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Abstract

There are several sorts of Kolmogorov complexity, better to say several Kol-
mogorov complexities: decision complexity, simple complexity, prefix complexity,
monotonic complexity, a priori complexity. The last three can and the first two
cannot be used for defining randomness of an infinite binary sequence. All those
five versions of Kolmogorov complexity were considered, from a unified point of
view, in a paper by the first author which appeared in O. Watanabe’s book [5],
and which is included as a supplement of this report, with the kind permission
of Springer-Verlag. Upper and lower bounds for those complexities and also for
their differences were announced in that paper without proofs. The purpose of
this paper is to give proofs for those bounds.

In this paper, the word “entropy” (not in a physical sense) is used instead of
“complexity”. This is a Moscow tradition suggested by A. N. Kolmogorov himself.
By this tradition the term “complexity” relates to any mode of description and
“entropy” is the complexity related to an optimal mode (i.e. to a mode that,
roughly speaking, gives the shortest descriptions).
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1. INTRODUCTION

This paper is a supplement to the paper [5]. Here the proofs of some results stated there are
given. All these proofs are well known; they are collected here for reader’s convenience and
adapted to the terminology and notation used in [5]. We assume that reader has a copy of
[5]-

The paper is organized as follows. We start (sect. 2) with the classification of four entropies
(two possibilities for objects combined with two possibilities for descriptions) which goes back
to [4] and is explained in sections 1.2 and 1.3 of [5]. Looking closely on each entry of the table
of four entropies, we show that definitions of sections 1.2 and 1.3 coincide with the classical
definitions of the corresponding entropies.

Then in sect. 3 we look at a different classification of entropies which goes back to [2] and
establish the connections between these two classifications mentioned in section 1.6 of [5]

Finally in sect. 4 we establish some connections between different entropies mentioned in
sect. 2.1 and 2.2 of [5].

2. OBJECTS AND DESCRIPTIONS

2.1 Simple Kolmogorov Entropy

This entropy is called (=,=)-entropy or NN-entropy in [5], sect. 1.2. When defining this
entropy, a mode of description is a binary relation £ C E x E (here E denotes the set of all
binary words) such that for every 1, z2,y1,y2 in E

(1:‘1,!/1) EE/\(-’Ez,y2) EE/\.'L'l =T = Y1 = Y2-

In other terms, mode of description is a (partial) function from Z into Z. Recursively enu-
merable modes of descriptions correspond to computable functions.

Now look at the definition from sect. 1.3 of [5]. The ordering on the bunch B is trivial (only
equal objects are comparable), therefore conditions 1 and 2 ([5], p. 89) are always satisfied.
The condition 3 means that E is a graph of a function, and acceptable modes of descriptions
are graphs of computable functions. Therefore, this definition coincides with that of sect. 1.2
(and in fact with the Kolmogorov definition from [1]).

To prove the Solomonoff—Kolmogorov theorem in this case means to construct an optimal
mode of description. Assume that U(z,y) is an universal computable function (i.e., the family
{Us}, where U(y) = U(z,y), contains all computable functions). By Z we denote the word
z where each letter is repeated twice. An optimal mode of description may be constructed
as follows:

E = {(p01q,7)|U(p,q) =}

2.2 Decision Entropy
Now let us look at the (=, y)-entropy, or NE-entropy (according to the notation of [5], sect.
1.2) The requirement of sect. 1.2 says that if

(z,;)) € E and (z,32) €E

then one of the words y; and y, is a prefix of another one. Therefore, for any fixed = all y
such that (z,y) € E are prefixes of some finite or infinite binary string.
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The requirements of sect. 1.3 of [5] (for X = B, Y = T) are slightly different: in particular,
they say that if (z,y) € E then (z,y’) € E for all prefixes 3 of y. Therefore, for any fixed z
all y such that (z,y) € E form the set of all prefixes of some finite or infinite binary string.

The definition of sect. 1.2 gives a broader class of description modes and, theoretically
speaking, may lead to a smaller entropy. However, for any binary relation F satisfying the
requirements of sect. 1.2 we may consider its extension E’

E' ={(z, y)|y is a prefix of some y' such that (z,y') € E}

It is easy to check that this extension is recursive enumerable if E is, that E’ satisfies the
requirements of sect. 1.3 and the corresponding complexity function does not exceed the
complexity function corresponding to E. Therefore, the definitions of sections 1.2 and 1.3
give the same entropy (i.e., difference between entropies is bounded).

It remains to say why there exists an optimal description mode in this case. Assume that
U(z,y,n) (where z, y are binary words and = is a natural number) is a computable function
with 0-1-values universal for the class of all computable functions = x N — {0,1}. Then the
set

{(p01q,7)| r; = U(p, g, %) for all i not exceeding the length of r}

(by r; we denote the ith bit of ) is an optimal description mode. (This description mode
follows the original construction of decision entropy, see [3] or [8].)

2.3 Monotonic Entropy
This is a name for (v,~)-entropy, or E=-entropy (according to the notation of [5], sect. 1.2)
The requirement of sect. 1.2 says that if

(z1,11) € E and (zg,y2) € E

and one of the words z1, =3 is a prefix of another one, then one of the words y; and 2 is a
prefix of another one.
The requirements of sect. 1.3 of [5] (for X = T, Y = T) are slightly different:

e if (z,y) € E then (z,y’) € E for all prefixes y' of y;
e if (z,y) € E then (z',y) € E for all ' having z as a prefix;
e if (z,y') € E and {z,y") € E then one of the words y', y" is a prefix of another one.

It is easy to check that the requirements of sect. 1.2 are consequences of the requirements of
sect. 1.3 (we may replace z; and z2 by the longest of them), but not vice versa. However, if
E satisfies the requirements of sect. 1.2, then its extension E’ defined as

E' = {{z, y)|there are ' < z and y' > y such that (z/,3') € E }

(here p < g means that a binary word p is a prefix of a binary word ) satisfies the requirements
of sect. 1.3. Therefore, the entropies coincide (see the previous section).

It remains to show that there exists an optimal description mode. It is slightly more
difficult than in the previous cases. The reason is that we should construct the “universal
computable mapping” for the family of all “computable monotone mappings” from E into
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E. This is explained in the general case (for semantic domains, or fop-spaces) in [4]; a very
detailed description of what happens for the case of monotonic entropy, is given in [6].

The universal “simple” machine of the previous section gives an optimal “simple” mode of
description, i.e. an optimal mode for the case of simple entropy. Similar to that, a universal
“monotonic” machine can be constructed which will give an optimal “monotonic” mode of
description, i.e. an optimal mode for the case of monotonic entropy. In fact the new machine
behaves very much like the previous one, finding from the start of its input the encoding of
an arbitrary monotonic machine, and simulating that on the remainder of the input. The
only difference is that monotonic machines have no blanks in their tape alphabet and hence
lack a notion of the “end of input”.

2.4 Prefiz Entropy
This is a name for (v, =)-entropy, or EN-entropy (according to the notation of [5], sect. 1.2)
In this case (as well as in all other) it is easy to show that entropies defined as in sections 1.2
and 1.3 of [5] coincide. In fact the definitions of sections 1.2 and 1.3 are different versions of
the same definition; the really different (encoding-free) definitions are given in sect. 1.5.
The requirements of sect. 1.2 say that if (z1,y1) € E and (z3,y2) € E and z; is a prefix
of T2 then y; = yo. The requirements of sect. 1.3 of [5] (for X = T, Y = B) are slightly
different:

e if (z,y) € E then (z/,y) € E for any z’ such that z is a prefix of z’;
o if (z,y1) € F and (z,y2) € F then y; = yo.

It is easy to see that the requirements of sect. 1.2 follow from the requirements of sect. 1.3.
Moreover, if some E satisfies the requirements of 1.2, then its extension

E' = {{z,y)|(z',y) € E for some z' being a prefix of E}

satisfies the requirements of sect. 1.3. Therefore, the corresponding entropies coincide.

The existence of an optimal description mode may be proved by enumerating all description
modes (in other terms, all “computable mappings” from E to N). Its existence follows from
the general facts about semantic domains (see [4]) and also can be proved directly. We omit
this proof because the existence of an optimal mode is a byproduct of the coincidence of the
definition given above and the encoding-free definition (see the next section).

Remark. The prefix entropy relates to the modes of description fulfilling the (v,=)-
property of [5], which means that if two words describe the same object then neither of them
is the beginning of the other. Thus, any mode with that property can be called prefix-free.
It is easy to create a family mg, 71, ... of straightforward prefix-free encodings (i.e. modes of
description) of increasing efficiency. The simplest encoding, o, is the unary one: it maps a
string z to the string 1?0 where i is the index of z in the lexicographic ordering of all strings.
The encoding 741 maps z to 7,(u)z where the index of u in the lexicographic ordering is
the length |z| of z. A variation of 7; could be seen in the construction of an optimal mode
in Section 2.1.
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3. ENCODING-FREE DEFINITIONS

3.1 Simple Kolmogorov entropy

The simple Kolmogorov entropy (NN-entropy) can be characterized as a minimal (up to a
constant) enumerable from above function f : £ — NU{oo} satisfying the following condition
(CB) from sect. 1.5 of [5] (we give an equivalent form of it):

e there is at most 2" different y such that f(y) =n

Remark. If we replace 2" by C-2" (see the condition (C') in sect. 1.5) we get the same (up
to a constant) entropy: C - 2™ = 2"*+98C  therefore this factor C corresponds to an additive
constant in the exponent. We also may replace = in (C) by <: if there is at most 2™ objects
y such that f(y) = n then the number of objects y such that f(y) < n does not exceed
14+24---42"<2-2™

To prove the coincidence of entropies we should prove that

e a simple Kolmogorov entropy function KS(z) corresponding to NN-entropy (descrip-
tion modes are all computable functions) satisfies the condition (CB);

e for any enumerable from above function f satisfying (CIB) one can construct a descrip-
tion mode E such that the complexity function corresponding to E exceeds f not more
than by a constant.

The first claim is trivial: different objects have different descriptions, and objects y such
that KS(y) = n have descriptions of length n. Therefore, the number of those y does not
exceed the total number of descriptions having length n, i.e., 2™.

The second claim is also simple. We reserve words of length n to be descriptions of objects y
such that f(y) < n. The total number of these objects does not exceed 142+ --42""1 < 27,
therefore we can not exhaust all reserved words. The function f is by assumption enumerable
from above. Thus, the set of all pairs (y,n) such that f(y) < n is enumerable. When a new
pair (y,n) appears during the enumeration process, we allocate one of the unused words e
of length n to be a description of y. The set E of all pairs (e,y) generated in this way is
enumerable; E is a function graph (because each e may be allocated only once), therefore,
E is a description mode. Evidently, the corresponding complexity function does not exceed
f+1

A byproduct of this argument is the existence of minimal (up to an additive constant)
enumerable from above function satisfying the (CIB) condition.

3.2 Decision Entropy
To get the decision entropy we should use the condition (CT) (see fig. 2 in [5]). It may be
reformulated as follows (for a function f : £ — NU {c0}):

e if M is a finite set of incomparable words (there is no word in M which is a prefix of
another word in M) then the cardinality of M does not exceed 2"

As in the previous section, to prove the coincidence of entropies we should prove that

e a decision entropy function K D(z) corresponding to NZ-entropy satisfies the condition
(CT);
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e for any enumerable from above function f satisfying (CT) one can construct a descrip-
tion mode E such that the complexity function corresponding to E exceeds f not more
than by a constant.

Let us start with the first claim. Assume that M is a set of incomparable words (no
one is a prefix of another one) having complexity n. That means that all these words have
descriptions of length n. All these descriptions must be different (otherwise the conditions
of sect. 1.2 of [5] are violated). Thus, the number of descriptions (and the cardinality of M)
does not exceed 2™. '

Now consider the second claim. As well as in the previous section we reserve words of
length n to be descriptions of objects y such that f (y) < n. Now the total number of
objects y such that f(y) = n is not limited; however, any subset of pairwise incomparable
y’s such that f(y) = n has cardinality not greater that 2™ (two words are comparable if one
of them is a prefix of another one). Therefore, any set of pairwise incomparable objects
having complexities less than n contains not more than 1+2+---+ 2n~1 < 27 objects. The
function f is by assumption enumerable from above. Thus, the set of all pairs (y,n) such
that f(y) < n is enumerable. Assume that a new pair (y,n) appears during the enumeration
process. For each already allocated description e we look at the longest object z(e) in the
set of all object having e as a description. (All other object in this set will be prefixes of the
longest one.) If any of these objects z(e) is comparable with y than the corresponding e is
declared to be a description of y. If not, we allocate a new description for y. (There is a free
description because all z(e) together with y are incomparable and therefore the number of
used e’s is less than 2™.) The set of all pairs (e, y) generated in this way is enumerable and
satisfies the conditions of sect. 1.2 of [5]. Evidently, the corresponding complexity function
does not exceed f + 1.

3.8 Monotonic Entropy and a priori probability
Here we get two different entropies: a monotonic entropy (ZE-entropy, sect. 1.2 of [5]) and
a priori entropy (XT-entropy, sect. 1.5 of [5]). They differ. The second entropy appeared in
[8] as a logarithm of a so-called a priori probability; this original definition is discussed in
details in [6]. We do not reproduce this discussion here; the only thing we want to explain is
why the original definition of [8] coincides with that of sect. 1.5 of [5].

A semimeasure is a function m defined on E with non-negative real values satisfying the
following conditions:

e m(A) =1 (here A denotes an empty word);
e m(z0) + m(z1) < m(z) for any word z.

A semimeasure is called enumerable from below if the set of all pairs (z,r) such that r is a
rational number less than m(z) is enumerable. There exists a maximal (up to a constant
factor) enumerable from below semimeasure M(z) called a priori probability (see [6]). Its
logarithm — logy M (z) coincides (up to an additive constant) with the XT-entropy of sect. 1.5
of [5]. Let us explain shortly why this coincidence takes place. The main role is played by
the following two facts:

e if m(z) is a semimeasure then [—logy m(z)] satisfies the condition IT;
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e if a function f satisfies the condition YT then the function m(z) defined as

max ¥ 2~f (=), where maximum is taken over all finite sets D of incomparable words
€D
such that z is a prefix of all words from D, is a semimeasure. (Technically speaking,

we should also change the value of m on A and assume that m(A) = 1.)

These facts establish a correspondence between semimeasures and functions satisfying the
condition £T which more or less preserves enumerability (we omit some details) and allows
us to prove the coincidence mentioned above.

There is one more assertion concerning X T-entropy called Muchnik’s theorem on p. 93 of
[5]. It can be stated as follows. Assume that function ¢ is defined on binary words and all
¢(z) are real numbers between 0 and 1. We consider any binary word = as a vertex in a
complete binary tree and ¢(z) as its label. Assume that for each C we can find a finite set of
pairwise incomparable words with sum of labels exceeding C. Then there exists an infinite
set of pairwise incomparable words with the infinite sum of labels.

The scheme of the proof is as follows. For each binary word = (each vertex of the tree)
consider all sets D of pairwise incomparable words having = as a prefix. For each D compute
the sum of all labels of vertices from D and take a supremum over all D. This supremum
(finite or infinite) depends on z. Let us call a vertex bad if it is infinite. Now our task is as
follows: the root of a tree is bad; find an infinite set of pairwise incomparable words with
infinite sum of labels. Bad vertices form a subtree in the full binary tree; this subtree has no
leaves (if z is bad, ar least one of the words z0 and z1 is bad). Now we shall consider two
cases:

e there is a bad vertex z such that its bad descendants form a path (any two bad descen-
dants of z are comparable);

e for any bad vertex x there are two incomparable bad descendants of x.

In both cases it is easy to find the required infinite set of vertices with infinite sum of labels.

3.4 Prefiz Entropy

The prefix entropy (EN-entropy) with its encoding-free definition (using the (XIB)-condition
is probably the most technically interesting among all the four entropies. It is discussed in
details in [7]; however, this paper is not translated into English, so we shall try to give a
self-contained description of what happened in this case.

Let us start with the definition of a semimeasure on B. It differs from the definition of a
semimeasure on T used in the previous section. However, from now on we shall consider only
semimeasures on B and call them just “semimeasures” omitting the words “on B”.

A semimeasure is a (total) function m defined on the set E of all binary words with non-
negative real values such that Y m(z) < 1.

T
A semimeasure m is called enumerable from below if the set of all pairs (z,r) such that r
is a rational number less than m(z) is enumerable.
Enumerable from below semimeasures correspond to probabilistic machines described in

Remark made on p. 95, sect. 1.7 of [5]. Namely,

e if M is a probabilistic machine that can stop, the function P§;(y) = the probability of
the event “machine M stops with output y” is a semimeasure enumerable from below;
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e for any semimeasure m enumerable from below one can construct a probabilistic ma-
chine M such that m(z) = P§,(z) for all z.

The first claim is almost evident. Indeed, the sum Y P (z) is the probability of the event

“machine M stops” and therefore does not exceed 1. Function Pj; is also enumerable for
below: trying to emulate the computation process of M for all possible random bits, we get
more and cases where the output is known and therefore may generate the lower bounds for

Now we proceed to the second claim. We give only a sketch of a proof. Assume that
a semimeasure m(z) enumerable from below is given and we are looking at the process of
enumeration of all rational lower bounds for all m(z) Assume that my(z) is a current lower
bound for m(x) at kth step. We may assume that for each k the value my(z) differs from
zero only for finitely many z’s, that my(z) increases when k increases and converges to m(z).
Our probabilistic space is the set of all infinite 0-1-sequences. At step k we allocate the part
of it having measure mg(z) to the output x; this part increases when k and my(z) increase.

There exists an enumerable from below semimeasure M (z) which is maximal in the follow-
ing sense: for any enumerable from below semimeasure m(z) there is a constant ¢ such that
m(z) < ¢- M(z) for all words z.

This fact can be proved as follows: enumerate all probabilistic machines and construct an
“universal” machine which chooses a natural number ¢ at random (probabilities p; to choose
i are assumed to be positive) and then simulates the ith machine. If m; is a semimeasure
corresponding to 7th machine and M is a semimeasure corresponding to the universal machine,
then M(z) > p; - m;(x). Therefore, M is maximal.

The following connections between the definition of a semimeasure and the condition (X1B)
are valid:

e if f is a function satisfying the condition (£B) then m(z) = 2~ is a semimeasure;

e if m is a semimeasure, then the function f(z) = minimal k¥ such that 27% < m(z)
satisfies the condition (XB).

Therefore we can go back and forth between semimeasures and functions satisfying the condi-
tion (XB) and for the round-trip we pay at most factor 2 (or additive constant 1). Therefore,
the existence of a maximal semimeasure M (z) implies the existence of a minimal function
satisfying (XB) and this function coincides with —log, M(z) up to an additive constant.

Now it remains to show that this minimal function (or logarithm of the maximal semimea-
sure) coincides with ZN-entropy. Here, as usual, we should prove two assertions:

e for any description mode E satisfying the conditions of sect. 1.2 of [5] for the case
of EN-entropy, the corresponding complexity function Complz satisfies the condition
(XB) and is recursively enumerable from above;

e if a recursively enumerable from above function f satisfies the conditions (XB) then
there exists a description mode E satisfying the conditions of sect. 1.2 of [5] such that
the corresponding complexity function Complg exceeds f not more than by a constant.
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The first assertion is almost trivial. If M = {mi,...,m} is a finite set of words and €1,...,€k
are their descriptions then e; are pairwise incomparable. Therefore, the corresponding inter-
vals in the Cantor space (of all infinite 0-1-sequences) do not overlap and the total measure
2. 27% does not exceed 1. Therefore, the condition (XB) is fulfilled.

The main role in the proof of the second assertion is played by the following construction.
Consider the segment [0, 1] divided into two equal parts [0, 1] and [%, 1], each part is divided
into two equal parts etc. At the level k we have 2* parts of length 27* each. Assume the we get
a sequence of natural numbers n;, ns,... and each number s of this sequence is considered
as a request to allocate a segment of level s (one of the 2° segments of length 27¢). The
segments allocated by different requests should not overlap.

Of course, this task is possible only if 3°;,27™ < 1. It turns out that this condition is not
only necessary but also sufficient. The simple allocation algorithm maintains the following
invariant relation: all free space is represented as union of disjoint segments which belong
to different levels (two segments of the same length should not appear in this union). The
following allocation algorithm maintains this relation: if a segment of the required length is
present in this union, allocate it; if not, take the smallest segment in the union whose length
is sufficient and cut it into half + quarter + ... until a segment of required length appears.

This construction allows us to finish the proof of the second assertion. Assume that f is
an enumerable from above function satisfying the condition (XB). Consider the set S of all
pairs (z, k) such that k > f(z). The set S is enumerable. If we add up all 2~ for all pairs
(z,k) € S, the sum does not exceed 1. Indeed, when we group all pairs (z,k) € S with the
same T we get

2—f(a:)—1 + 2—f(m)—2 + 2"f(")“3 + .- S z—f(-"’).

and the sum Y_ 27 f(®) does not exceed 1.

Now each pair (z,k) € S will be considered as a request to allocate a segment of length
27k, These requests can be fulfilled (see the discussion above). A segments of level k¥ may be
indexed by k-bit 0-1-words in a natural way; allocating the segment with index e according
to the request (z,k) € S, we declare e to be a description of the object z. The allocated
segments do not overlap, therefore the descriptions of different objects are incomparable and
the requirements of sect. 1.2 of [5] are fulfilled. It is easy to see also that the minimal length
of a description of an object z is f(z) + 1; therefore, the complexity function exceeds f not
more than by 1.

This argument implies also that there is an optimal description mode (i.e., a description
mode corresponding to the minimal function f which in its turn corresponds to a maximal
semimeasure).

4. INEQUALITIES BETWEEN ENTROPIES

4.1 Entropies Pentagon

Four entropies of sect. 1.2 and 1.3 of [5] form a parallelogram (see Fig. 1, [5], p.91). It is easy
to see that the restrictions for description modes become weaker when we go down along the
sides of this parallelogram: each EN description mode is ZZ description mode and at the
same time NN description mode etc. Therefore, the corresponding entropies decrease when
we go down.
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The same is true for the other parallelogram (see p.92 of [5]) It is because the condition C
is a consequence of the condition ¥ and because T-incomparable words are B-incomparable.

When we try to combine two parallelograms into a pentagon (Fig. 3, p. 94 of [5]) we should
prove that a priori entropy does not exceed EZ-entropy. This is explained in details in [6];
here we give only a short comment. Assume that we have an optimal ZZ description mode E.
A semimeasure m(z) can be defined as follows. Consider the set P, of all infinite sequences
w = wowi . .. such that E contains a pair (z,y) such that z is a prefix of w and z is a prefix
of y. Define m(z) as a uniform Bernoulli measure of the set P,. It is easy to see that m is a
semimeasure in the sense of section 3.3 and that m(z) > 2~ KM() where K M is a complexity
function corresponding to description mode E.

4.2 Entropies and lengths
These bounds (see [5], p. 99) use the somewhat strange functions Qx(n,€). The reason why
these functions appear is the following one. The series

DI P o N S—
n’ nlogn’ nlognloglogn’
diverge; at the same time the series

1 1 1
2 nlte’ 2 n(logn)i+e’ 2 nlogn(loglogn)ite’ ™

converge. The functions @ are used to mark the boundary between convergence and diver-
gence: Qx(z,0) is “on the divergent side” and Qx(z,€) is “on the convergent side”. (To be
exact, we should use qlog instead of log everywhere, as in [5], p. 99, to avoid division by zero.
We ignore this problem.)

To show how these convergency consideration work let us consider the upper and lower
bounds for the prefix entropy K P (inequalities (2) and (3) on p. 99, see [5]). Let us enumerate
all binary words in the lexicographic order (empty, 0, 1, 00, 01, 10, 11, etc.) and identify
each word with its number. The series

1
> i
converge, therefore it satisfies the condition ©'B of sect. 1.5 of [5]. Therefore, EB-entropy of

n does not exceed (1 + €)logn. Recalling that n is a number of some binary word z we see
that K P(z) does not exceed (14 ¢)|z|. The convergent series

1
Z n(log n)1+5

gives the upper bound
KP(z) < |z| + (1 +¢)log|z| |
etc. Now the lower bounds. Assume, for instance, that the (weak) lower bound

KP(y) > |yl +loglyl

is not valid. Then for all y (except a finite number of y’s) we have
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K P(y) < |yl +log|y|
and, therefore,

9—KP(y) 5 9—(lyl+loglyl)

and the series in the right-hand side of this inequality should converge. However, recalling
that a binary word y is identified with its number n (which is of the same order as 2!¥!) we
recognize the series

1
anogn

in the right-hand side.

The upper bound for K P(z) can be explained also in a more explicit way. The description
mode “each binary word is a description of itself” is valid for NN-entropy (or Z=-entropy)
but is not valid for EN-entropy (i.e., K P), because the description mode in this case should
be prefix-free: the descriptions of different objects should not be prefixes of each other. We
can obtain a prefix-free description if we consider the word

binary representation of |z|01z

as a description of z. Here Z denotes the word z where each letter is repeated twice. This
encoding is prefix-free, because the position of the 01-group is determined uniquely, and
therefore we may reconstruct the length of z. This encoding leads to an upper bound

KP(z) < |z| + 2log|z| + O(1)
and we can repeat the trick: the encoding

b.r. of |b.r. of |z| | 01(b.r. of |z|)z

(b.r. stands for “binary representation”) leads to an upper bound
K P(z) < |z| + log|z| + 2loglog|z| + O(1)

This trick can be iterated.

Remark. The above arguments can be rephrased in terms of the prefix-free encodings
m; given in the Remark of Section 2.4: For any ¢, the length of m;(z) is, up to an additive
constant, an upper bound on the prefix complexity K P(z) of z.

We proved the statements about K P made in [5], sect. 2.1; other entropies are much
simpler. For example, let us prove that the smallest entropy, K D(y), is greater than y for
infinitely many y’s. More precisely, we prove that

KD(y) > |y|

for infinitely many-y’s. Indeed, consider all the words y of a given length n. They are
incomparable, therefore their K D-descriptions should be different. If all these descriptions
have length smaller than n, the total number of descriptions does not exceed

14244484427 1=2"-1<2"

—too few to provide descriptions for all n-bit words.
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4.3 Differences between entropies
The similar (though a little more subtle) considerations allows us to establish bounds for
differences of entropies (see sect. 2.2 of [5]).

KP — KD : upper bound Let us start with the bound K P(y) — KD(y). Assume that g,
in one of the convergent series mentioned above. We should prove that

KP(y) < KD(y) + log|y| 4 (—loggp) + O(1)

or, in other words, that the series

1
§ : —-KD
2 (y) . l_:;/.l_ . qu|

converges. Let us classify all y according to two integer parameters: its length n and its
K D-entropy k. It is easy to see that the number of y’s of length n and entropy k does not
exceed 2*; each of them contributes

T |
2 k. ;; *qn
to the sum; so all n-k-elements contribute at most
1
= qn
n

(for any k). Now we shall sum over n and k; summing over k£ we consider only k not exceeding
n + O(1) (because K D(y) < |y| + O(1)), therefore, summing over ¥ means multiplying by
n + O(1) and the sum does not exceed O(1) - g,. It remains to recall that }_ g, < oo.

KP — KD : lower bound To prove the corresponding lower bound we should prove that if
the series ) ¢n diverges, then the series

1
-KD
Z 2 (y) . m . qu!

diverges also. Consider the NZ-description mode where z is a description of all words z10. .. 0.
Consider the set A, ;. of all words of length n having this form for some z of length k (assuming
that k < n). All words from A, ; have decision complexity not exceeding k; the total number
of words in A,k is 2%, They contribute to the sum at least

1 n
2k,2—k,_,qn=fl_;
n n

summing over k first, we get the sum g, = +o00.

KS—KA, KS—KM : upper bounds Now let us consider another difference (see [5], p. 100,
paragraph (2)) and prove that :

KS(y) — KA(y) <logly| + O(1)

(all logarithms are binary logarithms). In other words, we should prove that
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K5(y) < KA(y) +log|y| + O(1)
According to the CB-definition, it is enough to show that the set
Y = {y|KA(y) + log|y| < n}

contains O(2") elements. The set Y is prefix-closed (all prefixes of an element of Y belong
to Y too); in other words, Y is a subtree of the complete binary tree. Let us consider the set
Y’ of all leaves of this subtree, i.e., all maximal elements of Y (having no continuations in
Y). Each element of Y is a prefix of some maximal element, and it is easy to see that

#Y <> |yl

yeY’

(each element y has |y| prefixes). For any element y € Y’ we have
K A(y) +logly| < m,

or
K A(y) < n —loglyl,

or

o-KAw) 5 1Y
2n

All elements y € Y' are incomparable, therefore

> 27KAW < 0(1)
yey’

and, consequently,
ly
> 5 <O
yey’

and we get the upper bound for }’ |y| that we need.

KS—KA, KS—KM : lower bounds To obtain the matching (weak) lower bound, consider
the sequences 0™ (n zeros). We have

KA(O™ =0(1), KM(0") =O0(1) and KS(0%) = KS(n) + O(1)

(we identify n and nth binary word as before). It remains to prove that KS(n) > logyn for
infinitely many n which could be done by easy counting argument (see above).

KA-KS, KM—KS, KP—KS : upper bounds Next differences (see [5], p. 100, paragraph
(3)) are KM(y) — KS(y) and KA(y) — KS(y). The upper bounds follow from the upper
bound for K P(y) — K S(y) mentioned in [5], p. 101. Let us prove the latter upper bound.
Assume that }° g, is any of the convergent series considered above; it is enough to prove that

KP(y) < KS(y) + (—loggy)



4. Inequalities between entropies 15

According to the XB-definition of K P, we should prove that
-KS
Z 2 (y)q|y| < 0.

Let us consider all terms with KS(y) = k; the number of such terms is about 2k, each term
is 2"’°q|y|. We may replace gj,| by g because g; is monotone and because k = K S(y) does
not exceed |y| (up to a constant, as usual). Then we get the sum }° g which is finite by our
assumption. -

KA—-KS, KM—KS, KP—KS : lower bounds To get the complementary lower bound for
K A(y)— K S(y) we start with the bound for K P(y)—KS(y) (it is easier, because KA < K P).
Assume that Y ¢; is any of the divergent series mentioned above. We prove that

KP(y) — KS(y) > —logy qy

for infinitely many y. Indeed, KS(y) < |y| (we ignore O(1)-terms) and, as we have seen
before,

KP(y) > |yl +logz qpy

for infinitely many y. Now we show how to transform a lower bound for K P — K S into a
lower bound for KA — K S. For any binary word z consider the binary word ¢(z) = £01. All
words t(z) are incomparable. It is easy to show that K M(t(x)) = K A(t(z)) = K P(t(z)) (up
to O(1)-terms). Indeed, these words ¢(z) form a “bunch embedded into a tree”. It is easy to
see also that K S(t(z)) = K S(z). Now the lower bound for K P — K'S can be rewritten as

KA(t(y)) — KS(t(y)) = — 108z gje(y)|

and it remains to mention that ¢(y) is only twice longer than z so it does not matter whether
we have gj(y)| or gy under the logarithm.

KM—KD, KA—KD : upper bounds Now let us prove the upper bound for K M (y)—K D(y)
(and therefore for K A(y) — KD(y)). When defining KX D(y) we use an optimal description
mode G which is a “computable mapping” of type N — =. Consider an optimal (£ — N)-
description mode F (corresponding to the prefix entropy K P) and a diagram

=ENE =

with two description modes. Their “composition” H will be a description mode of type
= — E. Therefore, the Z=-entropy of some y € E does not exceed the ZN-entropy of the
shortest G-description z of an object y:

KM(y) < KP(z)+O(1) and |z| = KD(y).
Now the inequality for the prefix entropy, e.g.,
KP(z) < |z| +log|z| + (1 +€)loglog 2| + O(1),
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can be applied to get
KM(y) < |z|+]logl|z| + (1 +¢€)loglog|z| + O(1)

K D(y)+log KD(y) + (1 + €) loglog K D(y) + O(1)
< KD(y) +loglyl + (1 +¢) loglog|y| + O(1)

(last step uses that K D(y) does not exceed |y|). More elaborate inequalities for prefix entropy
may be used in the same way.

(Remark. Replacing in the diagram above the rightmost space £ by N we get the upper
bound for the difference K P(y) — K'S(y) that we have proved already.)

KM — KD, KA— KD : lower bounds The lower bound for KA — K D (and therefore for
KM — K D) can be obtained from the lower bound for K P — K'S mentioned above. Indeed,

KP(y) - KS(y) = KA(t(y)) — KD(t(y)) + O(1)
(here ¢ is an embedding of the bunch into a tree explained above).

KS — KD : upper bound Assume that a N=-description mode F is used to define K D.
Construct a NN-description mode G as follows: if z is an F-description of y then

binary representation of |y|01z
is a G-description of y. Therefore,

KS(y) < KD(y) + 2logly| + O(1)

Iterating the trick (using the binary representation of the length of the binary representation
of y, etc.) we get stronger inequalities of that sort.

Remark. The family of prefix-free encodings given in the Remark of Section 2.4 provide
such stronger inequalities. We have for any ¢ that KS(y) < KD(y) + |m:(ly|) + O(1).

KS — KD : lower bound Let us prove that
KS(y) 2 KD(y) +log|y| + loglog|y|

for infinitely many y’s (the proof of the lower bound with more logarithms is similar). As
usual, assume that it is not valid, i.e., that

K S(y) < KD(y) +log|y| + loglog |y
for almost all y. We take y’s of the form £107~! and get
KS(z10771) < |z| + log(|z| + 5) + loglog(|z| + j).

Now we should count all pairs (z, j) where the right-hand side does not exceed some n and
see that the number of such pairs is not O(2"). (This would be a contradiction, because
different pairs correspond to different words.) We restrict ourselves to z and j such that

n

., 2
|z <n and nSJS;ﬁ
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In this case we may replace log(|z| + j) by logj (ignoring an additive constant) and get a
sum

2"/71.2 2"/11.2 2"/1!.2 d'
Z #{:I:|10gj +10g108j + |$| S n} ~ E 2n—108j—108105j ~ 211 / _ J ;
j=n j=n 5 Jlogs

the integral tends to infinity when n — oo.

KP - KA, KP — KM : upper bounds Assume that g, is one of the convergent series
considered above. Let us prove that

KP(y) < KA(y) + (- logy qpy))-
According to the XB-definition of K P, it is enough to prove that

9—KA(y)+logaqpy) — qulz—KA(y)

is finite. Indeed, if we consider the sum over all y’s of a given length n, we get g, - O(1) (these
y’s are incomparable), and the series ) ¢, is convergent.

The upper bound for K P — K M follows from the upper bound for K P — K A because K M
is bigger that K A.

KP—KA, KP—KM : lower bounds The (weak) lower bound for K P— K A is a consequence
of the lower bound for K P — KM which in its turn is a consequence of the lower bound for
K P(y) — |y| because KM (y) < |y| + O(1). The lower bound for K P(y) — |y| is established
in sect. 4.2.
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1 Complexity, Entropy, and Randomness

Things can be large or small, and their size (the length or the volume or the weight or so on)
can be measured by a number. Besides, things can be simple or complex, and their complexity
can also be measured by a number. I do not know to whom we are indebted for measuring sizes
by numbers. It was Andrei Kolmogorov [Kol65] who proposed to measure the complexity of a
thing by a natural number (i.e., a non-negative integer), and he developed the rudiments of the
theory.

Complexity of things (as opposed to the complexity of processes, e.g., of computational
processes) took the name descriptional complezity, or Kolmogorov complezity. As will be seen
here, in appropriate cases one may say “entropy” instead of “complexity”.

Thus we assume that there is a set Y of things, or objects, ¥’s, and a total function “com-
plexity of y” defined on Y. That function will be denoted by Compl and its possible values
are 0,1,2,3,...,m,...,00. So the function Compl is a total function from Y to INU {co}. We
do not put any further restrictions on Compl, but take it on an intuitive level as a measure of
complexity, or a complexity function, or, shdrter, a complexity.

Let Compl; and Compl, be two measures of complexity. Let us say that Compl; is not
worse than Compl, if

Compl, (y) 5 Comply(y)-

Explanation 1. The notation A(y) < B(y) means that for some constant ¢ not depending on
y and for all y, A(y) < B(y) + ¢ holds.
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Let Z be some class of complexities, or (that is the same) of measures of complexity. Let
Compl,, belonging to Z, be not worse than any complexity belonging to Z. Then Compl, is
called optimal in the class Z. So a way of measuring complexity is called optimal if it gives,
roughly speaking, the shortest complexities of things. Of course, a class of complexities may
have no optimal one.

Any optimal complexity is called an entropy. It is possible that a class Z has several
entropies, but any two entropies, Ent; and Ents, fulfill the following condition:

Ent;(y) E Ento(y)

Explanation 2. The notation A(y) 3 B(y) means that |A(y) — B(y)| é 0,
or A(y) § Bly)and B(y) § A(y)-

Important Remark 1. There is no semantic problem when one speaks about an entropy re-
lated to some class of complexities. But in the theory of Kolmogorov complexity it is usual to
speak about the entropy and even to denote it by a special notation. What does it mean? Here
we have an abus de langage (after N.Bourbaki). Speaking about the entropy related to some
class, one speaks in fact about an arbitrary entropy of that class. And the notation denotes
any of such entropies. Of course, our statements must be invariant and do not change their
truth value when a particular entropy changes to another one but still belonging to the same
class. But we must be cautious. Let ¥V and W be two classes of complexity functions, and let
K be the entropy related to V and L be the entropy related to W. In fact, K and L denote two
families of entropies, or, it is better to say, any entropies of those two families. When we write
K(y) é L(y), we suppose that this relation é holds for any particular entropy denoted by K
and any particular entropy denoted by L (so there is an additive constant hidden in this relation
depending on the choices of particular representatives of K and L). But when we declare that K
and L coincide (are the same entropy), we do not want to express the opinion that any entropy
denoted by K coincides with any entropy denoted by L. That is, we understand the coincidence
statement in the following way: for any of the entropies K and any of the entropies L, there
exists a constant ¢ such that |K(y) — L(y)| < c for all y.

Terminological Remark 1. In literature on Kolmogorov complexity, the term “complexity”
(synonymous with “complexity function” and “measure of complexity”) is most often used in
the sense of the term “entropy”. But we make the distinction between those two terms: entropy
is an optimal complexity.

As has already been said, there may be no entropy among complexity functions belonging
to a class Z. An important property of a class Z is that of having an entropy. In such case, we
say that the Solomonoff-Kolmogorov Theorem holds for Z.

There exist several important classes of complexities that contain entropies. And among
those entropies, there are ones of special interest — namely, those entropies that can be used
for a definition of randomness. Kolmogorov has proposed the following definition of randomness
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for an infinite binary sequence ajasas - - - a, - --: the sequence is called random, or, more exactly,
Kolmogorov random, if

Ent(a;---a,) > 7,
nt(aq )mn

where Ent is an entropy. Of course, the choice of Ent is to be specified. Not every sort of entropy
goes to a “good” definition of randomness; a definition by Kolmogorov scheme is regarded as
“good” if the class of Kolmogorov random sequences sprung up by that definition coincides with
the class of sequences that are random in the sense of Martin-Lof (or are typical sequences; see
[KU87a] and [KU87b] and [Mar66]).

To sum up: in order to define an entropy, one must define an appropriate class of complexities
and show that the Solomonoff-Kolmogorov Theorem holds for that class.

1.1 Generation of Complexities by Means of an Encoding Procedure

The idea (due to Kolmogorov) is very simple. There are objects and there are descriptions
(encodings) of objects, and the complexity of an object is the minimal size of its description.

In more detail, there is a set Y of objects y, and a set X of descriptions (names, encodings)
z. There is a volume function £ defined on X; that £ is a function from X to IN. A mode of
description, or a description mode, is an arbitrary set E C X X Y. If (z,y) € E, then z is called
a description (a name, an encoding) of y with respect to E. Thus an object y may have many
descriptions and a description may serve as a description for many objects.

The complezity of y with respect to a description mode FE is defined as follows:

Complg(y) = min{¢(z) : (z,y) € E}.

We make the convention that Complg(y) = oo if there is no z such that (z,y) € E.

Let € be a class of modes of description. Each mode E € & gives the corresponding
complexity function Complg. Then there arises the class Z = Z(&) of all complexity functions
related to the modes of £, and one may ask whether the class Z contains an optimal function,
or an entropy. If such an optimal function exists, then it corresponds to some description mode
which is also called optimal.

Until now we have not imposed any restrictions on X, Y, E. It is reasonable to assume that
X and Y consist of constructive objects, and E is a generable set (in the sense of Post) and,
consequently, is a recursively enumerable set.

In the following exposition we shall restrict ourselves with the following simple case: Both
X and Y are Z, where E is the set of all binary words, or finite binary sequences. The volume
function £ is defined to be £(£) = |{| for every £ € E, where |£] is the length of &.

1.2 Two Symmetric Relations and Four Entropies

Our task is to define—in a reasonable way—a class £ of modes of description as a class of subsets
of £ x E. Having this goal in mind, we define a binary relation on = which we shall call the
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concordance relation: u; and ug are called concordant if they have a mutual continuation, i.e.,
if there are t1,t9 € = such that u;t; = uste. This concordance relation will be denoted by «.
Thus we have two natural binary relations on =: the equality = and the concordance 7.
Both are symmetric and decidable (see Explanation in Sect.1.3).
Let @ and 3 be two binary relation on Z. We say that a mode of description E C E x E
fulfills the (a, B)-property if for every z1,Z2,¥1,%2 € &,

(z1,71) € E A (72,92) € EAT10T2 = 310Y2.

Let us consider the class £ = &(a, ) of all recursively enumerable modes of description that
fulfill the (a, 3)-property and the related class ZoB = Z(£) of complexity functions. If the
class Z%P contains an optimal complexity function, that complexity function will be called
(a, B)-entropy.

Now move from variable a and 3 to constants = and «. Taking = or v as a or 3, we obtain
four classes of complexity functions: Z==, Z=7, Z1:=, Z77. For each of these four classes, the

Solomonoff-Kolmogorov theorem is valid, so we have four entropies:

1. (=, =)-entropy, or ININ-entropy,
2. (=,~)-entropy, or INE-entropy,
3. (v, =)-entropy, or ZEIN-entropy, and

4. (7,7)-entropy, or ZE-entropy.

Note 1. The notations ININ, etc., have the following origin. In [US81] and [US87], the notation
«Z" had the following meaning: the set of all binary words being considered together with
relation . In place of the set of all binary words with the relation = on that set, the set IN
of all natural numbers with the relation = and the volume function I(z) = |logy(z + 1)| was
considered. This volume function is induced by the following 1-1 correspondence between IN
and Z: zero ~ A, one ~ 0, two ~ 1, three ~ 00, four ~ 01, five ~ 10, and so on.

1.3 Two Approximation Spaces and Four Entropies

There is another way to come to the four basic entropies of Sect.1.2.
Any set of constructive objects with a decidable partial ordering defined on that set will be

called an approzimation space.

Explanation 3. The term “decidable” means that there is an algorithm to decide for any z’

and z”, whether =’ < z” or not.

On an intuitive level, the elements of an approximation space can be taken as informations,
and z' < 2 means that the information z” is a refinement of the information z' (and hence z”
is closer than z' to some limit value to which both z’ and z” serve as approximations).
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To develop a more attractive theory of approximation spaces, especially with the intention
to apply this theory to an advanced theory of Kolmogorov complexity, one needs to include some
additional requirements into the definition of an approximation space. For our goals, however,
it suffices to have a decidable partial ordering. Moreover, only two approximation spaces will
be considered: the bunch IB and the tree II'. Their definitions follow immediately.

- The bunch B: The set of objects is E, and the partial ordering < is =, i.e., u < w iff

u=uw.

- The tree T: The set of objects is . The partial ordering < is defined as follows: u < w
iff u is a prefix of w (and w is a continuation of u), i.e., Iv[uv = w].

Let X and Y be two approximation spaces. The spaces X and Y will be treated, respectively,
as the space of descriptions (names, encodings) and as the space of the objects described (named,
encoded). Our near goal is to define the class £ of acceptable description modes E C X x Y.

We impose on E' the following three requirements:

L. if (z,y) € F and &' > z, then (z',y) € E,
2. if (z,y) € E and y' < y, then (z,3') € E, and
3. if (z,y1) € E and (z,ys) € E, then there exists a y that {(z,y) € E, y1 <y, and 32 < v.

Hence, the only cause of the existence of two different objects having the same description is
the execution of the second requirement.

A description mode is called acceptable if it is (recursively) enumerable and fulfills all the
above requirements.

If one wishes to relate a complexity function with any description mode, one needs to
introduce a volume function £ defined on X. Here we are interested in the cases X = IB and
X =T only. In both these cases, we put £(z) = |z| where |z| is the length of z.

Now let us fix approximation spaces X and Y, and let us consider the class of all accept-
able description modes and the corresponding class of complexities. Let us ask whether the
Solomonoff-Kolmogorov theorem holds for that class, and, if it does hold, then the related

entropy will be called XY entropy.
It turns out that the Solomonoff-Kolmogorov theorem is valid for four cases when X and

Y is respectively IB or I
1. For X =B and Y = IB, we have BIB-entropy,

2. For X =B and Y =T, we have IBIl-entropy,
3. For X =T and Y = IB, we have I'IB-entropy, and

4. For X =T and Y =T, we have I'T-entropy.

It is easy to see that IBIB-, BI[-, T'IB-, I'T-entropy respectively coincides with (=,=)-,
(=,7)-, (v,=)-, (7,7)-entropy of Sect.1.2. Speaking on the coincidence, take into account the
Important Remark of Sect.1.
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I'B,

or (v,=)
BB, T,
or (=,= or (7,7)
BT,
or (=,7)

Figure 1: The ordering of the four entropies: II'lB, IBIB, I'", IBIT

1.4 The Ordering of the Four Entropies

Now we have four entropies, and any two of them, A and B, do not coincide; which means that
the assertion A(y) = B(y) is not valid. Let us write A < B if A(y) < B(y) but not vice versa.
Then there is a partial ordering on the set of four entropies. That ordering can be shown by the
following picture; Fig.1.

The picture is directed from bottom to top. That is, it shows that
BT < BB, BI' < T, BB < I'B, I'T < I'B,

and, of course,
IBI' < T'B.

On the other hand,
neither BB < I'T nor II'T < IBIB.
1.5 Encoding-Free Generation of Complexities and Entropies

It turns out that the four entropies of Sect.1.4 admit an encoding-free definition with no use of

R {4

such terms as “descriptions”, “names”, or “encodings”.
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As before and always, an entropy is defined as an optimal complexity function for some
class Z of complexity functions; and all members of Z are functions from Y to IN U {c0}. So
our goal is to describe appropriate classes Z.

Having this goal in mind, let us introduce two conditions, C and X, which could be imposed
on a function f: ¥ — IN U {oo}.

Condition 1. (C (of Cardinality of a set)) Let n € IN, and let M C Y be an arbitrary set
such that

1. any two elements of M are non-comparable, and
2. M C f(n).
Then the cardinality of M is less than or equal to 2”.

Condition 2. (X (of summation of a series)) Let M C Y be an arbitrary set such that any
two elements of M are non-comparable. Then

Z o—f() < 1.
yEM

Explanation 4. Elements y; and y, are non-comparable if neither y; < s nor ys < Y1-

Thus, an arbitrary function f may or may not satisfy Condition C or Condition . And it
is easy to see that Condition X implies Condition C.

Further, a definition of “enumerability from above” is to appear. A function f : ¥ —
IN U {oo} is called enumerable from above if the set {(y,n) : y € Y;n € IN, f(y) < n} is
enumerable, that is, recursively enumerable.

Let us denote by Z(0,Y’) the class of all functions from Y to INU{co} that are enumerable
from above and satisfy the condition O, where O is either C or X. Any element of Z(0,Y)
may be called a O-acceptable complezity. Hence, we have four classes of acceptable complexities:
Z(C,B), 2(C,I'), Z(%,B), and Z(X,I). For each of these four classes, there holds the
Solomonoff-Kolmogorov theorem.

Thus, there are four entropies: CIB-entropy, CIl-entropy, XIB-entropy, and Z-entropy.

If one imposes the ordering on these four entropies, as in Sect.1.4, then one obtains the
following picture; Fig.2. 4

The four entropies of this section also admit definitions with slightly modified versions of
conditions C and X.

Condition 3. (C') There exists a constant b such that the cardinality of M is less than or
equal to b- 2" for every M C Y satisfying the requirements (i) and (ii) of Condition C.

Condition 4. (X') There exists a constant b such that

Z o—f(¥) <b
yEM

for every M C 'Y of mutually non-comparable elements.
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B

CB zr

cr

Figure 2: The ordering of four entropies: XIB, CIB, 2T, CI'

Classes Z(C',B), Z(C',I), 2(¥',B), and Z(X',T) differ from the corresponding classes
Z(C,B), Z(C,II'), 2(%,B), and Z(X,IT); nevertheless, the related entropies coincide in the
sense of Important Remark of Sect.1. That is,

C'B=CB, CT'=CIl, ¥B=XXB, and ¥'T =3XT.
Condition 5. (X£°°) For an arbitrary set M C Y of mutually non-comparable elements,

Z 27 < 0.
yeEM

It is obvious that Condition X* is equivalent to Condition X’ for Y = IB. Hence, the
3*°IB-entropy coincide with the 3/IB-entropy and consequently with the X1B-entropy.

Theorem 1. (Andrei Muchnik) The conditions X’ and X are equivalent in the case Y =T .
Hence the Z*°T-entropy coincides with the X'I'-entropy and with the X -entropy.

1.6 Relations between Two Quadruplets of Entropies

Now we have two quadruplets of entropies: the quadruplet IBBIB, BT, I'IB, and T'T, which
respectively generated by means of encoding, and the quadruplet CIB, CIl', XIB, and XTI,
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I'B =XB

T
BB =CB
xr

BT = CI'

Figure 3: The relation between entropies

which respectively generated by using some quantitative approach represented by conditions C

and X.
It turns out that (in the sense of the equality explained in Sect.1, Important Remark) the

following relations hold:
CB =IBB, CI' = B, and XB = TB.

As to XTI, we have the following non-trivial fact, which will be discussed in Sect.2.2(5):
X < IT.

Summarizing them, we obtain the following picture; Fig.3.

1.7 A Semantic for XII-Entropy

Four entropies of Fig.3 have an encoding semantic, but the fifth entropy, I, has not yet
obtained an appropriate semantic. Now a semantic for ZIT' will be set forth. That semantic is
based upon probabilistic machines.

To this end let us consider a probabilistic Turing machine with one-way infinite output tape
whose head moves in only one direction. “Probabilistic” means that one must flip a symmetric
coin before performing any command, and the result of flipping determines which command is
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to be performed. Another version: at the input tape, there comes a random infinite binary
sequence with equal probabilities of digits. We suppose that our machine has binary output
alphabet and never stops, so a finite or infinite binary sequence appears on the output tape.
Let us fix a machine M. For any y € E, let us denote by P%,(y) the probability of the
event ‘y is the beginning of the output sequence’; in this notation, “n” stands for “non-stop”.
Consider a preorder relation < on the set of machines: M < N means that P}, (y) ﬁ P (y)-

Explanation 5. A(y) ﬁ B(y) means that for some constant ¢ not depending on y, and for
every y, A(y) < c- B(y).

It turns out that there exists a marimal machine W such that M < W for every machine
M. In fact, there are many such machines, but any two of them, U and V, satisfy the condition

Po(y) = Py (y).
Explanation 6. A(y) = B(y) iff A(y) ﬁ B(y) and B(y) ﬁ Aly).

Hence for any two maximal machines U and V, we have

| logy P3 (1) a |logy Py (3)]-

So we have moved from the probability P} to its logarithm. For any maximal machine W
one can verify that

|logs Py (y)| a ST (y)

This fact enables us to identify |logy P}y| (or, if you prefer, the integer ||logs Pjy|]) with
3T. (Recall again Important Remark of Sect.1). Then the probabilistic definition of P}, just
given can be taken as a semantic for XIT.

The probability P}, (y), related to an arbitrary maximal machine W, can be called a priori
probability of y as an element of the tree II'.

Remark 1. There exists also the a priori probability of y as an element of the bunch IB. To
obtain the a priori probability of that second sort, one should consider probabilistic machines
of a slightly different type. The change is: instead of machines that never stop, one should take
now probabilistic machines that can stop. Then P5,(y) is, by definition, the probability of the
event ‘the word printed on output tape after machine M stops coincides with y’; here “s” stands
for “stop”. A preorder on machines and the notion of a maximal machine are defined as above,
and maximal machines do exist. Then P}, (y) calculated for an arbitrary maximal machine W
is the a priori probability of y as an element of IB. Here it occurs that

|logs Py (y)| 3 EB(y).

Hence ¥IB has a probabilistic semantic too. But, since £IB = I'IB, the entropy XIB has also

an encoding semantic.
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1.8 Historical, Bibliographical, and Terminological Remarks; Acknowledg-
ments

We begin the history of the theory of Kolmogorov complexity with Kolmogorov’s paper [Kol65].
The purpose of that paper was to bring the notion of complexity (now we should say “of entropy”)
to the foundations of information theory. In his paper Kolmogorov expounded some results of
his studies of 1963-1964. In those years he knew nothing about the paper [Sol64] in which Ray
Solomonoff presented some similar ideas — but in vague and rather non-mathematical manner.
We place the paper [Sol64] in the prehistory of the theory of Kolmogorov complexity. At the
early stage of the theory’s development, an important role belonged to the paper [ZL70].

In the papers of pioneers of the theory, there were introduced all five basic entropies of our
Sect.1.6. The authors gave them various names and various notations. What was common in
all those notations was the use of the letter “K” or the letter “k” as a part of the notation; one
should believe the cause of this usage is a homage to Kolmogorov. Here we try to set some system
of names and notations with the observance of the historical tradition. (In such a way the author
makes his own contribution to the existing chaos of names and notations. This contribution is
not too great because some names and notations are already in use. Simultaneously the author
expresses the hope to introduce a standard system.)

We would like to fix the following names and notations for the five basic entropies.

1. For BBB-entropy. Name: simple entropy; notation: KS.

2. For BI-entropy. Name: decision entropy; notation: KD.

3. For II'B-entropy. Name: prefix entropy; notation: KP.

4. For IT'T-entropy. Name: monotonic entropy; notation: KM.

5. For XIl-entropy. Name: a priori entropy; notation: KA.
The entropies should be attributed to the following authors:

simple entropy KS to Kolmogorov [Kol65](§3) and also (though in some nebulous form)
to Solomonoff [Sol64],

decision entropy KD to Loveland [Lov69],

a priori entropy KA to Levin [ZL70](n° 3.3) and [Lev73],

monotonic entropy KM to Levin [Lev73], and

prefix entropy KP to Levin [Lev76].

Remark 2. Strictly speaking, we denote by the symbols KS, KD, KA, KM and KP exactly
those versions of entropies as they were formulated by Kolmogorov, Loveland, and Levin. Let us
recall the Important Remark of Sect.1. The coincidence KS with IBIB has the following meaning:
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for any particular entropy KS and for any particular entropy IBIB, there holds KS(y) a BB(y).
The other coincidences, KD with IBI, etc., are to be understood in the same way.

Attributing the entropies to their inventors, we make no claim about the usage of these
notations by the inventors. None of them made any essential use of the term “entropy”; usually
the term “complexity” was used. Kolmogorov used simply the word “complexity” with no
adjective. Loveland used the term “uniform complexity”, and it was renamed as “decision
complexity” by Zvonkin and Levin [ZL70](Definition 2.2). Levin used the words “monotonic
complexity” and “complexity related to a prefix algorithm”. He had not introduced any name
for KA, but used terms “universal semicomputable measure” (in [ZL70](n°3.3)) and “a priori
probability” (in [Lev73]) for related quantities of which the logarithm is to be taken.

As to notations, Kolmogorov in [Kol65](§3) employed the notation K4(y) for the simple
entropy. Loveland in [Lov69](p.513) employed the notation K 4(z™;n) for the decision entropy;
and Zvonkin and Levin used for it the notation KR [ZL70](Definition 2.2). Zvonkin and Levin
in [ZL70](n° 3.3) employed the notation —logy R{I';} for the a priori entropy; later, in [Lev73]
that entropy was denoted by Levin as kM. In the same paper [Lev73] the notation km was used
for the monotonic entropy. The notation KP (for the prefix entropy) appeared in [Lev76].

The general idea of an approximation space as a space of informations refining, or exacti-
fying, one another is, without doubt, due to D. Scott. This idea was embodied into the notion
of fo-space in the sense of Yu. Ershov. A classification of entropies on the basis of that notion
is given in [She84](Theorem 8); the classification of our Sect.1.3 is very close to that of [She84].
The general idea of the encoding-free approach to entropies (see Sect.1.5 above) was laid down
in [Lev76).

A very useful exposition of various entropies and their interrelation is given in [Vyu81]. A
survey of the use of entropies in a definition of randomness is presented in [KU87a] and [KU8Tb].

In the process of preparing this paper, the author had many discussions with Andrei Much-
nik, Alexander Shen’, and Nikolai Vereshchagin. The author enjoyed their advice and help.
Many final formulations emerged from those thankworthy discussions. The bounds of Sect.2.1
and of Sect.2.2 probably belongs to what is called “mathematical folk-lore”, but the final for-
mulae are also due to discussions with Muchnik, Shen’, and Vereshchagin.

To conclude this section let us redraw Fig.3 in terms and notations that we accept as
standard; Fig.4.

The pentagon of Fig.4 shows, in particular, that neither KA < KS nor KS < KA. The
exclamation note attached to an entropy means that the entropy can be used in the Kolmogorov

definition of randomness.
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KP
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simple entropy KM

KS
a priori entropy (!)
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decision entropy

KD

Figure 4: Five basic entropies
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2 Quantitative Analysis on Entropies

2.1 Bounds for Entropies

Some upper and lower bounds for entropies will be written down in this section. But first of all
the reader must be warned that in this exposition, the sense of an upper bound and the sense of a
lower bound are rather different. An upper bound for an entropy shows that the entropy cannot
be too large. A lower bound for an entropy does not show that the entropy cannot be too small
but does show that in infinitely many instances, the entropy can be large enough. So upper
bounds are absolute, or strong, upper bounds. Lower bounds are not absolute; we shall call
them weak lower bounds. A weak lower bound has the purpose of supporting the corresponding
upper bound and demonstrating, in a favorable case, that the upper bound cannot be improved.
After this warning let us consider the five basic entropies of Sect.1.8, Fig.4.

(1) Entropies KS, KM, KA, and KD.
Let Ent denotes one of the entropies KS, KM, KA, KD. Then (an upper bound) for all y

(in E),
Ent(y) < |yl,
(v) 5 1ol
and (a weak lower bound) for infinitely many y (in E),

Ent(y) > lyl- (1)

Let us formulate the lower bound of (1) more exactly. We have four cases: Ent = KS, Ent =
KM, Ent = KA, Ent = KD. For each of these cases, the symbol Ent (as well as KS, KM,
KA or KD) denotes an arbitrary function belonging to some collection, i.e., the collection of
Ent-entropies. In each case the meaning of (1) is as follows: for any particular function Ent of
that collection, there exist a constant ¢, perhaps negative, and an infinite set M C E such that

vy e M [ Ent(y) >yl +c]-

(2) Entropy KP.
It is helpful to introduce some notation. A function qlog, quasilogarithm, is introduced by

the following definition:

logs 2, z2>1,
logz =
408 { 0, =2<L

The iterations of that function are defined as follows:
qlogz = qlogz, and glog*+Vz = qlog(qlog™® z).

Then we have for any k, any € > 0, and all y,
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KP(y) £ Iyl + alog™y| + qlog®y| + - - + qlog®~Dy| + (1 + €)qlog®y]. (2)
It is an upper bound for KP.
For a weak lower bound, let k be an arbitrary positive integer. Then, for infinitely many y,

[ KP(y) > |y| + qlog™]y| + qlog®|y| + - - - + qlog®|y] ]. (3)

That means that inequality (3) holds for any function denoted by KP (i.e. for any prefix entropy)
and for an appropriate infinite set of y’s, depending on the choice of that function.

Now it is reasonable to introduce an abbreviation for the sum qlog(l)z +-4+(14+ e)qlog(")z.
Let us take, e.g., Qx(z,€) as such an abbreviation. That is,

Qi(z,€) = qlogMz + qlog®z +--- + qlog*Vz + (1+ €)qlog® 2.

Then (2) and (3) can be rewritten as follows:

Vy [ KP(y) S vl + Qullyl €)1,

and
for infinitely many y [ KP(y) > |y| + Q«(|y],0) ]-

2.2 Bounds for Differences of Entropies

By how much can two entropies of different sorts, e.g., KP and KD, differ from one another?
Perhaps it is better to ask, how much can one entropy exceed the other? Upper and lower
bounds are to give the answer. The warning of the beginning of Sect.2.1 about the different
meanings of upper and lower bounds is valid here too.

When A(y) é B(y), an upper bound for the difference A(y) — B(y) is trivial; namely, a
constant. So in this section, only differences A(y) — B(y) for which the assertion A(y) 5 B(y)
is false will be studied.

Now let us proceed to the differences.

(1) Difference KP — KD.
For any k, any € > 0, and all y,

KP(y) — KD(y) 5 qlogly| + Qx(|yl, €)- (4)

For any % and infinitely many y,

KP(y) — KD(y) > qlogly| + Q«(|yl,0). (5)

Note 2. Let us not forget that an additive constant implied in (4) depends not only on k and
€ but also on the particular versions of KP and KD. In (5) the set of y’s depends not only on
k but also on the versions of KP and KD. This point is valid for further inequalities related to

lower and upper bounds.
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(2) Differences KS — KM and KS — KA.
Let |y| # 0. Then, for all y,

KS(y) —KM(y) 5 KS(y) ~KA() § logs [yl-
For some ¢ and for infinitely many y,
KS(y) — KM(y) > log, |y| + ¢,
and for some ¢ and for infinitely many v,

KS(y) — KA(y) > log; |y| +c.

(3) Differences KM — KS and KA — KS.
For any k, any € > 0, and all y,

KM(y) — KS(y) 5 Qx(lyl, €),
KA(y) — KS(y) P Qx(lyl, €)-

35



For any k and infinitely many y,

KM(y) — KS(y) > Q«(lyl,0),
KA(y) — KS(y) > Q«(lyl,0).

(4) Differences KP — KS, KS — KD, KP — KM, KP — KA, KM — KD, and KA — KD.
Let B — A be any of the six entropy differences mentioned above. For any &, any € > 0, and
all y,

B(y) - A(y) S Qr(lyl, €)-

And for any k and infinitely many y,
B(y) — A(y) > Q«(lyl,0).

(5) The Difference KM — KA.

This difference is of special interest. =~ The very fact that the comjecture KM(y)
E KA(y) is false is disappointing. The refutation of that conjecture is due to Petér Gécs
[Gac83]. (The Hungarian surname “Gécs” is to be pronounced as English “garch”.)

Both KM and KA are defined on the binary tree IT. Gécs studied two entropies K and H
of similar sorts; but his K and H are defined not on I but on the tree consisting of all words in
a countable alphabet (say, in IN if one takes IN as an alphabet). Some bound for the difference
K —H is stated in Theorem 1.1 of [Gac83]; there the author writes: “Therefore for binary strings,
the lower bound obtainable from the proof of Theorem 1.1 is only the inverse of some version of
Ackermann’s function” [Gac83](p.75). As it is known, Ackermann’s function is a function from
IN to IN which exceeds in its growth any primitive recursive function. The inverse f~! for a
function f is defined as follows:

fY(a) = min{z : f(2) > a}.

Thus, for infinitely many v,

KM(y) - KA(y) > £ (ll), (6)

where f is the version of Ackermann’s function mentioned by Gécs.

Let Z(y) denote the number of zeros in the word y. Then, as a corollary of Theorem 1.1 of
[Gac83], we have the following: for any k and for any m, there exists a y € = such that Z(y) > m
and

KM(y) — KA(y) > Qr(Z(y),0)- (M

Therefore, we have two weak lower bounds. As to upper bounds, there is known no one
except the following trivial one: for any k, any € > 0, and all y,
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KM(y) - KA®) g Qullvl, ) ®)

Since the weak lower bounds (6) and (7) do not support the upper bound (8), the task of

improving all those bounds is open.
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