» (Y000 (2 RQ

(7'.— e L
\ .

On the power
of deterministic reductions to C_P

Frederic Green

Report LSI-91-17

I
FACULTAT BInFERiiATiCA
BIBLIOTECA

R SNo4 22 MAYD 1991 |

On the Power of Deterministic Reductions to C_P

(Preliminary Report)

Frederic Green *
Department of Mathematics and Computer Science
Clark University
Worcester, Massachusetts 01610
fgreen@clarku.bitnet
April 3, 1991

Abstract

The counting class C_-P, which captures the notion of “exact counting”, while
extremely powerful under various nondeterministic reductions, is quite weak under
polynomial-time deterministic reductions. We discuss the analogies between NP and
co-C=P, which allow us to derive many interesting results for such deterministic reduc-
tions to co-C-P. We exploit these results to obtain some interesting oracle separations.
Most importantly, we show that there exists an oracle A such that §P4 ¢ PC= P4 and
BPP# ¢ PC=P* From this we can conclude that techniques that would prove that
C=P and PP are polynomial-time Turing equivalent would not relativize.

1 Introduction

The class C_P (see section 2 for precise definitions) is an extremely powerful counting class
which captures the notion of “exact counting”. It can be characterized by nondeterministic
machines which accept if and only if the number of accepting paths is exactly equal to a given
number. The power of C_P can be seen from the following facts:

Facts:
(i) PP"H C NPC=P,
(ii) C.PPH C BP . C_P.

Fact (i) is a consequence of Toda’s theorem [12] that PPP" C PPP combined with a
theorem of Tordn [14] which states NP'" = NP®=F_ It is significant since it states that C_P
is hard for the polynomial hierarchy under nondeterministic reductions. Fact (i1) was proved

"Research supported by a grant from the Direccién General de Investigacién Cientifica y Técnica (DGI-
CYT), Spanish Ministry of Education, while the author was visiting the Facultat de Informatica, Universitat
Polytécnica de Catalunya, Barcelona.

by Toda and Ogiwara [13], and in a stronger form by Tarui [11]. It is significant since it says
that C_P is hard for the polynomial hierarchy under randomized reductions.

The purpose of this paper is to observe that although C_P is quite powerful under nonde-
terministic or randomized reductions, nevertheless under deterministic reductions it appears
to be quite weak. Specifically, we address primarily the following questions:

(1) How powerful are polynomial-time Turing reductions to C=P?
(2) How powerful is a constant number of queries to C_P?

In attempting to answer these questions, we find that in many respects the classes NP
and co-C_P (or alternatively CxP) are similar. In particular, NP has a complete problem,
and is closed under union, intersection, and nondeterministic many-one reductions. The
class C.P has all of these properties. It turns out that many proofs about restricted Turing
reductions to NP, the Boolean hierarchy over NP, and related notions, depend only on these
properties. Thus many interesting results about NP can be easily translated into analogous
results about C4P. For example, we find that the closure of C_P under polynomial time
truth-table reductions is exactly as powerful as the closure under polynomial-time Turing
reductions with logarithmically many queries (i.e., P5=F = P8=P)T} see theorem 6 and

(fog(n)
the remarks preceeding it). However, our main interest is in exploiting these results in order

to answer the above questions.

Some insight into question 2 is gained immediately by examining the analogies between
NP and C-P. Using these analogies we find here that the query and Boolean hierarchies
are just as closely intertwined for C_P as they are for NP [2]. We also find that the proof
of Kadin [8] and Chang and Kadin [6] which shows that if the Boolean hierarchy over NP
collapses then the polynomial hierarchy collapses, also works for the Boolean hierarchy over
C-P. Thus if the Boolean hierarchy over C_P collapses to some finite level, we find that
the polynomial hierarchy relative to PP collapses to the A, level relative to PP. This links
a collapse of the query hierarchy over C_P to a collapse of the polynomial hierarchy relative
to PP. Note that this is in sharp contrast to the query hierarchy over PP, which collapses to
PP [3]. These results are discussed in section 3.

Nothing is known about question 1, not even oracle separations, and up until now there has
been no reason (other than intuition) to believe that P®=F is any less powerful than PPP, The
intuition is quite strong, however. With queries to PP, there is a well-known binary search
algorithm which enables us to count the number of accepting paths in nondeterministic
computations. A PP oracle provides us pairs of the form (z,y) such that f(z) > y and
f € #P, from which it is possible to determine the value of f(z) by binary search on y. On
the other hand, a C_P oracle only provides information about the graph of a #P function,
that is, pairs of the form (z,y) such that f(z) = y. It seems obvious that it would be
impossible to determine the value of f from this information (in polynomial time) in the
absence of nondeterminism. Thus for example, although it is well known that ®P C PFP it
is not at all clear that @P C PC=F. Indeed, it does not seem likely that any of the classes
@P, PP, or PH are in PC=P,

In this paper we obtain oracle separations such that all of the classes that are not obviously
in PC=F are in fact not contained in it. That is, we construct an oracle A relative to which ®P
and BPP are not contained in P®=F (see section 5). A direct consequence of the separation

of BPP from P®<" are separations of both PP and 2N 1II% from PC=P. The constructions are
based on circuit lower bounds, building on a result of Gundermann, Nasser and Wechsung
[7], as well as a new characterization of PC=P (easily proved using the analogies between CxP
and NP). The circuit lower bounds are for depth-2 circuits consisting of a single “equals”
gate over AND-gates (called “EQ circuits”), and are actually lower bounds on the fanin of
the AND-gates rather than lower bounds on the size of the circuits. In the context of circuits,
the technique of [7] allows us to kill off EQ circuits by showing that they are always on if the
bottom fanin is too small (see section 4).

We finally turn to oracle results relating to question 2. Gundermann, Nasser and Wech-
sung (7] obtained an oracle separation of the Boolean hierarchy over C_P. Since the Boolean
hierarchy is intertwined with the query hierarchy, in some relativized world, k + 1 queries to
C=P are more powerful than k. Here we consider the question of whether k + 1 questions
to NP cannot be answered by k questions to C_P. In fact we find that in some relativized
world, there are sets that are recognizable with k+ 1 queries to NP that cannot be recognized
with k queries to C_P. One may regard this as a generalization of the result of Torin [14]
that relative to some oracle, NP is not contained in C_P. In order to do this we again adapt
the technique of [7] (section 4) to appropriate circuit problems. In section 6 an oracle is
constructed which separates every level of the Boolean hierarchy over NP from a level of the
Boolean hierarchy over C_P. Clearly this simultaneously separates the Boolean hierarchies
over NP and C_P. The resulting construction for the Boolean hierarchy over NP is simpler

than existing ones [5] although it apparently is not powerful enough to obtain random oracle
results (see [4]).

2 Preliminaries

We assume the reader is familiar with complexity classes such as P, NP, 2} and PH (see, e.g.,
[1]). Let N be a polynomial time-bounded nondeterministic Turing machine. Then #acen(z)
denotes the number of accepting paths of N on input z. #P is the class of functions f such
that there exists a polynomial time-bounded nondeterministic machine N such that for all
z, f(z) = #acen(z).

The class C_P [15] is defined to be the set of languages L such that there exist functions
f € #P,t € FP and for all z, ¢ € L if and only if f(z) = t(z). The notation co-C_P denotes
the class of sets whose complements are in C_P. We will denote co-C_P alternatively by
CxP. PP is similarly defined, but with “f(z) = t(z)” replaced by “f(z) > t(z)".

It was recently remarked in [7] that in the definitions above one can replace the function
¢t € FP by a function g € #P, and still obtain the same classes. We can furthermore assume
without loss of generality that, in the resulting alternative definition of C_P, f(z) > g(z) for
all z.

®P is defined as the set of languages L such that there exists a function f € #P and for
all z, z € L if and only if f(z) is odd.

We denote by ESAT the standard complete language [15] for C-P: ESAT = {(F,n)|F is a
Boolean formula with exactly n satisfying truth assignments }. Obviously ESAT is complete
for C;gP

We define a family of circuits closely related to C_P. An EQ circuit of size m, order s

and threshold t over the inputs X = {z1,...z,} consists of a set of AND gates, ¢;,1 < i <m,
where each AND gate has fanin at most s and the circuit outputs 1 if and only if o(z) = t,
where by definition

m

o(z) = Z ci(X).

=1
An NEQ circuit of size m, order s and threshold t is defined similarly, except that it outputs
1 if and only if o(z) # t. (Note that the AND-gates in this definition can have negated
variables.)

Let X = {z,,...z,} be a set of inputs and let ¢;,1 < i < m be a set of products of the
form [[;cs 2 for some S C {1,..n}. Suppose we always have ||S|| < s. Associate an integer
“weight” w; € Z with each ¢;. A circuit is called a normalized EQ circuit of size m and order
s if it outputs 1 if and only if o(z) = 0, where by definition

0((1:) = iw;c;

and we always have o(z) > 0. A normalized NEQ circuit of size m and order s is defined
similarly, except that it outputs 1 if and only if o(z) # 0.

Using exactly the same techniques as in (7], it is easy to show that every EQ (resp. NEQ)
circuit can be converted into an equivalent normalized EQ (resp. NEQ) circuit.

Proposition 1 Let C be an EQ (NEQ) circuit of size m and order s. Then there ezists an
equivalent normalized EQ (NEQ) circuit of size O((2°m)?) and order O(2s).

Proof: = We have that C =1 if and only if

m

zc;(X) =t

=1
where X = {z1,...z,}. Then C =1 if and only if

m

(Z C,'(X) — t)2 =0.
i=1
Note that the left hand side is always > 0. Rewrite each negated variable z; as 1 — ;.
Expressing each AND-gate ¢; as a product, expand to obtain a sum of factors of the form
[Lics i (note that ||S|| < s). This yields O(2*) terms for each of the m AND-gates. Then
perform the square in the above equation. We obtain a sum of factors ¢j(X) of the form
[Lies: i, but now with coefficients that may not be 0 or 1 (and in fact can be negative). Now
note that ||S’|| < 2s. Thus the sum is of the form E;-";l w;ci(X), where m’ = O((2°m)?), the
sum is always > 0, and it equals 0 if and only if C = 1. Furthermore, the order is < 2s.
A similar argument holds for NEQ. |

We now present other definitions that will be important in later sections. Let A and B
be sets. We say A <\P B if and only if there exist a polynomial p and a function f € FP
such that for any z, ¢ € A4 if and only if (32,1 < |z| < p(|z|))(f({z,2)) € B). For any
complexity class C, the notation 3C denotes the class of all sets L such that there exists a

4

polynomial p and a set B € C such that for all z, z € L & (32, |z| < p(|z|))((z,2) € B).
For any complexity class C, P{_; denotes the class of sets polynomial time Turing reducible
to C with no more than k queries, P, the class of sets polynomial-time truth-table reducible
to C, and Pg(f("))_T the class of sets Turing reducible to C with O(f(n)) queries. The query
hierarchy over C is defined as U, P§_;.

Let C be a complexity class. Following [5], we define the Boolean hierarchy over C induc-
tively as follows: Let BH,(C) =C, and, for all k > 1,

BHgk(C) = {L]L =L N fz,L1 € BHQk_l(C),LQ € C},

BH2k+1(C) - {L|L == L] U Lg,Ll € Bsz(C),L2 € C}.
Finally, BH(C) = U, (BH(C)).

The Boolean hierarchy can be defined in many different ways. One alternative definition
that we will make use of is the following normal form [5]:

Proposition 2 For any k > 1,

BH.(C) = LkJ L;

where for eachi, L; = L;; N Ly, Ly, Lis € C, and

BH2k+1(C) = (LkJ Li) U Lk+1

=1

where the L;, 1 <i < k, are as above, and Ly, € C.

We also make use of another definition of BH, which has not appeared previously, but
which is easily proved to be equivalent to those mentioned above in the case that C is closed
under union (which will be the case for the classes considered in this paper).

Proposition 3 Suppose C is closed under union. Then for allk > 1,
BHk(C) = {LlL = L] N LQ,El € BHk_l(C),LQ € C}.

Proof: The proof is by induction. The base case is obvious from the definition of BH,(C).
Assume by hypothesis that for some k& > 2

BHQk(C) - {L'L - L] N LQ, Zl S Bsz_l(C),Lz € C}

By definition, for any L € BHyy1(C), we can write L = L; U Ly, L, € BHy(C), L, € C.
Using the inductive hypothesis, we can write Ly = L3 N Ly, where L3 € BHy_1(C), L, € C.
Thus L = (L3 N Ly) U Ly = (L3 U L) N (Lg U L,) where we have used the distributive law.
Now Ly U L, = L, where L, € C since C is closed under union. Also Ly U L, = L), where
Ly € co-BHy(C) by definition. Thus for any L € BHyy1(C) we can write L = L} N L), where
Is¢ BHi(C) and L € C, which proves the inductive step for 2k.

The proof for 2k + 1 is similar. |

3 Analogies Between NP and C_P

It has been known for some time that C4P is closed under union ([15]). The closure under
intersection was proved in [7]. That C,P is closed under <NP_reductions is a simple obser-

vation, and is well-known !, although it has not been explicitly stated in the literature. For
completeness, we give a proof here.

Proposition 4 C4P is closed under <NP-reductions.

Proof: Let L € C.P and suppose L' <NP I, We will show that L' € Cx+P. We know
that there exist functions f,g € #P that for any w, f(w) > g(w) and w € L if and only if
f(w) # g(w). Since L' <NP L, there exists a polynomial p and a function h € FP such that
¢ € I & (3z,|2| < p(|2]))(f(h((2,2))) # g(h({z,2))). Since for any w, f(w) > g(w), the
predicate (3z,[z| < p(|2|))(f(h({(z,2))) # g(h({z,2))) is true if and only if > f(h({z, 2))) #

> g(h((z,2))). But then using standard techniques we can implement these sums in terms of

#P machines, i.e., there exist nondeterministic, polynomial time bounded machines N{ and

N, such that forallz, 2z € L' & ffaceni(z) # #accyy(z). Hence L' € C,P. 1

For the most part, we make use of this fact in the following form, which says that C4P is
closed under existential quantification.

Corollary 5 3C4P = C.P.

Now many interesting results can be derived using analogous proofs for NP, with C.P
playing the role of NP. In some cases we will omit the proofs, but to illustrate the corre-
spondence we will include the more compact ones. For the first result, recall that truth-table
reductions to NP are exactly as powerful as Turing reductions with logarithmically many
queries, i.e., P’;‘;Eng(n))_T = P)P (see, e.g., [8]). Here we find the same is true of C_P. This
result has also been found by Toda. The result and the proof reported here were obtained

independently 2. The proof we give is typical of those that use the closure properties shared
by NP and C,P.

Theorem 6 nglig(n))—T = PS-F,

Proof: The inclusion from left to right is straightforward: the query tree of a ngzg(ﬂ))_T
machine can be written down in polynomial time, and a polynomial size truth table con-
structed from the query tree.

The inclusion from right to left follows from an argument similar to the one used to prove
PNP C ng,og(n))_T, aided by corollary 5. Let M4 be a P$=F mackine, where (without loss
of generality) A € C4P, and M“ is bounded by the polynomial p. On input z, |z| = n,

!S. Toda, private communication. Ogiwara, Toda, and many others have made the same observation.
2Subsequently Ogiwara and Toda [10] have substantially generalized this result, exhibiting sufficient con-
ditions for a complexity class C to obey P§, = PCO“%:("))_T. They have also proved the very pretty result that

C=P is closed under positive Turing reductions (and indeed exhibit sufficient conditions for any class to have
this property).

suppose M produces the queries S = {qi1,¢2,...¢5(n)}. We will show how to simulate the rest
of the computation of M# using logarithmically many queries to CxP. First, we show that
with logarithmically many queries to C.P, we can determine the number ! of ¢;’s such that
g € ESAT. Consider a nondeterministic machine N that, on input (S, k), guesses k elements
of S and then accepts iff all the guessed strings are elements of ESAT. Using the closure of
C#P under intersection, it is easy to see that N is an 3C4P machine. By corollary 5 we can
simulate N by some C4P machine N'. Note that by binary search on k, since 0 < k < p(n),
we can determine ! with log many queries. We now know both I, the number of positive
answers to the queries in S, as well as p(n) — [, the number of negative answers. With one
extra query to C4P we can simulate M#. We construct a nondeterministic machine N” which
guesses [elements of S, and rejects if any one of them is in ESAT. If all the guessed elements
arein ESAT, then we know the set of queries with positive answers and with negative answers.
Using this information, simulate M directly, accepting if and only if M accepts. It is easy
to see that V" is an IC.P machine, and therefore, again using corollary 5, a C.P machine.
Hence with O(log(n)) queries to C.P we can simulate M4. 1|

It is well known that NP = co-NP if and only if PH = NP. A similar phenomenon occurs
if C=P is closed under complement.

Corollary 7 C_P = C,P if and only if PH'Y = C_P.

Proof: ~ The “if” part is clear. Then suppose C_P = C.P. Tordn [14] has proved that
NP"" C NP" C 3C_P. Hence if C_.P = C,P, NP"" C 3C_P = 3C.P C C,P = C_P. 1|

We conclude this section with some remarks on the Boolean and query hierarchies. Not
surprisingly, many of the properties of BH(NP) are shared by BH(C_-P). For example, the
levels of BH(C_P) have complete problems analogous to those for the levels of BH(NP).
Another important example for this paper is that, just as in the case of NP, there is a tight
intertwining relationship between the Boolean and query hierarchies over C_P. The proof
of this fact follows Beigel’s proof for NP [2]. In fact it was pointed out in [2] that the proof
for this theorem only depends on the existence of a complete problem, and closure under
intersection, union and <NP-reducibility.

Theorem 8 For all k > 1, BH,_,(C_P) U co-BH,:_;(C_P) C P{=F C BHu(C-P)n
co-BH,«(C_P).

It is natural to ask if the Boolean hierarchy over C_P collapses, or, equivalently, if the
query hierarchy over C_P collapses to some finite level. (Corollary 7 represents a first step
in this direction.) As mentioned in the introduction, up to now the only known separation is
a relativized one (see [7] and section 5). In contrast for NP, structural relationships between
the Boolean hierarchy over NP and the polynomial hierarchy are known. It was proved by
Kadin that if the Boolean hierarchy collapses to a finite level then PH collapses to PNP™"
(8],[6]. Stated more precisely, if for any k, BHy(NP) = co-BH,(NP) then PH C A}P (in fact,
Chang and Kadin show the much sharper consequence PH C BH,(NPNF)). We observe here
that Chang and Kadin’s proof of this fact carries over directly to CxP. We simply exploit the
analogy between C4P and NP in their proof. Corollary 5 allows us to do “oracle replacement”
in nondeterministic computations when it is possible to find “small C+P machines” for C_P.
The “hard string/easy string” argument similarly holds with ESAT playing the role of SAT.

7

Theorem 9 If for any k, BH;(C=P) C co-BH,(C_P) then PHF® C BH,(NPF?) C APP.
Thus making use of theorem 8 we have,

Corollary 10 If for any k, P(k+1) C Pg=r, then PHFY C PNPF

4 A Technical Lemma

We frequently use the following lemma to establish the relativized separations. It is the
same as lemma 30 in [7], translated into the context of circuits. In addition, we generalize
the lemma so that it can be applied to Boolean functions which are symmetric with respect
to certain (disjoint) subsets of the input variables, a generalization of the usual definition of
symmetric function. More precisely, in the following, for any subset § C {2, ...z,} we define,
for any truth assignment to the z’s, y(S) = ||{j|(z; € S) A (2; = 1)}||. For some Boolean
function f over the variables {21, ...z}, suppose there exist disjoint subsets Si, Sy, ..., Sk C
{z1,...za} such that if we put y; = y(S;) for each j,1 < j < k, then f can be expressed as a
function g of the numbers y;, that is, there is a function g such that (Vz;,1 < 1 < k)(Vz, s.t.
(V4,1 <3 < k)(zj = ¥;))(f(z1,--20) = g(y1,...yx)). We then say that f is symmetric in the
subsets S, ...5, via the function g(yl, Yk

Lemma 11 Let f :{0,1}" — {0,1} be a Boolean function over the variables {z,,...z,}, and
suppose f is symmetric in the subsets Sy,...Sx C {1, ...z,} via the function g(y1,...yx). Let
s be a function s : IN — IN. Let C be an EQ circuit of order o(s(n)) such that f(z,...z,) =
1 = C = 1. Furthermore, suppose that g(yi,..yx) = 1 for Q(s(n)) values of y1,vz,...Ys,
respectively. Then for all input settings, C = 1.

Proof: By proposition 1, we can assume that C is a normalized EQ circuit and still
maintain an order of o(s(n)). Let C consist of terms ¢;, i = 1,...m, each of degree bounded
by o(s(n)). Thus C =1 if and only if 3], wici(z) = 0. Since C is normalized, the quantity
o(z) = X%, wici(z) > 0 for any setting of the inputs. We know that for any choice of y;’s
such that g(yy,...yx) = 1, that o(z) = 0. Let us compute the sum of () over input settings
z for any fixed y;,1 < j < k. Let the notation “z : y” denote that the assignments z can
vary given fixed values for the y;’s. One can reverse the order of the sums: Yy ol(z) =

in: wi Yopy ci(z). Let Sij = {i|z; € S; and z; is an input to ¢} and s;; = ||S);||- Thus for each
l c,() =TI5 1(ITies,; @:)- Letting n; = ||S;|| where 1 < j < k, it is not hard to show that

> alz) = ﬁ (nJ 31,)

Ty j=1 Y; — 85

Observe that, by hypothesis, Zle s = o(s(n)), so that the quantity

is a polynomial in each individual y; of degree o(s(n)). Therefore the quantity

k
[T wit(n; — y,) " o(=)
j=1 iy
is a polynomial p(y;,...yx) of degree o(s(n)) in each y;. Since for any z such that g(yy, Yk) =
1 we also have o(z) = 0, it follows from the definition of p(y1,...yx) that p(yi,...yx) = 0 for
any such z. Conversely, note that since o(z) > 0 for any z, if for any choice of y;,...yx we
have p(y1,...yx) = 0, then for all with this choice of y1,...yx, it follows that o(z) = 0 and
therefore C = 1.
We will now show that for all possible values of y1,...yx, p(y1,..-yx) = 0. This will prove
that for all input settings, C' = 1.
Let Y1, Y5, ...Y) respectively denote the sets of values of yi,...yx such that g(yi,...yx) = 1.
By hypothesis, for all 7,1 <7 <k, ||Y;]| = Q(s(n)). We know that

(V41 € Y1)(Vy2 € Y2)...(Vur € Ya)(p(y1, .--9k) = 0).

Fix any yi1,¥2,..-yx—1, where y; € Yi,y, € Y,... and yr—; € Y4—;. Then p(y1,...¥k—1,%) is a
polynomial in y; of degree o(s(n)). However, g(y1,..-yk—1,¥) = 1 for Q(s(n)) values of y,
and hence p(y1,...yk—1,¥k) = 0 for this many values of y;. Therefore P(y1y--Yr-1,9x) = 0 for
all values of yx, 0 < y, < ||Sk||. Proceeding inductively in this fashion, we find that

(Vy1, 0 < 1 < {IS1]])--(Vr, 0 < e < ISk} (2(1, ---yx) = 0).
This proves the lemma. |

Note that we can replace “EQ” with “NEQ” and “C = 1” with “C = 0” in the above
lemma and that it remains true.

Lemma 11 will be used to eliminate EQ (respectively, NEQ) circuits by showing that
they have constant values.

5 Separations of P¢=? from PFP

As explained in the introduction, intuitively PP appears to be more powerful than C_P in
deterministic reductions, even though it is no more powerful than C_P in nondeterministic
reductions. We show here that any proofs that Turing reductions to C_P are as powerful
as Turing reductions to PP would, at least, not relativize. These separations leave open the
possibility that, while PP? machines can count (via the binary search technique mentioned
in the introduction), P¢=F perhaps cannot.

First we need an alternative characterization of P¢=P. Following Wagner [16], we define,
for any complexity class C and for any bounding function b, the class C(b) as follows: A € C(b)
if and only if there exists a B € C such that for any z, for all z where 1 < z < b(|z|),
xB((z,2)) < x8((z,2—1)),and z € A if and only if maz{z|0 < z < b(|z|)—1 and (=, z) € B}
is odd. C(27°!v) is defined as (. C(2™). It was shown in [16] that NP(2,°) = PNP, We can

prove the analogous result here.

Theorem 12 C,P(2F°v) = PC=P,

Proof: (C): Let A € C.P(2"!) and let B be as in the definition above (with C =
C4P), and b the bounding function (of the form 27(")). Define the set S = {({z,9)[0 < y <
b(|2]),(3z)(z > y,0 < z < b(|z|) A {z,z) € B}. By binary search, we can find the maximum
y such that (z,y) € S in time p(|z|), using S as an oracle. We can easily tell if the maximum
y is odd. Finally, note that S € 3C,P = C.P. Then A € P¢=P,

(2): Let L € P°= via machine M which makes queries to a set A € C4P. Define the set
B’ as follows. B’ = {(z, z)|z = (r1,..74(z))» @), @ € {0,1}, M, using query answers ry, e Pp(lz])»
produces queries qi,...qy(z)), and (M accepts ¢ < a = 1) A (Vi)(r; = 1 = ¢ € A)}. Tt is
clear that B’ € C4P. Furthermore, M accepts z if and only if the maximum 2 such that
(z,z) € B’ is odd. Thus

€Ll & maz{z|{z,z) € B'} # 0 mod 2
< maz{z|(3w > z)(z,w) € B’} # 0 mod 2
& maz{z|(z,z) € B} # 0 mod 2

where B = {(z,z)|(3w > z)((z,w) € B')}. Now since B’ € C,P, B € 3C.P = C,P.
Furthermore, xp((z,2)) < xg({(z,z — 1)). This proves the theorem. |

Observe that the statement maz{z|(z,z) € B} # 0 mod 2 is equivalent to the statement
b(Jx[)
2. xB({z,2)) # 0 mod 2, because of the monotonicity of the x’s in z. Thus the separation

z=0
results can be understood in terms of a simple and highly constrained circuit model.

We say a circuit has polylog order if there exists a polynomial ¢ such that for n inputs,
the order of the circuit is g(log(n)).

Definition 13 Let ¢;, 1 <14 < m, be a set of NEQ circuits, over the inputs {z,,...2,}, each
of polylog order in n, with the property that ¢; = 1 = ¢;_; = 1. A PC®=P_circuit of size m is
a circuit which outputs 1 if and only if ||[{z|1 <1 < m,c; = 1}|] is odd.

Proposition 14 Let M be a P<P"-machine. Then for any input =, there ezists a PC=P-
circuit C of size O(2"°"), n = |z|, whose inputs are the characteristic functions of A, such
that C = 1 if and only if M accepts x.

Proof: By theorem 12 and the remarks following it, we can assume there is a set B €
CxP# and a polynomial p such that for any =, M accepts z if and only if

op(l=])

> xs({z,2)) # 0 mod 2.

z=0

Let N be a C.P# machine recognizing B. Because N correctly recognizes B, it is clear that
if N accepts on input (z, z) then N also accepts on input (z,z — 1). In a standard fashion, in
any computation of N we can guess answers to queries to A and verify that they are correct
at the ends of the computation paths. From this we can obtain an NEQ circuit of order
polynomial in |z| whose inputs are the characteristic functions of A and which, for any input
to N of the form (z, z), outputs 1 if and only if N accepts. Note that the order of this circuit

10

1s polylog since the number of inputs (xa(w)) is exponential in |z|. Assuming the input z to
M to be fixed, call this circuit c,. Evidently M accepts if and only if

2p(l=l)

Z ¢; # 0 mod 2

z=0

and furthermore ¢, = 1 = ¢,_;, = 1. Since 1 < z < 27(I#), the circuit has size 0(2"0(1)) where
n=|z|. |

In the proof of the following we make use of lemma 11, restricted to the case of k = 1,
that is, for ordinary symmetric functions.

Lemma 15 Let f : {0,1}* — {0,1} be a symmetric Boolean function such that if we put
y = |[{ilei = 1}, f(21,...@n) = 1 for Q(n) values of y and f(x1,...z,) = 0 for Q(n) values

of y. Then no PC=F_circuit can compute f.

Proof: Let C(z1,...z,) be a PC=F_circuit with NEQ subcircuits ¢;,1 < i < m, which
computes f(z1,...z,). We will show that for all input settings, C = 0. Suppose the number
of NEQ subcircuits m is odd (the proof when m is even is the same, as will be obvious). Then
whenever f(z) = 0, we must have c,, = 0, since if ¢,, = 1 all the ¢;’s with i < m will also
have to be 1, and hence we would have C = 1. By hypothesis, for (n) values of y, f(z) = 0.
Since ¢, is of order o(n) but is zero for }(n) values of y, we can conclude from lemma 11 that
¢m = 0 for all input settings. This eliminates c,, from consideration. Consider the remaining
m — 1 gates. Since m — 1 is even, if f(z) = 1 we must have ¢,,_; = 0, otherwise an even
number of NEQ circuits would yield 1. ¢p,_; can be eliminated just as ¢, since f(z) =1
for f)(n) values of y. Proceeding inductively, we find that all the ¢;’s equal 0 for all input
settings, and therefore C = 0 for all input settings. |

The parity function @(z1,...z,) is defined to be 1 if and only if ||{z|z; = 1}|| is odd.
Lemma 16 No PC=P_circuit can compute the parity function.

Proof: @(x1,...z,) is a symmetric function which is 1 for Q(n) values of y = ||{i]|z; = 1}||
and is 0 for Q(n) values of y. Applying lemma 15, the result is immediate. |l

Theorem 17 There exists an oracle A such that ®P# ¢ PC=P",

Using the same technique it is also possible to prove that in some relativized world the
polynomial hierarchy is not contained in PC=F, In fact we can construct an oracle such that
BPP is not contained in P°=P, which provides a simultaneous proof that there is an oracle
such that neither X5 N1II% nor PP are contained in PC=F. For this purpose we define a function
related to BPP. Define the “strict majority” function T34 as follows:

1 iyt

T3/4k(l)1,...§l)") = 0 if E?:l Ty
? otherwise.

2
<

We say a circuit C computes Ty if Ty4(z1,...2n) = 1 = C(zy,..2,) = 1 and
Ts/4(21,..20) = 0 = C(z4,...x,) = 0.

11

Lemma 18 No PC=P_circuit computes the function Ts3y4.

Proof: Ty/4(21,...,) is a symmetric function which is 1 for Q(n) values of y = ||{i|z; = 1}||
and is 0 for Q(n) values of y. The result follows from lemma 15. |

In the proof of the following, as well as in the following section, s® denotes the ‘" string
of length n.

Theorem 19 There ezists an oracle A such that BPP4 ¢ PC=P",

Proof: Define the test language L(A4) = {17| at least 3/4 of the strings of length n
are in A}. Clearly, for any A such that for each length n, either 3/4 of the strings of
that length are in A or no more than 1/4 are in A, then L(A) € BPP%. For such A’s,
L(A) = {1"|Ts/4(xa(s7), x4(5%),...xa(s3.))}. Let M;,i € IN be an enumeration of PC=F-
machines. Using lemma 18 one can easily show that A can be constructed such that for all
1, I € L(A) & M; rejects 1™, |1l

Corollary 20 There ezists an oracle A such that $5* NTI5* ¢ PC=P* gnd PPA ¢ PO=P*,

Proof: It is well known that BPP C PP N X5 N II} via a proof that relativizes (e.g., [9]).
|

6 An Oracle Interlocking the Query Hierarchies Over
NP and C_P

In this section we construct an oracle which gives an optimal separation of the Boolean and
query hierarchies over NP and C_P. This represents a technical improvement of the oracle
of Gundermann, Nasser and Wechsung [7].

It is possible to reduce this separation to circuit lower bounds. We now give this reduction.
Define the function fin in 2kn variables X = {z;;|t = 1..n,5 = 1..2k} as follows:

k n n
foen(X) = VIV 2i2i-1)) A (A Zizj)]
=1 =1 =1
Similarly, we define forq1,,(X U {zi2k41}) as

Farrrnl X U {@i2k41}) = forn(X) V (\/ Tiok+1)

Observe that fi, is symmetric in the subsets S; = {z;;|]1 <i < n}, where 1 < j <k, via
the following function g: Setting y; = ||{¢|zi; = 1}||, when k is even, g(yi,...yx) = 1 if and
only if for some odd j < k — 1 we have y; > 0 and y;;; = 0. When k is odd, g(y1,...yx) =1
if and only if yx > 0 or for some odd j < k — 2 we have y; > 0 and y;.; = 0.

A BH{=F circuit is defined inductively as follows. A BHC=F circuit is a normalized EQ
circuit of polylog order. A BHSSP circuit is a circuit of the form C, V C, where C; is a BHSSE

12

circuit and C; is a normalized NEQ circuit of polylog order. A BHg,ffl circuit is a circuit of
the form C; A C; where C, is a BHSE" circuit and C, is a normalized EQ circuit of polylog
order.

The main theorem which allows a complete separation of BH(NP) from BH(C_P) is the
following. It is here that we use the full power of lemma 11, with arbitrary k.

Theorem 21 For sufficiently large n and all k > 1, no BH{= circuit can compute fi ,.

Proof: The proof is by induction. For the base case, suppose f;, is computable by a
BHS=P, i.e., an EQ circuit C°. Define y; = [|{#|z:, = 1}||- We know that if y; > 0 then
C° = 1. Since C° has polylog order, it has order o(n). But C° = 1 for n — 1 = Q(n) values
of y;, and hence by lemma 11, for all input settings C° = 1. However then C° = 1 when
fin =0, a contradiction.

For the inductive step, we first consider even levels. Suppose by hypothesis that no
BHS;F -circuit can compute far_;n. Suppose however that there exists a BHS-P-circuit C
to compute for, correctly. C is of the form C; V Oy, where C; is a BHS:E -circuit and C,
is an NEQ circuit of polylog order, and hence of order o(n). Let y; = ||{i|zi; = 1}||, as in
the discussion preceeding this theorem. Also note from that discussion that whenever y; > 0
for all EVEN j, forn = 0. Since for all j, 0 < y; < n, the function g(yi,...y2«) is zero
for Q(n) values of y,...y2«, respectively. Now whenever g(y1,...y2x) = 0, Co = 0. Then by
lemma 11, for all input settings C; = 0. We can thus ignore C,. By setting yox to some
value greater than zero, we find that C, computes foz_;, correctly, which contradicts the
induction hypothesis.

The argument for odd values 2k + 1 is similar to the base case. We assume by hypothesis
that no BHS -circuit can compute fokn, but that there exists a BH§;+P1-circuit of the form
C1 A Cy which computes fory; correctly. We define as before y; = ||[{i|zi; = 1}||, 1 < j <
2k + 1, now noting that whenever ysx11 > 0 we have fax11, = 1. As before we find that
for all input settings C> = 1, and by setting yz;4+1 = 0 we conclude that C, computes for
correctly, which is a contradiction. |

The next proposition establishes the relationship between BHi(C-P#) and BHS-F.
circuits. In the following, z, ; denotes x.4({s?,7)).

Proposition 22 Let k > 1. For any BHy_(C-P#) machine M, for any input = there
exists a BHSZF, -circuit C with inputs z;; as defined above such that C = 1 if and only if
M accepts . Simalarly, for any co-BHy(C_P#) machine M, for any input = there ezists a

BHS:P -circuit C with inputs z;; as defined above such that C =1 if and only if M accepts
.

Proof: The proofis by induction. For k = 1, it is easy to show that for any C_P# machine
M and input z, there exists an EQ circuit C such that M accepts z if and only if C = 1.
The order of the circuit is polynomial in |z|. However, since there are exponentially many
inputs of the form z; ;, the order is polylog in the number of inputs to C.

Suppose the proposition is true for some k > 1. Consider any co-BH,,(C_P#)-machine
M. By proposition 3, there exist a BHy;_,(C-P“)-machine M; and a C;P-machine M; such
that for any input z, M accepts z if and only if either M; or M, accept z. By the induction

13

hypothesis, we can replace M; with a BHS ! -circuit Cy. By an argument similar to the base
case, we can replace M, with an NEQ circuit C,. This yields a circuit of the form C, vV C,
which outputs 1 if and only if M accepts z. C; V C; is a BHSF circuit. The argument that
we can find an appropriate BHS,;Pl-circuit for any BHyyy1(C-P#)-machine is similar, again
using proposition 3. |

We are now in a position to explain how the oracle separations follow from theorem 21.
Define, for each k, the test languages Li(A) related to the functions fx,, as follows.

Lon(4) = {171V (32, |z] = m)((2,2i — 1) € 4) A (¥, |2] = n)((2,2) ¢ A)]}
Loe1(4) = {1"[1" € Lan(A) V [(3z, 2| = n)((z,2k + 1) € A)]}

It is clear from proposition 2 that for all k and A, Ly(A) € BH(NP). Furthermore, for
any z, ¢ € Ly(A) & fron(X(A4)) = 1 where the arguments X(A) for fyon are defined by
@i = xa((s7,7)), as above.

Combining these observations with theorem 21 and proposition 22, we conclude that
for some A, for all even k, Ly(A) ¢ co-BH,(C_P“), and for all odd k, Ly(A4) ¢ BH,(C_P4).
This proves

Theorem 23 There ezists an oracle A such that for odd k, BH(NP#) ¢ BH(C-P4) and
for even k, BH,(NP*) ¢ co-BH,(C_P*).

Then using theorem 8, we have,

Corollary 24 There ezists an oracle A such that PECTI)_T Z P,ffrim.

7 Open Problems

Oracle separations are naturally not satisfying in these times of techniques that do not rel-
ativize, and thus the results of this paper raise more questions than they answer. It would
be interesting to see sharper results along the lines of Theorem 9, in particular using tech-
niques which exploit differences rather than similarities between NP and C4P (indeed, it is
possible that Theorem 9 is vacuous since it is possible with our current state of knowledge
that PP? =PSPACE). Similarly, some plausible separation of PC=P from PPP without oracles
would be very interesting: Does the hypothesis P°=F = PPP have any dramatic consequences?

Acknowledgements

I wish to thank the members of the Departament de Llenguatges i Sistemes Informatics,
UPC Barcelona, where this work was done, for their hospitality, with special thanks to José
Balcazar for helping to make the visit possible and for valuable comments on the paper. I
thank Jacobo Tordn for many discussions on this subject, Mitsunori Ogiwara and Seinosuke
Toda for sharing a preliminary version of their results with me, and all of the above for
their comments. Conversations with Antoni Lozano and Gerd Wechsung are also gratefully
acknowledged.

14

References

[1] J. L. Balcdzar, J. Diaz, and J. Gabarré, Structural Complezity Theory I, Volume II of
EATCS Monographs on Theoretical Computer Science, Springer-Verlag, New York, 1988.

[2] R. Beigel, “Bounded Queries to SAT and the Boolean Hierarchy”, Johns Hopkins Tech
Report 87-8 (1988), to appear in Theoretical Computer Science.

[3] R. Beigel, N. Reingold and D. Spielman, “PP is Closed Under Intersection”, STOC 1991.

(4] J.-y. Cai “Probability One Separation of the Boolean Hierarchy”, 4th Annual Symposium
on Theoretical Aspects of Computer Science, Springer-Verlag Lecture Notes in Computer

Science 247 (1987) 148-158.

[5] J.-y. Cai, T. Gunderman, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. Wagner,
and G. Wechsung, “The Boolean Hierarchy I: Structural Properties”, SIAM Journal of
Computing, 17 (1988) 1232-1252.

[6] R. Chang and J. Kadin, “The Boolean Hierarchy and the Polynomial Hierarchy: a Closer
Connection”, 5th Annual Conference on Structure in Complezity Theory (1990) 169-178.

(7] T. Gundermann, N. A. Nasser and G. Wechsung, “A Survey on Counting Classes”, 5th
Annual Conference on Structure in Complezity Theory (1990) 140-153.

[8] J. Kadin, “Restricted Turing Reducibilities and the Structure of the Polynomial Time
Hierarchy”, Ph.D. thesis, Cornell University, February 1988.

9] C. Lautenmann, “BPP and the Polynomial Hierarchy”, Information Processing Letters
y

17 (1983) 215-217.

[10] M. Ogiwara and S. Toda, “On Polynomial-Time Reducibility Notions to Certain Com-
plexity Classes”, manuscript, April 1991.

[11] J. Tarui, “Randomized Polynomials, Threshold Circuits, and the Polynomial Hierarchy?”,

Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science
(1991) 238-250.

[12] S. Toda, “On the computational power of PP and @P”, Proceedings 30th IEEE Sympo-
siwum on Foundations of Computer Science (1989) 514-519.

[13] S. Toda and M. Ogiwara, “Counting Classes Are as Hard as the Polynomial- Time Hi-
erarchy”, to appear in 6th Annual Conference on Structure in Complezity Theory (1991).

[14] J. Tordn, “Structural Properties of the Counting Hierarchy”, Ph.D. thesis, Facultat
d’Informatica de Barcelona, 1988.

(15] K. Wagner, “Compact Descriptions and the Counting Polynomial Time Hierarchy”, Acta
Informatica 23 (1986) 325-356.

[16] K. Wagner, “Bounded Query Classes”, SIAM Journal of Computing 19 (1990) 833-846.

15

