
The Journal of Supercomputing, 8, 163-185 (1994)
�9 1994 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Cache Coherence Protocol for MIN-based
Multiprocessors

MAZIN S. YOUSIF (yousif@engr.LaTech.edu)
Department of Computer Science, Louisiana Tech University, P.O. Box 10348, Ruston, LA 71272

CHITA R. DAS (das@cse.psu.edu)
Department of Computer Science & Engineering, The Pennsylvania State University, University Park, PA
16802

MATTHEW J. THAZHUTHAVEETIL (mjt@csa. iisc.ernet, in)
Supercomputer Education and Research Center and Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560012, India

(Received June 1992; final version accepted February 1994.)

Abstract. In this paper we present a cache coherence protocol for multistage interconnection network (MIN)-
based multiprocessors with two distinct private caches: private-blocks caches (PCache) containing blocks private
to a process and shared-blocks caches (SCache) containing data accessible by all processes. The architecture
is extended by a coherence control bus connecting all shared-block cache controllers. Timing problems due to
variable transit delays through the MIN are dealt with by introducing Transient states in the proposed cache coherence
protocol. The impact of the coherence protocol on system performance is evaluated through a performance study
of three phases. Assuming homogeneity of all nodes, a single-node queuing model (phase 3) is developed to analyze
system performance. This model is solved for processor and coherence bus utilizations using the mean value
analysis (MVA) technique with shared-blocks steady state probabilities (phase 1) and communication delays (phase
2) as input parameters. The performance of our system is compared to that of a system with an equivalent-sized
unified cache and with a multiprocessor implementing a directory-based coherence protocol. System performance
measures are verified through simulation.

Keywords. Caches, cache coherence, mean value analysis, multiprocessor system, multistage intercormection
network, split cache.

1. Introduction

Mainta in ing coherence of shared data in mult iprocessors with private cache memor ies is
essential for the correct execution of a program. In view of this, a number of cache coherence
protocols for shared-memory mult iprocessors have been proposed in recent years [Eggers

1989]. Most of the proposed protocols assume a bus-based mult iprocessor as the under ly-
ing architecture. They rely on broadcasting coherence main tenance signals on the bus for
keeping cache contents consistent. Al though a variety of MINs have been proposed for
building large multiprocessors, less effort has been directed at developing coherence schemes
for such systems, p r imar i ly because of the toll of broadcast ing in terms of t ime overhead
and the lack of order-of-requests within a MIN.

164 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

A few cache coherence protocols that require an extension of the basic MIN architecture
have recently been proposed [Bhuyan et al. 1989; Mizrahi et al. 1989; Stenstr/im 1989;
Yousif 1991]. Extensions are designed to allow for the quick sharing of information to
maintain cache coherence. A snoopy bus can be added to connect all cache controllers
[Bhuyan et al. 1989; Yousif 1991]. The sequentiality of operations inherited in a bus is
exploited to maintain consistency of the shared data in caches. In [Mizrahi et al. 1989]
small memories containing global directory information are added to the switching elements
of a MIN. Here, data inconsistency is avoided by allowing only one copy of the shared
data outside of main memory. A third approach, suggested by Stenstr6m [1989], is based
on a distributed directory (added to each cache controller) and a central directory at main
memory. (A number of cache coherence schemes for network-based multiprocessors were
proposed earlier [Censier and Feautrier 1978; Tang 1976; Yen and Fu 1982]. A few software-
assisted schemes have also been proposed [Cheong and Veidenbaum 1988; Min and Baer
1989; Smith 1985]. Recently, there have been attempts to build large-scale cache-coherent
multiprocessors, such as the Stanford DASH [Lenoski et al. 1990], the MIT Alewife [Agar-
wal et al. 1990], and the Wisconsin Multicube [Goodman and Woest 1988]. The IEEE
standard project P1596 is an attempt to design a backplane interface referred to as the
scalable coherent interface (SCI) [Gustavson 1992].

In the schemes that complement the base architecture with a coherence control bus, it
was observed that the coherence bus is still the classic bottleneck that limits the scalability
of such approaches [Bhuyan et al. 1989; Yousif 1991]. The amount of traffic activity on
the bus with the limited bus bandwidth reflects the number of nodes that can be sustained
by a bus. In this paper we will improve the scalability of this approach by further reducing
traffic activity on the bus. This traffic reduction is obtained by splitting the cache into two
distinct units, as explained later. A cache coherence protocol is presented; then its impact
on system performance is evaluated. The main contribution of this paper is the proposed
architecture/cache coherence scheme and the system performance evaluation methodology.

Based on the accessibility of a cache block, it is possible to split a local cache into two
distinct parts: a PCache, which contains blocks that areprivate to a process, and an SCache,
which contains blocks that are shared among processes. To implement this, we assume
that private and shared blocks are distinguishable. (This might be done, for example, by
associating a separate address range for each.) We introduce the concept of accessibility-
based split caches to take advantage of the inherent characteristics of reference streams.
References to private data (e.g., instructions) do not pose memory coherence problems,
since private blocks cannot become inconsistent. Therefore, PCaches add no overhead other
than that due to a private-block miss. However, in addition to the overhead incurred due
to an SCathe miss, in-SCache shared data modification leads to the cache coherence prob-
lem. The motivation of this approach is to eliminate the effect of private blocks on cache
coherence that is present in a unified cache, as will be discussed later.

In this paper an accessibility-based split-cache coherence protocol for MIN-based
multiprocessors is proposed and evaluated. To implement the protocol, the architecture
is extended by adding a coherence control (snoopy) bus that connects all SCache controllers.
Block transfers to and from the shared memory are through the MIN. Adding such a
coherence bus makes it possible to implement coherence protocols designed for bus-based
multiprocessors on a MIN-based architecture with minimal protocol modification. (This

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 165

approach can be extended to any interconnection network-based multiprocessor.) Since we
choose a write-update protocol for this paper, the bus is used for write broadcasts--cache-
to-cache block transfers to update cached shared-block copies upon data modification.
SCache controllers snoop at all bus transactions.

The basic architecture under consideration is a shared-memory multiprocessor with N
processor nodes connected through a MIN, as shown in Figure 1. Each processor node
includes a local memory that is globally accessible. In other words, the shared memory
is distributed among the nodes of the mulfiprocessor, as in the BBN Butterfly [BBN 1989].
The Butterfly MIN is adopted as the base MIN for this study. Each node also includes
the following: two distinct caches, a PCache and SCache; a local directory; and a network
interface plus other required control hardware. SCache controllers are connected by a
coherence control bus.

Based on the proposed protocol, we develop a comprehensive evaluation methodology
for analyzing system performance. It includes three phases: a protocol's states probabilities
computation, a MIN delay model, and a node queuing model. The protocol is first specified
in terms of cache coherence operations and state transitions. We introduce Transient states
to reflect the effect of the traffic-dependent variable delay through the MIN. Shared-blocks
steady state probabilities of the states imposed by the protocol are then calculated--they
play a role in determining the amount of traffic in the MIN. The communication delay
through the MIN is computed using a queuing model of the MIN. Next, assuming that
all nodes perform identical tasks, a queuing model for a single node is constructed. This
model depicts the flow of a processor request in the system under coherence (whether private
or shared, local or remote, hit or miss, etc.). It requires shared-blocks steady state prob-
abilities and average communication delays as input parameters. The single-node queuing

Node 1 Node 2 Node 3 Node N

D (g)
0 0 0

LM

L ~. ,

M I N
I Legend:

Cs : SCache �9
LM : Local Memory �9
NI : Network InterfaceJ

Figure L A multiprocessor system of size N.

166 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

model is then solved using the mean value analysis (MVA) technique for finding system
performance measures such as processor u "tllization and coherence bus utiliTztion [Lazowska
et al. 1984].

This paper is organized as follows: Section 2 describes the proposed coherence protocol.
In Section 3 the system workload model is presented. Section 4 presents an evaluation study
to calculate the impact of the protocol on system performance. Section 5 concludes this work.

2. The Cache Coherence Protocol

The cache coherence protocol is a write-update protocol; that is, when a shared block in
a cache is modified, copies of the block at other caches are updated [Smith 1982]. A local
directory maintains a three-bit state entry for each shared data block in a cache. The bits
designate a block as Transient or Permanent, Modified or UnModified, and Exclusive or
NonExclusive. Transient states are introduced to reflect the delay of fetching/writing back
a block from/to memory through the MIN. A remote or local memory access could take
several clock cycles, depending on network traffic, location of the block, and system size.
A Transient state indicates that the block is in transit through the MIN due to a block transfer
request--the block cannot be accessed in cache until both the data arrive and the state changes
to Permanent. A block in a Permanent state is available in cache. The bit designated Ex-
clusive/NonExclusive shows whether the shared block is in only one or more than one
cache. (If the Exclusive bit is set, this is the only cached copy.) The protocol guarantees
that copies of a shared block in other caches are updated on block modification if the Ex-
clusive bit is not set. (The update is carried over the coherence bus.)

State transitions for a shared-data block occur due to the following incoming requests,
as shown in Figure 2: a read or write from the local processor, referred to as a local read
and local write, respectively, and a read or write from one of the remaining N - 1 pro-
cessor nodes that is propagated on the coherence bus, referred to as a remote read and
remote write, respectively. Local reads/writes combine the following cases: read/write hits;
read/write misses with no cached copies of the block in other caches; and read/write misses
with cached copies of the block in other caches.

The state of a block changes depending on the type of request and the current state of
the block, as specified below. Note that states are Permanent unless indicated otherwise.

1. Read hit: A read hit is satisfied locally without any state change.
2. Read miss: Initially, block replacement is done if necessary. The cache controller broad-

casts a block-check request on the bus. One of the following cases is possible.
Case 1: All remote cache controllers respond with negative acknowledgments.

Therefore, the block is still in main memory. The block state is set to UnModified-
Transient. A block-fetch request is sent by the cache controller through the MIN to the
memory controller. When the block arrives at the cache, the block's state is updated
to UnModified-Exclusive.

Case 2: At least one remote cache responds with the state of the block, which could
be either Transient or Permanent.

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 167

Write Miss . Read Miss

I Legend: 1 RR : Remote Read
RW : Remote Write
RH : Local Read Hit
WH : Local Write Hit
RC : Local Read Miss with Copies in Other Caches
WC : Local Write Miss with Copies in Other Caches
RNC : Local Read Miss with no Copies in Other Caches
WNC : Local Write Miss with no Copies in Other Caches

Figure 2. The protocol state transition diagram.

a.

b.

If the block is in a Transient state, the request is retried after a predetermined delay
(this delay is a proportional average of the local and remote memory reference delays).
The processing of the read miss can proceed only when the state has changed to
Permanent, as described below.
If the state of the block is Permanent, the block could be either Modified or Un-
Modified and Exclusive or NonExclusive. The block's state is changed to UnModified-
Transient in all cases. For the UnModified (Exclusive or NonExclusive) case, the
cache controller sends a block-fetch request through the MIN to the memory con-
troller to fetch the block. Then, the state of the block is changed to UnModified-
NonExclusive. (Note that this is a Permanent state.)

If the block's state is Modified-Exclusive, then in response to the block-check re-
quest, the cache controller with the updated copy will write back the block to main
memory. To avoid timing problems, an acknowledgment signal is returned from the
memory controller to this cache when the write-back is completed. After that the

168 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

cache broadcasts a signal on the bus informing other caches that the write-back has
been completed. Then, a block-fetch request is sent from the cache controller (cache
with the read miss) to the memory controller. The block's state is changed to
UnModified-NonExchisive. (We prefer to write-back/fetch the updated copy of the
block through the MIN rather than perform direct block transfer through the bus
in order to reduce the traffic activity on the bus. This will improve the scalability
of the system since the coherence bus is the likely bottleneck in this design.) For
the Modified-NonExclusive case, the set of operations is similar to the Modified-
Exclusive case above, except that when the block-check request is broadcast, the
first cache with a copy of the block that responds will remove the request from the
bus to prevent other caches with copies of the block from responding. The state of
the block remains UnModified-NonExclusive.

3. Write hit: If the block is Transient, the write hit cannot proceed until the block becomes
Permanent, as shown below. A write to a Modified-Exclusive block (i.e., the only copy)
brings on no remote activity and the block's state remains Modified-Exclusive. However,
a write to a Modified-NonExchisive block requires broadcasting the write through the
bus to update copies of the block in other caches. A globally UnModified block could
be either Exclusive or NonExchisive. A write to an UnModified-Exclusive block re-
quires only updating the block's state to Modified-Exclusive. For an UnModified-
NonExchisive block, a write broadcast through the bus is required to update copies of
the block in other caches. Then the block's state is changed to Modified-NonExchisive.

4. Write miss: Initially, block replacement takes place if needed. The cache controller broad-
casts a block-check request over the bus. As in the read miss, the following two cases
are possible.

Case 1: All remote caches respond with negative acknowledgments. Therefore, the
block is still in main memory. The block's entry in the local directory is set to Modified-
Transient. A block-fetch request is sent by the cache controller to the memory con-
troller. After the arrival of the block, the cache controller updates the block's state to
Modified-Exclusive.

Case 2: At least one cache responds with the state of the block, which could be either
Transient or Permanent.
a. If the block is Transient, the write miss is delayed until the block becomes Perma-

nent, as described below.
b. If the block is Permanent, the block could be either Modified or UnModified, and

Exclusive or NonExchisive. Initially, the block's state is set to Modified-Transient
in all cases. For a globally UnModified (Exclusive or NonExchisive) block, a block-
fetch request is sent by the cache controller to the memory controller. When the block
arrives at the cache, a write-update request is broadcast over the bus to update copies
of the block in other caches. The block's state is changed to Modified, either Ex-
clusive or Non.Exclusive. When the block is globally Modified, operations similar
to the read miss case are processed, except that the block's state is updated to Modified,
either Exclusive or NonExclusive.

5. Shared-block replacement: When a Modified-Exclusive shared block is chosen for
replacement due to a cache miss, the block's state is first changed to Modified-Transient.
Then, a write-back is performed through the MIN to the relevant memory. After receiving

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 169

the acknowledgment that the write-back has been completed, the block's entry in the
directory is removed. When a Modified-NonExclusive shared block is chosen for replace-
ment, a write-back is performed through the MIN to memory. (A count check is now
appropriate in order to find the remaining number of block copies. The cache controller
broadcasts a nonexclusive-exclusive request over the bus. I f more than one cache con-
troller responds with a positive acknowledgment, the block's state is retained as Modified-
NonExclusive. Otherwise, if only one cache controller responds, the block's state is
updated to Modified-Exclusive.) If the block is UnModified-Exclusive, the block's entry
in the local directory is deleted. But if the block is UnModified-NonExclusive, no ac-
tion is taken. (A check for the remaining number of copies of the block might also be
in place here, as mentioned above.)

We do not have a formal proof to verify the correctness of the coherence protocol. It
is possible to conclude that this protocol does not have any timing problems by exhaus-
tively checking the transitions among the states of the protocol in the transition diagram
[Archibald 1987].

3. Workload Model

We assume that all processor nodes are identical--each processor possesses two distinct
caches: SCache and PCache, of sizes ~kcs and ~bcp blocks, respectively. A processor "com-
putes" for a certain period of time, then generates a request to one of its caches. The com-
putation time of a processor is assumed to follow geometrical distribution with average
value z. A geometrical distribution indicates that a processor issues requests only at discrete
clock cycles.

The system workload model consists of two memory reference streams, one to private
blocks and another to shared blocks. Dubois and Briggs [1982] used an independent reference
model (IRM) for shared-block accesses and a least recently used stack model (LRUSM)
for private block accesses. An IRM for shared-block accesses is not adopted here since
it does not capture any locality. Since shared-block accesses possess some locality (less
than that for private-block accesses), we will assume LRUSM models with different localities
for both referencing schemes. Both request patterns are modeled as stacks that are unique
to each processor. The contents of the stack reflect the past reference pattern of a pro-
cessor, with the most recent reference at the top. The probability of requesting a block
at depth j in a stack model is represented by

P[j] = G(M)[(I + j) - I _ (l + j + 1)-1], (1)

where G(M) is a normMiTation factor that forces I;~1 P[j] = 1 [Archibald 1987]; M is
the number of blocks in the stack and the parameter l reflects the temporal locality. In
the simulations conducted for this study, we use l = 5 for shared-block references and
l = 3 for private-block references. These values of l were chosen based on the observation
in [Archibald 1987] that for uniprocessors, 1 = 5 results in a shared-block hit ratio com-
parable to a private-block hit ratio of 0.95. Since a smaller l models a greater degree of

170 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

temporal locality, we use l = 3 for private-block references, based on the assumption that
shared blocks are referenced with less locality than private blocks.

The following notations are used in this paper.

f~ Probability of a read operation.

fw Probability of a write operation; f~ + fw = 1.
hop PCache hit ratio.

hcs SCache hit ratio under coherence.

md Probability that a private block is modified.

N Number of nodes in the system (system size).

Nsh Number of shared blocks in the system.

qp Probability of making a request to a private block.

q~ Probability of making a request to a shared block (degree of sharing); qs +
qp= l.

Sb Coherence bus service time.

Sc Cache service time.

Sg Average delay for a block fetch from a remote memory module through the MIN.

Sl Average delay for a block fetch from the local memory module.

S~e Switching element service time.

Ub Probability that the coherence bus is busy (bus utilization).

Up Probability that a processor is busy (processor utilization).

z Processor think time.

hp Traffic rate generated by a processor.

d/cp PCache size in blocks.

ffc~ SCache size in blocks.

4. System Performance

To study the impact of the coherence protocol on system performance, a performance study
that includes both simulation and analysis is conducted. Extensive discrete-event simula-
tions that are driven by stochastically generated traces are run. The workload model for
these simulations was presented in Section 3. Each simulation represents an exact flow
of processor requests through the system with cache coherence enforced.

A processor does internal computation for a certain period of time, z, before generating
a request to one of its caches. (A private-block request is directed to the PCache and a
shared-block request is directed to the SCache.) This request is either a cache hit or miss.
If it is a cache hit, the processor resumes computation after a delay related to the access
time of that cache; otherwise, either the request is a cache miss, or extra sevice such as
broadcasting updates is required. A private-block cache miss is satisfied either locally or
from a remote memory module through the MIN. If the request is a shared-block cache

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 171

miss, the cache controller broadcasts a request through the coherence bus to check the
remaining caches for the possible presence of the block. I f a remote cache has the block,
it writes it back to main memory, which forwards it to the requesting cache. This process
includes changing states between Transient and Permanent. For writes, the update is broad-
cast over the bus to update copies of the block in other caches, if any. Input parameters
used in the simulation are similar to those adopted in the analysis, as listed in Table 1.

The analytical part of our performance study includes two parts: (1) a shared-blocks steady
state probabilities computation and (2) a system-performance measures calculation using
MIN and single-node queuing models.

4.1. Shared-Blocks Steady State Probabili t ies

The first step in our performance study is to calculate the shared-blocks steady state prob-
abilities of the states imposed by the protocol. Transitions between the states are modeled
as a discrete time Markov chain, as shown in Figure 3. For mathematical simplicity, we
assume that all state transition times are equal. We introduce a Not-Present state for per-
formance evaluation purposes. A block is in state Not-Present if it does not occupy an
SCache frame. (A reference to a block in state Not-Present may require a write-back to

Table 1. Performance study parameters.

Input Parameters

Parameter Value Units

fr 0.75 - -

fw 0.25 --
hcp 0.95 --
hcs variable --
'md 0.3 --
Nsh variable blocks
qs variable --
S b variable cycles
S c 1 cycle
Sg variable cycles
S l variable cycles
Smm 10 cycles
Sse 2 cycles
z 2 cycles
~bcp 128 blocks
~bcs 256 blocks

Output Parameters

U b Coherence bus utilization
Up Processor utilization

172 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

Figure 3. Shared-block states transition model.

to make r o o m for the new block.) The seven states o f the mode l are def ined as Not -Present

lr o, UnModi f i ed -Trans ien t 7r1, Modi f ied-Trans ien t 7r2, U n M o d i f i e d - E x c l u s i v e 7r 3,

U n M o d i f i e d - N o n E x c l u s i v e 7r 4, Modi f i ed-Exc lus ive a- 5, and Mod i f i ed -NonExc lus ive 7r 6.

L e t Pi , j be the probabil i ty o f transi t ion f rom state i to state j in the discrete t ime Markov

chain. The transi t ion probabil i t ies are g iven below.

Po,1 = r = Upqsfr(ZNsh) -1 (2.a)

P1,3 = P2,5 = d = ~/o -1 (2.b)

P1,4 = P2,6 = 1 - d = 1 - ~ o -1 (2.c)

Po,2 = P3,5 = w = Upqsfw(ZNsh) -1 (2.d)

P4,5 = w d = U p q s f w ~ o - l (z N s h) -1 (2.e)

P 4 , 6 = w(1 - d) = Upqf fw(1 - ~0-1)(zNsh) -1 (2.f)

/~ = P4,0 = Ps,o = P6,o = f = Upqs(1 - hcs)(Zd/cs) -1 (2.g)

P3,2 = /94,2 = /95,2 = P6,2 = Ow = 1 - (1 - w) N- I (2.h)

P3,1 = P4,1 = P5,1 = e6,1 = Or = (1 - w) N - 1 - (1 - w - r) N-1 (2.i)

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 173

In the above expressions, r(read) represents the probability of a shared-block read re-
quest; w(write) is the probability of a shared-block write request; f(flush) represents the
probability of replacement of a shared block in an SCache; d (= 7rff0 -1) is the probability
that there are no copies of a block in remote caches; Ow is the probability of a remote
write (a write request from any of the remaining N - 1 nodes); and Or is the probability
of a remote read request with no simultaneous remote write.

Equations for r and w are obtained as follows: A processor makes a request to one of
its caches at the rate Upz -1, where Up is the probability that the processor is busy and
z is the average processor computation time. Since the probability of requesting a shared
block (request directed to SCache) is qs and the number of shared blocks in the system
is Nsh, the probability that the request is to a certain shared block in the system is given
by qsNA 1. Multiplying the term (Upqs(ZNsh) -1) with fr or fw gives the probability that a
processor generates a shared-block read or write request, respectively. (Although an LRUSM
reference model is used in our simulations, note that r and w contain a simple division
by Nsh, which resembles an IRM model. This is because both reference models behave
similarly in steady state despite having different block access probabilities in the near future
[Trivedi 1982].)

The probability that an SCache block is chosen for replacement is given by ~b~ 1. As
mentioned above, the term Upqsz -1 gives the rate of a processor 's request to its SCaches.
The miss ratio of an SCathe is (1 - hc~). We derive Ow as follows: (1 - W) A'-l is the
probability that there is no write request from any of the remaining N - 1 nodes. Therefore,
1 - (1 - W) ~-1 is the probability of at least one remote write request. Finally, Or is ob-
tained as follows: 1 - (1 - W - R) N-1 is the probability of at least one remote read or
write request. The probability of at least one remote write request is given by 1 - (1 -

W) N - 1 . Therefore, [1 - (1 - W - R) N-l] - [1 - (1 - W) N - l] ~-- [(1 - W) N - 1 -

(1 - W - R) ~-1] gives the probability of a read request with no simultaneous write re-
quest. Self loops in the Markov chain of Figure 3, which depict the situation when a block
may stay in its current state, are not shown. The probability for each of these self loops
can be obtained by subtracting all outgoing transition probabilities of a state from 1. (This
satisfies the condition that the row sum of the transition matrix is 1 [Trivedi 1982].)

Equations 2.a to 2.i are solved for the steady state probabilities, ~ri, of the Markov chain
states, as given below.

7
1[1)1 f (O r + O w + f) OwtS+---~ (1 - d + 2d2-d3)

(3.a)

7~ 1 ~- Or,t%f -1 (3.b)

7r z = Ow~Trof -1 (3.c)

r3 = Or ' rd r0 (f0) -1 (3.d)

174 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

7c4 = Or'y(1 - d)Tro(fO) -1

7r5 = [Ow6 + Or'y(2 - d)wO-1][f (Or + Ow + f)]-ldTro

~r6 = [Ow~ + Or~/(1 - d) 2 wO-1][f(Or + Ow + f)] - l (1 - d)r0

(3.e)

(3.f)

(3.g)

where ,y = r + w - r for -1, ~ = r + w - w for -1, and 0 = O r + 0 w -]- f + w.

4.2. M I N and Single-Node Queuing Models

In order to compute system-performance measures in terms of processing power and bus
utilization, a hierarchical (two-level) performance evaluation study is carried out. A queu-
ing model of a complete MIN-based system incorporating N nodes and forward and backward
MINs is given in [Bhuyan et al. 1989]. Here, we take a simpler approach. First, we model
only the MIN (in this paper, the Butterfly) as a queuing network and solve it to find the
average delay to access data from a remote memory module Sg and a local memory module
St, with the request rate as the input parameter. Then we develop a queuing model for
a single node using these average delays. The model depicts the behavior of a processor's
request (whether it is private or shared, hit or miss, local or remote, etc.) in the system
with cache coherence enforced. The single-node model is based on the assumption that
all system nodes perform identical tasks. The relaxation of this assumption can be cap-
tured by the model, first, by using the appropriate input rates to the MIN model for finding
new Sg and Sl, and then by evaluating the node model separately for different types of
computation.

A representative queuing model for a Butterfly MIN, made up of 4 x 4 switching elements
(SE) with 16 nodes, is shown in Figure 4. Each switch is represented as four queues. The
network is modeled as a forward and backward MIN to represent the two-pass communica-
tion protocol used in the BBN Butterfly. For mathematical simplicity we assume that the
SEs have an infinite buffering capability. We solve the MIN model using the open network
queuing technique [Lazowska et al. 1984]. The input parameters to the model are network
size N, SE service time, and memory access time. The model can handle uniform or favorite
memory requests (with higher probability for a certain memory module than others). Here,
we are using a uniform reference model for simplicity of description. A detailed descrip-
tion of the solution is not included here since it is straightforward and similar to the ap-
proach used in [Bhuyan et al. 1989]. We compute the average delays Sg and Sl from this
model. Figure 5 shows the variation of Sg and St with a traffic rate for a Butterfly-type
network of size 16 x 16. We also compute Sg and St for different system sizes. The novelty
of this approach is that for any traffic generated by a node, average delays, Sg and St, are
already known from the MIN model. Further, the MIN model is solved only once.

A queuing model of a node is next developed using these delays, as shown in Figure
6. A processor does internal computation for a certain amount of time z, followed by a
request to one of its caches with a rate Xp. Requests are directed to the PCache with a
rate ~,pp(= qp3,p) and to the SCache with a rate Xps(= qsXp). Traffic due to a PCache hit
is given by the rate)~chp and by Xch~ for an SCache hit. The processor then resumes

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 175

From To
processors Processors

Figure 4. A queuing model for a 16-node Butterfly MIN with 4 • 4 switching elements.

computation after a delay related to the service time of the relevant cache So. (It is assumed
that both caches have similar service times.) Traffic due to a PCache miss is with a rate
~,cp; a miss is satisfied by a block fetch either from the local or a remote memory module
through the MIN. Due to our uniform referencing assumption, PCache miss requests go
to the local memory of a node at a r a t e)kcp I = ~kcpN -1 and to other memory modules at
a rate Xcpg = (N - 1)N -1)~cp. Note that this single-node queuing model can be easily
adapted to take care of "favorite" memory references, where requests sent to memory
modules are controlled by some probability. Requests with higher probability are directed
to the local memory module of the node.

The coherence control bus is represented as a queuing center with service time Sb. Re-
quests serviced by this queuing center include coherence signals and write-update broad-
casts, given by the rate X~b. After doing write-update broadcasts, which is given by the
rate ~,~hb, the processor resumes computation. I f a request is a shared data miss, a signal
is broadcast over the coherence bus for the state of the block. The block would be fetched
from memory, either directly (memory still has the valid copy) with a rate hc~, or after
writing back the updated copy of the block from a remote cache given by the rate X~r.
The distribution of requests to the local and remote memory modules is similar to that
for private blocks. The write-back of the shared block to a memory module and the
acknowledgment incur a delay of Sg (if the write-back is remote) or St (if the write-back
is local). The rates for both cases are given as Xc,~ and Xcn, respectively. The cache con-
troller that performed the write-back broadcasts the acknowledgment on the bus. Note

176 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

40

35

30

25

~ 20

15

10

Legend

;~ 64 Node-Local " ' " A " " 16 Node-Local / ~ "

I 64 Node-Global -- - " B - - 16 Node-Global

....~
I n - - D

0 I I I I I

0.00 0.02 0.04 0.06 0.08 0.10

Request Rate per Cycle

Figure 5. S t and Sg delays versus input traffic for 16- and 64-node Butterfly MINs.

that after a remote write-back, the block fetch could be either local or remote. Let these
two rates be represented as)~crgt and)~c~gg, respectively. The block fetch experiences a
global delay, Sg, when the write-back is local. Note that the same bus queue has been
shown at several places in Figure 6 in order to depict bus accesses clearly at different phases
of the protocol.

Write-back and block-fetch requests are represented as open-class customers. The con-
tribution of the open-class customers is to inflate the service times of various centers since
the model is mixed. Write-back operations increase the traffic in the MIN by the rate)~wb
- - this includes the effect on the local and remote memory modules, which are represented
as),wOl and Xwbg, respectively. Traffic on the bus from the other N - 1 nodes is represented
by)'b. The effect of loading a block and writing back blocks from the PCache and SCache
are represented as open-class customers with rates ~tp and X~, respectively.

The above model is solved using the mean value analysis (MVA) technique to calculate
the bus and processor utilizations [Lazowska et al. 1984]. The processor utilization, Up,
depends on shared-blocks steady state probabilities. These steady state probabilities in turn
need Up as a parameter. Because of this interdependence, we solve for shared blocks steady
state probabilities starting with Up = 1. These probabilities are in turn used to solve the
node model to obtain the processor and bus utilizations. The calculated processor utiliza-
tion is used again to compute the steady state probabilities, which are later used to solve
the model again. This is repeated until Up converges. Coherence bus utilization, Ub, is

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 177

*7

7~c~'pl ~ ZcpFg

~-chb ~cmI

Ikb kb I

~ . ~ b ~'~wbg
g

f ,crag

<

xw~____

~cm

kcr

kb

kwm ~ (~ kwbg
X w ~ j "~wbg

Figure 6 A queuing model for a single node in the system.

obtained from the node model by considering the effect of both open- and closed-class
customers on the bus. The coherence bus utilization due to open-class customers, Ubo,
is found from the bus traffic Xb as Ubo = kbSb. Note that k b represents bus traffic from
N - 1 nodes. Due to the homogeneity of all nodes, total coherence bus utilization is ap-
proximated by Ub = N (N - 1)-lUbo .

The single-node queuing model is solved for a BBN Butterfly-like multiprocessor system,
with a MIN made up of 4 x 4 switching elements. Table 1 shows the input parameters

178 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

for this performance study and the output performance measures. Notice that the PCache
hit ratio, hop, is constant, 0.95. However, the SCache hit ratio, hcs, is variable; it is com-
puted from the steady state probabilities as hcs = 1 - 7r0 - 7rl - a-2 (a request is an
SCache miss if the block is in state Not-Present, Modified-Transient, or UnModified-
Transient). It is assumed that the service time of both caches, Sc = 1 cycle. The bus ser-
vice time, Sb, is assumed to be 1, 2, and 4 cycles for systems with 16, 64, and 256 nodes,
respectively. Since it is common that larger systems deal with larger amounts of shared
data blocks, we assume the number of shared blocks in the system to be 128, 512, and
2048 for systems of sizes 16, 64, and 256, respectively. PCache and SCache sizes should
be a function of system size; however, for simplicity we assume that they remain the same
for the range of system nodes selected for this performance study.

Figures 7 and 8 show the coherence bus and processor utilization variation with the degree
of sharing for three system sizes. The degree of sharing, qs, is the probability that a proc-
essor makes a request to a shared block in the system. For practical,systems, this prob-
ability is small and ranges from 5 % to less than 20 % of the total processor requests. Note
that our node model can handle any degree of sharing. Therefore, theoretically, we should
be able to provide performance measures for any degree of sharing between 0% and 100%.
We refrained from doing so in order to keep our results as practical and realistic as possible.

Bus utilization, U6, increases as the degree of sharing increases due to more coherence
control transactions on the bus. (Note that for a degree of sharing of 0 %, Ub will be zero

100"

80

60

40
hal sis Legend Simulation

~~i i i ! i i - - -" 16 Nodes --- -~- "' 64 Nodes

s - ' " D ' - 256 Nodes

20 , I I I I

0,00 0.05 0.10 0.15 0.20 0.25

Degree of Sharing

Figure 7. Coherence bus utilization (%) versus degree of sharing for selected system sizes.

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 179

70

60

50

C~
-,=

b~

~ 40

~ 3o

20

Legend

~ . : Analysis

- r , , ~ . _ " ~ 16 Nodes

. x r ~ 64 Nodedes

1 0 I I I I I

0.00 0.05 0.10 0.15 0.20 0.25
Degree of Sharing

Figure & Processor utilization (%) versus degree of sharing for selected system sizes.

Simulation

. . . . ~ " " 16 Nodes
. . . . /$ 64 Nodes
. . . . [] 256 Nodes

since there will be no requests to shared blocks and hence neither a data inconsistency
problem nor any traffic on the bus.) A degree of sharing of 100% is completely unrealistic
since it confines all processor requests to shared blocks only. The coherence bus will saturate
for much smaller degrees of sharing, as shown in Figure 7. The processor utilization, Up,
decreases as the degree of sharing increases due to more coherence control transactions
and therefore more waiting time for the processor.

It is clear from Figure 7 that our scheme can be implemented on medium-sized
multiprocessors. For a system with 256 nodes, bus utilization is practical for degrees of
sharing of about and less than 10%, which is the common practical range for the degree
of sharing. Higher degrees of sharing tend to saturate the bus. The reason our scheme scales
to systems having up to 256 nodes is the minimal amount of traffic on the bus. We only
allowed coherence control signals on the bus; no memory block transfer is allowed on the
bus. This boosted the scalability to 256 nodes.

In order to provide a comparison between this architecture and an equivalent unified-
cache architecture, we simulated the coherence protocol on a unified-cache architecture.
It is assumed that the unified-cache size is equivalent to the sum of both the PCache and
SCache in the split-cache system. We found that the coherence bus utilization is reduced
in the split-cache architecture by around 10% for a system with 256 nodes, as shown in
Figure 9. This is mainly due to the interference between shared and private blocks at cache
block replacement in a unified cache, as explained earlier. Figure 10 compares the proc-
essor utilization between a split-cache and a unified-cache system. It is observed that the
processor utilization increases in the split-cache system by about 8 %. This is attributed
to less traffic on the bus as well as fewer replacements due to the splitting of the cache.

180

e" O
b4

100

80

60

40

M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

sss S''"

i:] /

tt**'a~
sd" �9

oS Ii K

."~L . - " " ~ L e g e n d

" " ~ ' 1 r ~ ' Split Cache Unified Cache

~ o , ~ ~ . , , , - r I- 16 Nodes X--- 16 Nodes

~ . ~ A 64 Nodes ----/~e-- 64 Nodes

- - ---~ 256 Nodes - - - ' D - - 256 Nodes

20 I I I I I
0.00 0.05 0.10 0.15 0.20 0.25

Degree of Sharing

Figure 9. Coherence bus utilization (%) versus degree of sharing for split-cache and urtified-caehe architectures.

70
L e g e n d

Split Cache

60 . ~ i 16 Nodes

.Ik 64 Nodes
X,,,

~" 50 x ' " , , , ~ , g 256 Nodes

e"

N
~ 40

30

20 " D . . .

O

10 , , , l ,

0.00 0.05 0.10 0.15 0.20 0.25
Degree of Sharing

Figure 10. Processor utilization (%) versus degree of sharing for split-cach e and unified-cache architectures.

Unified Cache

. . . . x--- 16 Nodes

- - - -~r - - 64 Nodes

- - - "1~ - - 256 Nodes

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 181

In order to provide a feel for how well our system performs, we compared the processor
utilization of our architecture with a similar architecture (without the coherence control
bus) that implements a full map directory scheme [Censier and Feautrier 1978]. (We did
not compare the performance of our architecture with an actual commercial machine due
to the lack of such large-sized machines, up to 256 nodes, with a cache coherence scheme.)
The full map directory scheme includes a pointer to each cache that has a copy of a block
and also includes one Modified/UnModified bit. Updates on a block are sent point to point
through the MIN to update copies of the block in other caches. We simulated this architec-
ture with the cache coherence enforced and measured the processor utilization, as shown
in Figure 11. It is clear that the contribution of the bus/split cache is significant--an in-
crease in processor utilization up to 20% is observed.

5. C o n c l u s i o n s

In this paper a write-update cache coherence protocol for shared-memory split-cache MIN-
based multiprocessors has been proposed and evaluated. Each node has two dedicated private
caches: a PCache for blocks private to a process and an SCache for blocks shared among
all processes. To implement the protocol, we extended the system architecture by adding
a coherence control bus connecting all SCache controllers. Four specific design issues were
addressed: (1) proposing a suitable bus-based protocol that puts a minimal burden on the

70
Legend

Split Cache Directory-Based

60 ~ �9 16 Nodes ~ ' " 16 Nodes
.t 64 Nodes " " ' ~ ' " 64 Nodes

,-, " ~ ---~ 256 Nodes "-- "D - - 256 Nodes

..~
~ 40

~ 30

20

10 i
0.00 0.25

13- 13- []

I I ! I

0.05 0.10 0.15 0.20
Degree of Sharing

Figure 11. Processor utilization (%) comparison versus degree of sharing.

182 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

bus for improving system scalability, (2) avoiding timing problems due to the variable MIN
delay, (3) analyzing the coherence protocol quantitatively to compute system performance,
and (4) determining the parameter value ranges under which this approach is feasible.

Scalability is a key concern in multiprocessor design. It has been shown in this work
that a medium-sized MIN-based multiprocessor with up to 256 nodes can be implemented
using our approach to resolve cache coherence. Limiting the amount of traffic on the
coherence bus is the main factor behind the ability to approach such a system size. This
split-cache approach has been evaluated extensively by comparing it to an equivalent-sized
unified cache and to a multiprocessor with a directory-based cache coherence scheme.

Appendix: Single-Node Queuing Model Equations

A processor makes a request to a cache with a rate equivalent to Upz -1. The private re-
quest rate (request to the PCache) is given as Xpp(= qp UpZ-1), and the shared request rate
is Xps (= qs Upz-1). A request flows in the model of Figure 6 with different rates, as shown
below.

Xchp (traffic rate due to a PCache hit):

Xch p = hcp]kpp.

Xch~ (traffic rate due to an SCache hit):

)~chs = hcs)~ps.

)~cp (traffic rate due to a PCache miss):

(i -

)~r (traffic rate for shared requests that require using the bus):

)~cb = [(1 -- hcs) + fw(Tr4 + ~6)])kps.

Xchb (traffic rate for shared requests that require only a broadcast over the bus):

)~chb = fw(Tr4 + 71"6))kp,"

X~l (traffic rate due to a PCache miss served by the local memory module):

)kcp 1 =- N-1)~cp.

)%pg (traffic rate due to a PCache miss served by a remote memory module):

Xceg = (N - 1)N-lhcp.

A C A C H E C O H E R E N C E P R O T O C O L F O R MIN-BASED M U L T I P R O C E S S O R S 183

)kcr (traffic rate due to an SCache miss served by an updated copy in a remote SCache):

Xcr = (1 - hcs)[1 - (1 - r5 - 7r6)N-1l)kps �9

kcm (traffic rate due to an SCache miss served by a memory module directly):

Xcm = (1 - h~s)[(1 - ~r 5 - r6)N-1]hp~.

hcrl (traffic rate due to an SCache miss served by the local memory module after writing
back the block from a remote SCache):

~kcr 1 = N-1)Xcr .

X~rg (traffic rate due to an SCache miss served by a remote memory module after writing
back the block from a remote SCache):

)~crg = (N - 1) N - l ~ k c r .

X~gl (traffic rate due to an SCache miss served by a local memory module after writing
back the updated block from an SCache to a remote memory module):

)kcrg l = N-1Xc~g.

hc~gg (traffic rate due to an SCache miss served by a remote memory module after writing
back the updated block from a remote SCache to a remote memory module):

Xc~gg = (N - 2)N-lXcrg.

Xcmt (traffic rate, due to an SCache miss served by a local memory module):

~kcm t : N - l ~ c m .

~r (traffic rate due to an SCache miss served by a remote memory module):

Xcmg = (N - 1)N-1hcm .

As mentioned before, the network is a mixed model with open- and closed-class customers.
Open-class customers are generated due to the following traffic.

Xwb (traffic rate due to a write-back operation, which increases the traffic in the MIN;
this traffic is generated due to a PCache or SCache miss, and the selected block
is modified, as given in the following equation):

hwb = (N - 1)[(1 - hcp)qpmd + (1 -- h~s)q~(~r5 + 7 r 6)] ~ k p .

184 M.S. YOUSIF, C.R. DAS AND M.J. THAZHUTHAVEETIL

Xwbl (traffic rate due to a write-back directed to the local memory module):

Xwbl = N-lXwb �9

Xwbg (traffic rate due to a write-back directed to a remote memory module; this increases
the delay in the MIN):

Xwbs = (N - 1)N-1Xwb .

Xb (traffic rate due to write broadcasts qsfw(Tr4 + 7r6)3,p; broadcasts to update local
directories due to a miss or write-back; and broadcasts due to a block being in
a Transient state):

X b = (N - 1){fw(~ 4 a t- 71-6) + (1 - hcs)[1 + 7rl + 7r2]}Xps.

Xtp (traffic due to loading a private block in the PCache due to a miss):

Xls (traffic due to loading a shared block in the SCache due to a miss and write-backs
of modified blocks):

Xts = 1 - h c s) 1 + fw
Ns h XP s"

.)

The effect of open-class customers is to inflate the service demand of the centers they
run through and hence degrade system performance. Using the equations mentioned above,
we compute the request response time using the standard mixed model MVA technique
[Lazowska et al. 1984]. However, the solution needs the branching probabilities to all centers,
which are obtained by substituting Xp = 1. Note that this mixed model has only one closed-
class customer, which is a processor's request.

References

A~,ar~ral, A., Lira, B.-H., Kranz, D., and Kubiatowicz, J. 1990. APRIL: A processor architecture for multiprocessing.
In Conf. Proc.--The 17th Annual Internat. Syrap. on Comp. Architecture (Seattle, May 28-31), pp. 104-114.

Archibald, J.K. 1987. The cache coherency problem in shared memory multiprocessors. Ph.D. thesis and tech.
rept. 87-02-06, Dept. of Comp. Sci., Univ. of Wash., Seattle.

BBN. 1989. Butterfly GPIO00 Switch Tutorial. BBN Advanced Computers, Inc.
Bhuyan, L.N., Liu, B., and Ahmed, I. 1989. Analysis ofMIN based-multiprocessors with private cache memories.

In Conf. Proc.--The 1989 Internat. Conf. on Parallel Processing (St. Charles, Ill., Aug. 14-18), Penn. State
Univ. Press, vol. 1, pp. 51-58.

Censier, L.M., and Feautrier, P. 1978. A new solution to coherence problems in multicache systems. IEEE Trans.
Comps., C-27, 12 (Dec.): 1112-1118.

A CACHE COHERENCE PROTOCOL FOR MIN-BASED MULTIPROCESSORS 185

Cheong, H., and Veidenbaum, A.V. 1988. A cache coherence scheme with fast selective mv~dation. In Conf.
Proc.--The 15th Annual Internat. Symp. on Comp. Architecture (Honolulu, May 30-June 2), pp. 299-307.

Dubois, M., and Briggs, EA. 1982. Effects of cache coherency in multiprocessors. IEEE Trans. Comps., C-31,
11 (Nov.): 1083-1099.

Eggers, S. 1989. Simulation analysis of data sharing in shared memory multiprocessors. Ph.D. thesis and tech.
rept. UCB/CSD 89/501, Univ. of Calif., Berkeley.

Goodman, J.R., and Woest, EJ. 1988. The Wisconsin multicube: A new large-scale cache-coherent multiproeessor.
In Conf. Proc.--The 15th Annual Internat. Symp. on Comp. Architecture (Honolulu, May 30-June 2), pp. 422-431.

Gustavson, D.B. 1992. The scalable coherent interface and related standard projects./EEE Micro, 12, 2 (Feb.): 10--22.
Lazowska, E., Zahorjan, J., Graham, G.S., and Sevcik, K.C. 1984. Quantitative System Performance. Prentice-

Hall, New York.
Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hennessy, J. 1.990. The directory-based cache coherence

protocol for the DASH multiprocessor. In Conf. Proc.--The 17th Annual lnternat. Symp. on Comp. Architec-
ture (Seattle, May 28-31), pp. 148-159.

Min, S.L., and Baer, J.L. 1989. A timestamp-based cache coherence scheme. In Conf. Proc.--The 1989 Internat.
Conf. on Parallel Processing (St. Charles Ii1., Aug. 14-18), Penn. State Univ. Press, vol. 1, pp. 23-32.

Mizrahi, H.E., Baer, J.L., Lazowska, E.D., and Zahorjan, J. 1989. Extending the memory hierarchy into
multiprocessor interconnection networks: A performance analysis. In Conf. Proc.--The 1989 Internat. Conf.
on Parallel Processing (St. Charles, IlL, Aug. 14-18), Penn. State Univ. Press, vol. 1, pp. 41-50.

Smith, A.J. 1982. Cache memories. ACM Comp. Surveys, 14, 3 (Sept.): 473-530.
Smith, A.J. 1985. CPU cache consistency with software support and using one time identifiers. In Conf. Proc.

of the 1985 Pacific Comp. Commun. Symp. (Seoul, S. Korea, Oct. 22-24), pp. 153-161.
Stenslr6m, P. 1989. A cache consistency protocol for multiprocessors with multistage networks. In Conf. Proc.--The

16th Annual Internat. Syrup. on Comp. Architecture (Jerusalem, Israel, May 28-Jnne 1), pp. 407-415.
Tang, C.K. 1976. Cache system design in the tightly coupled multiprocessor system. In Conf. Proc.--The 1976

AFIPS Nat. Comp. Conf., pp. 749-753.
Trivedi, K.S. 1982. Probability & Statistics with Reliability, Queuing, and Computer Science Applications. Prentice-

Hall, New York.
Yen, W.C., and Fu, K.S. 1982. Analysis of multiprocessor cache organizations with alternative main memory

update policies. In Conf. Proc. of the 9th Annual lnternat. Syrup. on Comp. Architecture (Austin, Tex., Apr.
26-29), pp. 89-100.

Yousif, M.S. 1991. Effective use of caches in MIN-based multiprocessors. Ph.D. thesis, Dept. of Electrical and
Comp. Engineering, Penn. State Univ., University Park, Penn.

