. Only after verifying that
the responses from the message service were correct (using the voting technique)
will ¢ be able to determine that the messages were bogus and ignore them. Since
there may be a valid initiation message (probably sent by some user other than
p) interspersed among the bogus messages, ¢ can not safely ignore the initiation
messages from p. Also, since ¢ may have to deal with some malicious message
servers in addition to the bogus messages from p, it can not avoid using the voting

technique to verify each of the responses it gets from the message service.



Chapter 5

The Vacation Service

5.1 Introduction

The purpose of the vacation service is to prevent users who become disconnected
from the network for a long period of time from losing messages as a result of the
garbage collection that takes place in the message service. There are two basic
competing interests with which one must contend when designing such a service.
The first is the need to prevent the vacation service from becoming a potential
source of information which might compromise privacy. The second is the need for
the vacation service be able to limit the number of messages that it must store at
any given time while holding on to messages until they have been received by their
intended recipients. In this chapter, we will discuss some of the issues related to

the design of a vacation service and present several solutions to the problem.

65



66

5.2 The Problem of Privacy

In chapter 3, there was a distinction made between private and public message
labels. If a label was private and in use in a conversation in which the user trusted
the other participant then the process of sending or receiving a message using that
label was greatly simplified. As a result, it is important that users not be required
to provide any information to the vacation service which might reveal one of its
private message labels in a way which could be useful to an attacker. On the other
hand, the vacation service needs to know which messages to store and which to
discard.

One solution would be for users to interact with the vacation service using an
alias. Periodically the user would inform the vacation service of the list of labels
in which it is interested so that the service would know which messages to save
in case the user became disconnected. However, if the list of labels contained the
user’s public label then the vacation service would be able to determine the user’s
identity and thus would know that user’s private labels. As a result, users would
need to use the expensive techniques for sending and retrieving messages in order
to prevent the vacation service (in addition to the people with whom they are
communicating) from being able to locate them.

Even if the list of labels which the user provides to the vacation service does not
contain any publically known labels the attack described above could be performed
to a lesser extent. Say that a user, u, provides the vacation service with a list of
labels, (I1,12,...,lx), such that /; is for use in a conversation with user u;. Suppose
that u trusts user u, and wishes to take advantage of this to retrieve messages

from u, efficiently. However, there may be another user, u;, which v does not trust



67

which has access to the vacation service and which gets u’s list by looking in the
vacation service for a list of labels which contains the label /. Since u will be the
only user to have [p in its list, up will know that this list belongs to u and will know
that v is also the intended recipient of the message with label [,. As a result, in
order for u to hide its location from wuy, it will have to use the bit-vector technique

to retrieve all of its messages instead of just those from wuy.

5.3 A Simple Solution

One possible solution to the above problems would be for users to always read
messages from the message service using the bit-vector technique. In this case,
users could simply register their list of labels with the vacation service under their
own identities (sending the registration messages through the MIX-network in order
to hide their locations). Whenever a user sends a message it would add the return
“address” label to the list that it had registered with the service and whenever it
receives a message it would remove the corresponding label from the list (unless the
message was an initiation message using the user’s public label). In addition, the

Y

user would periodically send “I’m connected: (table j)” messages to the vacation
service, telling the service that the user is connected and has received all messages
in tables up through j.

If, after some timeout period, the vacation service had not heard from a user,
the service would assume that the user had become disconnected from the network.
Once the vacation service determines (based on the length of time since the user

last sent an “I’'m connected: (table j)” message) that the user is at risk of missing

a message, the vacation service will begin to scan the tables in the message service,



68

beginning at table j + 1, for messages with any of the labels in the users list. If the
vacation service finds any such messages, then it will store them for later retrieval
by the user.

When a user reconnects to the network after being disconnected for a long
enough period of time that it was unable to read from some of the tables from
the message service, it will send a message to the vacation service specifying which
tables it missed. If the vacation service had stored any messages for the user from
any of the missed tables, then the service will re-send those messages to the message
service so that they can be retrieved by the user. After sending the messages to the

message service, the vacation service can delete the messages from its memory *.

5.4 A Solution which does not Prevent
Efficient Message Reading

The reason that the previous solutions did not allow users to efficiently read mes-
sages which came from users which they trusted was that all of a user’s labels were
tied together under the same alias in the vacation service. One way to avoid this
would be for users to register each label under a different alias thus preventing an
attacker from using knowledge of the intended recipient of one label to determine
the intended recipients of other labels.

This system would work in basically the same way as the previous system with
the exception of a few small changes. First, when registering a private label which

will be used to receive a message from a trusted user, there would be no need to send

!The labels associated with these messages would not be removed from the user’s list of labels
until the user had acknowledged receiving them. Therefore, in the unlikely case that the user
immediately becomes disconnected from the network again and is unable to read the messages,
the vacation service would simply re-read the messages from the message service upon detecting
that the user is disconnected.



69

the registration message through the MIX-network since the registration message
would not identify the user. Second, the user would need to send a separate “I'm

" message for each active alias that it had with the vacation

connected: (table j)
service. The final difference is that each alias would never be used for more than

one message label.

5.5 The Final Solution

There is one basic problem with the solution of section 5.4. In order for the
vacation service to know whether or not to store a copy of a message (or when
it can delete a message), the user must keep the network informed about when it
is connected to the network and which messages it has received. There are two
basic ways to accomplish this. The first is for the user to periodically send “I'm
connected: (table j)” messages to the vacation service as long as it is connected.
By using these messages, the vacation service will be able to avoid saving copies
of most of the messages that are sent through the network. The second solution
is for the vacation service to store a copy of every message and for users to inform
the network whenever they have received a message so that the vacation service
can delete the message.

While the protocols in sections 5.3 and 5.4 both solve this problem, the protocol
in section 5.4 requires the user to perform extra work without giving the user an
incentive to do this work. A user, wishing to minimize work for itself by ignoring
the protocol, could save work by not sending “I'm connected: (table j)” messages
and by not telling the vacation service when it has received a message. Since the

vacation service would be unable to tell the difference between a connected user



70

which was refusing to send “I'm connected: (table j)” messages and a user which
was disconnected, it would never be able to delete the user’s messages. Since the
user registers each of its message labels under a different alias, there would be no
way for the vacation service to prevent this type of activity 2.

There are two basic solutions to the above problem. The first is to limit the
amount of storage space for each user within the vacation service and the second is
to charge for space. In the first case, users will have to monitor their use of memory
since it is a limited resource and in the second case will choose to limit their use
due to the costs. In both cases, the solution centers around the use of electronic
cash [Cha85,Cha92]. Below, we will describe the solution based on strictly limiting
the amount of space allotted to each user. The technique for charging money for

space is similar and the necessary changes to the system are straightforward.
5.5.1 Limiting Storage Space

Using the first solution, each user will be allotted a certain number of storage
spaces. In order to use a storage space, the user first sends a request to the
vacation service to “withdraw” one of its space allotments. The request will be
same as a withdrawal in David Chaum’s electronic cash scheme [Cha85,Cha92].
Assuming the user has not already withdrawn all of its allotments, the result of

the transaction will be that the user will have a certificate entitling it to the use of

2In the solution of section 5.3, the user could still refuse to send “I'm connected: (table j)”

messages but, since the vacation service will know the identities of users registering message
labels, it could discourage such behavior. One possible deterrence would be to send bills to users
for the use of the vacation service in which the amount of the bill was proportional to the number
of messages that the service had to hold for the user and the length of time that the service had
to hold on to the messages. If the cost of refusing to send “I’'m connected: (table j)” messages
was greater than the benefits, then this would effectively discourage such behavior.



71

a unit of space (enough space to store a message). Just as with cash, there will be
no way for the vacation service, or anyone else, to tie the certificate to the user.

When a user is ready to send a message, it will need to register the return
“address” label in order to avoid missing any reply message. To do this, the user
will send the return “address” label along with one of its certificates to the vacation
service. The vacation service will check the validity of the certificate and, if it is
valid, will accept the label and will check the message service for messages with
that label. If the certificate had already been in use, then the old label will be
deleted along with any message being stored under the certificate.

As in the previous protocols, if a user has been disconnected for a long enough
period of time that it was unable to read from some of the tables in the message
service, then it will send a request message to the vacation service, for each one of
its active certificates, to see if the vacation service had found any messages under
the registered label.

A user can use the same certificate to register all of the return “address” labels
for a given conversation. However, in order to avoid the problems described in
section 5.2, a user should not use the same certificate in two different conversations
(which the user may wish to do if one conversation ends before another begins).
On the other hand, since each user is only allotted a fixed number slots in the
memory of the vacation service and each certificate represents a slot, there needs
to be a way for users to refresh certificates. Once a user is done using a certificate,
it can send the certificate to the vacation service along with a request for a new
certificate. Just as with “withdrawing” a certificate, the new certificate will not

be traceable to either the user or to the old certificate. Once the vacation service



72

receives the request, it will place the old certificate on a list of invalid certificates
to prevent its further use.

In order to prevent the memory needed to hold the list of invalided certificates
from continuously growing, there can be a set of valid signatures for certificates.
Each certificate will have a limited lifetime and will become unusable once its
signature becomes invalid unless it has been cashed in for a valid one before the
expiration time. Once a signature becomes invalid, all certificates with that signa-

ture can be removed from the list of invalid certificates.



Chapter 6

The Implementation and

Performance

6.1 Introduction

In chapter 3, we presented the basic protocols for the core of the private message
service. In this chapter, we will describe some of the important details of the
implementation of the system along with some performance figures to show the
potential throughput of the system.

Due to our limited resources, it was not feasible for us to implement a mobile
network with a large number of mobile computers. Instead, we implemented a
prototype of the system in which the mobile computers were replaced by processes
running on static computers which were directly connected to the network. This
resulted in several minor changes to the system. First, since the user processes
could communicate directly with the servers, there as no need for base stations.

In addition, the lack of mobility meant that there was no need to deal with users

73



74

changing location over time or with disconnection. This simplified the protocol
for broadcasting table digests to users and also eliminated the need for a vacation
service. Other than these changes, however, our prototype of the private message
service was designed to mimic the actions of a true implementation in a mobile
network as closely as possible. Since the main concern in our prototype was to
determine the achievable throughput of the core servers of the private message

service, this did not pose a problem.

6.2 Horus and the Communications
Infrastructure

There were several low level services that were necessary for the implementation
of the private message service. These included such things as a directory service, a
group membership service, as well as message sending and multicast primitives. In
our system, these basic operations were provided by the Horus system [vRHB94].
Horus is a highly flexible system for implementing reliable distributed systems
based on the group communication model of computation. It is also extensively
layered, allowing applications to only pay for those services that they actually use.

All communication in Horus takes place in the context of process groups. For
each group, processes declare a protocol stack which specifies the semantics of the
group and of communication within the group. Communication within the private
message service and between the private message service and the users makes
extensive use of the group communication model. As shown in figure 6.1, our

implementation makes use of three different process groups: the Message Service



[ e}
senicc QOO I OO0

Group |MIX Server 0 MIX Server 1

/MN’ 4

\

Message

Service

Group

Figure 6.1: Group Structure

Group, the Message Server Group, and the MIX Service Group. The details of
these groups and the processes within them will be explained later.

While there are a large number of protocol layers available in the Horus system,
our system uses relatively few of them. Figure 6.2 shows the protocol stacks for
each of the groups used within the system. At the bottom of every protocol stack is
the COM layer. The semantics of this group are unreliable communication within
groups whose views are maintained by the application. In all three of our groups,
the NAK (negative acknowledgement) layer sits on top of the COM layer. The
NAK layer simply adds reliable FIFO communication to the semantics of whatever
protocol stack sits below it. On top of this sits the FRAG (fragmentation) layer
which is responsible for breaking up messages into packets small enough for the
underlying communications protocol (e.g. UDP, TCP/IP, ATM, etc.).

As was mentioned in chapter 4, in order to deal with server failures, it is neces-
sary that the servers be able to maintain consistent views of the group membership.

This is handled by the MBRSHIP (membership) layer (for a system model in which



76

Message Server Group

MIX Service Group
and
Message Service Group
STABLE

MBRSHIP MBRSHIP
FRAG FRAG
NAK NAK
COM COM

Figure 6.2: Horus Protocol Stacks

only crash failures can occur). The MBRSHIP layer implements the virtual syn-
chrony model of computation. In addition to ensuring that all group members
receive consistent group views, this layer also has a flush protocol which is run
whenever a failure occurs or a new process joins the group. The flush protocol
is designed to help ensure that the semantics of communications protocols are
maintained despite changes in the group membership.

Unlike the other two groups, the Message Server Group uses an additional layer.
The STABLE layer collects information about the stability of the messages that
are sent within a group. This stability information is used for two reasons. First,
as shown in figure 4.1, the user (or MIX) sending a message to the message service
does not receive an acknowledgement for that message until it has been received
(and acknowledged) by all of the message servers. Second, a table digest for a

table in the message service is not multicast to the users until the message server



77

which multicasts the tables knows that all of the messages in that table have been
received by all of the servers.

While not related to the communications infrastructure of the system, the final
service which Horus provides is a machine independent threads package. In our
system, user processes are implemented in layers, the message client layer and
the applications layer (see figure 6.3). Currently, two applications layers have
been implemented, one of which uses the X Window System. The main thread of
execution runs the user interface (written in X) and allows users to create and send
messages. Whenever an incoming message arrives (whether it is a table digest or
a response to a request), a new thread is created which processes the message and

then terminates.

6.3 The Message Servers

The message servers are responsible for both storing user messages and for handling
requests from users wishing to retrieve messages. As a result, the message servers
will, in general, be the bottleneck for system performance. With this in mind, we
have carefully designed the system to minimize the costs of operations associated
with the message servers.

There are three basic operations that are associated with the message servers.
The first is receiving user messages. As was mentioned in section 3.6, in order
for the message servers to maintain consistent states and for users to receive the
correct answers to their requests, users’ messages must be delivered at all of the
message servers in the same order. Since all of the messages come from users

(instead of from message servers), it is necessary, for efficiency purposes, to divide



78

the process of sending a user message to the message service into two steps. In
the first step, the user (or the final MIX server in the MIX-network) sends the
message to a single designated message server (Message Server 0) using the Message
Service Group to send the message. This server, in turn, multicasts the message
to the remaining message servers using the Message Server Group to multicast
the message. Message Server 0 multicasts each of the messages that it receives
in the same order in which it delivers the messages. Since the group in which it
multicasts the messages includes the NAK layer in its protocol stack, the remaining
message servers will deliver the messages in the same order as Message Server 0,
thus ensuring consistency. As a result of this two step process, the cost of a
general purpose totally ordered multicast is avoided and only the message servers
will deliver the messages. (If the messages had been multicast within the Message
Service Group, then all of the users would have delivered the messages in addition
to the message servers.)

When a table has been filled, the digest for that table must be sent to all of
the users. In our system, since users are actually static processes which are always
connected to the network, this process is relatively simple. Once Message Server 0
has received information from the STABLE layer certifying that all of the messages
for a table have been delivered by all of the message servers, it multicasts the digest
within the Message Service Group. As was the case with user messages multicast
within the Message Server Group, the NAK layer of the protocol stack ensures that
every user receives exactly one copy of each digest and that the digests are received
in order. In addition to the users, the table digests are also delivered by the other

message servers. Each server keeps track of which digests have been multicast. If a



79

server ever receives notification (from the MBRSHIP layer) that Message Server 0
has crashed, then it will take over as Message Server 0 if all other lower numbered
servers have also crashed. By keeping track of which digests have been broadcast,
the new Message Server 0 can take over the responsibilities of the old Message
Server 0 without causing any disruption for the users.

Once the users have received a table digest, they will read any messages from
the table which may be intended for them. Messages are read using RPC style
requests. A user wishing to read a cell in the table can do so in one of two ways.
If the label attached to the message which the user believes it is reading is private
and the user trusts the sender associated with that label, then the user chooses a
single server at random and sends a request to that server for the message in the
appropriate cell of the table. The user then waits for the response, checks the label
on the message that it receives, and, if the label is correct, decrypts the message.
If the message server to which the user sends the request crashes before sending
its response, then the user simply chooses another server and resends its request.

If the user believes that it is reading a message with its public label or with a
private label from a user that it does not trust, then the user will perform a blinded
read operation. For this, it will choose ¢ + 1 servers at random, create ¢ + 1 bit-
vectors, and encrypt one bit-vector for each server. The encryption for each server
is performed by creating a new secret DES key [DES77], encrypting the DES key
with the public RSA key [RSAT78] of the server, and encrypting the bit-vector with
the DES key '. Each encrypted request is sent to the appropriate server and the

user waits for all of the responses. Asin the case above, if one of the servers crashes

!The basic RSA and DES encryption, decryption and key generation functions were provided
by the RSAREF(TM) software package from RSA Laboratories.



80

before responding, the bit-vector which was sent to that server will be re-encrypted
for a new server and sent to that server. Once responses to all of the bit-vectors
have arrived, they are decrypted (the message servers encrypt responses to blinded
read requests using the DES key sent along with the bit-vector) and combined to
get the final response. Once the response has been computed, the label is checked

and, if it is correct, the message decrypted (just as above).

6.4 The MIX Servers

Messages intended for users who are not trusted by the message senders can be
sent through the MIX-network. In the current implementation, the MIX servers
form a single chain beginning with MIX Server 0 and ending with MIX Server ¢+ 1.
A user wishing to send a message through the MIX service encrypts the message
for each of the servers (as described in section 3.4) and then sends the message to
MIX server 0.

As the first MIX in the chain, MIX Server 0 is responsible for batching messages.
Messages, as they arrive, are placed in the first available batch with the restriction
that in each batch there is at most one message from any given user 2. This is
accomplished by placing each incoming message (after being decrypted) onto a
queue along with its sender’s identity (or location). Then, once the message is
in the queue, the queue is scanned for any messages which can be placed in the
current batch. Once a batch has been filled, the messages in the batch are sorted 3

and then sent to MIX Server 1.

2In a real system, in which it may not be possible to determine whether or not two messages
came from the same user, this could be approximated by limiting each batch to one message from
each base station.

3Since the sorting is based on the decrypted form of the message, this has the same effect as
reordering the messages randomly.



81

There are two reasons for restricting each batch to having at most one message
from each user. First, allowing a single user to place a large number of messages
in a single batch poses a privacy risk. Since the uncertainty in the origin of any
message that exits the MIX-network is limited by the number of different origins
of messages at the entrance to the MIX-network, allowing more than one message
in a batch to originate from the same location would reduce the uncertainty in
the origins of all of the messages from that batch once they exit the MIX-network.
The second reason for the limitation is one of convenience. In order to simplify
the implementation for the users, the private message service guarantees FIFO
message delivery. Since messages within a single batch are reordered and since the
destination of each message is unknown to MIX Server 0, the only way to maintain
this guarantee is to limit each user to at most one message per batch.

Since the job of batching is handled by MIX Server 0, the remaining MIXes
only need to read in each batch of messages, decrypt the messages in each batch,
sort the messages, and then send them to the next MIX in the chain. MIX Server
t + 1 performs the same job as the other MIXes with the exception that it sends
the messages to Message Server 0. This is the reason that MIX Server ¢+ 1 belongs
to the Message Service Group in addition to the MIX Service Group.

As can be seen from figure 6.1, the MIX Service Group contains all of the MIX
servers in addition to all of the users. Since the protocol stack for the MIX Service
Group contains the MBRSHIP layer, all of the members in the group are aware of
the current status of each of the MIX servers. Using this knowledge, MIX servers
which have crashed can be removed from the chain in the MIX-network until they

have recovered. Removing a MIX requires two steps. First, users will no longer



82

Applications Layer
incoming
|, lmsg handier| |, |
V A V V
msg_init‘ | ‘send_init‘ send_non_init
Message Client Layer
Message MIX
Service Service
Group Group

Figure 6.3: The user process

encrypt their messages for that MIX. If MIX Server 0 crashes, then the next lowest
numbered MIX will take over responsibility for receiving messages from users and
for batching the messages. Similarly, if the last MIX in the chain crashes, then
the highest numbered MIX remaining will have to join the Message Service Group
and start sending its messages to Message Server 0. Finally, if the crashed MIX is
in the middle of the chain, then the preceding MIX will simply send its messages

directly to the MIX that followed the crashed MIX in the chain.

6.5 The Users

The code for the user processes is divided into two layers which communicate
through a simple interface (see figure 6.3). The two layers are the message client

layer and the applications layer.
6.5.1 The Message Client Layer

In this section, we will describe the message client layer, including its interface with

the applications layer. The message client layer implements the user’s portion of



83

the protocols for the private message service. The code can be divided into three
basic parts: initialization, sending messages, and retrieving messages.

A process begins by calling msg_init with the user’s public label and private key
and the address of a function to be called whenever an initiation message arrives.
The message client layer joins the Message Service Group and the MIX Service
Group. It also stores the user’s public label and private key for use whenever a
table digest arrives.

Once msg_init has been called, the user is free to send and retrieve messages.
The user can send an initiation message by calling the function send_init. The
parameters to this function are the intended recipient’s public label and public key,
the message to be sent, and the address of a function to call when a reply message
arrives. The message client layer generates a new session key for the conversation
as well as a return “address” label for the first reply message. It then encrypts
the session key with the public key of the intended recipient, attaches the return
“address” label to the front of the message, and encrypts the message (along with
the return “address” label) with the session key. Next, it attaches the encrypted
session key and the intended recipient’s public label to the front of the message.
Finally, the return “address” label and the session key are placed on a list of active
conversations which is used to scan table digests and to read and decrypt incoming
messages.

While the function send_init accepts arbitrary length messages, the private
message service (for privacy reasons) requires that all messages be of the same
length. Therefore, the message client layer is responsible for fragmenting and/or

padding messages so that each message (or packet) sent to the message service is



84

the same length. In order to accomplish this, the message client layer breaks up
messages into fixed length pieces and uses randomly generated labels to form a
0 terminated linked list of the packets which constitute the original message. If
necessary, random padding is added to the final packet. In order to prevent an
attacker from learning the lengths of messages, the labels which form the next
packet “pointers” are encrypted with the session key.

The message client layer can send the final, encrypted packets in one of two
ways. If the user sets the secure flag (one of the parameters to send_init), then
each packet is encrypted for the MIX-network and sent (within the MIX Service
Group) to MIX Server 0. If the secure flag is not set, then the packets are sent
directly to Message Server 0.

When a table digest arrives, the message client layer checks each value in the
table (h(l1),h(l2),...,A(l;—1)) with each label in its list of active conversations
(plus the user’s public label). If one of the values in the table matches one of the
labels in the user’s list (i.e. h(l;) = h(l})), then the message client layer reads in
the appropriate message. Just as was the case with sending a message, there are
two ways to retrieve a message. In order to decide whether to use a blinded read
or an unblinded read, the message client layer must determine whether or not the
user trusts the message sender. If A(l;) = h(lpy), where [, is the user’s public
label, then the sender is unknown and therefore not trusted. If h(l;) = h(l}) for
some return “address” label, l;, then the message client layer examines the way
in which the previous outgoing message was sent to this user. If the user set the
secure flag when sending the message, then it will be determined that the sender

of the reply message is not trusted. Otherwise, it will be assumed that the sender



85

of the reply message is trusted. If more than one label matches a single hash value
(i.e. h(l;) = h(l;) = h(l})), then the blinded read is used if any of the matching
labels are associated with an untrusted sender.

Once the message has been retrieved (using the appropriate technique), the
actual label attached to the message is read to determine to which (if any) active
conversation the message belongs. Just as the message client layer is responsible
for fragmenting and/or padding messages when asked to send messages, it is also
responsible for reassembling the packets and removing padding. Therefore, a re-
ceived message may be a packet which belongs at the beginning, middle, or end
of a list of packets which form a longer message. Once the packet is retrieved, it
is decrypted using the appropriate session key (or the user’s private key is used to
extract a session key and that key is used to decrypt the rest of the packet). If
the packet is the first of a message, then space is allocated for the message and
the contents of the packet are placed at the beginning. If it is not the first packet,
then its contents are appended to the portion which has already arrived. After the
contents of the current packet have been handled, the linked list “pointer” is ex-
amined. If the “pointer” is 0, then this is the final packet: the padding is removed
from the packet, the information associated with the conversation is removed from
the list of active conversations, and the message along with the return “address”
label for the message and the session key are passed up to the applications layer
by calling the function specified at the time that the outgoing message was sent
(or at initialization if this is an initiation message). If the “pointer” label is not

0, then the current label for this conversation in the list of active conversations



86

is replaced by the “pointer” label and the message client layer waits for the next
packet to arrive.

Given the return “address” label and the session key that the message client
layer passes up to the applications layer along with any incoming message, the user
can send a reply message to the message’s sender. This is done using the function
send_non_init. This function works in basically the same way as send_init except

that it does not need to generate or encrypt a session key.

6.5.2 The Applications Layer

The code for the user processes was designed in such a way to enable multiple
applications layers to be easily built on top of the message client layer. Currently,
we have implemented two versions of the applications layer. The first of which
provides an X Windows interface for creating, sending, and reading messages and
the second of which is used for performance testing. In this section, will be describe
the X Windows version.

The X Windows version of the applications layer has three basic parts. The
first is a directory of the current users in the system. Whenever a user joins the
system, the user’s name and public key are loaded and a public label is generated.
These pieces of information are then sent off to the directory service so that they
can be accessed by other users. Next, the applications layer reads in the names,
public labels, and public keys of all of the users who are registered in the directory
service. This information is then placed in a window for access by the user. Since
other users may join the system later, the directory service is periodically scanned
for new members. Figure 6.4 shows a sample window with two users.

Since the directory service is the source of public labels and keys for all of the



87

® main

Items

Ken Birman
David Cooper

Pick a user,

Lookup é (uit

Figure 6.4: The Directory of Users

users in the system, the security of this service is vital to the security of the entire
system. An attacker which is able to corrupt the directory service would be able
to impersonate any user in the system thus allowing it to receive and read private
mail intended for other users.

By choosing one of the names in the directory window and pushing the “Lookup”
button, the user will cause an editing window to appear (as shown in figure 6.5).
Using this window, the user can either type in the text of a message or load in
the contents of a file to send. As is shown in figure 6.5, the name of the intended
recipient of the message being created is displayed in the upper left corner of the
window. When the window is created, the label and the key of the intended recip-

ient are are included among the attributes of the window and so the window can

only be used to send a message to that particular user.



88

File Edit

Tat Een Birman

Figure 6.5: The Send Window

Once the message has been created, the user can send it to the message ser-
vice. As was described in section 6.5.1, the message can either be sent directly or
through the MIX-network by either setting or not setting the secure flag. In the
X Windows interface, the user makes the choice by selecting the “Send Secure” or
“Send Insecure” option in the “File” menu (see figure 6.6). As was described in
section 6.5.1, the method by which the user chooses to send the message will also
determine the method by which any reply message will be retrieved.

If, after opening a send window, the user decides not to send a message to this
particular user, the send window can be closed by selecting the “Quit” option. The
send window will also close after the user has sent the message.

There is one function that is used to handle all incoming messages (and thus



89

File | Edit

Open

Send Insecure
Send Secure

Ouit

Thiz iz a test message, Pleaze do not read it]

Figure 6.6: Sending a Message

the address of this function is passed in whenever a message is sent and when
msg-init is called). This function creates a new window which is used to display
incoming messages (see figure 6.7). The body of the window uses the same editing
window (with scroll bars) as the send window (figure 6.5) except that a flag is set
to prevent the user from modifying the contents of the window.

In addition to displaying the contents of the message and the identity of the
message sender, the incoming message window has two buttons. The “Reply”
button is used to send a reply message. When this button is pressed, a new send
window is opened with the senders identity in the “To” field and the sender’s
return “address” label and session key stored as attributes. In addition, a copy

of the original message is placed in the edit window with “> ” placed at the



90

From: David Cooper

Thiz iz a test message, Pleaze do not read it,

Figure 6.7: An Incoming Message

beginning of each line. Since only one reply message can be sent using any given
return “address” label, the “Reply” button disappears from the incoming message
window once it has been pressed. Once the user is done with the incoming message

window, the window can be closed by pressing the “Quit” button.

6.6 The Authentication Service

The protection of the authentication service is one of the most important security
concerns in the system. The authentication service is responsible for disseminating
the public keys of all of the servers as well as the public keys and labels of all of
the users. As a result, an attacker which is able to compromise the authentica-
tion service could disseminate false keys allowing it to impersonate any process

in the system. Since the privacy guarantees of the system are based on the as-



91

sumption that at least some of the servers in the system are honest, an attacker,
by impersonating all of the servers, would have access to any private information
that it wanted. In addition to impersonating servers in order to determine who
is talking to whom and where each user is located, the attacker could corrupt the
conversations themselves. Using the appropriate means, the attacker could either
impersonate one of the users and send false information to the other user in a con-
versation or could silently sit between the two users and undetectably eavesdrop
on the conversation.

Authentication services are generally either based on public or secret key cryp-
tography. When using public key cryptography, the authentication service creates
certificates for users. A certificate for a user (or server) p contains p’s identity and
p’s public key (along with any other information, such as a public label, which is
to be certified by the authentication service) and is signed by the authentication
service. Anyone knowing the public key of the authentication service can verify
the signature on the certificate and will know that the information contained in
the certificate has been certified by the authentication service.

In addition to creating certificates, the authentication service may occasionally
need to revoke a certificate. In a large system with many users carrying mobile
computers wherever they go, there will inevitably be users who will lose their
computers or have them stolen. Since having access to a user’s computer will give
an attacker access to that user’s private key and knowledge of a user’s private key
is considered to be proof of identity, the attacker will be able to impersonate the
owner of the stolen computer. In order to prevent this there must be a way to

inform others that knowledge of the private key should no longer be considered



92

proof of identity. This is accomplished by revoking the certificate which originally
connected the user to the user’s public key. (This is similar to the process used
when someone reports a credit card as stolen).

One way to revoke a certificate is to explicitly send out a message declaring
that the certificate is no longer valid. However, this method can be thwarted by an
attacker by preventing the revocation message from being received by other users.
An alternative to have users assume that a certificate has been revoked unless
it receives a message from the authentication service “refreshing” the certificate
(similar to using timeouts to detect process failures). In our system, the authen-
tication service provides users with certificates which have expiration times where
the expiration time is set to be ¢ time units after the generation of the certificate.
If a user (or server) ever reports its private key as stolen, then the authentication
server will immediately stop producing new certificates with that user/key pair.
Given the expiration times of outstanding certificates, an attacker who has stolen
a private key will be able to use it for at most ¢ time units after the key is reported
as stolen.

Since every valid certificate must be periodically refreshed by the authentica-
tion service, it is important that the service be available at all times. Since the
authentication service will run for an extended period of time and crash failures
are possible, the service should be replicated so that the service will not become
unavailable as a result of one (or a few) crash failures. While using a large number
of servers increases availability, it can also increase the likelihood of a server (or
servers) becoming corrupted by an attacker since it is harder to protect several

machines than it is to protect just one.



93

A solution which allows for a compromise between these competing interests
is a threshold scheme. In a (k,n)-threshold scheme, there are n servers and any
group of k servers can create a certificate while no group of fewer than k servers can
do so. Increasing the value of k£ increases the services protection from corruption,
while decreasing k increases the services ability to remain available despite crash
failures.

The authentication service in our system is based on the protocol designed by
Reiter in [Rei93] which uses the threshold signature scheme of [DF90,FD92]. In
this scheme, a certificate is signed using a single RSA private key. The private key
is “divided” among n servers in such a way that k£ servers are needed to create a
valid signature. The primary advantage of this scheme over other schemes is that
there is a single RSA public key which is used to verify all certificates independent

of which servers were used to create the signatures for the certificates.

6.7 The Time Service

There are several places in the system in which protocols are executed which make
use of time. In the MIX-network, each MIX must ensure that all of the messages it
accepts are fresh since message replay is a form of attack against the MIX-network.
Return “address” labels may have expiration times which must be understood
by both the potential sender and recipient of any messages which would use the
labels. In addition, time is used to guarantee the freshness of certificates from the
authentication service.

All of the situations above require that the clocks of two or more computers

be at least partially synchronized. Therefore some form of clock synchronization



94

mechanism is necessary. Since the inability of computers to synchronize their clocks
could lead to serious problems [Gon92|, it is important that the mechanism be
secure. As with the authentication service, the easiest way to ensure security is to
have a single, centralized server. Clock synchronization across the system would be
achieved by having computers periodically synchronize their clocks with the clock
of the server. While the use of a single server may lead to periods of time in which
the time service is unavailable, computers should be able to go for long periods of
time without synchronizing their clocks while still maintaining a reasonable level
of synchrony [Rei93]. As a result, the unavailability of the time service for the
period of time necessary to reboot a crashed server should be acceptable.

In our system, we use the clock synchronization protocol of [Rei93]. In this
system, as was described in section 3.7, each computer maintains a range of possible
times. The range of times is designed to be the smallest possible range which is
guaranteed to include the actual time (the time according to the time server).
Computers use their low estimates of the current time to generate timestamps and
use their high estimates to verify the freshness of messages. If the time server ever
becomes unavailable for a period of time, these high and low estimates will slowly
drift apart. In order to handle a very long period of unavailability, the computers
can simply increase the lifetimes of “fresh” messages. Message lifetimes should,

however, be kept as small as possible for security reasons.

6.8 Performance

In order to verify the feasibility of our protocols, we ran a series of tests to determine

the costs associated with the different operations that the system must perform.



95

Since latency is not a primary concern in a message system, we concentrated on
measuring the throughput of the servers. Each of the tests involved a single user
sending a series of 10 messages to itself in which each message was large enough to
fill 128 packets (which was the size of a table in the message servers). Each packet
was 1 KByte long.

In our system, the encryption and decryption functions are performed by the
RSAREF(TM) software package from RSA Laboratories. Using this system, the
costs of the cryptographic operations dominate the overall cost of the system. How-
ever, in a large scale implementation, it is likely that cryptographic hardware will
be used to improve performance (especially in the servers). In order to account for
this, we will present our performance numbers in two ways. In the first section,
we will present the actual performance figures from our system. In the second sec-
tion, we will present estimates of the performance of a system using cryptographic

hardware.
6.8.1 Actual Performance

Since the message service is responsible for both receiving packets and answering
requests from users attempting to retrieve packets, it is the bottleneck in the
system. In our experiments, the time spent retrieving packets was significantly
greater than the time spent sending the packets to the message service. We will,
therefore, concentrate on the different costs of the two methods in which packets
can be retrieved from the message service.

The simplest test case involved sending a series of non-initiation messages di-
rectly to the message servers and receiving those messages using a regular read

operation. In this case, the only encryption involved was the end-to-end, DES,



96

encryption of the messages. In this test, a throughput of about 29 packets per
second was achieved.

The next test was the same as the first with the exception that the packets
were read from the message service using the blinded read operation instead. This
affected performance in two ways. First, in responded to a blinded read request,
a server must compute the response (by exclusive-oring together several packets)
instead of simply looking up the answer. Second, with the blinded read technique
the requests and replies are encrypted whereas no encryption is used with the
other technique. The encryption/decryption involves the creation of a DES key,
its encryption with an RSA public key and decryption with an RSA private key,
and DES encryption and decryption of the bit-vectors and responses.

Using the blinded read, the throughput of the system was reduced to 1 packet
per second. The majority of the time to perform the blinded read operation was
spent on the RSA decryption operation (0.7 seconds per decryption - 1 decryption
per packet). Most of the remaining time, 0.17 seconds, was spent using DES to
encrypt and decrypt the bit-vectors and responses. Since each table had 128 entries
and about half the bits were set in each bit-vector, computing a response involved
exclusive-oring together approximately 64 packets. Despite this, only about 0.02
seconds was spent by each server computing the response to each request. Since
the message servers compute responses to requests in parallel with no interprocess
communication necessary, adding extra message servers and increasing the value
of ¢t (the maximum number of corrupted servers, or one less than the number of
bit-vectors used to retrieve a message) did not significantly effect the performance

of the system.



97

In addition to testing the throughput of the message servers, we also examined
the effect of the MIX-network on the overall throughput of the system. Since each
MIX server must decrypt each incoming packet and this involves performing an
RSA decryption in order to extract the DES key, the throughput of the MIX-
network was only 1 packet per second. However, since the MIX-network is a chain
and each MIX operates independently, the throughput was not affected by the
number of MIXes used. Adding more MIXes to the MIX-network only increased
the latency between when a packet was sent and when it arrived at the message
Servers.

The impact of the MIX-network on the overall throughput of the system de-
pended on whether packets were being read using the blinded read operation or
not. Since, using the blinded read operation, packets could only be read from the
message servers at a rate of 1 packet per second and the MIX-network was able
to provide messages to the message servers at the same rate, the use of the MIX-
network did not impact the throughput of the system. However, when the blinded
read operation was not used, the message service was able to handle 29 packets per
second. Since, as a result of the MIX-network, the message service only received
packets at a rate of 1 packet per second, the total throughput of the system was
limited to this rate as well. Therefore, the MIX-network was the limiting factor in

the system.

6.8.2 Expected Performance

In addition to the tests above, we also ran a series of tests with the cryptographic
operations removed. By comparing the results of these tests with the results of

the previous tests and making use of information about the costs of cryptographic



98

operations using hardware, we were able to estimate the throughput of a system
in which the servers use cryptographic hardware.

In the first test above, where the packets were sent directly to the message
servers and were retrieved without using the blinded read operations, the servers
did not have to perform any encryption. However, since the user was performing
end-to-end encryption/decryption, the overall throughput of the system was af-
fected by the encryption operations. Since, in a real system with multiple users,
the computation effort of the users will not effect the overall throughput, the
throughput of the system without end-to-end encryption should be more accurate.
In this test, the throughput was 38 packets per second.

When using the blinded read operation, the throughput of the messages servers
is reduced since the responses to requests must be computed. The throughput in
this test was 27 packets per second. In order to get a most accurate estimate,
however, we must factor in the costs of the cryptographic operations. First, an
RSA decryption is performed to extract the DES key. While there are several
hardware implementations of RSA [Bri90], the fastest one currently available can
perform 512-bit RSA decryption in just under 1 ms [SV93]. Once the DES key
has been extracted, the bit-vector must be decrypted. Using a DES chip, both
encryption and decryption are very fast [DK90]. The speed is somewhat reduced,
however, for small blocks. Since the bit-vector is only 128 bits, the decryption rate
will be about 1.25 Mbits/s. At this rate, however, the decryption will take only
0.1 ms. The final step, encrypting the response, involves encrypting a 1 KByte

message. For large blocks, the encryption process works at 3.6 Mbits/s. So, the



99

time to encrypt is 2.3 ms. Combining these estimates with the actual execution
time gives an estimated throughput of just under 25 packets per second.

With the decryption operations removed from the MIX-network, the MIXes
were no longer slowed down by the cost of performing RSA decryption. As a result,
sending messages through the MIX-network did not impact the overall throughput
of the system even when the blinded read operation was not in use. Based on these
measurements, it is our conjecture that using the MIX-network, with cryptographic

hardware, will not impact the throughput of the system.



Chapter 7

Conclusions

In this thesis, we have considered the privacy problems that arise as a result of the
use of mobile computers for communication. The mobility of the users introduces a
new type of information, location, which needs to be kept from attackers in order to
maintain privacy. As was shown in this thesis, it is possible to prevent an attacker
from acquiring location information even if the attacker is able to corrupt some of
the servers which are responsible for hiding this information.

The primary contribution of this thesis was the design of the message service
which was presented in chapter 3. The message service makes use of a blinded read
operation which allows users to read messages from the service without revealing
which messages they are reading. The primary advantage of our protocol for
blinded reads over protocols which solve similar problems is that it makes efficient
use of both computation and bandwidth. In addition, most of the computation
is performed by the servers which generally have more computational power than
the mobile computers. As was shown in section 6.8, the throughput of the message

service using the blinded read operation is reasonable.

100



101

One of the side effects of allowing users to read messages without revealing
which messages they are reading is that it is impossible for the message service to
determine when the intended recipient of a message has read the message. Since
the amount of memory available to the system is limited, there needs to be some
way for the system to be able to delete messages while minimizing the risk that
the intended recipient of a message will be unable to retrieve that message as a
result of being disconnected from the network for a period of time. In order to
solve this, we developed the vacation service which was described in chapter 5.
The vacation service, by limiting the amount of space that each user has available
to store messages in the system, gives users an incentive to inform the vacation
service when they have received messages. At the same time, the protocols for
interacting with the vacation service were designed in such a way that users do not

need to reveal any private information to the vacation service.

7.1 Future Work

Just as the thesis presents solutions to important privacy problems, it brings to
light several new problems which suggest areas of future research. First, the current
design of the message service limits the potential growth of the system. Since the
service relies on a single set of servers which are responsible for handling every
message in the system, the potential throughput of the entire system is limited by
the potential throughput of this set of servers. In order to handle systems with
greater throughput requirements, without loss of privacy, it will be necessary to
design a more decentralized system.

As was mentioned earlier in the thesis, the current system can not handle



102

real-time message traffic such as telephone conversations. Telephone conversations
complicate privacy preservation in two ways. First, by observing network traffic,
an attacker may be able to determine when conversations begin and end. By
matching this information with other known information, the attacker may be
able to locate some users. A second problem lies in the MIXes and the message
service. Privacy in these systems relies on the ability to batch messages. Since
messages which represent voice data in a telephone conversation have maximum
latency requirements, it may not always be possible to hold messages until enough
other messages have arrived to fill a reasonably sized batch. The result would
either be using small batches or violating latency requirements.

One aspect of security that was not considered in the thesis was the access
control problem. In most cases, the owners of a network will wish to have some
control over who is able to send and receive messages over the network. This access
may be limited to a specific group of people (i.e. those who work for a particular
company) or may be based on payment for use of the network. In either case, there
will need to be some way for the network to be able to determine whether or not a
message that it receives came from an authorized user without requiring that user
to identify itself.

The blinded read operation of the memory service also opens the possibility of
of solving some new privacy problems. One example is reading netnews. In many
cases, someone reading netnews may not want others to know which newsgroups
he or she is reading. Just as anonymous remailers are used to allow users to
publish articles without revealing their identities, there should be a way for users

to be able to read messages in privacy. While reading every message from every



103

newsgroup would certainly solve the problem, it is very inefficient. Just as the
memory service was modified to handle message traffic, it should be possible to
design a modified version of the memory service which can handle netnews postings

and read requests.



Bibliography

[AB93]

[AD94]

[BAI93]

[BBS82]

[BBS36]

[BCR&Y7]

[BCY93]

[Bir93]

[BIV92]

Arup Acharya and B.R. Badrinath. Delivering multicast messages in
networks with mobile hosts. In Proceedings of the 135th International
Conference on Distributed Computing Systems, May 1993.

Ashar Aziz and Whitfield Diffie. Privacy and authentication for wire-
less local area networks. IEEE Personal Communications, 1(1):25-31,
First Quarter 1994.

B.R. Badrinath, Arup Acharya, and Tomasz Imielinski. Impact of
mobility on distributed computations. Operating Systems Review,
27(2):15-20, April 1993.

Lenore Blum, Manuel Blum, and Michael Shub. Comparison of
two pseudo-random number generators. In Advances in Cryptology:
Crypto 82, pages 61-78, August 1982.

L. Blum, M. Blum, and M. Shub. A simple unpredectable pseudo-
random number generator. SIAM Journal on Computing, 15(2):364—
383, May 1986.

Gilles Brassard, Claude Crepeau, and Jean-Marc Robert. All-or-
nothing disclosure of secrets. In Advances in Cryptology — CRYPTO
'86, pages 234-238, August 1987.

Michael J. Beller, Li-Fung Chang, and Yacov Yacobi. Privacy and
authentication on a portable communications system. IEEE Journal
on Selected Areas in Communications, 11(6):821-829, August 1993.

Kenneth P. Birman. The process group approach to reliable dis-
tributed computing. Communications of the ACM, 36(12):36-53,103,
December 1993.

B.R. Badrinath, Tomasz Imielinski, and Aashu Virmani. Locating
stategies for personal communication networks. In IEEE Globecom

104



[BMS2]

[BM84]

[BP]

[Brags)

[Bri90]

[BSS91]

[Bur83]

[Car94]

[CASDS85)

[CB95a]

[CBO5b]

105

92 Workshop on networking of personal communications applications,
1992.

Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo random bits. In 23rd IEEE Symposium on
Foundations of Computer Science, pages 112-117, November 1982.

Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM Journal on Comput-
ing, 13(4):850-864, November 1984.

Pravin Bhagwat and Charles E. Perkins. A mobile networking system
based on Internet Protocol(IP). Technical report, Computer Science
Department, University of Maryland and IBM T.J. Watson Research
Center.

Gilles Brassard. Modern cryptology: A tutorial. In Lecture Notes in
Computer Science, volume 325. Springer-Verlag, 1988.

Ernest F. Brickell. A survey of hardware implementations of RSA.
In Advances in Cryptology - CRYPTO ’89, pages 368—370, 1990.

Kenneth Birman, André Schiper, and Pat Stephenson. Lightweight
causal and atomic group multicast. ACM Transactions on Computer
Systems, 9(3):272-314, August 1991.

David Burnham. The Rise of the Computer State. Random House,
New York, 1983.

Ulf Carlsen. Optimal privacy and authentication on a portable com-
munications system. Operating Systems Review, 28(3):16-23, July
1994.

Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev.
Atomic broadcast: From simple message diffusion to byzantine agree-
ment. In Proceedings of the 15th International Symposium on Fault-
Tolerant Computing, pages 200-206, June 1985.

David A. Cooper and Kenneth P. Birman. The design and implemen-
tation of a private message service for mobile computers. Wireless
Networks, August 1995.

David A. Cooper and Kenneth P. Birman. Preserving privacy in
a network of mobile computers. In Proceedings of the 1995 IEEE
Symposium on Security and Privacy, pages 26-38, May 1995.



[Cha81]

[Cha85)]

[Cha88|

[Cha92]

[CM84]

[DEST77]

[DFY0]

[DFMO1]

[DH76]

[DK90]

[FDY2]

[FZ94]

[GI176]

106

David Chaum. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Communications of the ACM, 24(2):84-88, Febru-
ary 1981.

David Chaum. Security without identification: Transaction sys-
tems to make big brother obsolete. Communications of the ACM,
28(10):1030-1044, October 1985.

David Chaum. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of Cryptology, 1(1):65—
75, 1988.

David Chaum. Achieving electronic privacy. Scientific American,
267(2):96-101, August 1992,

Jo-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols.
ACM Transactions on Computer Systems, 2(3):251-273, August 1984.

National Bureau of Standards. Data Encryption Standard, FIPS-
PUB-/6, 19717.

Yvo G. Desmedt and Yair Frankel. Threshold cryptosystems. In
Advances in Cryptology - CRYPTO ’89, pages 307-315, 1990.

Daniel Duchamp, Steven K. Feiner, and Gerald Q. Maguire, Jr. Soft-
ware technology for wireless mobile computing. IEEE Network Mag-
azine, 5(6):12-18, November 1991.

W. Diffie and M.E. Hellman. New directions in cryptography. IFEE
Transactions on Information Theory, 22(6):644-654, November 1976.

Stephen R. Dussé and Burton S. Kaliski Jr. A cryptographic library
for the Motorola DSP56000. In Advances in Cryptology — EURO-
CRYPT ’90, pages 230-244, May 1990.

Yair Frankel and Yvo G. Desmedt. Parallel reliable threshold mul-
tisignature. Technical Report TR-92-04-02, Department of E.E. and
C.S., University of Wisconsin-Milwaukee, April 1992.

George H. Forman and John Zahorjan. The challenges of mobile com-
puting. Technical Report 93-11-03, Computer Science & Engineering,
University of Washington, March 1994.

Interception of nonverbal communications by federal intelligence
agencies. U.S. Government Printing Office, Washington, 1976.



[Gon92]

[Hen92]

[IB93a]

[IB93b)

[IB93c]

[ILL89)

[Joh93]

[Kat94]

[Per]

[Pfi9d]

[PIK93]

[PP89)

107

Li Gong. A security risk of depending on synchronized clocks. Oper-
ating Systems Review, 26(1):49-53, January 1992.

Nat Hentoft. Free Speech for Me — But Not for Thee: How the Amer-
tcan Left and Right Relentlessly Censor Each Other. HarperCollins,
New York, 1992.

Tomasz Imielinski and B.R. Badrinath. Data management for mobile
computing. SIGMOD Record, 22(1):34-39, March 1993.

Tomasz Imielinski and B.R. Badrinath. Mobile wireless comput-
ing: Solutions and challenges in data management. Technical report,
WINLAB/Rutgers Tech. Rept., February 1993.

Tomasz Imielinski and B.R. Badrinath. Querying locations in wireless
environments. Wireless Communications: Future Directions, pages
85-108, 1993.

Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-
random generation from one-way functions (extended abstract). In
Proceedings of the Twenty First Annual ACM Symposium on Theory
of Computing, pages 12-24, May 1989.

David B. Johnson. Mobile host internetworking using IP loose source
routing. Technical Report CMU-CS-93-128, School of Computer Sci-
ence, Carnegie Mellon University, February 1993.

Randy H. Katz. Adaptation and mobility in wireless information
systems. IEEE Personal Communications, 1(1):6-17, First Quarter
1994.

Charles E. Perkins. Providing continuous network access to mobile
hosts using TCP/IP. Technical report, IBM T.J. Watson Research
Center.

Birgit Pfitzmann. Breaking an efficient anonymous channel. In Ad-
vances in Cryptology - EUROCRYPT ’9/, pages 339-348, May 1994.

Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient
anonymous channel and all/nothing election scheme. In Advances
in Cryptology — EUROCRYPT ’93, pages 248-259, May 1993.

Birgit Pfitzmann and Andreas Pfitzmann. How to break the direct
RSA-implementation of mixes. In Advances in Cryptology — EURO-
CRYPT ’89, pages 373-381, April 1989.



[PPWO1]

[PSS95]

[PW87]

[RBvR94]

[Rei93]

[Rei94a]

[Rei94b)

[Rek]

[Ric92]

[RS93]

[RSATS]

108

Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner. ISDN-
MIXes: Untraceable communications with very small bandwidth over-
head. In Proceedings of the IFIP TC11 Seventh International Con-
ference on Information Security: Creating Confidence in Information
Processing, IFIP/Sec '91, pages 245-258, May 1991.

Ravi Prakash, Niranjan G. Shivaratri, and Mukesh Singhal. Dis-
tributed dynamic channel allocation for mobile computing. In Pro-
ceedings of the Fourteenth ACM Annual Symposium on Principles of
Distributed Computing, August 1995.

Andreas Pfitzmann and Michael Waidner. Networks without user
observability. In Computers & Security 6, pages 158-166, 1987.

Michael K. Reiter, Kenneth P. Birman, and Robbert van Renesse. A
security architecture for fault-tolerant systems. ACM Transactions
on Computer Systems, 12(4):340-371, November 1994.

Michael K. Reiter. A Security Architecture for Fault-Tolerant Sys-
tems. Ph.D. dissertation, Cornell University, July 1993.

Michael K. Reiter. Secure agreement protocols: Reliable and atomic
group multicast in Rampart. In Proceedings of the 2nd ACM Confer-
ence on Computer and Communications Security, November 1994.

Michael K. Reiter. A secure group membership protocol. In Pro-
ceedings of the 1994 IEEE Symposium on Research in Security and
Privacy, pages 176-189, May 1994.

Yakov Rekhter. An architecture for transport layer transparent sup-
port for mobility. Technical report, IBM T.J. Watson Research Cen-
ter.

Aleta Marie Ricciardi. The Group Membership Problem in Asyn-
chronous Systems. Ph.D. dissertation, Cornell University, November
1992.

Charles Rackoff and Daniel R. Simon. Cryptographic defense against
traffic analysis. In Proceedings of the 25th Annual ACM Symposium
on the Theory of Computing, pages 672-681, May 1993.

R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2):120-126, February 1978.



[SD91]

[Sha81]

[Sim92]

[SV93]

[SWL90]

[TT93]

[vVRHBY94]

[VV83]

[WHFaG92]

[Wil95]

[YW03]

109

Bill N. Schilit and Dan Duchamp. Adaptive remote paging for mo-
bile computers. Technical Report TR CUCS-004-91, Department of
Computer Science, Columbia University, February 1991.

Adi Shamir. On the generation of cryptographically strong pseudo-
random sequences. In 8th International Colloguium on Automata,
Languages and Programming, pages 544-550, July 1981.

Gustavus J. Simmons. Contemporary Cryptology: The Science of
Information Integrity. IEEE Press, 1992.

M. Shand and J. Vuillemin. Fast implementations of RSA cryptogra-
phy. In 1998 IEEE 11th Symposium on Computer Architecture, pages
252-259, 1993.

B. Simons, J. Lundelius Welch, and N. Lynch. An overview of clock
synchronization. In Fault- Tolerant Distributed Computing, pages 84—
96, 1990.

Fumio Teraoka and Mario Tokoro. Host migration transparency in
IP networks: The VIP approach. ACM Computer Communication
Review, 23(1):45-65, January 1993.

Robbert van Renesse, Takako M. Hickey, and Kenneth P. Birman. De-
sign and performance of Horus: A lightweight group communications
system. Technical Report TR 94-1442, Cornell University, August
1994.

Umesh V. Vazirani and Vijay V. Vazirani. Trapdoor pseudo-random
number generators, with applications to protocol design. In 24rd
IEEE Symposium on Foundations of Computer Science, pages 23-33,
1983.

Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons.
The active badge location system. ACM Transactions on Information
Systems, 10(1):91-102, January 1992.

Uwe G. Wilhelm. An architecture for more privacy in mobile com-
munication systems. Technical report, Département d’Informatique,
Ecole Polytechnique Fédérale de Lausanne, 1995.

Tak-Shing Peter Yum and Wing-Shing Wong. Hot-spot traffic relief in
cellular systems. IEEE Journal on Selected Areas in Communications,
11(6):934-939, August 1993.



[ZY89]

[ZY91]

110

Ming Zhang and Tak-Shing Peter Yum. Comparisons of channel-
assignment strategies in cellular mobile telephone systems. IEEFE
Transactions on Vehicular Technology, 38(4):211-215, November
1989.

Ming Zhang and Tak-Shing Peter Yum. The nonuniform compact
pattern allocation algorithm for cellular mobile systems. IEEE Trans-
actions on Vehicular Technology, 40(2):387-391, May 1991.



