Skip to main content
Log in

On the power of generalized Mod-classes

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

We investigate the computational power of the new counting class ModP which generalizes the classes Mod p P,p prime. We show that ModP is polynomialtime truth-table equivalent in power to #P and that ModP is contained in the class AmpMP. As a consequence, the classes PP, ModP, and AmpMP are all Turing equivalent, and thus AmpMP and ModP are not low for MP unless the counting hierarchy collapses to MP. Furthermore, we show that every set in C=P is reducible to some set in ModP via a random many-one reduction that uses only logarithmically many random bits. Hence, ModP and AmpMP are not closed under polynomial-time conjunctive reductions unless the counting hierarchy collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Adleman and K. Manders. Reductions that lie.Proceedings of the 20th Annual Conference on Foundations of Computer Science, pp. 397–410. IEEE Computer Society Press, New York, 1979.

    Google Scholar 

  2. E. Allender, L. Hemachandra, M. Ogiwara, and O. Watanabe. Relating equivalence and reducibility to sparse sets.SIAM Journal on Computing, 21(3):521–539, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. L. Balcázar, J. Díaz, and J. Gabarró.Structural Complexity I. Springer-Verlag, New York, 1987.

    Google Scholar 

  4. R. Beigel and J. Gill. Counting classes: thresholds, parity, mods, and fewness.Theoretical Computer Science, 103:3–23, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Beigel and J. Tarai. On ACC.Proceedings of the 32nd Symposium on Foundations of Computer Science, pp. 783–792, 1991.

  6. R. Book and K. Ko. On sets truth-table reducible to sparse sets.SIAM Journal on Computing, 17(5):903–919, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Cai and L. A. Hemachandra. On the power of parity.Proceedings of the 6th Symposium on Theoretical Aspects of Computer Science, pp. 229–240. Lecture Notes in Computer Science, Vol. 349. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  8. R. Chang, J. Kadin, and P. Rohatgi. Connections between the complexity of unique satisfiability and the threshold behavior of randomized reductions.Proceedings of the 6th Structure in Complexity Theory Conference, pp. 255–269. IEEE Computer Society Press, New York, 1991.

    Google Scholar 

  9. S. A. Fenner, L. J. Fortnow, and S. A. Kurtz. Gap-definable counting classes.Proceedings of the 6th Structure in Complexity Theory Conference, pp. 30–42. IEEE Computer Society Press, New York, 1991.

    Google Scholar 

  10. J. Gill. Computational complexity of probabilistic complexity classes.SIAM Journal on Computing, 6:675–695, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Goldschlager and I. Parberry. On the construction of parallel computers from various bases of boolean functions.Theoretical Computer Science, 43:43–58, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  12. F. Green, J. Köbler, K. Regan, T. Schwentick, and J. Torán. The power of the middle bit of a #P function.Journal of Computer and System Sciences, 50(3):456–467, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Hertrampf. Relations among MOD-classes.Theoretical Computer Science, 74:325–328, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities.Theoretical Computer Science, 1(2):103–124, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. H. Papadimitriou and S. K. Zachos. Two remarks on the power of counting.Proceedings of the 6th GI Conference on Theoretical Computer Science, pp. 269–276. Lecture Notes in Computer Science, Vol. 145. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  16. S. Saluja. Relativized limitations of the left set technique and closure classes of sparse sets.Proceedings of the 8th Structure in Complexity Theory Conference, pp. 215–222. IEEE Computer Society Press, New York, 1993.

    Google Scholar 

  17. U. Schöming.Complexity and Structure. Lecture Notes in Computer Science, Vol. 211. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  18. U. Schöming. On random reductions from sparse sets to tally sets.Information Processing Letters, 46:239–241, 1993.

    Article  Google Scholar 

  19. J. Simon. On some central problems in computational complexity. Ph.D. thesis, Cornell University, Ithaca, NY, January 1975.

    Google Scholar 

  20. S. Toda. PP is as hard as the polynomial-time hierarchy.SIAM Journal on Computing, 20:865–877, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Torán. Complexity classes defined by counting quantifiers.Journal of the Association for Computing Machinery, 38:753–774, 1991.

    MathSciNet  MATH  Google Scholar 

  22. L. G. Valiant. The complexity of computing the permanent.Theoretical Computer Science, 8:189–201, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  23. U. Vazirani and V. Vazirani. A natural encoding scheme proved probabilistic polynomial complete.Theoretical Computer Science, 24:291–300, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. W. Wagner. The complexity of combinatorial problems with succinct input representation.Acta Informatica, 23:325–356, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Yao. On ACC and threshold circuits.Proceedings of the 31st Symposium on Foundations of Computer Science, pp. 619–627, 1990.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work of the second author was done in part while visiting the Fakultät für Informatik, Universität Ulm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köbler, J., Toda, S. On the power of generalized Mod-classes. Math. Systems Theory 29, 33–46 (1996). https://doi.org/10.1007/BF01201812

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01201812

Keywords

Navigation