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Abstract. In this paper we present a cache coherence protocol for multistage interconnection network (MIN)- 
based multiprocessors with two distinct private caches: private-blocks caches (PCache) containing blocks private 
to a process and shared-blocks caches (SCache) containing data accessible by all processes. The architecture 
is extended by a coherence control bus connecting all shared-block cache controllers. Timing problems due to 
variable transit delays through the MIN are dealt with by introducing Transient states in the proposed cache coherence 
protocol. The impact of the coherence protocol on system performance is evaluated through a performance study 
of three phases. Assuming homogeneity of all nodes, a single-node queuing model (phase 3) is developed to analyze 
system performance. This model is solved for processor and coherence bus utilizations using the mean value 
analysis (MVA) technique with shared-blocks steady state probabilities (phase 1) and communication delays (phase 
2) as input parameters. The performance of our system is compared to that of a system with an equivalent-sized 
unified cache and with a multiprocessor implementing a directory-based coherence protocol. System performance 
measures are verified through simulation. 

Keywords. Caches, cache coherence, mean value analysis, multiprocessor system, multistage intercormection 
network, split cache. 

1. Introduction 

Mainta in ing  coherence of  shared data in  mult iprocessors  with private cache memor ies  is 
essential for the correct execution of a program. In  view of this, a number  of  cache coherence 
protocols  for shared-memory  mult iprocessors  have been  proposed in recent  years [Eggers 

1989]. Most  of  the proposed protocols assume a bus-based  mult iprocessor  as the under ly-  
ing architecture. They rely on  broadcasting coherence main tenance  signals on  the bus  for 
keeping cache contents consistent.  Al though a variety of  MINs  have been  proposed for 
building large multiprocessors, less effort has been directed at developing coherence schemes 
for such systems, p r imar i ly  because  of  the toll of  broadcast ing in  terms of  t ime overhead 
and the lack of  order-of-requests within  a MIN.  
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A few cache coherence protocols that require an extension of the basic MIN architecture 
have recently been proposed [Bhuyan et al. 1989; Mizrahi et al. 1989; Stenstr/im 1989; 
Yousif 1991]. Extensions are designed to allow for the quick sharing of information to 
maintain cache coherence. A snoopy bus can be added to connect all cache controllers 
[Bhuyan et al. 1989; Yousif 1991]. The sequentiality of operations inherited in a bus is 
exploited to maintain consistency of the shared data in caches. In [Mizrahi et al. 1989] 
small memories containing global directory information are added to the switching elements 
of a MIN. Here, data inconsistency is avoided by allowing only one copy of the shared 
data outside of main memory. A third approach, suggested by Stenstr6m [1989], is based 
on a distributed directory (added to each cache controller) and a central directory at main 
memory. (A number of cache coherence schemes for network-based multiprocessors were 
proposed earlier [Censier and Feautrier 1978; Tang 1976; Yen and Fu 1982]. A few software- 
assisted schemes have also been proposed [Cheong and Veidenbaum 1988; Min and Baer 
1989; Smith 1985]. Recently, there have been attempts to build large-scale cache-coherent 
multiprocessors, such as the Stanford DASH [Lenoski et al. 1990], the MIT Alewife [Agar- 
wal et al. 1990], and the Wisconsin Multicube [Goodman and Woest 1988]. The IEEE 
standard project P1596 is an attempt to design a backplane interface referred to as the 
scalable coherent interface (SCI) [Gustavson 1992]. 

In the schemes that complement the base architecture with a coherence control bus, it 
was observed that the coherence bus is still the classic bottleneck that limits the scalability 
of such approaches [Bhuyan et al. 1989; Yousif 1991]. The amount of traffic activity on 
the bus with the limited bus bandwidth reflects the number of nodes that can be sustained 
by a bus. In this paper we will improve the scalability of this approach by further reducing 
traffic activity on the bus. This traffic reduction is obtained by splitting the cache into two 
distinct units, as explained later. A cache coherence protocol is presented; then its impact 
on system performance is evaluated. The main contribution of this paper is the proposed 
architecture/cache coherence scheme and the system performance evaluation methodology. 

Based on the accessibility of a cache block, it is possible to split a local cache into two 
distinct parts: a PCache, which contains blocks that areprivate to a process, and an SCache, 
which contains blocks that are shared among processes. To implement this, we assume 
that private and shared blocks are distinguishable. (This might be done, for example, by 
associating a separate address range for each.) We introduce the concept of accessibility- 
based split caches to take advantage of the inherent characteristics of reference streams. 
References to private data (e.g., instructions) do not pose memory coherence problems, 
since private blocks cannot become inconsistent. Therefore, PCaches add no overhead other 
than that due to a private-block miss. However, in addition to the overhead incurred due 
to an SCathe miss, in-SCache shared data modification leads to the cache coherence prob- 
lem. The motivation of this approach is to eliminate the effect of private blocks on cache 
coherence that is present in a unified cache, as will be discussed later. 

In this paper an accessibility-based split-cache coherence protocol for MIN-based 
multiprocessors is proposed and evaluated. To implement the protocol, the architecture 
is extended by adding a coherence control (snoopy) bus that connects all SCache controllers. 
Block transfers to and from the shared memory are through the MIN. Adding such a 
coherence bus makes it possible to implement coherence protocols designed for bus-based 
multiprocessors on a MIN-based architecture with minimal protocol modification. (This 
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approach can be extended to any interconnection network-based multiprocessor.) Since we 
choose a write-update protocol for this paper, the bus is used for write broadcasts--cache- 
to-cache block transfers to update cached shared-block copies upon data modification. 
SCache controllers snoop at all bus transactions. 

The basic architecture under consideration is a shared-memory multiprocessor with N 
processor nodes connected through a MIN, as shown in Figure 1. Each processor node 
includes a local memory that is globally accessible. In other words, the shared memory 
is distributed among the nodes of the mulfiprocessor, as in the BBN Butterfly [BBN 1989]. 
The Butterfly MIN is adopted as the base MIN for this study. Each node also includes 
the following: two distinct caches, a PCache and SCache; a local directory; and a network 
interface plus other required control hardware. SCache controllers are connected by a 
coherence control bus. 

Based on the proposed protocol, we develop a comprehensive evaluation methodology 
for analyzing system performance. It includes three phases: a protocol's states probabilities 
computation, a MIN delay model, and a node queuing model. The protocol is first specified 
in terms of cache coherence operations and state transitions. We introduce Transient states 
to reflect the effect of the traffic-dependent variable delay through the MIN. Shared-blocks 
steady state probabilities of the states imposed by the protocol are then calculated--they 
play a role in determining the amount of traffic in the MIN. The communication delay 
through the MIN is computed using a queuing model of the MIN. Next, assuming that 
all nodes perform identical tasks, a queuing model for a single node is constructed. This 
model depicts the flow of a processor request in the system under coherence (whether private 
or shared, local or remote, hit or miss, etc.). It requires shared-blocks steady state prob- 
abilities and average communication delays as input parameters. The single-node queuing 

Node  1 Node  2 Node 3 Node  N 
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Cs : SCache �9 
LM : Local Memory �9 
NI : Network InterfaceJ 

Figure L A multiprocessor system of size N. 
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model is then solved using the mean value analysis (MVA) technique for finding system 
performance measures such as processor u "tllization and coherence bus utiliTztion [Lazowska 
et al. 1984]. 

This paper is organized as follows: Section 2 describes the proposed coherence protocol. 
In Section 3 the system workload model is presented. Section 4 presents an evaluation study 
to calculate the impact of the protocol on system performance. Section 5 concludes this work. 

2. The Cache Coherence Protocol 

The cache coherence protocol is a write-update protocol; that is, when a shared block in 
a cache is modified, copies of the block at other caches are updated [Smith 1982]. A local 
directory maintains a three-bit state entry for each shared data block in a cache. The bits 
designate a block as Transient or Permanent, Modified or UnModified, and Exclusive or 
NonExclusive. Transient states are introduced to reflect the delay of fetching/writing back 
a block from/to memory through the MIN. A remote or local memory access could take 
several clock cycles, depending on network traffic, location of the block, and system size. 
A Transient state indicates that the block is in transit through the MIN due to a block transfer 
request--the block cannot be accessed in cache until both the data arrive and the state changes 
to Permanent. A block in a Permanent state is available in cache. The bit designated Ex- 
clusive/NonExclusive shows whether the shared block is in only one or more than one 
cache. (If the Exclusive bit is set, this is the only cached copy.) The protocol guarantees 
that copies of a shared block in other caches are updated on block modification if the Ex- 
clusive bit is not set. (The update is carried over the coherence bus.) 

State transitions for a shared-data block occur due to the following incoming requests, 
as shown in Figure 2: a read or write from the local processor, referred to as a local read 
and local write, respectively, and a read or write from one of the remaining N - 1 pro- 
cessor nodes that is propagated on the coherence bus, referred to as a remote read and 
remote write, respectively. Local reads/writes combine the following cases: read/write hits; 
read/write misses with no cached copies of the block in other caches; and read/write misses 
with cached copies of the block in other caches. 

The state of a block changes depending on the type of request and the current state of 
the block, as specified below. Note that states are Permanent unless indicated otherwise. 

1. Read hit: A read hit is satisfied locally without any state change. 
2. Read miss: Initially, block replacement is done if necessary. The cache controller broad- 

casts a block-check request on the bus. One of the following cases is possible. 
Case 1: All remote cache controllers respond with negative acknowledgments. 

Therefore, the block is still in main memory. The block state is set to UnModified- 
Transient. A block-fetch request is sent by the cache controller through the MIN to the 
memory controller. When the block arrives at the cache, the block's state is updated 
to UnModified-Exclusive. 

Case 2: At least one remote cache responds with the state of the block, which could 
be either Transient or Permanent. 
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Write Miss . Read Miss 

I Legend: 1 RR : Remote Read 
RW : Remote Write 
RH : Local Read Hit 
WH : Local Write Hit 
RC : Local Read Miss with Copies in Other Caches 
WC : Local Write Miss with Copies in Other Caches 
RNC : Local Read Miss with no Copies in Other Caches 
WNC : Local Write Miss with no Copies in Other Caches 

Figure 2. The protocol state transition diagram. 

a.  

b. 

If the block is in a Transient state, the request is retried after a predetermined delay 
(this delay is a proportional average of the local and remote memory reference delays). 
The processing of the read miss can proceed only when the state has changed to 
Permanent, as described below. 
If the state of the block is Permanent, the block could be either Modified or Un- 
Modified and Exclusive or NonExclusive. The block's state is changed to UnModified- 
Transient in all cases. For the UnModified (Exclusive or NonExclusive) case, the 
cache controller sends a block-fetch request through the MIN to the memory con- 
troller to fetch the block. Then, the state of the block is changed to UnModified- 
NonExclusive. (Note that this is a Permanent state.) 

If the block's state is Modified-Exclusive, then in response to the block-check re- 
quest, the cache controller with the updated copy will write back the block to main 
memory. To avoid timing problems, an acknowledgment signal is returned from the 
memory controller to this cache when the write-back is completed. After that the 
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cache broadcasts a signal on the bus informing other caches that the write-back has 
been completed. Then, a block-fetch request is sent from the cache controller (cache 
with the read miss) to the memory controller. The block's state is changed to 
UnModified-NonExchisive. (We prefer to write-back/fetch the updated copy of the 
block through the MIN rather than perform direct block transfer through the bus 
in order to reduce the traffic activity on the bus. This will improve the scalability 
of the system since the coherence bus is the likely bottleneck in this design.) For 
the Modified-NonExclusive case, the set of operations is similar to the Modified- 
Exclusive case above, except that when the block-check request is broadcast, the 
first cache with a copy of the block that responds will remove the request from the 
bus to prevent other caches with copies of the block from responding. The state of 
the block remains UnModified-NonExclusive. 

3. Write hit: If the block is Transient, the write hit cannot proceed until the block becomes 
Permanent, as shown below. A write to a Modified-Exclusive block (i.e., the only copy) 
brings on no remote activity and the block's state remains Modified-Exclusive. However, 
a write to a Modified-NonExchisive block requires broadcasting the write through the 
bus to update copies of the block in other caches. A globally UnModified block could 
be either Exclusive or NonExchisive. A write to an UnModified-Exclusive block re- 
quires only updating the block's state to Modified-Exclusive. For an UnModified- 
NonExchisive block, a write broadcast through the bus is required to update copies of 
the block in other caches. Then the block's state is changed to Modified-NonExchisive. 

4. Write miss: Initially, block replacement takes place if needed. The cache controller broad- 
casts a block-check request over the bus. As in the read miss, the following two cases 
are possible. 

Case 1: All remote caches respond with negative acknowledgments. Therefore, the 
block is still in main memory. The block's entry in the local directory is set to Modified- 
Transient. A block-fetch request is sent by the cache controller to the memory con- 
troller. After the arrival of the block, the cache controller updates the block's state to 
Modified-Exclusive. 

Case 2: At least one cache responds with the state of the block, which could be either 
Transient or Permanent. 
a. If the block is Transient, the write miss is delayed until the block becomes Perma- 

nent, as described below. 
b. If the block is Permanent, the block could be either Modified or UnModified, and 

Exclusive or NonExchisive. Initially, the block's state is set to Modified-Transient 
in all cases. For a globally UnModified (Exclusive or NonExchisive) block, a block- 
fetch request is sent by the cache controller to the memory controller. When the block 
arrives at the cache, a write-update request is broadcast over the bus to update copies 
of the block in other caches. The block's state is changed to Modified, either Ex- 
clusive or Non.Exclusive. When the block is globally Modified, operations similar 
to the read miss case are processed, except that the block's state is updated to Modified, 
either Exclusive or NonExclusive. 

5. Shared-block replacement: When a Modified-Exclusive shared block is chosen for 
replacement due to a cache miss, the block's state is first changed to Modified-Transient. 
Then, a write-back is performed through the MIN to the relevant memory. After receiving 
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the acknowledgment that the write-back has been completed, the block's entry in the 
directory is removed. When a Modified-NonExclusive shared block is chosen for replace- 
ment, a write-back is performed through the MIN to memory. (A count check is now 
appropriate in order to find the remaining number of block copies. The cache controller 
broadcasts a nonexclusive-exclusive request over the bus. I f  more than one cache con- 
troller responds with a positive acknowledgment, the block's state is retained as Modified- 
NonExclusive. Otherwise, if  only one cache controller responds, the block's state is 
updated to Modified-Exclusive.) If  the block is UnModified-Exclusive, the block's entry 
in the local directory is deleted. But if the block is UnModified-NonExclusive, no ac- 
tion is taken. (A check for the remaining number of copies of the block might also be 
in place here, as mentioned above.) 

We do not have a formal proof to verify the correctness of the coherence protocol. It 
is possible to conclude that this protocol does not have any timing problems by exhaus- 
tively checking the transitions among the states of the protocol in the transition diagram 
[Archibald 1987]. 

3. Workload Model 

We assume that all processor nodes are identical--each processor possesses two distinct 
caches: SCache and PCache, of sizes ~kcs and ~bcp blocks, respectively. A processor "com- 
putes" for a certain period of time, then generates a request to one of its caches. The com- 
putation time of a processor is assumed to follow geometrical distribution with average 
value z. A geometrical distribution indicates that a processor issues requests only at discrete 
clock cycles. 

The system workload model consists of two memory reference streams, one to private 
blocks and another to shared blocks. Dubois and Briggs [ 1982] used an independent reference 
model (IRM) for shared-block accesses and a least recently used stack model (LRUSM) 
for private block accesses. An IRM for shared-block accesses is not adopted here since 
it does not capture any locality. Since shared-block accesses possess some locality (less 
than that for private-block accesses), we will assume LRUSM models with different localities 
for both referencing schemes. Both request patterns are modeled as stacks that are unique 
to each processor. The contents of the stack reflect the past reference pattern of a pro- 
cessor, with the most recent reference at the top. The probability of requesting a block 
at depth j in a stack model is represented by 

P[j] = G(M)[(I + j ) - I  _ (l + j + 1)-1], (1) 

where G(M) is a normMiTation factor that forces I;~1 P[j] = 1 [Archibald 1987]; M is 
the number of blocks in the stack and the parameter l reflects the temporal locality. In 
the simulations conducted for this study, we use l = 5 for shared-block references and 
l = 3 for private-block references. These values of l were chosen based on the observation 
in [Archibald 1987] that for uniprocessors, 1 = 5 results in a shared-block hit ratio com- 
parable to a private-block hit ratio of 0.95. Since a smaller l models a greater degree of 
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temporal locality, we use l = 3 for private-block references, based on the assumption that 
shared blocks are referenced with less locality than private blocks. 

The following notations are used in this paper. 

f~ Probability of a read operation. 

fw Probability of a write operation; f~ + fw = 1. 
hop PCache hit ratio. 

hcs SCache hit ratio under coherence. 

md Probability that a private block is modified. 

N Number of nodes in the system (system size). 

Nsh Number of shared blocks in the system. 

qp Probability of making a request to a private block. 

q~ Probability of making a request to a shared block (degree of sharing); qs + 
qp= l. 

Sb Coherence bus service time. 

Sc Cache service time. 

Sg Average delay for a block fetch from a remote memory module through the MIN. 

Sl Average delay for a block fetch from the local memory module. 

S~e Switching element service time. 

Ub Probability that the coherence bus is busy (bus utilization). 

Up Probability that a processor is busy (processor utilization). 

z Processor think time. 

hp Traffic rate generated by a processor. 

d/cp PCache size in blocks. 

ffc~ SCache size in blocks. 

4. System Performance 

To study the impact of the coherence protocol on system performance, a performance study 
that includes both simulation and analysis is conducted. Extensive discrete-event simula- 
tions that are driven by stochastically generated traces are run. The workload model for 
these simulations was presented in Section 3. Each simulation represents an exact flow 
of processor requests through the system with cache coherence enforced. 

A processor does internal computation for a certain period of time, z, before generating 
a request to one of its caches. (A private-block request is directed to the PCache and a 
shared-block request is directed to the SCache.) This request is either a cache hit or miss. 
If it is a cache hit, the processor resumes computation after a delay related to the access 
time of that cache; otherwise, either the request is a cache miss, or extra sevice such as 
broadcasting updates is required. A private-block cache miss is satisfied either locally or 
from a remote memory module through the MIN. If the request is a shared-block cache 
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miss, the cache controller broadcasts a request through the coherence bus to check the 
remaining caches for the possible presence of the block. I f  a remote cache has the block, 
it writes it back to main memory, which forwards it to the requesting cache. This process 
includes changing states between Transient and Permanent. For writes, the update is broad- 
cast over the bus to update copies of  the block in other caches, if  any. Input parameters 
used in the simulation are similar to those adopted in the analysis, as listed in Table 1. 

The analytical part of our performance study includes two parts: (1) a shared-blocks steady 
state probabilities computation and (2) a system-performance measures calculation using 
MIN and single-node queuing models. 

4.1. Shared-Blocks Steady State Probabili t ies 

The first step in our performance study is to calculate the shared-blocks steady state prob- 
abilities of  the states imposed by the protocol. Transitions between the states are modeled 
as a discrete time Markov chain, as shown in Figure 3. For mathematical simplicity, we 
assume that all state transition times are equal. We introduce a Not-Present  state for per- 
formance evaluation purposes. A block is in state Not-Present if  it does not occupy an 
SCache frame. (A reference to a block in state Not-Present may require a write-back to 

Table 1. Performance study parameters. 

Input Parameters 

Parameter Value Units 

fr 0.75 - -  

fw 0.25 -- 
hcp 0.95 -- 
hcs variable -- 
'md 0.3 -- 
Nsh variable blocks 
qs variable -- 
S b variable cycles 
S c 1 cycle 
Sg variable cycles 
S l variable cycles 
Smm 10 cycles 
Sse 2 cycles 
z 2 cycles 
~bcp 128 blocks 
~bcs 256 blocks 

Output Parameters 

U b Coherence bus utilization 
Up Processor utilization 
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Figure 3. Shared-block states transition model. 

to make  r o o m  for the new block.)  The  seven states o f  the mode l  are  def ined as Not -Present  

lr o, UnModi f i ed -Trans ien t  7r1, Modi f ied-Trans ien t  7r2, U n M o d i f i e d - E x c l u s i v e  7r 3, 

U n M o d i f i e d - N o n E x c l u s i v e  7r 4, Modi f i ed-Exc lus ive  a- 5, and Mod i f i ed -NonExc lus ive  7r 6. 

L e t  Pi , j  be the probabil i ty  o f  transi t ion f rom state i to state j in the discrete  t ime Markov  

chain.  The  transi t ion probabil i t ies  are  g iven  below. 

Po,1 = r = Upqsfr(ZNsh) -1  (2.a) 

P1,3 = P2,5 = d = ~/o -1  (2.b) 

P1,4 = P2,6 = 1 - d = 1 - ~ o  -1 (2.c) 

Po,2 = P3,5 = w = Upqsfw(ZNsh) -1 (2.d) 

P4,5 = w d  = U p q s f w ~ o - l ( z N s h )  -1  (2.e) 

P 4 , 6  = w(1 - d )  = Upqf fw(1  - ~0-1)(zNsh) -1 (2.f) 

/~ = P4,0 = Ps,o = P6,o = f = Upqs(1 - hcs)(Zd/cs) -1  (2.g) 

P3,2 = /94,2 = /95,2 = P6,2 = Ow = 1 - (1 - w) N- I  (2.h) 

P3,1 = P4,1 = P5,1 = e6,1 = Or = (1 - w )  N - 1  - (1 - w - r) N-1  (2.i) 
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In the above expressions, r(read) represents the probability of  a shared-block read re- 
quest; w(write) is the probability of  a shared-block write request; f(flush) represents the 
probability of  replacement of  a shared block in an SCache; d ( =  7rff0 -1) is the probability 
that there are no copies of  a block in remote caches; Ow is the probability of  a remote 
write (a write request from any of the remaining N - 1 nodes); and Or is the probability 
of  a remote read request with no simultaneous remote write. 

Equations for r and w are obtained as follows: A processor makes a request to one of 
its caches at the rate Upz -1, where Up is the probability that the processor is busy and 
z is the average processor computation time. Since the probability of requesting a shared 
block (request directed to SCache) is qs and the number of  shared blocks in the system 
is Nsh, the probability that the request is to a certain shared block in the system is given 
by qsNA 1. Multiplying the term (Upqs(ZNsh) -1) with fr or fw gives the probability that a 
processor generates a shared-block read or write request, respectively. (Although an LRUSM 
reference model is used in our simulations, note that r and w contain a simple division 
by Nsh, which resembles an IRM model. This is because both reference models behave 
similarly in steady state despite having different block access probabilities in the near future 
[Trivedi 1982].) 

The probability that an SCache block is chosen for replacement is given by ~b~ 1. As 
mentioned above, the term Upqsz -1 gives the rate of  a processor 's  request to its SCaches. 
The miss ratio of  an SCathe  is (1 - hc~). We derive Ow as follows: (1 - W) A'-l is the 
probability that there is no write request from any of the remaining N - 1 nodes. Therefore, 
1 - (1 - W) ~-1 is the probability of  at least one remote write request. Finally, Or is ob- 
tained as follows: 1 - (1 - W - R) N-1 is the probability of  at least one remote read or 
write request. The probability of  at least one remote write request is given by 1 - (1 - 

W )  N - 1 .  Therefore, [1 - (1 - W - R) N-l] - [1 - (1 - W )  N - l ]  ~-- [(1 - W )  N - 1  - 

(1 - W - R) ~-1] gives the probability of  a read request with no simultaneous write re- 
quest. Self loops in the Markov chain of  Figure 3, which depict the situation when a block 
may stay in its current state, are not shown. The probability for each of these self loops 
can be obtained by subtracting all outgoing transition probabilities of  a state from 1. (This 
satisfies the condition that the row sum of the transition matrix is 1 [Trivedi 1982].) 

Equations 2.a to 2.i are solved for the steady state probabilities, ~ri, of  the Markov chain 
states, as given below. 

7 
1[ 1)1 f ( O r + O w + f )  OwtS+---~ ( 1 - d +  2d2-d3)  

(3.a) 

7~ 1 ~- Or,t%f -1 (3.b) 

7r z = Ow~Trof -1 (3.c) 

r3  = Or ' rd r0 ( f0 )  -1 (3.d) 
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7c4 = Or'y(1 - d)Tro(fO) -1 

7r5 = [Ow6 + Or'y(2 - d)wO-1][ f (Or + Ow + f)]-ldTro 

~r6 = [Ow~ + Or~/(1 - d )  2 wO-1][f(Or + Ow + f ) ] - l ( 1  - d)r0 

(3.e) 

(3.f) 

(3.g) 

where ,y = r + w - r for -1, ~ = r + w - w for -1, and 0 = O r + 0 w -]- f + w. 

4.2. M I N  and  Single-Node Queuing Models  

In order to compute system-performance measures in terms of processing power and bus 
utilization, a hierarchical (two-level) performance evaluation study is carried out. A queu- 
ing model of a complete MIN-based system incorporating N nodes and forward and backward 
MINs is given in [Bhuyan et al. 1989]. Here, we take a simpler approach. First, we model 
only the MIN (in this paper, the Butterfly) as a queuing network and solve it to find the 
average delay to access data from a remote memory module Sg and a local memory module 
St, with the request rate as the input parameter. Then we develop a queuing model for 
a single node using these average delays. The model depicts the behavior of a processor's 
request (whether it is private or shared, hit or miss, local or remote, etc.) in the system 
with cache coherence enforced. The single-node model is based on the assumption that 
all system nodes perform identical tasks. The relaxation of this assumption can be cap- 
tured by the model, first, by using the appropriate input rates to the MIN model for finding 
new Sg and Sl, and then by evaluating the node model separately for different types of 
computation. 

A representative queuing model for a Butterfly MIN, made up of 4 x 4 switching elements 
(SE) with 16 nodes, is shown in Figure 4. Each switch is represented as four queues. The 
network is modeled as a forward and backward MIN to represent the two-pass communica- 
tion protocol used in the BBN Butterfly. For mathematical simplicity we assume that the 
SEs have an infinite buffering capability. We solve the MIN model using the open network 
queuing technique [Lazowska et al. 1984]. The input parameters to the model are network 
size N, SE service time, and memory access time. The model can handle uniform or favorite 
memory requests (with higher probability for a certain memory module than others). Here, 
we are using a uniform reference model for simplicity of description. A detailed descrip- 
tion of the solution is not included here since it is straightforward and similar to the ap- 
proach used in [Bhuyan et al. 1989]. We compute the average delays Sg and Sl from this 
model. Figure 5 shows the variation of Sg and St with a traffic rate for a Butterfly-type 
network of size 16 x 16. We also compute Sg and St for different system sizes. The novelty 
of this approach is that for any traffic generated by a node, average delays, Sg and St, are 
already known from the MIN model. Further, the MIN model is solved only once. 

A queuing model of a node is next developed using these delays, as shown in Figure 
6. A processor does internal computation for a certain amount of time z, followed by a 
request to one of its caches with a rate Xp. Requests are directed to the PCache with a 
rate ~,pp(= qp3,p) and to the SCache with a rate Xps( = qsXp). Traffic due to a PCache hit 
is given by the rate )~chp and by Xch~ for an SCache hit. The processor then resumes 
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From To 
processors Processors 

Figure 4. A queuing model for a 16-node Butterfly MIN with 4 • 4 switching elements. 

computation after a delay related to the service time of the relevant cache So. (It is assumed 
that both caches have similar service times.) Traffic due to a PCache miss is with a rate 
~,cp; a miss is satisfied by a block fetch either from the local or a remote memory module 
through the MIN. Due to our uniform referencing assumption, PCache miss requests go 
to the local memory of a node at a r a t e  )kcp I = ~kcpN -1 and to other memory modules at 
a rate Xcpg = (N  - 1)N -1 )~cp. Note that this single-node queuing model can be easily 
adapted to take care of "favorite" memory references, where requests sent to memory 
modules are controlled by some probability. Requests with higher probability are directed 
to the local memory module of the node. 

The coherence control bus is represented as a queuing center with service time Sb. Re- 
quests serviced by this queuing center include coherence signals and write-update broad- 
casts, given by the rate X~b. After doing write-update broadcasts, which is given by the 
rate ~,~hb, the processor resumes computation. I f  a request is a shared data miss, a signal 
is broadcast over the coherence bus for the state of the block. The block would be fetched 
from memory, either directly (memory still has the valid copy) with a rate hc~, or after 
writing back the updated copy of the block from a remote cache given by the rate X~r. 
The distribution of requests to the local and remote memory modules is similar to that 
for private blocks. The write-back of the shared block to a memory module and the 
acknowledgment incur a delay of Sg (if the write-back is remote) or St (if the write-back 
is local). The rates for both cases are given as Xc,~ and Xcn, respectively. The cache con- 
troller that performed the write-back broadcasts the acknowledgment on the bus. Note 
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Figure 5. S t and Sg delays versus input traffic for 16- and 64-node Butterfly MINs. 

that after a remote write-back, the block fetch could be either local or remote. Let these 
two rates be represented as )~crgt and )~c~gg, respectively. The block fetch experiences a 
global delay, Sg, when the write-back is local. Note that the same bus queue has been 
shown at several places in Figure 6 in order to depict bus accesses clearly at different phases 
of the protocol. 

Write-back and block-fetch requests are represented as open-class customers. The con- 
tribution of the open-class customers is to inflate the service times of various centers since 
the model is mixed. Write-back operations increase the traffic in the MIN by the rate )~wb 
- -  this includes the effect on the local and remote memory modules, which are represented 
as ),wOl and Xwbg, respectively. Traffic on the bus from the other N - 1 nodes is represented 
by )'b. The effect of loading a block and writing back blocks from the PCache and SCache 
are represented as open-class customers with rates ~tp and X~, respectively. 

The above model is solved using the mean value analysis (MVA) technique to calculate 
the bus and processor utilizations [Lazowska et al. 1984]. The processor utilization, Up, 
depends on shared-blocks steady state probabilities. These steady state probabilities in turn 
need Up as a parameter. Because of this interdependence, we solve for shared blocks steady 
state probabilities starting with Up = 1. These probabilities are in turn used to solve the 
node model to obtain the processor and bus utilizations. The calculated processor utiliza- 
tion is used again to compute the steady state probabilities, which are later used to solve 
the model again. This is repeated until Up converges. Coherence bus utilization, Ub, is 
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Figure 6 A queuing model for a single node in the system. 

obtained from the node model by considering the effect of  both open- and closed-class 
customers on the bus. The coherence bus utilization due to open-class customers, Ubo, 
is found from the bus traffic Xb as Ubo = kbSb. Note that k b represents bus traffic from 
N - 1 nodes. Due to the homogeneity of  all nodes, total coherence bus utilization is ap- 
proximated by Ub = N ( N  - 1)-lUbo . 

The single-node queuing model is solved for a BBN Butterfly-like multiprocessor system, 
with a MIN made up of 4 x 4 switching elements. Table 1 shows the input parameters 
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for this performance study and the output performance measures. Notice that the PCache 
hit ratio, hop, is constant, 0.95. However, the SCache hit ratio, hcs, is variable; it is com- 
puted from the steady state probabilities as hcs = 1 - 7r0 - 7rl - a-2 (a request is an 
SCache miss if the block is in state Not-Present, Modified-Transient, or UnModified- 
Transient). It is assumed that the service time of both caches, Sc = 1 cycle. The bus ser- 
vice time, Sb, is assumed to be 1, 2, and 4 cycles for systems with 16, 64, and 256 nodes, 
respectively. Since it is common that larger systems deal with larger amounts of shared 
data blocks, we assume the number of shared blocks in the system to be 128, 512, and 
2048 for systems of sizes 16, 64, and 256, respectively. PCache and SCache sizes should 
be a function of system size; however, for simplicity we assume that they remain the same 
for the range of system nodes selected for this performance study. 

Figures 7 and 8 show the coherence bus and processor utilization variation with the degree 
of sharing for three system sizes. The degree of sharing, qs, is the probability that a proc- 
essor makes a request to a shared block in the system. For practical,systems, this prob- 
ability is small and ranges from 5 % to less than 20 % of the total processor requests. Note 
that our node model can handle any degree of sharing. Therefore, theoretically, we should 
be able to provide performance measures for any degree of sharing between 0% and 100%. 
We refrained from doing so in order to keep our results as practical and realistic as possible. 

Bus utilization, U6, increases as the degree of sharing increases due to more coherence 
control transactions on the bus. (Note that for a degree of sharing of 0 %, Ub will be zero 
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Figure 7. Coherence bus utilization (%) versus degree of sharing for selected system sizes. 
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since there will be no requests to shared blocks and hence neither a data inconsistency 
problem nor any traffic on the bus.) A degree of sharing of 100% is completely unrealistic 
since it confines all processor requests to shared blocks only. The coherence bus will saturate 
for much smaller degrees of sharing, as shown in Figure 7. The processor utilization, Up, 
decreases as the degree of sharing increases due to more coherence control transactions 
and therefore more waiting time for the processor. 

It is clear from Figure 7 that our scheme can be implemented on medium-sized 
multiprocessors. For a system with 256 nodes, bus utilization is practical for degrees of 
sharing of about and less than 10%, which is the common practical range for the degree 
of sharing. Higher degrees of sharing tend to saturate the bus. The reason our scheme scales 
to systems having up to 256 nodes is the minimal amount of traffic on the bus. We only 
allowed coherence control signals on the bus; no memory block transfer is allowed on the 
bus. This boosted the scalability to 256 nodes. 

In order to provide a comparison between this architecture and an equivalent unified- 
cache architecture, we simulated the coherence protocol on a unified-cache architecture. 
It is assumed that the unified-cache size is equivalent to the sum of both the PCache and 
SCache in the split-cache system. We found that the coherence bus utilization is reduced 
in the split-cache architecture by around 10% for a system with 256 nodes, as shown in 
Figure 9. This is mainly due to the interference between shared and private blocks at cache 
block replacement in a unified cache, as explained earlier. Figure 10 compares the proc- 
essor utilization between a split-cache and a unified-cache system. It is observed that the 
processor utilization increases in the split-cache system by about 8 %. This is attributed 
to less traffic on the bus as well as fewer replacements due to the splitting of the cache. 
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In order to provide a feel for how well our system performs, we compared the processor 
utilization of our architecture with a similar architecture (without the coherence control 
bus) that implements a full map directory scheme [Censier and Feautrier 1978]. (We did 
not compare the performance of our architecture with an actual commercial machine due 
to the lack of such large-sized machines, up to 256 nodes, with a cache coherence scheme.) 
The full map directory scheme includes a pointer to each cache that has a copy of a block 
and also includes one Modified/UnModified bit. Updates on a block are sent point to point 
through the MIN to update copies of the block in other caches. We simulated this architec- 
ture with the cache coherence enforced and measured the processor utilization, as shown 
in Figure 11. It is clear that the contribution of the bus/split cache is significant--an in- 
crease in processor utilization up to 20% is observed. 

5.  C o n c l u s i o n s  

In this paper a write-update cache coherence protocol for shared-memory split-cache MIN- 
based multiprocessors has been proposed and evaluated. Each node has two dedicated private 
caches: a PCache for blocks private to a process and an SCache for blocks shared among 
all processes. To implement the protocol, we extended the system architecture by adding 
a coherence control bus connecting all SCache controllers. Four specific design issues were 
addressed: (1) proposing a suitable bus-based protocol that puts a minimal burden on the 
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bus for improving system scalability, (2) avoiding timing problems due to the variable MIN 
delay, (3) analyzing the coherence protocol quantitatively to compute system performance, 
and (4) determining the parameter value ranges under which this approach is feasible. 

Scalability is a key concern in multiprocessor design. It has been shown in this work 
that a medium-sized MIN-based multiprocessor with up to 256 nodes can be implemented 
using our approach to resolve cache coherence. Limiting the amount of traffic on the 
coherence bus is the main factor behind the ability to approach such a system size. This 
split-cache approach has been evaluated extensively by comparing it to an equivalent-sized 
unified cache and to a multiprocessor with a directory-based cache coherence scheme. 

Appendix: Single-Node Queuing Model Equations 

A processor makes a request to a cache with a rate equivalent to Upz -1. The private re- 
quest rate (request to the PCache) is given as Xpp(= qp UpZ-1), and the shared request rate 
is Xps (= qs Upz-1). A request flows in the model of Figure 6 with different rates, as shown 
below. 

Xchp (traffic rate due to a PCache hit): 

Xch p = hcp]kpp. 

Xch~ (traffic rate due to an SCache hit): 

)~chs = hcs)~ps. 

)~cp (traffic rate due to a PCache miss): 

(i - 

)~r (traffic rate for shared requests that require using the bus): 

)~cb = [(1 -- hcs ) + fw(Tr4 + ~6)])kps. 

Xchb (traffic rate for shared requests that require only a broadcast over the bus): 

)~chb = fw(Tr4 + 71"6))kp," 

X~l (traffic rate due to a PCache miss served by the local memory module): 

)kcp 1 =- N-1)~cp.  

)%pg (traffic rate due to a PCache miss served by a remote memory module): 

Xceg = ( N -  1)N-lhcp. 
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)kcr (traffic rate due to an SCache miss served by an updated copy in a remote SCache): 

Xcr = (1 - hcs)[1 - (1 - r5 - 7r6)N-1l)kps  �9 

kcm (traffic rate due to an SCache miss served by a memory module directly): 

Xcm = (1 - h~s)[(1 - ~r 5 - r6)N-1]hp~. 

hcrl (traffic rate due to an SCache miss served by the local memory module after writing 
back the block from a remote SCache): 

~kcr 1 = N-1)Xcr . 

X~rg (traffic rate due to an SCache miss served by a remote memory module after writing 
back the block from a remote SCache): 

)~crg = ( N -  1 ) N - l ~ k c r  . 

X~gl (traffic rate due to an SCache miss served by a local memory module after writing 
back the updated block from an SCache to a remote memory module): 

)kcrg l = N-1Xc~g. 

hc~gg (traffic rate due to an SCache miss served by a remote memory module after writing 
back the updated block from a remote SCache to a remote memory module): 

Xc~gg = (N - 2)N-lXcrg. 

Xcmt (traffic rate, due to an SCache miss served by a local memory module): 

~kcm t : N - l ~ c m  . 

~r (traffic rate due to an SCache miss served by a remote memory module): 

Xcmg = ( N -  1)N-1hcm . 

As mentioned before, the network is a mixed model with open- and closed-class customers. 
Open-class customers are generated due to the following traffic. 

Xwb (traffic rate due to a write-back operation, which increases the traffic in the MIN; 
this traffic is generated due to a PCache or SCache miss, and the selected block 
is modified, as given in the following equation): 

hwb = (N - 1)[(1 - hcp)qpmd + (1 --  h~s)q~(~r5 + 7 r 6 ) ] ~ k  p .  
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Xwbl (traffic rate due to a write-back directed to the local memory module): 

Xwbl = N-lXwb �9 

Xwbg (traffic rate due to a write-back directed to a remote memory module; this increases 
the delay in the MIN): 

Xwbs = ( N -  1)N-1Xwb . 

Xb (traffic rate due to write broadcasts qsfw(Tr4 + 7r6)3,p; broadcasts to update local 
directories due to a miss or write-back; and broadcasts due to a block being in 
a Transient state): 

X b = (N - 1){fw(~ 4 a t- 71-6) + (1 - hcs)[1 + 7rl + 7r2]}Xps. 

Xtp (traffic due to loading a private block in the PCache due to a miss): 

Xls (traffic due to loading a shared block in the SCache due to a miss and write-backs 
of  modified blocks): 

Xts = 1 - h c s )  1 + fw 
Ns h XP s" 

. )  

The effect of  open-class customers is to inflate the service demand of  the centers they 
run through and hence degrade system performance. Using the equations mentioned above, 
we compute the request response time using the standard mixed model MVA technique 
[Lazowska et al. 1984]. However, the solution needs the branching probabilities to all centers, 
which are obtained by substituting Xp = 1. Note that this mixed model has only one closed- 
class customer, which is a processor's request. 
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