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Abstract

In this paper we obtain the first superpolynomial lower bounds for
monotone span programs computing explicit functions. The best previ-
ous lower bound was Q(n®/?) by Beimel, G&l, Paterson [BGP]; our proof
exploits a general combinatorial lower bound criterion from that paper.
Our lower bounds are based on an analysis of Paley-type bipartite graphs
via Weil’s character sum estimates. We prove an nf(°87/10glogn) |q5yer
bound for the size of monotone span programs for the clique problem.
Our results give the first superpolynomial lower bounds for linear secret
sharing schemes.

We demonstrate the surprising power of monotone span programs by
exhibiting a function computable in this model in linear size while requir-
ing superpolynomial size monotone circuits and exponential size monotone
formulae. We also show that the perfect matching function can be com-
puted by polynomial size (non-monotone) span programs over arbitrary
fields.
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1 Introduction

1.1 Span programs

Karchmer and Wigderson [KW] introduced span programs as a linear algebraic
model for computing Boolean functions.
Let us consider a linear space W over some field K; let w # 0 be a specified

vector called the root. A span program takes a set of n variables z1,...,x, and
their negations, together called literals, and associates a subspace with each of
the 2n literals. Such a program defines a Boolean function f(x1,...,z,) in

the following way: let U = U(ay,...,a,) denote the span of those subspaces
corresponding to TRUE literals under a given truth-assignment z; := a; (i =
1,...,n; a; €{0,1}). We set f(aq,...,a,) =1 precisely if w € U.

The size of a span program is the sum of the dimensions of the subspaces
associated with the literals. Note that the size of the span program is not less,
and at most by a factor of 2n greater, than the dimension of W (assuming, as
we may w.l.o.g., that those subspaces span all of W). Thus, as far as super-
polynomial bounds are concerned, size and dimension are equivalent complexity
measures.

A span program is called monotone if only the positive literals x4, ..., x, are
associated with subspaces (negated variables correspond to the {0} subspace).
Monotone span programs compute monotone Boolean functions, even though
the computation uses non-monotone linear algebraic operations.

We denote by SP i (f) (and mSPg(f)) the size of the smallest span program
(monotone span program, resp.) over the field K that computes f.

The class of Boolean functions with polynomial size span programs is equiv-
alent to the class of functions with polynomial size counting branching pro-
grams [BDHM, KW]. Span program size is a lower bound on the size of sym-
metric branching programs [KW]. The model of symmetric branching programs
is essentially the same as that of (undirected) contact schemes (for definitions,
see [KW]). Lower bounds for span programs also imply lower bounds for formula
size.

Span programs can be viewed as a model of parallel computation. Indeed,
functions with polynomial size span programs over fixed finite fields belong to
NC?. (This is immediate from the fact that linear algebra is in NC? [Csa, Ber,
BDHM, KW, Mu].) As we shall see, the monotone analog of this statement
fails badly; functions admitting polynomial size monotone span programs do
not necessarily have polynomial size or polylog depth monotone circuits (cf.
Theorem 1.1 below).

The reduction in [KW] from symmetric branching programs to span pro-
grams preserves monotonicity, and thus lower bounds for monotone span pro-
grams imply lower bounds for monotone symmetric branching programs and for
monotone formula size.

Lower bound techniques for monotone circuits and formulae are well known



(e.g. Razborov [Ral, Ra2, Ra3], Haken [Ha] for circuits, Karchmer-Wigderson [KW1],
Raz-Wigderson [RW] for formulae). These techniques, however, do not appear

to be adaptable to the study of monotone span programs. Beimel, G4l and
Paterson [BGP] showed that monotone span programs can be strictly stronger
than monotone circuits. Here we show that monotone span programs may be
superpolynomially stronger than monotone circuits.

Theorem 1.1 There exists a family {fn} of monotone Boolean functions in n
variables such that f, can be computed by a monotone span program of size O(n)
(and dimension O(y/n)) over GF(2) but requires monotone Boolean circuits of
size n198™) and monotone formulae of size exp(Q(y/n)) (and consequently
monotone circuits of depth Q(y/n)).

For Boolean circuits we know that non-monotone circuits are more power-
ful than monotone circuits. Razborov’s lower bound for the perfect matching
function [Ra2| gives a superpolynomial separation between monotone and non-
monotone circuits, and a result by E. Tardos [T] shows an exponential gap. No
separation is known between monotone and non-monotone span programs. A
natural candidate for such separation would be the perfect matching function.
The function PERFECT-MATCHING,, on m = (}) variables takes as its input
an undirected graph on n vertices, represented by Boolean variables z;; for each
possible edge. The value of the function is 1 if and only if the input graph
contains a perfect matching. We prove that the perfect matching function can
be computed by polynomial size span programs over arbitrary fields.

Theorem 1.2 PERFECT-MATCHING,, can be computed by span programs of
size polynomial in n over arbitrary fields.

It remains open to prove that this function requires large monotone span
programs.

A different motivation for studying monotone span programs comes from a
cryptographic tool called “secret sharing schemes.” This connection is reviewed
in detail by Beimel, Gal, and Paterson [BGP]. Without giving the definitions,
we should mention that most known secret sharing schemes are “linear,” and
lower bounds for the total size of “shares” in linear secret sharing schemes
are equivalent to lower bounds for monotone span programs. Our main result
can therefore be interpreted as a superpolynomial lower bound for linear secret
sharing schemes. For details we refer to the survey by Stinson [St] and to the
extensive literature listed in [BGP].

The best known lower bound for general secret sharing schemes is 2(n?/ log n)
(Csirmaz [Csi]). This immediately implies the same lower bound for monotone
span programs for explicit functions. This by-product of [Csi] was improved by
Beimel, Gél, and Paterson [BGP] to an Q(n°/2) lower bound for monotone span
programs; they prove this bound for the 6-clique function. (Here n denotes the



number of variables.) More importantly, [BGP] exhibits a combinatorial crite-
rion which we shall be able to exploit to obtain superpolynomial lower bounds.
We state our main result.

Theorem 1.3 There exists an explicit family of monotone Boolean functions
fn in n variables such that

mSPK(fn) — nQ(logn/ log log n)
over any field K.

Our function family {f,} belongs to NP but it is not known to belong to P,
in fact the best algorithm we know for computing f,, would run in essentially
the same time as our superpolynomial lower bound for monotone span program
complexity.

Our lower bounds for f,, imply the same lower bounds for the size of mono-
tone span programs computing the clique function. This follows from the fact
that the clique problem is monotone complete for N P, i.e. there is a monotone
projection reduction from any function computable by monotone nondetermin-
istic circuits to the clique problem [SV, GSi].

To summarize, let CLIQUE,, be the function on m = (g) variables taking
value 1 if and only if the input graph on n vertices contains a clique on n/2
vertices. We have the following corollary.

Corollary 1.4
mSPK ( CLIQ UEn) _ nQ(log n/loglogn)

over any field K.

1.2 Paley-type bipartite graphs

Our construction of an explicit function family that requires superpolynomial
size monotone span programs is based on Paley-type bipartite graphs.

Let g be a prime power and k|g—1. We define the Paley-type bipartite graph
I' = P(q,k) as follows. The two parts of the vertex set are Vi = Vo = GF(q)
(the finite field of order ¢); and two vertices € V; and y € V5 are adjacent if
(z 4 y)@=V/* =1 (in GF(q)). These bipartite graphs are regular of degree
(¢ —1)/k. (For this and other elementary facts about finite fields we refer the
reader to Lidl-Niederreiter [LN].)

In order to construct the functions for which we are able to prove super-
polynomial lower bounds, we need a set system for which one can control the
sizes of t-wise intersections for ¢ = t(n) — oo. (This function ¢(n) will go in the
exponent of the lower bound.) The first idea we used for constructing such set
systems was based on the recent progress made by Kollar, Rényai, and Szabd



on the Zarankiewicz problem [KRS]. The set system was obtained from the
Paley-type graphs with special parameters called “norm graphs” by [KRS] and
analysed by them using the elements of commutative algebra. This approach

resulted in a lower bound of nf2(v1egn/loglogn) o the monotone span program
complexity of a family of explicit functions.

The result of [KRS] helped us a great deal in clarifying the combinatorial
structure we needed, and inspired the next step, which yielded a stronger bound.
This second approach uses a more general class of Paley-type graphs in the
same way as we used the “norm graphs” but the analysis is done via Weil’s
character sum estimates in the spirit of the classical paper by Graham and
Spencer [GS]. Constructions of k-wise nearly independent random variables
have been analysed in a similar spirit (cf. [AGHP], [AMN]).

In this paper we only describe the second approach. For the details of the
first solution we refer to [BGKRSW].

2 The power of span programs

2.1 Monotone span programs vs. monotone circuits and
formulae - Proof of Theorem 1.1

Here we give the proof of Theorem 1.1, a result that may be interpreted as
an indication why lower bounds for monotone span programs may be hard to
come by. For the proof we need three results: the upper bound for monotone
span programs, the lower bound for monotone circuits and the lower bound for
monotone formulae.

We consider the following function ODDFACTOR,, on n = v? variables: the
input is a v x v (0,1)-matrix representing a bipartite graph X with v vertices
in each part. X is accepted if it has an odd factor, i.e., a spanning subgraph
such that all vertices have odd degree in the subgraph. Note that X is rejected
exactly if it has a component with an odd number of vertices.

2.1.1 The upper bound for monotone span programs

Theorem 2.1 mSPgp ) (ODDFACTOR,,) = n.

Proof. Let V = V3 UV; be the vertex set and let W denote the 2v-dimensional
space over GF'(2) generated by the basis {u; : ¢« € V}. The variables are x; ;
(t € Vi,j € V). Let z; ; correspond to the one-dimensional subspace spanned
by u; + u;. The root is the “all-ones” vector w = Ziev u;. It should be clear
that the root is the sum of a set of vectors of the form u; + u; precisely if the
corresponding edges (4, j) form an odd factor. O



2.1.2 The lower bound for monotone circuits

Despite the simplicity of this span program (as well as the trivial sequential
algorithm) for this function, it has close affinity to the perfect matching problem,
which makes it as difficult for monotone Boolean models.

In [Ra2], Razborov proves an n**(°8™) monotone circuit lower bound for the
perfect matching function. We observe that his proof actually gives a stronger
result, stated below.

Given a 2-coloring of a vertex set, we consider the graph consisting of all
edges whose endpoints have the same color by the given 2-coloring. We refer to
this graph as the graph of the given 2-coloring.

Theorem 2.2 (implicit in [Ra2] Lemma 7) Any monotone circuit that accepts
all perfect matchings, and rejects any constant fraction of all the graphs of 2-

colorings must have size n(1°8™) O

We use this to prove the following.

Theorem 2.3 Any monotone circuit computing ODDFACTOR,, has size n2(1°8™)
Proof. Every perfect matching is an odd factor, and should be accepted. On
the other hand, the graph of every odd 2-coloring (in which each color occupies
an odd number of vertices) has two odd components, and thus is rejected by
our function. As odd 2-colorings constitute half of all 2-colorings, the above
argument suffices. O

2.1.3 The lower bound for monotone formulae

For the formula size (equivalently circuit depth) lower bound we use a similar
method to the one used by Raz and Wigderson in [RW], which is based on
the communication complexity approach of Karchmer and Wigderson [KW1].
Define the disjointness function on a pair z,y of u-bit vectors by DISJ (z,y) = 1
if and only if the sets represented by these vectors are disjoint.

Theorem 2.4 ([KS, Rad], cf. [BFS]) Any 1/3 error probabilistic communica-
tion protocol for DISJ requires Q(u) communication bits.

We prove the following.
Theorem 2.5 Any monotone formula computing ODDFACTOR,, has size exp(Q(y/n)).

Proof. We will reduce DISJ to the following communication problem ODD-
FACTOR (m,c) on the set V where v = 4u. The first player has a perfect
matching m from V; to V5. The second player has an odd coloring of V. They
have to compute an edge e € m which is 2-colored by c. As this is the mono-
tone relation capturing ODDFACTOR,,, if this problem requires ¢ bits to solve
deterministically, the monotone formula size of ODDFACTOR,, is exp(§2(t)).



Assuming a t-bit deterministic protocol here, we derive a probabilistic protocol
of the same complexity for DISJ.

We shall use the following “gadget.” Let (a1, as,as,as) and (b1, ba,bs, by)
be ordered quadruples of distinct vertices in V7 and in V3, resp. Define two
matchings

M, = {(a1,b1), (a2, b2), (a3, b3), (a4,bs)}

and
M() = {(al, bg), (ag,bl), (CL37 b4)7 (0,47 b3)} .

Also define two 2-colorings (red is the complement of blue in each) by By =
{ala b27 as, b4} and BO = {ah a2, blv b2}

Now assume our players have the inputs = and y, resp., for the disjointness
problem, and they share a random string r. They interpret r as a partition of V'
into u pairs of quadruples of vertices of the type described above, with a uniform
distribution over all partitions and orderings. The player holding = constructs
the matching m by taking from the ith part of the partition the matching M, ,
for all 4 € [u]. Similarly, the player holding y constructs a 2-coloring ¢’ using By,
for all 4 € [u]. Since this coloring ¢’ is even, he then flips the color of a random
vertex w in V to produce his final odd coloring ¢. On obtaining a bichromatic
edge e by the assumed protocol, the players answer 1 if and only if w € e.

Observe that if DISJ (z,y) = 1 then the coloring ¢’ makes each edge of the
matching m monochromatic, and there is exactly one bichromatic edge in m
under the coloring c¢. Therefore the players will make no error on disjoint pairs
(z,y).

On the other hand if (x,y) intersect in k places, then (m,c’) is uniformly
distributed over all such pairs having 4k bichromatic edges. Since the protocol
returning e is deterministic, and w is random, the players will now err with
probability < 1/(4k+1) <1/5. O

2.2 Polynomial size span programs for matching - Proof
of Theorem 1.2

In this section we prove Theorem 1.2.

We consider the function PERFECT-MATCHING,, on m = (72’) variables.
The input is an undirected graph on n vertices, represented by Boolean variables
x;; for each possible edge. The value of the function is 1 if and only if the
input graph contains a perfect matching. The existence of polynomial size
span programs for PERFECT-MATCHING over arbitrary fields follows from
the following series of well known results.

The Tutte matrix of a graph G is obtained from its adjacency matrix by
substituting indeterminates y;; or —y;; (according to an arbitrary orientation)
for the edges of GG, and leaving the entries corresponding to non-edges 0. Tutte’s
theorem [Tu] states that a graph has a perfect matching if and only if its Tutte
matrix is nonsingular.



Based on Tutte’s theorem and the Schwartz-Zippel lemma [Schw, Zi] about
probabilistic testing of polynomial identities, Lovész [L] reduced the problem
if a graph contains a perfect matching to testing if a given integer matrix is
nonsingular.

Theorem 2.6 [L] Let K be a field of order > n - 2(3). Then there exists an
n x n matriz A with entries a;; from K, such that for an arbitrary undirected
graph G on n vertices G contains a perfect matching if and only if the matriz
Ag is nonsingular over K, where the entries of Ag are a;;-x;5, and the Boolean
variable x;; takes the values 1 or 0 depending on whether or not the edge (3, 5)
is present in G. O

It follows from the arguments of Buntrock et al. [BDHM] that testing singu-
larity of a variable matrix can be performed by polynomial size span programs.
[BDHM] have not considered the model of span programs, but their model is
equivalent to span programs up to polynomial increase in the size of the com-
putation [KW]. Allender, Beals and Ogihara [ABO] showed explicitly how to
construct polynomial size span programs for testing feasibility of systems of
linear equations (Theorem 2.12 [ABO]). This gives the following.

Theorem 2.7 (implicit in [BDHM, ABOJ)

Let K be an arbitrary field. Let Ax be an n X n matriz with entries of the
form a;;-x;5, where a;; € K and the x;; are Boolean variables. Then singularity
of Ax can be tested by span programs over K of size polynomial in n. O

From the above arguments it follows that if K is a field of order > 1-2(3) then
PERFECT-MATCHING,, can be computed by polynomial size span programs
over K. Thus we also obtain polynomial size span programs over “large enough”
finite fields of arbitrary characteristic, i.e. GF(p?™), where q(n) is a given
polynomial in n and p is an arbitrary prime.

Finally, to get polynomial size span programs for PERFECT-MATCHING
over arbitrary fields, we need the following result.

Proposition 2.8 (implicit in [KW], Theorem 12) Span programs of size S over
GF(p') can be simulated by span programs of size tS over GF(p).

Proof. A space of dimension d over GF(p') is a space of dimension dt over
GF(p). The span of a set of subspaces remains the same subset of W under
both interpretations. O

Combining these results concludes the proof of Theorem 1.2. O

2.3 Nonconstructive lower bounds

In this section we show that over any fixed finite field as well as over all fields
of characteristic zero, exponential lower bounds hold for the span program size
of almost all Boolean functions.



If F = GF(q) is the finite field of order ¢ then the number of span programs of

dimension d over F'is at most q2”d2. Comparing this bound with the number 22"

of Boolean functions in n variables, it follows that almost all of these functions
require span programs of size at least

2n/2
0 () . W
vnlogq
We conjecture that actually a lower bound of the form 2°" holds for some ab-
solute constant ¢ > 0 (independent of ¢); this would imply the same result for
all fields of nonzero characteristic.

Below we prove that a similar exponential lower bound holds over fields of
characteristic zero.

Theorem 2.9 Almost all Boolean functions of n wvariables require span pro-

grams of size
0 2n/3 )
(o) .

over any field F' of characteristic zero.

Remark 2.10 The constants implied by the 2 notation in Theorem 2.9
as well as in formula (1) are absolute (they do not depend on the field).

Proof. For a € F, let

Z(a):{ 0 ifa=0;

1 otherwise.

We define the zero-pattern of v = (vy,...,vy) € F™ as

z2(v) = (2(v1),. .., 2(vm)) € {0,1}™.

The following bound follows from the Oleinik—Petrovskii-Milnor-Thom the-
orem on real algebraic varieties [OP, O, M, T] or more directly from Warren’s
theorem [War] on sign-patterns of sequences of real polynomials (cf. Pudldk —
R&dl [PR] or Goldberg — Jerrum [GJ] for the case when F = R; the result is
easily extended to C and thereby to all fields of characteristic zero).

Lemma 2.11 Let F be a field of characteristic zero. Let f1,..., fm be polyno-
mials of degree <t in a common set of k variables over F. Then the number of
different zero-patterns z(f(x)) € {0,1}™ (z € F¥) is less than

)




Here ¢; = 8e, co = 1 works for the field of reals, and ¢; = 4e, c5 = 2 for all fields
of characteristic zero. O

Now consider the r x d matrix M over F where r < 2nd + 1, describing
a d-dimensional span program in n variables (including the root vector as a
row). Let S denote the family of square submatrices of M (of all sizes) and let
m = |S|. Consider the function f : F"*¢ — F™ assigning to each matrix M the
m-~tuple of subdeterminants of M. Clearly, the Boolean function represented by
the span program M is fully determined by the zero-pattern z(f) € {0,1}™.

We have k < rd variables, each coordinate polynomial (subdeterminant)
has degree t < d, and the number of subdeterminats is m < (2) 224 < (con)d.
Therefore the number of different zero-patterns z(f) is less than (%’”)CQ}€ <
(c;;,n)c‘*”ds. This is therefore an upper bound on the number of different Boolean
functions that can be computed by d-dimensional span programs over F. Com-
paring this bound with the number 22" of Boolean functions in n variables, it
follows that almost all of these functions require span programs of size at least
Q273 /(nlogn)/3). O

3 The lower bounds for monotone span programs
- Proof of Theorem 1.3

Here we give the proof of our main result, Theorem 1.3. In section 3.1 we present
the BGP lower bound method that we will use for our proof. In section 3.2 we
show how to use bipartite graphs to obtain large families that satisfy the BGP
lower bound condition. Finally, in section 3.3 we present the construction of
such a family.

3.1 The BGP Lower Bound Condition

We shall make use of a technique introduced by Beimel, G&l, and Paterson
[BGP], to prove lower bounds for monotone span programs. The idea is to show
that if a small monotone span program accepts all the minterms of the function
f then it must also accept an input that does not contain any minterms, a
contradiction. This approach can be viewed as an application of the “fusion
method” [Ra3, Ka, Wil.

A minterm of a monotone Boolean function is a minimal set of variables
which, if assigned the value 1, force the function to take the value 1 regardless
of the values assigned to the remaining variables.

It will be convenient to use the language of set systems (hypergraphs) rather
than Boolean functions. The correspondence is established by the bijection
between {0, 1}"™ and the power-set of a universe X of n elements. The Boolean
function f will then correspond to the set system f~!(1). Clearly, monotone
Boolean functions correspond to filters, i.e., set systems closed under supersets.

10



The minterms correspond to the minimal elements of this filter (with respect to
inclusion).

A Sperner family is a family of sets none of which contains any other member
of the family. The minimal elements of a filter form a Sperner family; and each
Sperner family F uniquely defines a filter (consisting of all not necessarily proper
supersets of the members of F).

Given a Sperner family F, we shall denote by f# the corresponding monotone
Boolean function.

Given a set system F C 2% over the universe X, we say that a set A C X
determines a member H € F if H is the unique member of F containing A.
Next we define a key concept introduced in [BGP].

Definition 3.1 We call a Sperner family F self-avoiding if one can associate
a set D(H) with each H € F, called the core of H, such that

(i) D(H) determines H (with respect to F); and
(i) for any H € F and any subset T C D(H), the set

srmy= |y @&\7,

GEF,GNT#D
does not contain any member of F. (We call S(T) the spread of T.)

(This definition is equivalent to a special case of “critical families” defined
in [BGP, Sec.2.2].)
The following result summarizes the BGP lower bound technique.

Theorem 3.2 (Beimel, G4l, Paterson [BGP]) Let F be a Sperner family
over a universe of n elements and fr the corresponding monotone Boolean func-
tion in n variables. If F is self-avoiding then for every field K we have

mSPx (fF) > |F| .

For completeness we describe the proof from [BGP].

Proof. Consider a monotone span program computing fr. Let W; C W be
the subspaces associated with the variables x; and let r» denote the sum of the
dimensions of the subspaces, i.e. the size of the span program. Fix a basis for
each subspace W; and arrange the basis vectors in an r x d matrix M, where d
is the dimension of W.

By the definition of fr, every H € F must be accepted by the span program.
This means that for every H € F there is some vector cy € F" such that
cy - M = w, where w is the root (as defined in the introduction), and cgy has
nonzero coordinates only at rows of M corresponding to basis vectors of the
subspaces associated with elements of H. To prove the theorem, it is enough to
show that all the vectors cy for H € F must be linearly independent.

11



Suppose that this is not the case, i.e. >, raacs = 0, and ay # 0 for
some H € F. Let us consider the set D(H) from Definition 3.1. Then the
following must hold for every nonempty subset 7' C D(H).

> aa=0. (4)

AEF, ANTH#0

To see this, let us consider the vector

Cc = E aACH .

AeF,ANT#D

Let us denote >,z srnrsp@a by 6. We have ¢ - M = dw. If § # 0 this
means that the program accepts the set of variables that are associated with
the rows corresponding to nonzero coordinates of c¢. From our assumption that
the vectors c4 are not linearly independent, i.e.

ZQACA: Z @ACA + Z apcy =0,

AeF AEF , ANT#D A€F,ANT=0

it follows that the coordinates of ¢ are zero at rows associated with elements of
T. Thus 6 # 0 would mean that the program accepts S(7T), which should be
rejected.

From (4) together with the assumption that »_ ,.raacs = 0 and ag # 0
we get a system of linear equations in the unknowns « 4 which has no solution.
For proving this, let |D(H)| = t, and consider the (2! — 1) x (2% — 1) zero—one
matrix () with its rows and columns indexed by the nonempty subsets of D(H)
such that Q(Y, Z) = 1 if and only if Y NZ # (. The matrix @ has full rank over
any field K. However if our system had a solution, that would mean that the
columns of @) are not linearly independent, by taking 87 = ZAG}‘,AOD(H):Z Qg
as a coefficient for the column Z and observing that Spg) = ag # 0. O

For a more detailed explanation of the above proof we refer to [BGP).

We note that if all the sets D(H) for H € F can be chosen from a proper
subset of the variables X’ C X then the above proof yields a slightly stronger
statement, i.e. in this case |F| also gives a lower bound on the sum of the
dimensions of the subspaces associated with the variables from X’ only.

3.2 A sufficient condition for self-avoidance

We shall use the following general scheme to construct self-avoiding Sperner
families.
Take a bipartite graph I' with vertex set V3 U V5.

Notation 3.3 For a vertex z, we denote by I'(z) the set of neighbors of x; and
for a subset A of the vertex set, we denote by I'(A4) the set of common neighbors
of A, i.e., T'(A) = Nyeal'(x). Let moreover A(A) = AUT(A).

12



Notation 3.4 An r-setis a set of r elements. For a set X and an integer r > 0
we shall use ()f) to denote the set of all r-subsets of X.

Now fix an integer ¢ > 1 and a subset S C (t‘fl). Set
F=FTI,S8) ={A(A): AecS}. (5)
Let m(t) = m(T,t) :== max{|T'(B)| : B e (})}.
Lemma 3.5 If [T'(A)| > (t — 1) -m(t) for all A € S then F is self-avoiding.

Proof. First, F is a Sperner family since all A € S have the same cardinality
(t—1).

We define the core function as D(A(A)) = A. This clearly satisfies item (i)
in Definition 3.1. We need to verify item (ii).

Assume that A € §. Let T C A, and consider the spread S(T) defined in
Definition 3.1. Assume for a contradiction that A(A*) C S(T') holds for some
AT €S.

By the definition of S(7T") and our construction, every vertex y € S(T') N Va
must be adjacent to some vertex x(y) € T. This is true in particular for each
y € T(A*). Let zp be the most frequently occurring z(y) for y € T'(A*); then
xg is adjacent to more than (¢t —1)-m(¢)/|T| > m(t) vertices in I'(A*). In other
words,

ID(A" U {zo})[ > m(1),

in contradiction with the definition of m(t) since |A* U{zo}| = ¢ (which in turn
holds because A*NT = ). O

3.3 Construction of large self-avoiding Sperner families

The following well known lemma guarantees a tight control of the intersection
sizes of vertex neighborhoods in the Paley-type graphs I' = P(q, k). (We use the
notation given in the introduction.) For real numbers b, ¢ we use the notation
b+ ¢ to denote a quantity between b — c and b+ c.

Lemma 3.6 Let aq,...,a; be distinct elements of the finite field GF(q) and let
klg — 1 (k,t > 2). Then the number of solutions x € GF(q) to the system of
equations (a; + ) V/*k =1 (i =1,....,t) is ¢/k' £t,/q.

We state the relevant character sum estimate of A. Weil and show how to
deduce Lemma 3.6 along the lines of [GS].

Let x be a homomorphism of the multiplicative group GF(¢q)* onto the
group of k™ roots of unity. We extend the domain of x to GF(q) by setting
x(0) = 0. The function x is called a multiplicative character of order k over

GF(q).

X
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Theorem 3.7 (A. Weil) Let f(x) be a polynomial over GF(q) which is not
of the form c- (g(z))* for any polynomial g over GF(q) and scalar ¢ € GF(q).
Let t denote the number of distinct roots of f in the algebraic closure of GF(q).
Let x be a multiplicative character of order k over GF(q). Then

Y xUf@) < -1Dva (6)

z€GF(q)

For a proof, see [Sch, p.43, Theorem 2C]. O

Now we turn to the proof of Lemma 3.6. Let w denote a primitive £ root
of unity and let g be a generator of the multiplicative group of GF(q). Set
x(g) = w*. This is clearly a homomorphism onto the group of k™ roots of
unity; add x(0) = 0 to obtain a character of order k. (All characters of order k
arise this way.) It is clear that x(g‘) = 1 if and only if k|/, i.e., if and only if
2@ D/k =1, where z = ¢*.

Let X denote the set of those x € GF(q) which simultaneously satisty x(a;+
x)=1fori=1,...,t. Our aim is to estimate the number N = | X]|.

Consider the polynomial h(z) = 1+ 2+ ...+ 281 = (2F - 1)/(z — 1).
Clearly h(1) = k, h(w?) = 0 for j = 1,...,k — 1, and h(0) = 1. Let now
H(z) = T[._, h(x(a; + z)). We observe that if z € X then H(z) = k'; if
x = —a; for some i then H(z) =0 or H(z) = k'~!; and in the remaining cases,
H(z)=0.

Therefore the sum S := 3 p(,) H(z) satisfies

NEk! < S < NE' 4tk (7)

H(z) is the product of sums of k terms each. Let us expand the product to
the sum of k* terms. Let ¥ denote the set of the k* functions ¢ : {1,...,t} —
{0,1,...,k — 1} which will serve to index this sum. We have

S VI 30 | (HUREIECED Sl Y ®)

2€GF(q) Yevi=1 z€GF(q) YeY

where fy(z) = H¢:1(ai + )%,

Let 1o(¢) := 0 for all 4; hence fy,(z) =1 for all z € GF(g). After switching
the order of summation in equation (8), let us separate the term corresponding
to 1g; clearly, this term will be ¢q. This is the “main term”; we need to estimate
the “error term” R := S —q. Let ¥* = U\ {¢p}.

RI< > 1 Y x(fu@) .

YeW* zeGF(q)

We note that all roots of fy belong to GF(q), and f, has at least one and
at most ¢ distinct roots, each with multiplicity < k — 1. It follows that the

14



conditions of Weil’s theorem are satisfied and each inner sum has absolute value
< (t —1),/q. Consequently

Rl < K'(t—1)vag.
Combining this with equation (7), we obtain

N = S/kt £t/k = q/k'+R/K +t/k
= q/k'x(t-1)/qxt/k = q/k'£t\/q.

We assumed ¢ < /g in the last step. Note that Lemma 3.6 holds vacuously

fort > ,/q. O
Restated in our combinatorial setting, we obtain that for A € (‘?) we have

IT(A)| = q/k' £ t\/q.

It follows that as long as ¢/k' is much larger than /g, the (t — 1)-wise
intersections are almost uniformly k-times larger than the ¢-wise intersections.
In view of Lemma 3.5, this suggests the ranges of the parameters in the following
lemma.

Lemma 3.8 If k > 3t and q > 4t*k?'=2 then the system F = {A(A) : A €
(t‘fl)} is self-avoiding.

(In the notation of Section 3.2, we have chosen § = (t‘fl).)

Indeed, m(t) < g/k'+t/gand forall A € (), |T(A)] > ¢/k*1 —(t—1)\/q,
both by Lemma 3.6. Combined with the assumption on the parameters, these
inequalities guarantee that |T'(A4)| > ¢ - m(t), hence Lemma 3.5 applies. O

To achieve the best lower bound, i.e., to maximize |F| = (,7)), given ¢, we
need to maximize ¢ under the given constraints. Not all prime powers ¢ will allow
this, only those belonging to specific arithmetic progressions. Let us select ¢ first,
and then minimize ¢. W.l.o.g. assume ¢ is odd (otherwise add 1); set k := 3¢; and
select ¢ to be of the form ¢ := 2¢°3%) where ¢ denotes Euler’s totient function.
Such a choice guarantees that k|g — 1. Since 1 < ¢(3t) < 2¢, one can clearly
choose ¢ such that ¢ satisfies the inequalities 4t*k%'~2 < ¢ < 22t.4t*k%**~2. With
this choice, t = ©(logq/loglog q), and the lower bound |F| = ¢®(loga/loglogq)
on the monotone span program complexity of the monotone function in 2¢g
variables, defined by F, follows. O

It may seem that this lower bound applies to infinitely many, but not to all
values of n. Note, however, that for every sufficiently large n, an appropriate g
can be found between n/2 and /n. Using our function augmented with n — 2¢

redundant variables, we still have a lower bound of the form n®(lcgn/loglogn)

4 Open questions

It is not known if it is possible to obtain larger lower bounds by the BGP lower
bound method.
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Problem 4.1 Do there exist exponential size self-avoiding families?

Two open questions naturally arise in connection with Theorem 1.1. The
first question asks to increase the gap established in Theorem 1.1; the second
asks to reverse the direction of the gap.

Problem 4.2 Do there exist functions admitting polynomial size monotone
span programs which require exponential size monotone circuits?

Problem 4.3 Do there exist functions admitting polynomial size monotone
circuits which require superpolynomial size monotone span programs?

It is not known how much monotone span programs are weaker than non-
monotone span programs. In fact, the following question is open as well.

Problem 4.4 Find a polynomial time computable family of monotone Boolean
functions which does not admit polynomial size monotone span programs.

As we mentioned in the Introduction, our lower bound implies the same
superpolynomial lower bound for linear secret sharing schemes.

Problem 4.5 Find larger than Q(n?) lower bounds for general secret sharing
schemes.

We remark that our nf2(legn/loglogn) Jower bound (Theorem 1.3) for mono-
tone span programs for explicit functions has recently been improved to nf(ogm)
(G4l [G]). However, the five problems stated above remain open.

The fundamental question, of course, continues to be to find explicit func-
tions which require superpolynomial size (non-monotone) span programs.
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