
On the Complexity of Computing the

Diameter of a Polytope

Alan M. Frieze∗ Shang-Hua Teng †

May 22, 2006

Abstract

In this paper, some results on the complexity of computing the
combinatorial diameter of a polytope are presented. We show that
it is DP -hard to determine the diameter of a polytope specified by
linear inequalities with integer data. Our result partially resolves a
long-term open question.

1 Introduction

The basic idea of the simplex method for linear programming is to find a path
from a vertex of the underlying polyhedron to an optimal one along edges. In
graph-theoretic terms, the simplex method computes a path in graph Γ(P ),
the 1–complex formed by the vertices and edges of the input polytope P , from
an initial vertex to an optimal one. The efficiency of the simplex method is
determined by the length of the path it computes. Therefore, the diameter
of the graph Γ(P ) provides a natural lower bound for the simplex method.

Although, the diameter of polyhedral graphs has been studied intensively
(see Klee 1974 and Larman 1970), tight bounds on the diameter in terms
of the number of facets are still not known. Kalai (1991) gave the first a
subexponential upper bound on the maximum diameter of d-polytopes with
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n facets. Recently, Kalai and Kleitman (1992) further improved the upper
bound to nlogd+2.

In this paper, we study the complexity of computing the diameter of a
polytope. On one hand, it is easy to see that the diameter of a polytope
can be computed in ∆3, under the assumption that the diameter is bounded
by a polynomial in the number of facets. On the other hand, we show that
it is DP -hard to determine the diameter of a polytope given by its facets,
where DP is the following class of languages defined by Papadimitriou and
Yannakakis (1984).

DP = {L1 ∩ L2 : L1 ∈ NP & L2 ∈ co-NP}.
Our result partially resolves a long-term open question.

2 Definitions and problems

Let V (P ) denote the set of all vertices of a polytope P , E(P ) the set of all
edges of P , and F (P ) be the set of all facets of P .

Define Γ(P ) to be the 1–complex formed by the vertices and edges of a
polytope P , i.e., Γ(P ) = (V (P ), E(P )).

The distance of two vertices u and v in a graph G, denoted by distanceG(u, v),
is the length of the shortest path between u and v in G. The radius of a
vertex v in G is

radiusG(v) = max{distanceG(v, u) : u ∈ G}
and the diameter of a graph G is

diameter(G) = max{radiusG(v) : v ∈ G}.
The diameter of a polytope P is defined to be the diameter of Γ(P ).
We study the following computational problem:

COMPUTING DIAMETER: given P = {x : Ax ≤ b}, a set of n

half-spaces in m dimensions, compute the diameter of Γ(P ).

The following are two related decision problems,

• DIAMETER: given a polytope P = {x : Ax ≤ b} and an
integer k, is k the diameter of Γ(P )?

• RADIUS: given a polytope P = {x : Ax ≤ b}, a vertex v of P ,
and an integer k, is radiusΓ(P )(v) = k?
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3 The NP -hardness of computing DIAME-

TER

When a graph has N vertices, using Dijkstra’s shortest path algorithm, the
diameter can be computed in O(N3) time. However, in general, the number
of vertices of a polytope may be Ω(nm/2). Only when the dimension is fixed,
can breadth-first search be used to compute the diameter of a polytope in
polynomial time.

In this section, we give a proof that DIAMETER is NP -hard. The idea
of the proof will be used in the next section to show that DIAMETER is
in fact DP -hard. The reduction is from the following NP -complete problem
(see Karp 1972 and Garey & Johnson 1979).

EXACT PARTITION: given a finite set A = {s1, . . . , s2m} of inte-
gers, is there a subset A′ ⊂ A with |A′| = m and

∑

s∈A′

s =
∑

t∈A−A′

t?

3.1 The basic reduction

The basic idea is to show that for each instance A of EXACT PARTITION,
we can, in polynomial time, construct a polytope PA with a polynomial
number of faces and an integer k such that

diameter(PA) =

{

k if A has an exact partition,
k − 1 if A has no exact partition.

(1)

Note first that EXACT PARTITION with A = {s1, . . . , s2m} is equivalent
to an integer linear program of the following simple form ILP1 (see Korte &
Schrader 1981).

maximize
∑2m

i=1 xi

subject to

2m
∑

i=1

sixi ≤ 1

2
S

2m
∑

i=1

dixi ≤ 1

2

2m
∑

i=1

di

xi ∈ {0, 1}
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where S =
∑2m

i=1 si, smax = maxi si, and di = smax − si.

Lemma 1 (Korte and Schrader) A has an exact partition iff ILP1 has

an optimal solution of value m. 2

Note also that all coefficients in ILP1 are non-negative. Let M = (
∑2m

i=1 si)+
1. We modify ILP1 to the following integer linear program: ILP2

maximize
∑2m

i=1 xi

subject to

2m
∑

i=1

(M + si)xi ≤ 1

2
S + mM + ǫ

2m
∑

i=1

(M + di)xi ≤ 1

2

2m
∑

i=1

di + mM + ǫ

xi ∈ {0, 1}
Clearly, ILP1 has an optimal solution of value m iff ILP2 has an optimal

solution of value m. Further we chose ǫ = 1
2M

in ILP2 so that the linear
programming relaxation of ILP2 is non-degenerate.

Proposition 2 When ǫ = 1
2M

, the polytope defined by the linear program-

ming relaxation of ILP2 is non-degenerate.

Proof Suppose the polytope defined by the linear programming re-
laxation of ILP2 is degenerate, then there are 2m + 1 inequalities that are
satisfied with equality by a common point x. This implies that

|{i : xi ∈ {0, 1}}| ≥ 2m − 1.

Case 1: xi ∈ {0, 1}, i = 1, 2, ..., 2m. In this case, one of the first two inequal-
ities is tight which implies that 2ǫ is an integer, a contradiction.

Case 2: |{i : xi ∈ {0, 1}}| = 2m − 1. Without loss of generality, assume
0 < x1 < 1. Then,

2m
∑

i=1

(M + si)xi =
1

2
S + mM + ǫ

2m
∑

i=1

(M + di)xi =
1

2

2m
∑

i=1

di + mM + ǫ
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After eliminating x1, we see that there is an integer c, such that

ǫ =
c

2d1

which contradicts with our assumption that ǫ = 1
2M

, and therefore the propo-
sition follows. 2

Proposition 3 The value of the optimal solution of ILP2 is either m or

m − 1.

Proof This is because all ~x = (x1, . . . , x2m) with
∑2m

i=1 xi = m − 1
are feasible solutions to ILP2 and no ~x with

∑2m
i=1 xi ≥ m + 1 is a feasible

solution to ILP2. 2

Consequently,

Lemma 4 ILP2 has an optimal solution of value m if A has an exact par-

tition, otherwise the optimal value is m − 1. 2

By relaxing the integrality constraints in ILP2, we obtain a polytope P ′
A

defined to be the set of ~x satisfying

2m
∑

i=1

(M + si)xi ≤ 1

2
S + mM + ǫ

2m
∑

i=1

(M + di)xi ≤ 1

2

2m
∑

i=1

di + mM + ǫ (2)

0 ≤ xi ≤ 1

Geometrically, P ′
A is a polytope obtained from the unit 2m-cube by cut-

ting it with two half-spaces with non-negative coefficients. We denote the
associated boundary hyperplanes by HS1 and HS2 in the following discus-
sion. Now ~0, the origin of 2m–space, is a vertex of P ′

A, and the diameter of
P ′

A is bounded by 2m + 4. This latter fact follows immediately from

Lemma 5

radiusΓ(P ′

A
)(~0) =

{

m + 2 if A has an exact partition,

m + 1 if A has no exact partition.
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Proof We first prove that radiusΓ(P ′

A
)(~0) ≤ m + 2, if A has an exact

partition, and radiusΓ(P ′

A
)(~0) ≤ m + 1 otherwise.

The set of vertices in P ′
A can be partitioned into three subsets;

• V0: the set of all vertices lying neither on HS1 nor HS2;

• V1: the set of all vertices lying on one of HS1 or HS2, but not both,
and

• V2: the set of all vertices lying on both HS1 and HS2.

Note that all components of a vertex in V0 are either 0 or 1. Since the
linear system (2) is non-degenerate, all vertices in V1 have exactly one non-
integer co-ordinate and all vertices in V2 have exactly two non-integer co-
ordinates, and all other co-ordinates are either 0 or 1.

It follows from Proposition 3, that the number of components of value 1
of a vertex of P ′

A is bounded from above by m if A has an exact partition,
and by m − 1 otherwise.

Note first that the distance from ~0 to each vertex ~v in V0 is equal to the
number of components of value 1 in ~v, which is bounded from above by m if
A has an exact partition, and by m − 1 otherwise.

Consider a vertex ~v in Vi for i ∈ {1, 2}. Without loss of generality assume
~v is on HS1 and ~v = (v1, . . . , v2m) with vj = 1 for 1 ≤ j ≤ l, vl+1 and vl+i

non-integral, i ∈ {1, 2}, and vj = 0 for l + i < j ≤ 2m. Note that l ≤ m if A
has an exact partition, and l ≤ m − 1 otherwise.

Let ~v′ = (v′
1, . . . , v

′
2m) with v′

j = 1 for 1 ≤ j ≤ l + i − 1 and v′
j = 0

for l + 1 ≤ j ≤ 2m. Using non-degeneracy, we see that ~v′ ∈ V (P ′
A) ∩ Vi−1.

Note that (~v,~v′) ∈ E(P ′
A) because we can obtain the basic feasible solution

associated with ~v from the one associated with ~v′ by replacing xl+i = 0 by
HSi. Consequently. the distance from ~0 to a vertex ~v in Vi is bounded by
l + i (a two step induction.)

We now prove that radiusΓ(P ′

A
)(~0) ≥ m + 2, if A has an exact partition,

and radiusΓ(P ′

A
)(~0) ≥ m + 1 otherwise.

By adding slack variables, the linear system (2) takes the form
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2m
∑

i=1

(M + si)xi + z1 =
1

2
S + mM + ǫ

2m
∑

i=1

(M + di)xi + z2 =
1

2

2m
∑

i=1

di + mM + ǫ (3)

xi + yi = 1

xi, yi, zk ≥ 0

Note that, the set of basic variables associated with the vertex ~0 is BV1 =
{y1, . . . , y2m, z1, z2}.

First of all assume that A has an exact partition and without loss of
generality, assume {s1, ..., sm} and {sm+1, ..., s2m} is one. Since the linear
system (2), and hence (3) is non-degenerate, there is a basic feasible solution
of the following form:

(xi = 1) & (yi = 0) 1 ≤ i ≤ m

(xm+1 = ζ1) & (ym+1 = 1 − ζ1) & (zm+1 = 0) (4)

(xm+2 = ζ2) & (ym+2 = 1 − ζ2) & (zm+2 = 0)

(xj = 0) & (yj = 1) m + 3 ≤ j ≤ 2m

where 0 < ζ1, ζ2 < 1.
The vertex associated with the above basic feasible solution is

~v = (1, ..., 1, ζ1, ζ2, 0, ...0),

and the associated basic variables are

BV2 = {x1, . . . , xm, xm+1, xm+2, ym+1, ..., y2m}.

¿From |BV1 − BV2| ≥ m + 2 it follows that distance(~0, ~v) ≥ m + 2 and
hence radiusΓ(P ′

A
)(~0) ≥ m + 2.

Similarly, if A does not have an exact partition then we can show radiusΓ(P ′

A
)(~0)

≥ m+1, by considering the basic feasible solution (1, ..., 1, ζ1, ζ2, 0, ...0) where
there are m − 1 1’s. 2

Consequently,

Theorem 6 RADIUS is NP–hard. 2
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We now show how to construct the polytope PA from P ′
A, which satisfies

(1).
¿From the definition of P ′

A, we have for all i : 1 ≤ i ≤ 2m, ~wi =
(µ1, . . . , µ2m), with µi = 1 and µj = 0, for all j 6= i : 1 ≤ j ≤ 2m, are
vertices of P ′

A. Moreover, they are exactly the set of all neighbors of ~0 in
Γ(P ′

A).
By adding the constraint H0 = {x :

∑2m
i=1 xi ≥ 1} to P ′

A, we obtain a new
polytope P ′′

A in which F0 = H0 ∩P ′
A is a face. F0 is a (2m− 1)–simplex with

the set of vertices {~w1, . . . , ~w2m}.
Now the idea is to construct a polytope P2m(F0,m+6), a stack of simplices

with base F0, which has the following properties

1. there is a vertex ~o in P2m(F0,m + 6) such that the distance between ~o
and any vertex in F0 is m + 6.

2. PA = P ′′
A ∪ P2m(F0,m + 6) forms a polytope.

First, we give the construction of P2m(F0,m + 6). Then, we shall show
that

diameter(PA) = radiusΓ(PA)(~o) = radiusΓ(P ′

A
)(~0) + m + 5.

In the following procedure, let ∆ =
√

1/2m, the distance from ~0 to the
hyperplane

∑

i xi = 1 and the symbol ≈ denotes the rational approximation
with a predefined precision.

Procedure to Define P2m(F0, k):

1. P2m(F0, 0) is defined to be the simplex with the set of vertices {~w1, . . . , ~w2m}∪
{~o0}, where ~o0 = ~0;

2. for all k > 0, P2m(F0, k) can be constructed from P2m(F0, k − 1) as
follows:

(a) dk = 1
2
∆ + 1

2k+1 ∆;

(b) ck ≈
√

2mdk;

(c) d′
k = 1

2
∆ − 1

2k+1 ∆;

(d) Let Hk = {x :
∑2m

i=1 xi ≥ ck};
(e) Let ~ok = (αk, ..., αk), where αk ≈ d′

k√
2m

;
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(f) Let polytope Qk = P2m(F0, k − 1) ∩ Hk.

(g) Let polytope P2m(F0, k) be the convex hull of {~ok}∪ V (Qk).

Note that ~ok in the above procedure is the point on the ray {xi = xj : 1 ≤
i, j ≤ 2m}, whose distance from ~0 is d′

k, and Hk is the hyperplane parallel to
H0, whose distance from ~0 is dk.

Lemma 7 for all k ≥ 0,

1. The polytope P2m(F0, k) has 2(k + 1)m + 1 vertices and 2(k + 1)m + 1
faces;

2. P ′′
A ∪ P2m(F0, k) forms a polytope;

3. All coefficients in the new faces have size bounded polynomially in m
and k.

Proof We prove the theorem by induction on k.
Clearly, the lemma and the following statements are true when k = 0.

1. ~ok is a vertex of P2m(F0, k) and is the intersection of exactly 2m faces;

2. All neighbors of ~ok in P2m(F0, k) are on the hyperplane defined by Hk.

Assume the Lemma and the above statements are true for k−1. We now
prove that they are true for k.

Note that the hyperplane defined by Hk is parallel to the hyperplane de-
fined by Hk−1 and Hk separates ~ok−1 and ~ok from Qk. Moreover, V (P2m(F0, k−
1)) − {~ok−1} ⊂ V (Qk).

Applying the induction hypotheses, we see that ~ok−1 is a vertex of P2m(F0, k−
1) and is the intersection of exactly 2m faces and all neighbors of ~ok in
P2m(F0, k − 1) are on the hyperplane defined by Hk−1. Therefore, Hk ∩ Qk

contains exactly 2m vertices of Qk, and those 2m vertices are all the new
vertices introduced in Qk, which do not belong to V (P2m(F0, k − 1)), and
hence,

|F (Qk)| = |F (P2m(F0, k − 1))| + 1.

Since, ~ok ∈ int P2m(F0, k − 1) and the hyperplane defined by Hk, which
contains 2m vertices of Qk, separates ~ok from Qk, P ′′

A ∪ P2m(F0, k) forms a
polytope, and ~ok is a vertex of P2m(F0, k) and is the intersection of 2m faces
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of P2m(F0, k) and all neighbors of ~ok in P2m(F0, k) are on the hyperplane Hk.
Moreover,

V (P2m(F0, k)) = V (Qk) ∪ {~ok}.
Therefore,

|V (P2m(F0, k))| = |V (P2m(F0, k − 1))| + 2m = 2(k + 1)m + 1.

Similarly,

|F (P2m(F0, k))| = |F (P2m(F0, k − 1))| + 2m = 2(k + 1)m + 1.

Note also, all coefficients in the new face have size bounded polynomially in
m and k. 2

Lemma 8
diameter(PA) = radiusΓ(P ′

A
)(~0) + m + 5.

Proof ¿From the construction of PA, we have for all vertices ~v ∈
V (PA)−V (P ′

A), distance(~o,~v) ≤ m+5, and distance(~o, ~wi) = m+6 (1 ≤ i ≤
2m). Thus, for all ~u ∈ V (P ′

A), distancePA
(~o, ~u) = distanceP ′

A
(~0, ~u) + m + 5.

Therefore,

radiusΓ(PA)(~o) = radiusΓ(P ′

A
)(~0) + m + 5 ≥ 2m + 6.

We now prove that diameter(PA) = radiusΓ(PA)(~o).
This is true because for all pairs of vertices in P ′

A, their distance in PA is
no more than their distance in P ′

A, which is bounded by 2m + 4; and for all
vertices in V (PA) − V (P ′

A), ~o is the vertex with the largest radius. 2

Theorem 9 DIAMETER is NP–hard.

Proof The theorem is a simple consequence of Lemmas 5 and 8. 2
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4 Polytope products and DP -hardness

Let P1 and P2 be two polytopes in, respectively, m1 and m2 space. P1 ⊙ P2,
the product of polytopes P1 and P2, is a polytope in m1 +m2 space, such that

P1⊙P2 = {(x1, . . . , xm1
, y1, . . . , ym2

)|(x1, . . . , xm1
) ∈ P1 & (y1, . . . , ym2

) ∈ P2}.

Note that ⊙ is associative.
Algebraicly, if P1 = {x : A1x ≤ b1} and P2 = {y : A2y ≤ b2} then

P1 ⊙ P2 = {(x, y) : A1x ≤ b1, A2x ≤ b2}.

Therefore, we have f(P1 ⊙ P2) = f(P1) + f(P2), where f(P ) denotes the
number of faces of polytope P .

We now show how Γ(P1 ⊙ P2) is defined in term of Γ(P1) and Γ(P2).
The product of two graphs G(V1, E2) and G(V2, E2), denoted by G1 ⊙G2,

is a new graph G(V,E) with V = V1 × V2 and

E = {((u1, v1), (u2, v2)) : (u1, u2) ∈ E1 & v1 = v2 or u1 = u2 & (v1, v2) ∈ E2}.

Proposition 10
Γ(P1 ⊙ P2) = Γ(P1) ⊙ Γ(P2).

2

Proposition 11

Diameter(G1 ⊙ G2) = Diameter(G1) + Diameter(G2).

2

Let PARTITON–UNPARTITON be the problem of “given (A1, A2), where
A1 = {s1, . . . , s2n1

} and A2 = {s′1, . . . , s′2n2
}, does A1 have an exact partition,

while A2 does not?”.

Lemma 12 PARTITION–UNPARTITION is complete for DP .

Proof Clearly, PARTITION–UNPARTITION is in DP . To prove it
is complete, we see that from any instance x of a problem in DP , we can
construct two sets A1 and A2, one for the NP -predicate of A and one for the
co–NP one. 2
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Theorem 13 DIAMETER is hard for DP .

Proof We reduce PARTITION–UNPARTITION to DIAMETER. Given
(A1, A2), we construct two polytopes P1 and P2, respectively, for A1 and
A2, such that Ai has an exact partition iff DIAMETER(Γ(Pi)) = ki, and
has no exact partition iff DIAMETER(Γ(Pi)) = ki − 1, where k1 6= k2.
Let P = P1 ⊙ P1 ⊙ P2. It is easy to see that (A1, A2) ∈ PARTITION–
UNPARTITION iff DIAMETER(P ) = 2k1 + k2 − 1. 2

Similarly we can prove,

Theorem 14 RADIUS is hard for DP .

5 Upper bound for DIAMETER

Consider the following decision problem:

DIAMETER-DECISION: given P = {Ax ≤ b} and k ∈ N , is

diameter G(P ) ≤ k?

Lemma 15 The problem DIAMETER-DECISION is in Π2 under the as-

sumption that the diameters of polytopes are polynomially bounded by the

number of faces.

Proof The lemma follows from the facts that in polynomial time, we
can decide whether a point is a vertex of a polytope and whether a pair of
vertices is an edge of a polytope. 2

Using binary search and the Π2 oracle for DIAMETER-DECISION, we
can show that both DIAMETER and RADIUS are in ∆3 (under the polyno-
mial assumption).

6 Open questions

1. Is DIAMETER in the polynomial time hierarchy (see Stockmeyer 1977)
(without any assumption)?

2. Is DIAMETER complete for ∆3 and the DIAMETER-DECISION com-
plete for Π2?
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3. Can we approximate the diameters of polytopes in random polynomial
time?

4. Can we improve the straightforward method for COMPUTING DIAM-
ETER (especially for fixed dimension)?
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