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1 Introduction

The specification of abstract data types has been studied extensively during
the last decade (see c.g. [6]). As a result several specification methods have
been proposed. A specification drawn up according to an algebraic or az-
womatic specification method essentially consists of a set of formulas in a given
logic. This logic is, for instance, equational logic, conditional equational logic
or first-order predicate logic. The semantics of a specification is then defined
as a class of models satisfying the set of forrnulas. This class is, for instance,
the class of all models or the class of the “initial” models. In the latter case
the models of the class are isomorphic to each other and one speaks of initial
semantics. One speaks of loose semantics when the class contains models that
are not isomorphic to each other. On the other hand a specification drawn
up according to a constructive specification method essentially consists of a
set of “programs” (4, 11, 15]. Such a specification defines a single model or,
cquivalently, a class of isomorphic models.

To be feasible the design of large specifications must be modularized. This
may be achieved by the use of a specification language. Essentially, a specifica-
tion language builds specifications out of smaller ones. Recently, several spec-
ification languages have been proposed, for instance Clear (3, 19], OBJ3 [10],
ACT-ONE (8], ACT-TWO (8], PLUSS (2], ASL [24], ASF (1], Extended ML
21).

The goal of the present paper is to present one more specification language.
It is called OBSCURE" and differs from the other specification languages in

'The name is intended to avoid any confusion with the specification language Clear.




at least one of the following three aspects.

First, instead of being a language for specifications OBSCURE is a language
for module specifications (in the sense of {7]) or, equivalently, for parame-
terized specifications. In other words, a specification in OBSCURE is not
interpreted as an algebra but as a mapping from algebras into algebras. In
this respect OBSCURE bears similarities with a specification language such
as ACT-TWO.

The second feature of OBSCURE is more fundamental: OBSCURFE is “model-
oriented” rather than “theory-oriented” in the following sense. Being devel-
oped for algebraic specification methods classical specification languages han-
dle with theories (viz. the theories defined by the specifications) rather than
with algebras (viz. the models of the specifications). Instead, OBSCURE han-
dles with models, viz. with functors mapping algebras into algebras. Estab-
lishing a theory for such a model is a problem of logic and is, strictly speaking,
outside the realm of the specification language OBSCURE. By this feature
OBSCURE bears similarities with the specification language Extended ML.
In fact, using the terminology of [20], OBSCURE and Extended ML both
constitute specification languages for parameterized algebras. An advantage
of model-oriented specification languages is that they avoid persistency prob-
lems. In fact, putting two models together is similar to putting two pieces of
program together: the pieces of program do not harm each other. On the other
hand, model-oriented specifications may be less abstract than theory-oriented
ones. A more precise statement of this point may be found in Section 7.

As a third feature OBSCURE does not depend on the specification method
used. It is even nearly institution independent. By this feature OBSCURE is
similar to Clear, ASL and Extended ML.

Section 2 presents an informal overview of the specification language OB-
SCURE and contains examples illustrating the different constructs. Section 3
introduces the terminology used. Section 4 describes a subset of OBSCURE
called the kernel language. The full language is described in Section 5. Exam-
ples illustrating the vxpressive power of OBSCURE are in Section 8. Finally
Section 7 discusses some extensions to OBSCURE such as the use of loose
specifications. Moreover, it shortly presents a specification environment that
was recently completed.



2 An informal overview

The goal of this section is to provide an overview of the specification language
OBSCURE. To this end the main constructs of the language are illustrated
on an example. The treatment is very informal but the reader knowing other
specification languages may get a flavor of what OBSCURE is like. The
context-free grammar of the Appendix may also be helpful.

A specification language builds specifications out of others. In order to be
able to start such a construction the language has to provide means to draw
up specifications “from scratch”. In OBSCURE such specifications are called
atomic. They may be drawn up according to any specification method. They
may even be pieces of code such as Ada packages. In the examples of this
section we systematically use the algebraic specification method based on
(conditional) equational logic with initial semantics and we assume that the
reader is acquainted with this classical method. The use of a constructive
specification method, viz. the algorithmic specification method, will be illus-
trated in Section 6. The following atomic specification specifies lists of natural
numbers:
atomspec
import sorts nat, bool
opns - =,, - : nat X nat — bool
if_then_else_fi : bool x bool x bool — bool
true : — bool
false : — bool
create sorts list
opns ¢ : — list
o _: list x nat — list
- € _: nat x list — bool
semantics
vardec n, m : nat, [ : list
eqns (n € €) = false
(n€ (lom)) = if (n =pq m) then true else n € 1 fi
endatom

An atomic specification is interpreted as a functor mapping algebras of the
imported signature into algebras of the exported signature. The imported
signature consists of the sorts and operations following the keyword import;
the exported signature contains in addition the sorts and operations following
the keyword create. Hence in the case of the example the imported signature
consists of the sorts nat and bool and of the operations =, ., if then_else_fi,
true, false; the exported signature moreover contains the sort list and the
operations €, o, €. This functor is strongly persistent (in the sense of [6]) and



hence maps any algebra (of the imported signature) into its free extension.
Note that the functor is applicable to each algebra of the imported signa-
ture and not only to the (intended) algebra consisting of natural numbers
and booleans. Hence, in OBSCURE the sorts and operations of the imported
signature of a specification behave like formal parameters. For this reason a
specification in OBSCURE bears similarities with a parameterized specifica-
tion in the sense of [6]. Note also that the example is a “didactical” one: in
a practical version of OBSCURE — such as the one used in the specification
environment of Section 7 — the sorts bool and nat are “standard” and their
operations are imported implicitly.

In order to be able to refer to a specification it i8 necessary to give it a name.
The object thus obtained is called a module. An example of such a module
1s:

module NATLIST is

endmodule
where ... stands for the text of the above specification.

An instantiation (or: call) of a module is obtained by writing
NATLIST

This instantiation constitutes a shorthand denotation for the specification
contained by the module.

Modules may be parameterized. An example is the following module specify-
ing the parameterized data type “list of elements”:
module LIST (sorts ¢l, opns Eq : el x el — bool) is
atomspec
import sorts el, bool
opns Eq : el x el — bool
if then_else_fi : bool x bool x bool — bool
true : — bool
false : — bool
create sorts list
opns ¢ : — list
_o_:list x el — list
_€ _:el x list — bool
semantics
vardec e, ¢’ : el, | : list
eqns (e € €) = false
(e € (1o e’)) = if Eq(e,e’) then true else e € I fi



endatom
endmodule

Note that the specification contained by tins module is identical with the one
contained by the module NATLIST except for the substitution of the names nat
and =,,4¢ by el and g respectively. This substitution is not essential and was
performed for didactical reasons only. A possible instantiation of this module

is
LIST {sorts nat, opns _ =,.,. : nat x nal — bool)

Chis instantiation stands for the (text of the) specification contained by the
module

LIST {sorts el, opns Eq : el x el — bool)

in which each occurrence of el and Eq is replaced by nat and =,,4¢ respectively
tience, in our example the instantiations NATLIST and

LIST (soris nat, opns _ =,4; - : nat x nat — bool)

happen to denote the same specification. Note again, that a practical version
of OBSCURE allows abbreviations such as LIST (sorts nat, opns =,,¢).

In general a module may have several parameters each of which may be a sort
or an operation. These sorts and operations must be among the imported
sorts and operations. The difference between the imported sorts and opera-
tions that are parameters and those that are not is merely pragmatic: at each
instantiation only the sorts and operations that are parameters are automat-
ically renamed. Note that the parameter passing mechanism of OBSCURE
is merely based on “renaming”: essentially, the formal parameters are sub-
stituted by the actual ones in the text of the specification. Note also that in
(OBSCURE the parametiers are sorts and/or operations while in most specifi-
cation languages parameters are modules; in other words, in OBSCURE the
interface between modules is realized by sorts and operations rather than by
modules.

We now want to examine the different constructs of the specification lan-
guage OBSCURE. The constructs performing union, composition, renaming
and forgetting are classical and are provided by nearly any specification lan-
guage. The constructs e-axioms and i-axioms allow to express semantical



constraints. The constructs subset and quotient yield subalgebras and quo-
tient algebras respectively. These different constructs are now very informally
discussed. For more precision the reader is referred to Section 4.

Consider again the module NATLIST specifying lists of natural numbers. Let
similarly NATSTRING be a module specifying strings of natural numbers. The
union of their specifications is denoted

NATLIST + NATSTRING

and specifies lists of natural numbers and strings of natural numbers. More
precisely, the imported signature of the specification NATLIST + NATSTRING
is the union of the imported signatures of NATLIST and NATSTRING — and
sunilarly for the exported signature. The union of two specifications is con-
sistent only under certain conditions. For instance, if a name (of a sort or an
operation) occurs in both the exported signature of NATLIST and the exported
signature of NATSTRING it must have the same meaning in both specifications
in order to avoid an ambiguity (*“name clash”) in the exported signature of
the union. It will be shown that these different consistency conditions are
satisfied under certain simple syntactical conditions called context conditions.
A graphical representation of the union of two specifications may be found in
Figure 1(a). Again, it is possible to turn the specification resulting from the
union into a module, e.g.
module NAT-LIST-AND-STRING is

NATLIST + NATSTRING
endmodule

Consider again the module NATLIST. Remember that the imported signature
consists of the sort nat, the operation =,,, and the sort bool together with
some boolean operations. Let now NAT be a module specifying the natural
numbers such that its exported signature coincides with the imported signa-
ture of NATLIST; its imported signature contains the sort bool together with
some boolean operations. The composition

NATLIST o NAT

is a specification, the exported signature of which is that of NATLIST and the
imported signature of which is that of NAT. Hence composition corresponds
to what is sometimes called a refinement step: the top-down design of a spec-
ification consists in successively designing modules such as NATLIST and NAT
and in composing them — until the imported signature of the resulting speci-
fication is empty or, at least, contains only “known” sorts and operations. As
for the union — as well as for the constructs discussed below — composition
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Figure 1: Graphical illustration of a few constructs of the kernel language
of OBSCURE. In this illustration a gpecification is represented by a box.
The arrows entering a box represent its imported sorts and operations, those
leaving a box represent its exported sorts and operations. A dotted line
represents an inherited sort or operation. Each of the symbols a,b,..., f,g
stands for a sort or an operation.



may only be applied if certain context conditions are satisfied. A graphical
representation of the construct may be found in Figure 1(b).

Forgetting (or: hiding) allows to get rid of some exported sorts and operations.
For instance the specification

NATLIST

forget opns _ o _: list x nat — hst

is identical with NATLIST except for the fact that its exported signature does
not contain the operation o (see Figure 1(c)). Forgetting a sort implies for-
getting additionally all operations in which this sort occurs. Of course, it is
nossible to forget sorts or operations from the exported signature only.

It is possible to rename sorts and operations from the imported or the ex-
ported signature using constructs characterized by the keywords i-rename
and e-rename as illustrated in Figure 1(e) and 1(d) respectively. The latter
case is illustrated by the specification:
NATLIST
e-rename sorts list opns ¢ : — list

as sorts natlist opns Enatl : — natlist

I'he exported signature of this specification is the same as that of NATLIST
but with the sort natlist (instead of list) and the operations

Enatl : — natlist
o _: natlist x nat — natlist

_ € _: nat x natlist -+ bool

A more elaborate example making use of the parameterized module LIST (and
of an abbreviated notation) is the following module. It illustrates how to avoid
name clashes during union of both instantiations of the module LIST:
module LISTS-OF-NAT-AND-STRING is
(LIST (sorts nat, opns =,,¢)
e-rename sorts list opns € : — list
as sorts natlisi opns Enatl)
+
(LIST (sorts string, opns =,¢ming)
e-rename sorts list opns ¢ : — list
as sorts sirlist opns Estrl)
endmodule

The next construct is the construct of imported azioms. It is characterized
by the keyword i-axioms and allows to express semantical constraints on the
imported algebras. The following specification illustrates its use.

module AXLIST (sorts el, opns Eq : el x el — bool) is



LIST
i-axioms
vardec e,e’,e” : el
Eq(e,e) = true
Eq(e,e’) = true D Eq(e’,e) = true
Eq(e,e’) = true A Eq(e’,e”) = true D Eq(e,¢”) = true
endmodule

The reader will have understood that
LIST
stands for the module instantiation
LIST (sorts el, opns Eq : el x ¢l — bool)

In fact, by notational convention the actual parameters of an instantiation
may be omitted if they happen to be identical with the formal ones. Note that
the axioms are expressed in first-order predicate logic with equality. Hence =,
7 and A are not operations of sort bool but are the connectives of predicate
logic. Semantically, this module is identical with the module LIST except
for the following: the functor representing the meaning of the specification
is undefined when applied to an (imported) algebra that fails to satisfy the
axioms, i.e. in which Eq is not (interpreted as) an equivalence relation. From
a practical point of view the construct of imported axioms obliges the user
of the module AXLIST to prove that the axioms hold in the algebra that is
effectively imported. In the course of the design of a (complete) specification
the user will reach a point where he will know sufficient properties of this
algebra to be able to prove (or disprove) this property. He may, for instance,
be able to perform the required proof in the “frame” of the specification
AXLIST (sorts nat, opns =,.¢)

o NAT

The proof then consists in showing that the operation =,,, specified by the
module NAT constitutes an equivalence relation. If the proof succeeds, the
specification AXLIST(...) o NAT is correct in the sense that the axioms are “al-
ways” satisfied or, in other words, that the functor representing the meaning
of AXLIST(...) o NAT is defined whenever the functor defining the meaning of
NAT is. Clearly the construct of imported axioms bears strong similarities
with a precondition of an imperative program.

The next construct is the construct of ezported azioms and is characterized by
the keyword e-axioms. While imported axioms are required to be formulas
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of the imported signature, exported axioms must be formulas of the exported
signature. The construct may be used to certify that the data type specified
satisfies a given property. It consequently bears similarities with a postcondi-
tion of an imperative program. A trivial specification illustrating the use of
the construct is
LIST
e-axioms

vardec e, e’ : el, | : list

((e € ) = true) D ((e € lo ') = true)

From a theoretical point of view the construct again restricts the domain of the
functor representing the meaning of LIST. From a practical point of view, the
user has to prove that the axioms hold in the exported algebra. It is interesting
tc note that the construct of exported axioms allows to compare different
specifications in the following sense. Suppose that an atomic specification is
drawn up twice: once with the algebraic specification method and once with
the algorithmic one [15]. The equations of the algebraic specification are now
added as exported axioms to the algorithmic specification. Loosely speaking
one may say that the proof imposed by the construct of exported axioms
consists in showing that the algebra defined by the algorithmic specification
is a model of the algebraic specification.

The constructs subset and quotient build subalgebras and quotient algebras
respectively. In order to illustrate these constructs we first enrich the module
LIST with five operations performing conditional insertion, deleting an element
from a list or checking whether a list is a sublist of another list, whether it
contains duplicates or whether it contains the same elements as another list:
module RICHLIST (sorts el, opns Eq : el x el — bool) is
atomspec
import sorts list, el, bool
opns ...
create opns Insert : list x el — list
Delete : list x el — list
_C _: list x list — bool
Nodup : list — bool
Ev : list x list — bool
semantics
vardec ee’ : el, [,l’ : list
eqns (e € ) = true D Insert(Le) = |
(e € 1) = false D Insert(le) = lo ¢
Delete(e,e) = ¢
Eq(e,e’) = true D Delete(lo e',e) = |
Eq(e,e’) = false D Delete(l o e’,e) = Delete(le) o e’

11



(e C1) = true
(e€l') =true D (loe
(e€l') =false D (loe
Nodup(e) = true
(e € 1) = true D Nodup(lo e) = false
(e € 1) = false D Nodup(l o e) = Nodup(l)
(ICU') =true D Ev(ll'y=(I'C 1)
(IC I") = false D Ev(ll") = false
endatom
o LIST
endmodule

(I C Delete(l',e))

cry=
C I') = false

We now obtain a specification of muitisets by a quotient construct. For di-
dactical reasons we add an export renaming:
module MULTISETS (sorts el, opns Eq : el x el — bool) is

RICHLIST

quotient of sorts list by

vardec i,l' : list. Ev(ll’') = true

e-rename sorts list as sorts multiset

endmodule

Informally, the quotient construct identifies lists that differ only by the order
of their elements. Clearly, this construction is semantically sound only if the
operation Ev constitutes a congruence relation. In [15] it is shown how a
formula expressing this congruence property may be effectively constructed.
Again, it is up to the user to prove the validity of this formula.

By a subset construct we may derive from the specification of multisets a
specification of sets. For semantical reasons that will be explained below, we
have first to remove the operation o:
module SETS (sorts el, opns Eq : el x el — bool) is

MULTISETS

forget opns _ o _ : multiset X el — multiset

subset of sorts multiset by

vardec m : multiset. Nodup(m) = true

e-rename sorts multiset as sorts set

endmodule

Informally, the subset construct removes from the carrier set all multisets
with duplicates. Clearly, this construction is semantically sound only if all
operations respect the property Nodup. Insert, for instance, has to yield a
multiset without duplicates when applied to a multiset without duplicates.
For this reason it was necessary to remove the operation o. Again, a formula
expressing the consistency of the construct may be effectively constructed [15]
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and its validity has to be proved by the user.

Note that the subset and quotient constructs can not be dispensed with when
the atomic specifications are drawn up according to the algorithmic speci-
fication method. In the case of algebraic specifications the effect of these
constructs may be simulated by additional equations such as

Insert(Insert(l,e),e’) = Insert(Insert(l,e’),e)

We nevertheless feel that even for these specifications the use of the subset
and quotient constructs may be helpful, because they build subalgebras and
quotient algebras in a more explicit and — in some sense — more constructive

way.

3 Basic notions

Most of the notions and notation introduced in the section are classical (cf.
[6, 5]). As a difference an operation is defined to be an operation name
together with an arity. This allows to better bridge the gap between the
algebraic notion and its syntax in a specification language.

3.1 Algebras

3.1.1 Syntax

We start from two not further specified notions: the notion of a sort and the
notion of an operation name.

An operation is a (k + 2)-tuple

n:8 X...X 8 — 8

where n is an operation name and sy, ..., 8, 8 are sorts (k > 0). The (k+1)-
tuple 81 X ... X 8, — & is called the arily of the operation. Note that the
equality of two operations implies the equality of their names and the equality
of their arities.

A signature is a pair ¥ = (S, 0) where S is a set sorts and O a set of operations
such that for each operation

n:g X...X 8 — 8

13



of O one has 8;,...,8,,8 € S.

If ¥ and ¥’ are signatures, expressions such as ¥, U X’ or £ C ¥’ are meant
componentwise.

3.1.2 Semantics
et ¥ = (S, 0) be a signature. A (X-)algebra is given by

(i) aset A(s) for each s € S, called the carrier set of sort s;
(i) a (possibly partial) function
Ao) : A(s1) x ... %X A(8k) ~ A(8k+1)

for each operation o = (n: 8, X ... X 8 — 841) of O, (k > 0).

['he class of all £-algebras is denoted Algy,.

Let ¥ C ¥’ be signatures and let A be a ¥'-algebra. The ¥-algebra obtained
by restriction of A to the signature ¥ is denoted A | .

3.2 Module functors

A module signature is a pair (L;, Z.) of signatures. X; is called the imported
signature, ¥, the ezported one. The sorts and operations from ¥; N 3. are
said to be inherited.

A module functor for the module signature (X;,%.) is a (possibly partial)
function

F: Algg, ~ Algy,

satisfying the following persistency condition:

for each algebra A € Algy, from the domain of F:
for each inherited sort or operation ¢ € £; N X.:
F(A)(c) = A(c).

Informally, the persistency condition expresses that the meaning of any in-
herited sort or operation ¢ has the same meaning in the imported algebra and
the exported algebra.

14



Module functors are used to model the semantics of non-loose OBSCURE
specifications. A generalization for loose specifications will be briefly discussed
in Section 7.

Category theorists should note that these functors have no morphism part
(cf. [22]).

3.3 Signature morphisms
3.3.1 Definition

Let £ = (S5,0) and ¥’ = (5',0’) be signatures. A signature morphism (on
%), say o : =Y/, is a pair 0 = (05,00) where

e g5 :S5—5is a (total) function;

¢ 0o : O—0'is a (total) function such that for each o = (n: s x ... X
8, — 8) from O (k > 0), one has

o0o(0) = (n' : os(81) X ... x os(8k)—0s(s))
for some operation name n’.
Informally, a signature morphism “renames” the signature ¥ while respecting
the arities of the operations.

If o : £—Y' is a signature morphism and A a ¥'-algebra, the o -reduct of A
is the L-algebra A | o defined by

(A]a)(c) = A(o(c))

for each sort and operation ¢ € ¥.

3.3.2 Renaming pairs

In most specification languages signature morphisms are described by so-
called renaming pairs indicating the correspondence between the old and the
new names. Let ¥ be a signature. A renaming pair (on the signature ¥) is of
the form

/ / / !
((sorts sy,...,8x, Opns oy,...,07),(sorts 8,,...,8,, opns o0},...,0;))
with s,,...8x,8],...,8} sorts, o1,...,0;,0},...,0] operations (k > 0,1 > 0),
such that:

15



i)  81,...,8k,01,...,0; are from L;

(

(i1) the sorts s,,..., s, are pairwise different;

(iii) the operations o,,...,0; are pairwise different;
(

iv) for each i, 1 < ¢ < k, the following holds:
if the arity of o; is t; x ... X t, — tp41 (p 2 0), then the arity of o] is
£ X ...xth —th,, with

’ { s, ift; = s, for some p (1 <p<k)

7 t; otherwise

foreach j (1< j<p+1).

Informally, the condition (iv) expresses that the sorts of the new operations
are already correctly renamed.

It is understood that the keyword sorts may be omitted if k = 0. A similar
remark holds for opns.

We now associate signature morphisms to renaming pairs. Let x be a renam-
ing pair

((sorts s;,...,8,, Opns oy,...,0;).(sorts s},...,8,, opns o,...,0}))

on a signature ¥ = (5,0). Let ¥’ = (S§’,0’) be an arbitrary signature with
D% Put §” =S"U{s},...,s,} and let o5 : S'—>S" be given by

s ifs=gs,forsomep, 1<p<k
= P P ) —-— -—
os(s) { 8 otherwise

for each s € S’. Finally, let £” = (S”,0"”) be the signature defined by

0" ={(n:0os(ti)x...xo5(ty) = os(t)) | (n:t;x...xt, = t) € O'}U{o},...,0}.

The signature morphism on X' o : £'— X" induced by the renaming pair = is
the pair 0 = (0s,00) where gp : 0'—=0" and

sl 0y ifozqqforsomeq(lgqgl)
n:os(ty) X ... xos(ty) = os(t) otherwise

foreacho=(n:t; x...xt, = t)€ O (p20).

16



3.4 Subalgebras, quotient algebras

We now introduce two constructions yielding subalgebras and quotient alge-
bras respectively. They constitute special cases of the classical ones (see e.g.
(6]) in that they “act” on a single sort.

Let ¥ be a signature and A a Y-algebra. Let further s be a sort from ¥ and
P a subset of the carrier set A(s). The subalgebra generated by the algebra A
and the set P is the Y-algebra B defined by:

(1)  for each sort ¢t from X:

P ift =3
B(‘)'{ A(t) otherwise

(i1) for each operation 0 = (n:¢; X -+ X ty — tryy) from X:

B(o) = A(o) | (B(t,) x ... x B(ts))

it is well-known that B is effectively an algebra only if the algebra A satisfies
the following closure condition:

for each operationo =(n:t; X ... X tp — tg4y) from ¥

(k> 0):

A(0)(B(t1) x ... x B(tx)) C B(te+1)

Informally, the closure condition expresses that elements from the subset are
mapped into elements of the subset.

Let ¥, A and s be as above. Let @ be an equivalence relation in the carrier
set A(s). In order to simplify the wording of the definitions it is useful to
provide the other carrier sets with an equivalence relation as well, viz. with
the identity relation:
for all sorts t from X:

) Q ift=3s
Q= {(a,a)|a € A(t)} else.

The quolient algebra generated by the algebra A and the equivalence relation
Q is the X-algebra B defined by:

17



(i) for each sort t from X:
B(t) = {[a] | a € A(¢)}

(where [a] denotes the equivalence class of a generated by Q)

(i1) for each operation o = (n:¢; X ... X tx — tp4;) from £ (k > 0):

Blo)(as), .- [ax]) = { E:;(c;zé;le,d...,ak)] gt:e(r(:‘)'&,-..,ak) is defined

for each a; € A(t;) (1 <1t < k).

It is well-known that B is effectively an algebra only if the algebra A satisfies
the following congruence condition:

for each operation o : ¢; X ... X tx — try1 (kK > 0) and for all
a:,b; € A(t:) with (a;,b:) € Q, (1 < i < k):
either A(o)(ai,...,ax) and A(0)(b;,...,bs) are both defined
and (A(0)(a1,. .., ax), A(0)(br, -, bk)) € Q..
or A(o)(ay,...,ax) and A(o)(b;,...,bs) are both undefined.

Informally, the condition expresses that equivalent arguments lead to equiva-
lent values.

3.5 Logic

As we want OBSCURE to be compatible with different logics, we do not want
to fix a particular logic. Instead we merely assume that the logic satisfies the

following properties:

(i) for each signature ¥ the logic provides a set WFF(X) of syntactical
objects called formulas;
(i1) for each signature ¥ the logic provides a relation |=, called satisfaction
relation, with
[ C Algy x WFF(X)
(iii) for each signature ¥ and each sort s
o there exist formulas, called properties (of sort s), that define a
subset of the carrier set A(s) for each algebra A € Algy;

o there exist formulas, called relations (of sort s), that define a re-
lation in the carrier set A(s) for each algebra A € Algy.
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We now shortly comment on this definition.

in the case we restrict ourselves to algebras with total operations a possible
logic is first-order predicate logic. Let us consider the exported signature of
the module RICHLIST of Section 2 and let I,I’ be variables of sort list. A
property is, for instance, the formula

Nodup(l) = true

and a relation
Ev(1,1') = true.

In the case partial operations are allowed possible logics are, for instance,
LCF [17] or the logic presented in [15].

4 The kernel language

The kernel language constitutes a subset of OBSCURE. It contains no (pa-
rameterized) modules and only the “essential” constructs. The syntax is very
elementary but sufficient to allow a precise and formal description of the se-

mantics.

The kernel language is a language of specifications with non-loose semantics.
A generalization for specifications with loose semantics is treated in Section 7.

The description of the kernel language is parameterized for the specification
method and the logic. More precisely, the description is based on a not further
defined set At of atomic specifications and on a not further defined logic. It is
merely assumed that the specification method according to which the atomic
specifications have been drawn up associates with each specification of At a
module signature and a module functor.

4.1 Syntax

The kernel language is defined as a set of specifications. Its syntax is defined in
a classical way by a context-free grammar and by context conditions defining
a subset of the language defined by this grammar.

19



4.1.1 The context-free grammar

In the now following context-free grammar the nonterminals < spec >,
” «

< atomspec >, < Iso > and < formula > stand for “specification”, “atomic spec-
ification”, “list of sorts and operations” and ‘formula” respectively.

<spec> = < atomspec> | (R1)
(< spec> + < spec>) | (R2)
(< spec> o <spec>) | (R3)
(< spec> forget <lso>) | (R4)
(< spec> e-rename <Iso> as <lIso>) | (RS)
(< spec> i-rename < lIso> as <lIso>>) | (R6)
(< spec> e-axioms < formula>) | (R7)
(< spec > i-axioms < formula>) | (R8)
(< spec > subset of <sort> by < formula>) | (R9)
(< spec > quotient of <sort> by < formula>) | (R10)

<lso> u= sorts <Is>, opns <lo> | sorts <Is> | opns <lo>

<ls> = <sort> | <Is>, <sort>

<lo> = < operation> | <lo>, < operation>

< operation> 1= < operation name> : — <sort> |

< operation name > : <Is> — <sort>

The non-terminals < atomspec> and < formula> are not further defined in
order to account for the independence from the specification method and the
logic. The non-terminals <sort> and < operation name> are not further
defined in order to avoid fixing notational details that are irrelevant at this
stage of the description.

The brackets of the rules (R2) to (R10) may be dropped whenever no ambi-
guity arises and in the case of left associativity.

4.1.2 The context conditions

The context conditions define a subset of the context-free language defined
above. This language is called the kernel language of OBSCURE; its sentences
are called specifications.

As the context conditions make use of the module signature, it is appropriate
to define simultaneously a function, say S, mapping the specifications from
the kernel language into their module signatures. The function S is called the
signature function. We define the notations S; and S, by

S(m) = (8i(m), Se(m))
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for any specification m from the kernel language.

The now following inductive definition of the set of specifications constituting
the kernel language and of the signature function S follows the pattern of the
context-free rules (R1) to (R10). The context conditions are marked with (i),
(ii), .... Their main role is to make sure that the values of the function S are
module signatures. The intuitive meaning of the different context conditions
is commented after Definition 1. The definition of the signature function is
illustrated on Figure 1. By the way, Definition 1 defines the kernel language
completely in that it makes the context-free rules (R1) to (R10) superfluous.

Definition 1 The set of all specifications constituting the kernel language
and the signature function S are defined inductively as follows:

(1) Each atomic specification at from At is a specification (of the kernel lan-
guage); the module signature S(at) is fixed by the specification method
according to which at is drawn up.

(2) (Union) if m;, m; are specifications and if
(i) Se(my) NS.(m2) C Si(my) N Si(m2)

(1) Se(m1) N Si(mz) C Si(my)
(1ii) Se(mz) N Si(my) C Si(ma2)
then

e (m; + my) is a specification

o S(my +my) = S(my) US(ma);

(3) (Composition) if my,my and if

(i) Se(mz) = Si(my)
(i) Si(m2) N Se(my) C Si(m4)
then
e (m,; omy) is a specification
o S(m; omy) = (Si(m2),Se(m1));

(4) (Forgetting) if m is a specification, if Iso is a list of sorts and operations
and if
(i)  S.(m)\ lso is a signature?
then

e (m forget [s0) is a specification
o S(m forget Iso) = (Si(m),Se(m) \ Iso);

2In this notation the list [so of sorts and operations is identified with the (pair consisting
of the) corresponding sets.
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(7)

(Export renaming) if m is a specification, if Isol, lso2 sre lists of sorts
and operations and if

(i) (lsol,l802) is a renaming pair on the signature S.(m); call p the
signature morphism on S.(m) induced by (lsol, ls02)

(i1) the signature morphism p is injective on S.(m)
(ili) none of the sorts and operations of lso2 are from S;(m)
then

o (m e-rename lsol as [502) is a specification

e S(m e-rename lsol as Is02) = (S;(m), p(S.(m)));

(Import renaming) if m is a specification and Ilsol, lso2 are lists of sorts
and operations, and if

(i) (Isol,ls02) is a renaming pair on the signature S;(m); call p the
signature morphism on S;(m) U S.(m) induced by (isol, is02)

(1) the signature morphism p is injective on the operations of S.(m) \
Si(m)
(iii) the sorts and operations of lso1 are all from S;(m)
(iv) p(s0) € p(S.(1n) \ Si(m)) for each sort or operation so of S;(m)
then
¢ (m i-rename ls01 as ls02) is a specification
e S(m i-rename lsol as [s02) = p(S(m));
(Export axioms) if m is a specification and if
(i) w € WFF(S.(m))
then
¢ (m e-axioms w) is a specification
e S(m e-axioms w) = §(m);
(Import axioms) if m is a specification and if
(i) w € WFF(Si(m))
then
e (m i-axioms w) is a specification
e S(m i~axioms w) = S(m);
(Subalgebra) if m is a specification and if
(i) w € WFF(S.(m))
(ii) w is a property of sort s
(i) s is a sort from S.(m) \ S;(m)
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¢ (m subset of s by w) is a specification
e S(m subset of s by w) = S(m);
(10) (Quotient algebra) if m is a specification and if
(i) w € WFF(S.(m))
(i) w is a relation of sort &
(ii1) s is a sort from S.(m) \ S;(m)
then
¢ (m quotient of s by w) is a specification
¢ S(m quotient of s by w) = S(m). a

The significance of these context conditions becomes clear in the proofs of
Theorem 1 and 2. We now shortly comment on the most “difficult” ones. The
context condition {2)(i) expresses that a sort or operation exported by both
m; and my is inherited by m; and my. The condition (2)(ii) expresses that
a sort or operation exported by m; and imported by m, is inherited by m,.
The condition (2)(iii) is similar. The condition (3)(ii) expresses that a sort or
operation exported by m; and imported by m is inherited by m; and m,. The
condition (5)(ii) avoids name clashes within the exported signature. Similarly,
(5)(iii) avoids clashes between the new exported names and the imported ones.
The condition (6)(iii) allows to rename only imported sorts and operations.
Note that contrasting with the preceding construct the renaming has not
to be injective on S;(m), i.e. different names may be given the same new
name; the utility of this possibility will become clear in the discussion of
the parameter passing mechanism in Section 5.2: it must be possible that
different formal parameters get the same actual value. The condition (6)(iv)
avoids clashes between the new imported names and the (new) non-inherited
exported ones. Note that according to condition (6)(i) the renaming pair is
on the signature S;(m) but the signature morphism on the signature S;(m) U
S.(m). This accounts for the fact that the renaming of a sort from S§;(m) may
modify the arity ol an operation from S.(m) \ S;(m). Finally, the condition
(8)(ii) expresses that the renaming does not lead to name clashes between
the non-inherited exported operations. (Remember that the renaming of an
imported sort may modify the arity of a non-inherited exported operation).
The conditions (9)(ii) and (10)(ii) refer to the construction of subalgebras and
quotient algebras in Section 3.4 and Section 3.5. The following theorem states
that the context conditions guarantee that the range of the signature function
S consists of module signatures.

Theorem 1 S(m) is a module signature for each specification m of the kernel
language. O

The proof of the theorem may be found in [14].
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4.2 Semantics

The semantics of the kernel language is defined denotationally. More pre-
cisely, a function M called meaning funciion is introduced that maps each
specification of the kernel language into a module functor. Theorem 2 states
that the values of the meaning function MM resulting from the now following
Definition 2 are effectively module functors satisfying the persistency condi-
tion. The definition of M is along the same pattern as the definition of the
signature function S in Definiticn 1: The cases (1) to (10) and the notation
correspond to those of Definition 1. In order to abbreviate the definition we
use the following shorthand notation for the cases (2) to (10): instead of

“for all algebras A € Alggs () :
E if C holds
M) _{ undefined otherwise”
we write  “M(n)(A) = E iff C”.
Deflnition 2 The meaning function M is defined inductively as follows:

1) for each atomic specification at, M(at) is the module functor associated
with this atomic specification;

{2) (Union)
M(my 4+ mp)(A) = M(my)(A | S,(m1)) U M(ma)( A | Si(ms))

iff M(my)(A | S.(iny)) and M(m2)(A4 | Si(mz)) are both defined;
(3) (Composition)

M(my o ma)(A) = M(my)(M(m2)(4))

iff M(my)(A) and M(m;)(M(m;)(A)) are both defined;
(4) (Forgetting)

M(m forget lso)(A) = M(m)(A) | (Se(m) \ is0)

iff M(m)(A) is defined;
(5) (Export renaming)

M(m e-rename Isol as Is02)(A) = M(m)(A) | p~!

ifft M(m)(A) is defined where p is the signature morphism on S.(m)
induced by the renaming pair (lsol, ls02);
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(10)

(Import renaming}

M(m i-rename lso! as [s02)(A) i1s defined iff M(m)(A | (g | Si(m)))
is defined where p is the signature morphism on S;(m)US,.(m) induced
by the renaming pair (Isol,{s02);

in this case M(m i-rename Isol as [s02)(A) is the p(S.(m))-algebra
given by

M(m i-rename [sol as [502)}( A)(p(s0)) = M(m)(A | (p ' S,(m)))(se)

where so is a sort (or operation) from S.(m);

(Export axioms)
M(m e-axioms w)(A) = M(m)(A)

iff M(m)(A) is defined and M(m)(A) = w;

(Import axioms)
M(m i-axioms w)(A) = M(m)(A)

iff M{m)(A) is defined and A |= w;

(Subalgebra)
M(m subset of s by w)(A4) =
the subalgebra generated by the algebra A(m)(A) and the

subset of the carrier set A(s) defined by the property w
iff M(m)(A) is defined and the algebra M(m)(A) satisfies the closure
condition of Section 3.4;

(Quotient algebra)

M(m quotient of s by w)(A) =
the quotient algebra generated by the algebra AM(m)(A)
and the relation Q in the carrier set A(s) defined by the

formula w
ifft M(m)(A) is defined, Q is an equivalence relation and M(m)(A)
a

satisfies the congruence condition of Section 3.4.

We now shortly comment on this definition.

As for case (1) it should be remembered that we restrict ourselves to specifi-
cation methods with non-loose semantics. In the particular case of algebraic
specifications with initial semantics the module functor M(at) is essentially
the functor, say Z(at), mapping each algebra of the imported signature into
its free extension. The main difference between M{(at) and Z(at) is that
M(at)(A) is undefined whenever Z(at)(A) is not a strongly persistent ex-
tension of the (imported) algebra A. In the particular case of algorithmic
specifications the module functor M(at) is always total (see [15]).
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The cases (2) and (3) are illustrated by Figure 1(a) and 1(b). The cases (4),
(5), (6) may seem complicated but correspond exactly to what is intuitively
intended by forgetting and renaming (see Figure 1(c), 1(d), 1(e)). By con-
text conditions (5)(i) and (ii), p in (5) is an injective signature morphism
S.{m)—Y’, where ¥’ is constructed as described in Section 3.3 and therefore
the signature morphism p~! : p(S¢(m))—S.(m) may be formed. In (6), the
signature morphism p is on S.(m) U S;(m) by the context condition (6)(i);
hence it may therefore be restricted to S;{(m). In the cases (7) and (8) the
domain of the module functor is restricted to those (imported) algebras that
lead the formula w to be satisfied. The cases (9) and (10) are best illustrated
by the modules SETS and MULTISETS of Section 2.

The following theorem states that the definition of the meaning function is
consistent and, in particular, that its range consists of module functors satis-
fying the persistency condition of Section 3.2.

Theorem 2 For each specification m of the kernel language M(m) is a mod-
ule functor for the module signature S(m). 0

The proof of the theorem may be found in [14]. It heavily relies on the context
conditions of Definition 1.

5 The full language

The kernel language described above is too elementary for practical use. In
particular, it has no module concept, does not allow parameterization, pos-
sesses constructs —— such as the construct of composition — that are too
primitive, leads to a clumsy notation and does not allow a strong typing of
terms. The full language of OBSCURE is intended to avoid these deficiencies.
[t is defined as the extension of the kernel language.

A context free grammar of OBSCURE that does not take into account the
syntactical sugar of Section 5.4 may be found in the Appendix.

5.1 Modules

The kernel language is first extended by a concept for non-parameterized
modules. The case of parameterized modules is delayed until Section 5.2.

Sections 5.1.1 and 5.1.2 introduce the notion of a module and generalize the
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notion of a specification. Section 5.1.3 shortly discusses the notion of a mod-
ularized specification.

The description of a micdule concept requires the introduction of an envi-
ronment. Informally, an environment is a table listing the modules already
introduced. Formally, an environment is a partial function mapping module
names into specifications. In Sections 5.1.1 and 5.1.2 we assume that the spec-
ifications into which an environment maps module names are specifications of
the kernel language. The general case is shortly discussed in Section 5.1.3.

5.1.1 Syntax

The context-free grammar of the kernel language is augmented by two rules.
They define module declarations and module instantiations respectively:

<module> : = module < module name > is
< spec > endmodule (M1)
< spec > . = < module name > (R11)

The definition of the non-terminal < module name > is left pending. Note
that we are now interested in two notions, viz. modules and specifications.

The context conditions now moreover depend on the environment in which the
syntactical unit occurs. In other words, the set of all (syntactically correct)
modules and the set of all (syntactically correct) specifications are defined
with respect to an environment. In order to cope with this new situation,
the signature function S of Section 4.1.2 is generalized in a classical way: in-
stead of mapping specifications into module signatures the function S maps
the specifications into functions which in their turn map environments into
module signatures. We are now able to express the context conditions for
the rules (M1) and (R11) and to update those for the rules (R1) to (R10).
More precisely, Definition 3 constitutes a generalization of Definition 1 (Sec-
tion 4.1.2) and inductively defines the set of all modules and the set of all
specifications for a given environment.

Definition 3 Let env be an arbitrary environment mapping module names
into specifications of the kernel language. The set of all modules for env, the
set of all specifications for env and the signature function S are inductively
defined as follows:

(M1) (Module declaration) if n is a module name and m a specification for
the environment env, and if

(i) env(n) is undefined
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then
e module n is m endmodule is a module for the environment env

(R1) to (R10) As (1) to (10) of Definition 1 but with each expression of the
form S(m) replaced by S(m)(env). Moreover, instead of

“...specification(s) ...”
one should read
“...specification(s) for the environment env”.

{R11) (Module instantiation) if n is a module name and if
(i) env(n) is defined
then

¢ n is a specification for the enviroument env

e S(n)(env) = S(env(n))(env) 0

Informally, context condition (M1)(i) expresses that the name n is “new”. The
context condition (R11)(i) requires that the module name already “exists”
i.e. has been “already” declared. Note that together these context conditions
exclude “recursive instantiations”.

5.1.2 Semantics

The meaning function M is generalized in the same way as the signature func-
tion S above. We adopt the shorthand notation of Definition 2 (Section 4.2)
as well as the notation of the context conditions above.

Definition 4 The meaning function M is defined inductively:

(R1) to (R10) As for (1) to (10) of Definition 2 but with all expressions of
the form M(m)(A) replaced by M(m)(env)(A).

(R11) (Module instantiation)
M(n)(env)(A) = M(env(n))(env)(A)

iff M(env(n))(env)(A) is defined. O
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5.1.3 Modulariged specifications

The modularized design of a specification essentially consists in drawing up an
environment by successively designing its modules. Alternatively, a modular-
ized specification may be considered as a sequence of modules; starting from
an empty or a “standard” environment this sequence builds up the desired
environment.

We dispense with a formal definition of these notions. Actually, such a defini-
tion is classical and puts no problems. The main difference with the definitions
above is that (the semantics of ) a module declaration has now a side-effect in
that it adds the specification to the environment. Moreover, an environment
now maps module names into specifications that may contain module instan-
tiations. By the way, the context conditions make sure that an environment
built up by a modularized specification is hierarchical in the following way:
consider the graph by making an arrow lead from a module name m to a
module name n if and only if the specification of m contains an instantiation
of n. This graph contains no cycles.

5.2 Parameterized modules

Informally, a module declaration and a module instantiation now both contain
a list of sorts and operations. These lists may be viewed as the formal and
actual parameter lists respectively. Together they constitute a renaming pair
that may be used in an import renaming construct. This import renaming
constitutes the parameter passing mechanism.

Formally, the context free grammar is extended by two rules:

<module> = module < module name>(<Iso>) is
< spec> endmodule (M2)
< spec> = < module name >(< Iso>) (R12)

An example of a module declaration is (cf. Section 2):
module LIST (sorts el, opns Eq: el x el — bool) is ... endmodule
A corresponding instantiation is:
LIST (sorts nat, opns _ =, - : nat X nat — bool)

An environment now maps each module name of its domain into a pair con-
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sisting of a specification and a list of sorts and operations. This list represents
the formal parameter list of the specification.

Definition 3 remains valid but is extended by the two following cases (M2)
and (R12):

(M2) (Module declaration with parameters)
if n is a module name, Iso a list of sorts and operations and m a specification

for the environment env and if

(i)  env(n) is undefined

(1i)) the sorts of lso are pairwise different

(11i) the operations of lso are pairwise different
(

iv) the sorts and operations of Iso are all from S;(m)(env)

¢ module n(lso) is m endmodule is a module for the environment env

Informally, the conditions (ii) and (iii) entitle Iso to be the first element of a
renaming pair. The condition (iv) allows this renaming pair to be used in an
import renaming construct.

(R12) (Module instantiation with parameters)
if n is a module name, lso a list of sorts and operations, and if

(i)  env(n) is defined; put env(n) = (m, lso’)

(ii) (Iso’,ls0) constitutes a renaming pair on the signature S;(m)(env); call
p the signature morphism on the signature S;(m)(env) U S.(m)(env)
induced by (iso’, lso)

(ii1) the signature morphism p is injective on the operations of S.(m)(env)\
Si(m)(env)
(iv) the sorts and operations of Iso’ are all from S;(m)(env)

(v) p(s0) € p(S.(m)(env) \ S;(m)(env)) for each sort or operation so of
Si(m)(env)

then

e n(lso) is a specification for the environment env
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o S(n(lso))(env) = S(m i-rename lso’ as iso)(env) where m and Iso’ are
defined by env(n) = (m, Iso’)

Informally, the conditions (ii) to (v) allow the use of iso’ and Iso in an import
renaming construct (see Definition 1(8)).

Using the same notational conventions as above we obtain the following ad-
ditional cases for the definition of the meaning function M:

(R12) (Module instantiation with parametcrs)
M(n(lso))(env)(A) = M(m i-rename Iso’ as Is0)(env)(A)

iff M(m i-rename lso’ as iso)(env)(A) is defined where m and Iso’ are de-
fined by env(n) = (m, Iso’).

A generalization of Section 5.1.3 for parameterized modules is straightforward.

it is interesting to note that the use of parameters is essentially an elegant way
to express a renaming of imported sorts and operations. Hence the difference
between parameters on the one hand and imported sorts and operations that
are not parameters on the other hand merely lies in the fact that the former
are renamed “automatically”.

5.3 Macros

The context conditions of the composition construct are particularly stringent:
for

(m1 0o my)
to be correct it is required that S.(m2;) = Si(m;) (see Definition 1(3)). We
therefore introduce a more liberal construct called the construct of liberal

composition and denoted as
(m1 © ma)

Formally this new construct is defined as a macro, i.e. as a shorthand notation
for a sequence of constructs of the kernel language. Let for any signature

1g

denote an atomic specification defining the identity module functor for the
module signature (X,X). (It is assumed that the specification method used
allows to write such “empty” specifications.) By definition

(m; ©® ma)
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Figure 2: Graphical illustration of the construct of liberal composition. The
conventions are those of Figure 1.

stands for the specification
((my +1g,) 0 (m2 + 15,))

with 3%y, ¥, defined by

Y1 = (Se(mz)\Si(my))U{s| sis a sort of the arity of an
operation of S.(m3z) \ Si(m,)}
¥y = (Si(m;)\Se(mz2))U{s| sis a sort of the arity of an

operation of S;(m;) \ S.(m2)},

i.e. ¥, and X, are the smallest signatures containing S.(mz) \ Si(m;) and
Si(my) \ Se(mg) respectively.

The context conditions and the semantics of (m; ® m3) are of course those of
the specification it stands for.
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Two further constructs — denoted og and ®g respectively — are also defined
as macros:

my og my stands for my o m,
my @r my stands for my ® m,

Informally, the constructs o and ® correspond to a top-down design while o
and ®R correspond to a bottom-up design.

5.4 Syntactical sugar

Among the possible abbreviations let us mention the two following ones to be
used in Section 6:

o the arity of an operation may be omitted whenever this does not lead
to an ambiguity;

o the instantiation
n(lso)

of a parameterized module (see rule (R12)) may be written

n

whenever env(n) = (m, Is0); in other words, the actual parameters may
be omitted if they coincide with the formal ones (cf. module AXLIST of
Section 2).

A further useful notational simplification is described in the now following
Section 5.5.

5.5 Export parameters

Consider again the module declaration of LIST in Section 2:
module LIST (sorts el, opns ...) is ... endmodule

Its exported signature contains, among others, the sort list. Consider now
the instantiations
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LIST (sorts nat, opns ...)
and
LIST (sorts string, opns ...)

Hoth have the sort list in their exported signatures. Hence, before it is pos-
sible to “unite” these instantiations by the construct + it is necessary to
rename at least one of these sorts fist. This requires an export renaming
-~ as illustrated in the module LISTS-OF-NAT-AND-STRING of Section 2. The
idea of export parameters is to provide a means for performing this export
renaming automatically at each instantiation. Informally, export parameters
behave like (normal) parameters but induce an export renaming rather than
an import renaming.

Formally, we add two context-free rules:

<module> := module < module name>(<lso>)(<Iso>)
is <spec> endmodule (M3)
< spec> = < module name >(< Iso>)(< Iso>) (R13)

An environment now maps module names into triples consisting of a specifica-
tion and two lists of sorts and operations viz. the formal (normal) parameters
and the formal export parameters. The definition of the context conditions,
the signature function S and the meaning function M is left to the reader.
et us merely mention that the instantiation

n(lso1)(ls02)

may be viewed as a shorthand notation for the specification
m
i-rename [sol’ as lsol

e-rename (302’ as 102

where m, lsol’ and Is02' are defined by env(n) = (m,lsol’,ls02’).

5.6 Strong typing

Most logics introduce a notion of terms and associate with each term one or
more sorts. For instance, if the signature contains an operation n: — s then
n may be defined to be a term of sort s. A term language (over a signature)
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is called strongly typed if each term has at most one sort. Now, according to
Section 3.1.1 an operation is characterized by its name and its arity. Hence,
a signature may contain operations such as n: — sand n: — s’ with s # &'
In that case the term n has two types and the term language over such a
signature is not strongly typed.

Some specification languages such as OBJ3 and PLUSS have made the de-
liberate choice to do without strong typing. On the other hand strong typing
makes the language more robust. For this reason classical imperative lan-
guages such as Pascal use strong typing.

The specification language OBSCURE described above is not strongly typed.
We now shortly indicate how a mechanism for strong typing may be included
into the language. To this end we assume that it is possible to guarantee strong
typing by imposing a condition on the signature. Of course, the existence and
the nature of such a condition — called typing condition — depends on the
(terin language of the) logic. A simple but stringent typing condition valid for
“classical” logics is that all operations of the signature have different operation
names. A more liberal typing condition — called overloading condition — is
the following: for any two operations

N8 X.o.X 8p > 841

n:ty X...th—*tk...l

with the same operation name n and the same number k of arguments there
exists ¢ (1 < i < k), such that 8; # t,. A typing condition for a term language
allowing prefix, infix and mixfix notation may be found in [9)].

When used with a logic equipped with a typing condition OBSCURE may be
provided with strong typing by adding for each construct (at most) two con-
text conditions. These context conditions express that the pair of signatures
constituting the valuc of the signature S satisfy the typing condition. For
instance, in the case of the union construct (see Definition 1(2)) these context
conditions are:

(iv) (m1) U Si(my) satisfies the typing condition

Si
(v)  S.(m;)US.(m,) satisfies the typing condition

In the case of the composition construct (see Definition 1(3)) there are no
extra context conditions.



6 Some more examples

While the examples of Section 2 essentially illustrate the meaning of the dif-
ferent constructs of the kernel language we now want to illustrate the power
of the module concept. Contrasting with Section 2 we will use the algorithmic
specification method. The pertaining logic is essentially first-order predicate
logic and is described in [15]. The typing condition is type inferencing (cf.
Section 5.8) extended for infix and mixfix notation [9)].

A context free grammar for atomic specifications drawn up according to the
algorithmic specification method may be found in the Appendix. Actually,
instead of defining here the complete syntax and the semantics of these spec-
ifications we prefer to illustrate them on an example. To this end we consider
again the specification of lists of elements already treated in the module LIST
of Section 2 . This time we make use of the notational conventions of Sec-
tion 5 and, in particular, of export parameters. As a further facility we, in
particular, omit writing down those imported sorts and operations that may
be univocally deduced from the rest of the specification. Finally, the sort bool
and the pertaining operations will be omitted.
module LIST (sorts ¢!/, opns Eq) (sorts list, opns ¢) is
atomspec
unport sorts el
opns Eq : ¢l x el -+ bool
create sorts [ist
opns constr = : — list
constr _ o _: list x el — list
_€ _:el x list — bool

semantics
vardec e, €’ : ¢l, I, 1’ : list
programs
(e € 1) < case [ of
¢ : false
! o ¢':if Eq(ee’) then true else e € I' fi
esac
endatom
endmodule

Informally, the carrier set of sort list is the term language generated by the
constructors i.e. by the operations labeled constr. The semantics of the
constructors is the Herbrand interpretation; the semantics of the other op-
erations (in this case €) is defined by the corresponding recursive program.
A precise definition of the algorithmic specification method may be found in
[15]. Clearly, the method has similarities with the corresponding constructs
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of the programming languages Miranda [23] or Standard ML [18].

The data type “pair of elements” may be specified by:
module PAIR (sorts ell, el2) (sorts pair) is
atomspec
import sorts ¢!l el2
create sorts pair
opns constr [, .| : ell x el2 — pair
First : pair — ell
Second : pair — el2
seinantics
vardec p : pair, ey : ell, ez : €l2
programs
First(p) ¢ case pof [e;,e;] : €, esac
Second(p) ¢ case p of [e;,e3] : e; esac
endatom
endmodule

Pairs of lists of the same element sort, say el, are then:

module PAIR-OF-LISTS (sorts el) (sorts listpair, list, opns ¢) is
PAIR (sorts list, list)(sorts listpair)
™ LIST

endmodule

Pairs of lists of natural numbers are then:
module PAIR-OF-LISTS-OF-NAT is

PAIR-OF-LISTS (sorts nat)(sorts natlistpair, natlist, opns Emptynatlist)
endmodule

The imported signature of this module contains the sort nat. The exported
signature contains, in particular, the sorts nat, natlist and natlistpair and the
operations

Emptynatlist : — nathst
- o _: natlist X nat — natlist

- € _: nat x natlist — bool

[-,-] : natlist x natlist — natlistpair
First : natlistpair — natlist

Second : natlistpair — natlist.

Along the same lines one may write a module defining, for instance, pairs
of pairs of lists of natural numbers, or a module defining pairs of lists of
natural numbers together with pairs of lists of strings. Note that in the latter
case the required renamings are “automatical” — provided the actual export
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parameters have been chosen to be different.

It is not difficult to derive from the module PAIR a module defining finite
maps. To this end it is sufficient to make sure that for any two different
carriers (e, ez) and (e),e5) of sort pair it is the case that e; # e}. This may
be obtained by the subset construct —— as explained in Section 2. Again, it is
necessary to first add the desired operations and to forget the operation [, ]
in order to satisfy the closure condition.

Semantical constraints may also be written in the form of a module, viz. an
identity module with imported axioms:
medule EQUIVALENCE (sorts el, opns Eq) is
atomspec

import sorts ¢!

opns Eq: ¢l x el — bool

endatormn
i-axioms

vardec e, ¢/, e : ¢l

Eq(e,e) = true

Eq(e,e’) = true D Eq(e’,e) = true

Eq(e,e’) = true A Eq(e’,e”’) = true D Eq(e,e”) = true
endmodule

Hence

module EQLIST (sorts e/, opns Eq) (sorts list, opns ¢) is
LIST o EQUIVALENCE

endmodule

specifies lists of elements with an equivalence relation (cf. the module AXLIST
of Section 2).

We close this list of examples with two remarks. First, the reader may have
had difficulties to check the various context conditions or even to keep track of
the module signature. In fact, OBSCURE is a language for writing specifica-
tions with the help of a computer. A corresponding specification environment
has been programmed and will be briefly discussed in Section 7. Second, espe-
cially atomic specifications contain several keywords that may be abbreviated
or even removed without introducing ambiguities. Hence, at the prive of a
less explicit notation many of the example specifications given above may be
shortened.
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7 Concluding remarks

It 15 easy to generalize OBSCURE for loose specifications or, more precisely,
to make OBSCURE accept atomic specifications with loose semantics. Con-
trasting with Section 3.2 a module functor is now defined as a (total) function

F . A]g}:‘ “)’p(AlgL-' )

where P(Algy, ) denotes the class of all subclasses of Algy, . The syntax of
OBSCURE including the context conditions and the definition of the sig-
nature function § remains unchanged. The definition of the new meaning
function is obtained by a straightforward generalization of Definition 2 (Sec-
tion 4.2). The interested reader may find this generalized definition in [14].

A notion of implementation for OBSCURE may be found in [12].

As indicated in the introduction OBSCURE handles with models rather than
with theories. More precisely, starting from the models defined by atomic
specifications OBSCURE allows to construct new models. The theories of
these new models are not explicitly defined by OBSCURE. Instead, we have
developed a calculus containing an inference rule for each OBSCURE con-
struct [13]. The formulas of this calculus link OBSCURE specifications to
logic in the same way as Hoare formulas link imperative programs to logic.

While being compatible with any specification method OBSCURE is partic-
ularly well adapted to algorithmic specifications. The main reason is that
the module functor of any atomic algorithmic specification is total. More-
over, algorithmic specifications allow to introduce partial operations and lead
to a simple and efficient rapid prototyping algorithm. Of course, by their
very definition algorithmic specifications are less abstract than algebraic ones
in that they constitute “programs” rather than “specifications”. Hence the
abstract flavor of an OBSCURE specification with atomic algorithmic spec-
ifications essentially stems from the constructs forget, subset, quotient,
i-axioms and e-axioms that “abstract” from the underlying model. On the
other hand, while it is principally true that algebraic specifications are more
abstract than algorithmic ones this property appears to be pointless in many
“practical” cases: as indicated in [16] the difference between algebraic and
algorithmic specifications is often purely notational.

Recently a specification environment for OBSCURE has been completed (9].
The specification method implemented is the algorithmic one, the logic is that
of [15] and the typing condition is the overloading condition (cf. Section 5.6)
extended for infix and mixfix notation. The specification environment per-
forms the syntactical analysis of specifications, tests the various context con-
ditions and computes the module signature. It moreover generates formulas
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expressing the closure and congruence conditions of the subset and quotient
constructs. It contains a data base of modules modeling the notion of environ-
ment introduced in Sections 5.1 and 5.2. Finally, it allows rapid prototyping.
The specification environment runs on a Sun 3/60 computer and is embedded
in Emacs. More information may be found in the handbook [9]. It is planned
to complete the specification environment by a verifier supporting the user in
the proofs demanded by the meaning function.

Among the examples of non-trivial OBSCURE specifications developed with
the help of the specification environment we may cite a specification of the
UNIX file system and a specification of a test method for sufficient complete-
ness of term rewriting systems.
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APPENDIX

A context-free grammar for OBSCURE

The definition of the non-terminals < sort >, < operation name > and < module name >
is left pending. The same remark holds for non-terminals such as < list of equalities >
and < genuine formula> that depend on the logic.

< module > : = module < module name > is
< spec > endmodule | (M1)
module < module name >(< Iso>)
is < spec> endmodule | (M2)
module < module name >(< Iso>)(< Iso>)
is <spec > endmodule (M3)
< spec> 1= < atomspec> | R1

(
(< spec> + < spec>) | (R2
(< spec> o < spec>) | (R3
(< spec> forget <lso>) | (R4
(< spec> e-rename <Iso> as <Iso>) | (R5
(< spec> i-rename <Iso> as <Iso>) | (R6
(< spec > e-axioms < formula>) | (R7

(< spec> i-axioms < formula>) | (R8

(< spec> subset of <sort> by < formula>) | (R9)

(< spec> quotient of <sort> by < formula>) | (R10)
< module name > | (R11)
< module name >(< Iso>) | (R12)
< module name >(< Iso >)(< Iso>) | (R13)
(< spec> ® <spec>) | (R14)
(< spec> op < spec>) | (R15)
(< spec> @g <spec>) | (R186)

<lso> =  sorts <Is>, opns <lo> | sorts <Is> | opns <lo>
<lIs> <sort> | <lIs>,< sort>
<lo> < operation> | < lo>,< operation>
< operation> :=  <operation name> : — <sort> |
< operation name> : <lIs> — <sort>

Il
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The following rules depend on the specification method:

< atomspec > »= atomspec import < lso> create <lIso>
semantics < algebraic spec > endatom |
atomspec import <Iso> create <Isoc>
semantics < algorithmic spec > endatom |

< algebraic spec > := vardec <list of variables >
eqns < list of equalities >
< algorithmic spec>> := vardec < list of variables >
programs < list of programs >
< lIsoc > = sorts <Is>, opns <loc> | sorts <Is> |
opns < loc>
<loc> = < operation> | constr < operation> |

< loc >,< operation>

The following rules depend on the logic:

< formula > vardec < list of variables >.< list of gen form >
<list of gen form> = < genuine formula> |
< list of gen form>.< genuine formula>
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