Skip to main content
Log in

Abstract

The classical Theorem of Bézout yields an upper bound for the number of finite solutions to a given polynomial system, but is very often too large to be useful for the construction of a start system, for the solution of a polynomial system by means of homotopy continuation. The BKK bound gives a much lower upper bound for the number of solutions, but unfortunately, constructing a start system based on this bound seems as hard as solving the original given polynomial system. This paper presents a way for computing an upper bound together with the construction of a start system. The first computation is performed symbolically. Due to this symbolic computation, the constructed start system can be solved numerically more efficiently. The paper generalizes current approaches for homotopy construction towards the BKK bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgower, E., Georg, K.: Numerical Continuation Methods, an introduction. Volume 13. Series in Computational Mathematics. Berlin, Heidelberg, New York: Springer 1990

    Google Scholar 

  2. Beckers, M.: Oplossen van stelsels veeltermvergelijkingen met behulp van continuerings-methodes. Master's thesis, K.U. Leuven, 1985

  3. Bernshtein, D. N.: The number of roots of a system of equations. Functional Anal. Appl.,9(3), 183–185 (1975). Translated from Funktsional. Anal, i Prilozhen

    Google Scholar 

  4. Björk, G., Fröberg, R.: A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic n-roots. J. Symbolic Computation12(3), 329–336(1991)

    Google Scholar 

  5. Canny, J., Rojas, J. M.: An optimal condition for determining the exact number of roots of a polynomial system. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, pp 96–101. ACM (1991)

  6. Fischer, G.: Complex Analytic Geometry. Lecture Notes in Mathematics. Vol. 538 Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  7. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: John Wiley 1978

    Google Scholar 

  8. Khovanskii, A. G.: Newton polyhedra and the genus of complete intersections. Functional Anal. Appl.12(1), 38–46 (1978). Translated from Funktsional. Anal. i Prilozhen

    Google Scholar 

  9. Kushnirenko, A. G.: Newton Polytopes and the Bézout Theorem. Functional Anal. Appl.10(3), 233–235 (1976). Translated from Funktsional. Anal, i Prilozhen.

    Google Scholar 

  10. Li, T.-Y., Sauer, T., Yorke, J. A.: Numerical solution of a class of deficient polynomial systems. SIAM J. Numer. Anal.24(2), 435–451 (1987)

    Google Scholar 

  11. Meintjes, K., Morgan, A. P.: Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw.16(2), 143–151 (1990)

    Google Scholar 

  12. Moré, J. J., Garbow, B. S., Hillstrom, K. E.: Testing unconstrained optimization software. ACM Trans. Math. Softw.7(1), 17–41 (1981)

    Google Scholar 

  13. Morgan, A., Sommese, A.: A homotopy for solving general polynomial systems that respectsm-homogeneous structures. Appl. Math. Comput.24(2), 101–113 (1987)

    Google Scholar 

  14. Mumford, D.: Algebraic Geometry I; Complex Projective Varieties. Grundlehren der mathematischen Wissenschaften Vol. 221. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  15. Oda, T.: Convex bodies and algebraic geometry: an introduction to the theory of toric varieties. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  16. Shafarevich, I. R.: Basic Algebraic Geometry. Grundlehren der mathematischen Wissenschaften Vol. 213. Berlin, Heidelberg, New York: Springer 1974

    Google Scholar 

  17. Verscheide, J., Beckers, M., Haegemans, A.: A new start system for solving deficient polynomial systems using continuation. Appl. Math. Comput.44(3), 225–239 (1991)

    Google Scholar 

  18. Wampler, C. W., Morgan, A. P., Sommese, A. J.: Numerical continuation methods for solving polynomial systems arising in kinematics. ASME J. Mechanical Design112, 59–68 (1990)

    Google Scholar 

  19. Watson, L. T.: Globally convergent homotopy methods: a tutorial. Appl. Math. Comput.31, 369–396 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verschelde, J., Cools, R. Symbolic homotopy construction. AAECC 4, 169–183 (1993). https://doi.org/10.1007/BF01202036

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202036

Keywords

Navigation