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Abstract. The main ideas underlying work on the model-theoretic foundations 
of algebraic specification and formal program development are presented in an 
informal way. An attempt is made to offer an overall view, rather than new 
results, and to focus on the basic motivation behind the technicalities presented 
elsewhere. 

Introduction 

The long-term goal of work on algebraic specification is to provide a formal basis 
to support the systematic development of correct programs from specifications 
by means of verified refinement steps. There has been a large body of technical 
work directed towards this important goal. Many interesting concepts have been 
introduced and quite a number of non-trivial results have been stated and proved 
(see [BKLgl] for a review and a comprehensive list of references). Instead of 
providing yet another piece in the puzzle, in this paper we sketch on a rather 
informal level our views on how some of the existing pieces fit into an overall 
picture of what is important in the light of the ultimate goal. We focus on the 
motivations for certain technicalities that we think are of crucial importance, only 
suggesting, rather than presenting in full detail, the technicalities themselves. A 
past paper with similar aims is [GHW82]. 

The literature already mentions many of the points we make here, such as the 
use of "institutions" to ensure sufficient generality of the proposed framework, 
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and the use of "constructor implementations" to capture the essence of program 
development steps (including steps that involve a decomposition into indepen- 
dent programming tasks). Some of these ideas have been hidden amongst the 
technical definitions and results, and we think they are worth restating here more 
prominently, with more careful arguments in some cases. For example, we provide 
a more detailed justification for the use of model classes, rather than theories, 
as the appropriate semantic domain for specifications. We also give a simple 
explanation of the somewhat subtle interplay between behavioural equivalence, 
"stability" and refinement in formal development. 

Examples are provided to illustrate some of the points we make. Chosen 
for simplicity rather than to impress, they are kept as small as possible, and 
some are contrived just to illustrate a particular point. This should not be taken 
as an indication that large examples cannot be handled, of course. For the 
sake of concreteness, and to show how the ideas fit into the context of existing 
programming languages, in examples we use notation and concepts borrowed 
from the Standard ML (SML) programming language [Paugl] and Extended 
ML (EML) specification framework [Sangl, KST97]. 

Since the emphasis here is on motivation and intuition, citations to the 
literature refer the interested reader to papers where complete technical details 
may be found. These topics are also covered in detail in a forthcoming monograph 
[SAT9?]. For readers who prefer even less detail, the material in Sections 3.1, 8.1 
and 9.1 may be skipped on first reading. 

1. The Logical Framework 

The overall aim of work on algebraic specification is to provide semantic foun- 
dations for the development of programs that are correct with respect to their 
requirements specifications. In other words, the program developed must exhibit 
the required input/output behaviour. We view the correctness of a program as its 
most crucial property. Other desirable properties (efficiency, robustness, reliability 
etc.) are disregarded in this work. Of course, this does not mean that these prop- 
erties are unimportant, but this approach does not provide any formal means for 
their analysis. 

The assumption that the correctness of the input/output behaviour of a 
program takes precedence over all its other properties allows us to abstract away 
from concrete details of code and algorithms, and to model program functions 
as mathematical functions. Such functions are never considered in isolation, but 
always in units (program modules) comprising a collection of related functions 
together with the data domains they operate on. At this level of abstraction we 
are dealing directly with the information essential for the analysis of program 
correctness, without the burden of irrelevant details. This leads to the most 
fundamental assumption underlying work on algebraic specification: programs 
are modelled as many-sorted algebras. This assumption fits most directly into the 
functional programming paradigm, but there is a natural way of generalizing it to 
handle e.g. imperative programs; see below. 

We refrain from recalling the formal definition of many-sorted algebra (see 
e.g. [EhM85]). It is enough to know that an algebra consists of a collection of 
carriers (sets of data) and operations on them. Algebras are classified by signatures, 
naming the algebra components (sorts and operations) and thus providing the 
basic vocabulary for using the program and for making assertions about its 
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properties. The class of all Z-algebras (algebras over the signature E) will be 
denoted by Alg(E). For any program P, the algebra it denotes is written as 
[IP]] c A l g ( S i g ( P ) ) ,  where Sig(P) is the underlying signature of P. 

For any signature, we need a logical system for describing properties of 
algebras over that signature. Many-sorted equational logic (cf. [GoM85, EhM85]) 
is the most commonly-used system for this purpose, at least in the area of 
algebraic specification. Properties of E-algebras (or rather, of their operations) 
may be described by universally-quantified equat ions over E, via the definition of 
what it means for a E-algebra A to sat is fy  a E-equation (p, written A ~ qo. This 
also determines a notion of logical consequence : a set of equations (I) entails an 
equation ~0, written q~ ~ ~o, if every algebra that satisfies all the equations in qb 
also satisfies q~. Here is a simple example, where a signature is accompanied by a 
list of equational axioms,  presented using a hopefully self-explanatory notation: 

sorts nat ,  list 
opns 0 : nat  

succ : nat --* nat 
nil : list 
cons : nat x list --* list 
head : list --~ nat 
tail : list --> list 

a x i o m s  Vx :nat. Vl :list. head (cons(x,  1)) = x 
Vx:nat .  Vl :list. tai l (cons(x,  l)) = 1 

For example now: 

Vx :nat. Vl :list. head (cons(x,  l)) = x, '[  
Vx:nat .  Vl:list .  ta i l (cons(x , l ) )  = l S ~ 

V x,  y :nat. head( ta i l (cons(x ,  cons(y ,  nil)))) = y 

Very rarely in the process of program development does the user work with 
just a single signature: operations and sorts of data are renamed, added and 
hidden as the need arises. To take account of this, signatures are equipped with 
a notion of signature morphism (cf. [EhM85]). A signature morphism o- : Z ~ Z I 
maps the sorts and operations of E to those of Z I. This determines in a natural 
way a translation of any E-equation qo to a E'-equation a(q)), and on the semantic 
level, a translation of any E'-algebra A' e Alg(E ~) to its reduct  A ' Io  c Alg(E) - -  
notice the change of direction! A typical case is when a : Z ~ Z' is a signature 
inclusion; then A~I~, written A ' l z  in this case, is just A' with the interpretation of 
symbols not in E removed. A crucial property is that these two translations are 
compatible with satisfaction: for any E-equation q) and Zr-algebra A,  A'I~ N q~ 
iff A' ~ a(~o). 

The above framework is often criticised (quite rightly!) as rather restrictive 
and cumbersome to use in practice. Some important features of programs, for" 
example non-termination and higher-order functions, are difficult to model in 
algebras; equations are not expressive enough to conveniently capture certain 
properties that one may want to state as requirements. For instance, one may 
wish to add to the list of axioms above the following two properties which 
cannot be expressed in equational logic and which are stated here as sentences 
in first-order logic with equality (using the standard notation for negations of 
equalities): 
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axioms Vn:nat.succ(n) ~ 0 
Vx :nat. Vl :list. cons(x, l) 5~ nil 

Fortunately, this deficiency is relatively easy to overcome using the concept of 
institution. This concept was introduced by Goguen and Burstall [GOB84] to 
capture the informal notion of logical system and was strongly influenced by the 
understanding of this notion in the theory of specifications (see [Bar74] for an 
early account of abstract model theory covering similar ideas approached from 
the viewpoint of classical logic and model theory, and [BaF85] for a compendium 
of more recent work in this area). 

An institution defines a notion of signature together with for any signature 
Z, a set of E-sentences, a class of E-models and a satisfaction relation between 
Z-models and Z-sentences. Moreover, signatures come equipped with a notion of 
signature morphism. Any signature morphism induces a translation of sentences 
and a translation of models (the latter going in the opposite direction as above). 
The only semantic requirement is that when we change signatures using a sig- 
nature morphism, the induced translations of sentences and of models preserve 
the satisfaction relation. Many standard logical systems have been presented 
explicitly as institutions, see e.g. [GOB92] and [SAT9?]. These include first-order 
predicate logic with and without equality, and logical systems for specifying par- 
tial functions, exception handling, and simple imperative programs. (Most of the 
examples in this paper are couched in first-order predicate logic with equality.) 
It should be easy to see that any usual logical system with a well-defined model 
theory fits into this mould. 

Everything below, barring concrete examples, works in the framework of an 
arbitrary institution, even though for the reader's convenience we avoid "insti- 
tutional jargon" and refer to "algebras" rather than "models" in the sequel. 
Consequently, everything in this paper applies to many different concepts of "sig- 
nature", "algebra" and "sentence" used in the theory and practice of software 
specification. This point of view gives rise to "reusable" methodologies, theorems, 
and (ultimately) tools, all of which can be seen as parameterized by an arbitrary 
institution. See e.g. [BeV87, SAT87, SaT88a, SaT88b, Far92, SST92, DGS93] for 
work on various aspects of software specification and development that is generic 
in this sense. Other formulations of general logic have been used for similar 
purposes, see e.g. [FiS88] and [EBO93]. 

Strict followers of the early approaches to algebraic specification might view 
this generalization as an alarming departure, and might protest that this is 
not algebraic specification at all. In our view the essential idea of algebraic 
specification is the stress on "algebra-like" models and the use of logical axioms 
to describe such models. The use of ordinary many-sorted algebras and equations 
is but a special case of this. Just as it was necessary to generalize from classical 
single-sorted algebras to many-sorted algebras in order to deal with programs 
handling several kinds of data, it is necessary to adopt more complicated models 
to deal with other features of programming languages (polymorphism, higher- 
order functions, infinite behaviour, updateable references, lazy evaluation, etc.). 
The essence is that we need a notion of semantic structure that is detailed enough 
to capture the program properties we want to analyse and abstract enough to 
make this analysis feasible. Moreover, to specify and reason about programs, we 
need a logical system with a model theory based on such structures; again, there 
is a tradeoff here between expressive power and ease of use. There seems to be 
no single kind of semantic structure that suffices for all purposes, and different 
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logical systems are appropriate for the analysis of different facets of program 
behaviour. The multiplicity of logical frameworks seems to be a natural state of 
affairs rather than indicative of a failure to find the right approach. 

2. Specifications 

What is a specification? Clearly, since our aim is a formal approach to software 
development, specifications must be objects as formal as (for example) programs 
are. That is, we have to have a formal language to write specifications down and 
to provide a vehicle on which formal techniques to manipulate specifications may 
be based. It is important for such a specification language to provide a collection 
of convenient notational conventions that are easy to understand and use. One 
of the basic constituents of a specification will be a list of axioms the specified 
program is required to satisfy. 

A specification formalism must offer means for building complex structured 
specifications by combining and extending simpler ones. A specification of a 
real-life system typically states a huge number of properties, and building such 
a specification in an unstructured, monolithic way would result in a long list 
of axioms which would be neither understandable nor useful. Moreover, the 
structure of a specification may be used to express intangible aspects of the 
specifier's knowledge of the problem, such as the degree to which the entities 
and concepts described in the specification are interrelated. For this purpose, a 
specification language must provide some specification-building operations used to 
put together small specifications to form more complex ones [BUG77, BUG80]. 
Then, an understanding of a large specification is achieved via an understanding 
of its components. This is the principle of compositionality: the meaning of a 
composite object depends only on the meanings of its immediate sub-components. 

Various other activities involving specifications can exploit their structure. 
For example, proofs of consequences of a specification can be usefully guided 
by its structure [SaB83, HST94] (cf. Section 5). But this principle must not be 
taken too far: for example, the structure of a specification should not constrain 
the final structure of its implementations. This is one of the consequences of the 
famous dogma that a specification should describe only the what s of the specified 
software without constraining any of its how s. Requiring the structure of the 
initial specification to be preserved in its implementation would be unrealistic 
and unreasonable, even though this has been explicitly suggested by some (e.g. 
[GOB80, MoA91]) and is implicit in the approaches taken by others. The aims of 
structuring requirements specifications are often contradictory with the aims of 
structuring software. See for instance [FiJ90] for a nice discussion of a practical 
example where such a discrepancy occurs. Section 6 gives a simple example 
illustrating this point, and Section 7 indicates how the design of the structure of 
an implementation may be brought into our framework. 

Choosing appropriate specification-building operations to be included in a 
specification language is a non-trivial task, even though most specification lan- 
guages share certain common operations such as those given below. The choice 
involves a certain trade-off between the expressive power of the specification 
language and the ease of understanding and dealing with the operations. One 
way to circumvent this problem is to first develop a kernel language consisting of 
a minimal set of very powerful, but perhaps awkward to use operations, and then 
build on top of it a higher-level, more user-friendly language, perhaps sacrificing 
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some of the expressive power to achieve ease of use and ease of understanding. 
Such an approach has been taken with the ASL kernel specification language 
[SAW83, Wir86, SaT88a], on top of which languages such as PLUSS [BGM89] 
and Extended ML [SAT86] have been built. 

In this paper we will neither present nor use a full-blown specification lan- 
guage. In examples we will rely only on the following three simple specification- 
building operations: 

Basic specifications: The specification 

sorts S 
opns 
axioms 

describes algebras over the signature with sorts S and operations fl that satisfy 
the axioms q5. 

Enrichment: The specification 

enrich SP by sorts S 
opns D 
axioms 

describes algebras that add the sorts S and operations ~) to algebras described 
by SP in such a way that the axioms qb are satisfied. 

Hiding: The specification 

hide sorts S 
opns D 

in SP 

describes those algebras obtained by removing the sorts S and operations 
from algebras described by S P .  

In examples we will omit keywords like sorts when the corresponding list of items 
is empty. 

Example 1. Here are some simple specifications: 

B O O L  = sorts bool 
opns true : bool 

fa l se  : bool 
axioms true :/: false 

Vx:bool .  x = true V x = f a l s e  

I N T  = enrich B O O L  by 
sorts int 
opns 0 : int 

s u c c :  int ~ int 
pred : int -*  int 

axioms . . . induction scheme for i n t . . .  
V x : i n t . p r e d ( x )  :/: x A succ(x)  ~ x 
Vx:int .  pred(succ(x) )  = x A succ(pred(x))  = x 
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I N  TO R D  = 
enrich I N T  by 

opns po : int  x int ~ bool 
axioms V x : i n t . p o ( x , x )  = true 

Vx,  y :int. po(x ,  y )  = true A po(y ,  x)  = true :=~ x = y 
Vx,  y , z  :int. po(x ,  y )  = true A p o ( y , z )  = true 

I N T L I S T  : enrich I N T O R D  by 
sorts list 
opns nil : l i s t  

cons : int • list --~ list 

axioms 

235 

p o ( x , z ) = t r u e  

head : list --~ int 
tail : list --* list 
append : list x list ~ list 
is_in : int x list --, bool 
... induction scheme for l i s t . . .  
Vx  :int. Vl :list. cons(x ,  l) ~ 1 
Vx  :int. Vl :list. head(cons(x ,  l)) = x 
Vx  :int. V1 :list. tai l (cons (x, l)) = l 
Vl :list. append(ni l ,  l) = l 
V x :int. Vl, l' :list. append(cons (x ,  l), l') = 

cons(x ,  append(l ,  l')) 
Vx  :int. is_in(x,  nil)  = f a l s e  
Vx,  y :int. Vl :list. 

i s S n ( x ,  cons (y , l ) )  = true .: > 
(x  = y V is_in(x,  l) = true) 

We're glossing over the details of induction schemes here - -  think of each of 
these as either an infinite set of first-order axioms given by the usual elementary 
induction scheme, or (not equivalently!) as a single second-order axiom, or a 
single infinitary disjunction. An alternative which is more usual in specification 
languages is to introduce a separate specification-building operation that restricts 
the class of admissible realizations of a specification to reachable algebras only, 
see e.g. [SAW83, Wit86] (this is equivalent to the additional second-order axiom 
or infinitary disjunction). Yet another potential possibility is to restrict the class 
of algebras considered to reachable algebras from the very beginning [BaW82]. 
Also note that the axioms of I N T L I S T  do not constrain the value of head(ni l )  or 
tail(nil) ,  meaning that any result is acceptable. An alternative is to specify some 
error behaviour - -  see [BKL91] for various approaches. 

S O R T 1  = enrich I N T L I S T  by 
opns is_sorted : list --> bool 

sort  : list --> list 
axioms is_sorted (nil) --  true 

Vx  :int. V1 :list. 
i s_sor ted(cons(x ,  1)) = true < - ~  
((Vy :int. is_in(y,  l) = true ==* po(x ,  y)  = true) 

A is_sorted(l)  = true) 
Vl :list. is_sorted(sort(1))  = true 
Vl :list. V x :int. is_in (x, l) = is_in ( x,  sort  ( l) ) 

S O R T  = hide opns is_sorted in S O R T 1  
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The use of the hiding operation in S O R T  means that the is_sorted operation does 
not appear in algebras described by S O R T .  It appears in the specification as an 
auxiliary operation which allows us to formulate the axioms for sort conveniently. 
(Don't confuse the specification S O R T  containing the operation sort with the 
noun "sort" and the keyword sorts!) The observant reader might have noticed 
that the axioms of S O R T 1  do not require sort to preserve repetitions in its input. 
We exploit this to illustrate some further points in Sections 4, 6 and 7. 

The above does not take into account the fact that typical programming 
languages like SML provide booleans, integers and lists as built-in types. Rather 
than re-specifying and then re-implementing them from scratch, we could follow 
Extended ML [KST94, KST97] by assuming that all programs implicitly extend 
all the built-in types and values available, so programs and specifications may 
freely refer to them. Modifying the above specifications along these lines, assuming 
that the built-in types and values of  SML are available, yields the following: 

IN TO RD = 
opns 
axioms 

I N T L I S T  = 

po : int X int -~ bool 
Vx:int. po(x, x) = true 
Vx, y :int. po(x, y) = true A po(y, x) = true ~ x = y 

Vx, y,z:int.po(x,y) = true Apo(y,z) = true 

po(x, Z) = true 

enrich INTORD by 
opns head : int list -~ int 

tail : int list -~ int list 

is_in : int x int list -~ bool 
axioms Vx:int. Vl:int list. head(x: :l) = x 

Vx :int. Vl :int list. tail(x : : l) = l 
Vx "int. is _in (x, nil) --- false 
Vx, y :int. Vl :int list. 

is_in(x, y : : l) = t r u e  

(x = y V is_in(x, l) = t r u e )  

S O R T 1  = 
enrich I N T L I S T  by 

opns is_sorted : i n t  l i s t  -+ bool  
sort : int list -~ int list 

axioms is_sorted(ni l)  = t r u e  
Vx:int. Vl :int list. 

is_sorted(x: :l) = t r u e  --~ ;- 
((Vy : int .  is_in(y, 1) = t r u e  ~ po(x, y) : t r u e )  

A is_sorted(1) = t ru e )  
VI : in t  l i s t .  is_sorted(sort(l)) = t r u e  
VI : in t  l i s t .  Vx:int .  is_in(x, I) = is_in(x, sort(l)) 

S O R T  = hide opns is_sorted in S O R T 1  

We will work with this version of these specifications throughout the rest of the 
paper. 

In examples throughout the rest of  the paper, as in the above specifications, 
all signatures are taken to implicitly include all of the built-in type and value 
names of SML and all algebras extend the interpretation of those names given 
by the SML semantics. [] 
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3. Semantics of Specifications 

Any specification language must be given a precise, formal semantics. The very 
concept of "correct" program is meaningless in the absence of  a definition of 
what it is supposed to compute, and a specification can only provide such a 
definition if it has an unambiguously-defined meaning. 

Before we start assigning meanings to specifications, it is necessary to decide 
what kind of mathematical objects to use to represent the meanings of specifi- 
cations, i.e. to decide what specifications denote. Whatever the full answer is, a 
specification at least determines the underlying signature of the specified pro- 
gram. For any specification SP, we write this signature as Sig(SP). Then, one 
may attempt to give a semantics of specifications on (at least) three different 
levels: 

�9 Presentation level: a specification SP denotes a set of sentences over Sig(SP) 
(this set may be required to be finite or at least recursive or recursively 
enumerable). At this level, the meaning of a specification is close to the 
syntactic form in which specifications are written; the semantics extracts the 
axioms, resolves references to other specifications, etc. 

�9 Theory level: a specification SP denotes a theory over Sig(SP), that is, 
a set of Sig(SP)-sentences that is closed under logical consequence. This 
theory is much larger 1 than the set of axioms that are explicitly given in the 
specification. It is always infinite 1, usually not recursive and sometimes not 
recursively enumerable; thus the meaning of  a specification is no longer strictly 
syntactic. The semantics performs the closure under logical consequence. 

�9 Model-class level: a specification SP denotes a class of Sig(SP)-algebras. At  
this level, the meaning of a specification is entirely non-syntactic, except for 
the signature part. The semantics abstracts away from the axioms, taking into 
account only their possible realizations. 

The ultimate role of any specification is to describe a class of programs which we 
want to view as its correct realizations. Since we have already decided to model 
programs as algebras, specifications ultimately determine classes of  algebras. Given 
the natural mappings from presentations to theories and from theories to model 
classes, this holds whichever one of these three levels we choose for the semantic 
domain. 

For any specification SP, the semantics of SP determines the class of all 
models of SP, denoted by [[SP]] ~ Alg(Sig(SP)) 2. This class contains algebras 
that model programs which are considered to be correct realizations of SP. (There 
is a subtle issue involved in ensuring that all such algebras are admitted as models; 
see Section 9.) This semantics determines a notion of logical consequence of a 
specification: a specification SP entails a sentence q), written SP ~ q~, if q~ holds 
in every model of  SP. 

Of course, a specification SP may admit a number of different program 
behaviours, and hence we cover so-called loose specifications. Or it might admit 
no models at all, in which case it is called inconsistent. 

1 Of course, this depends on the logic involved, but for example in equational logic every theory 
contains all the trivially true sentences like Yx:s. x = x. 
2 Note the overloading of the semantic brackets: for a program P, lIP] is an algebra, while for a 
specification SP, I[SP]I is a class of algebras. 
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The semantics of a specification formalism is usually presented by giving a 
number of semantic clauses, one for each specification-building operation. Each 
clause defines the meaning of a specification built using the given operation in 
terms of the meanings of its component specifications. This style of presentation 
gives a compositional semantics. 

The following defines the models of specifications formed using the three 
specification-building operations that were informally presented earlier; cf. e.g. 
[SaT88a]. We omit the obvious context conditions which require that Z as defined 
in each case is a well-formed signature. 

Basic specifications: 

[[sorts Sopns ~ axioms ~p]] = {A c AIg(Z) I A ~ ~} 

where Z = Sig(sorts Sopns ~ axioms @) is the signature having sorts S and 
operations ~. 

Enrichment: 

[[enrich SP by sorts S opns ~ axioms ~]] = 
{A c Alg(Z) [ AIsig(SP) E [[SP]] and A ~ (I)} 

where Z = Sig(enrieh SP by sorts Sopns ~ axioms (I)) is the signature Sig(SP) 
with additional sorts S and operations f~. 

Hiding: 

[[hide sorts S opns ~ in SP]] = {AI~ I A E [[SP]]} 

where Z = Sig(hide sorts Sopns ~ in SP) is the signature Sig(SP) with sorts 
S and operations ~ removed. 

Since specifications denote classes of algebras, specification-building operations 
semantically correspond to functions mapping classes of algebras to classes of 
algebras. Each of the definitions above amounts to the definition of such a 
function (a nullary one, in the case of basic specifications). 

Example 1 (continued). The semantics of the specification-building operations 
can be used to calculate the meanings of specifications like those in Example 1 
(Section 2), with the proviso given there concerning the built-in types and values 
of SML. For example, Sig(INTLIST) extends the built-in type and value names 
of SML by po, head, tail and is_in, and [[INTLIST]] is the class of algebras 
over this signature that extend the interpretation of the built-in names given by 
SML with operations po, head, tail and is_in defined in such a way that the 
axioms of INTLIST are satisfied. Then, Sig(SORT1) extends Sig(INTLIST) by 
is_sorted and sort, and [[SORT1]] is the class of algebras over this signature that 
enrich the algebras in [[INTLIST]] so that the axioms of SORT1 are satisfied. 
Finally, Sig(SORT) extends Sig(INTLIST) by sort only, and [[SORT]] is the 
class of algebras over this signature that result from the algebras in [[SORT1]] 
by removing the interpretation of is_sorted. [] 

3.1. Model Classes vs Theories 

For any signature Z, there is a Galois connection between classes of Z-algebras 
and sets of Z-sentences, assigning to any set of sentences the class of all algebras 
that satisfy them, and to any class of algebras the set of all sentences that 
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hold in them (see [GOB92]). The "closed" elements of this Galois connection are 
theories; these are in one-to-one correspondence with closed (i.e., definable by sets 
of sentences) classes of algebras. It follows from this that the theory level is less 
expressive as a semantic domain for specifications than either the presentation 
or the model-class level. The latter two are, however, incomparable: there are 
properties that can be naturally studied at the presentation level (for example, 
finiteness of an axiomatization) with no natural counterpart at the model-class 
level, and vice versa. 

It is not immediately obvious that working at the model-class level brings 
any essential benefits over working with closed classes of algebras only, or 
equivalently, working at the theory level. It is not clear whether non-closed 
classes of algebras ever arise as meanings of specifications; even if they do arise, 
it is not clear whether this makes any difference for the use of specifications. The 
following example, built in the institution of equational logic, exhibits both of 
these phenomena: 

( enrich 
] (hide opns a in 
J ,~D / (sorts s,s' 

S P  ] o r 1  I SPo /opns  a " s 
b, c �9 s' 

[ by axioms Vx :s. b = c 

This example relies on the following well-known fact [GoM85]: Vx:s. b -- c does 
not imply b = c, although it implies b = c for S ig (SP) -a lgebras  with non-empty 
carrier of sort s. 

Now, according to the above definitions, [[SP011 is the class of all algebras 
(over the indicated signature) and lISP 1]] consists of all algebras that are reducts 
of Sig(SPo) -a lgebras ,  obtained by removing the operation name a (but of course 
not its value). Consequently, lISP 1]] contains only those algebras having a non- 
empty carrier of sort s. Then, selecting from lISP1]] the algebras that satisfy 
Vx:s.  b = c yields the class lISP]] - -  and all these algebras satisfy b = c (since for 
the algebras in lISP 1]], b = c follows from Vx:s.  b = c). Thus, under the model- 
class interpretation, the property b = c is a consequence of the specification 
SP. 

On the other hand, at the theory level, SP0 would clearly have to denote 
the trivial equational theory containing only the equational tautologies, and so 
would SP1 (there are no equations capable of expressing the fact that a carrier is 
non-empty). Then, the additional axiom Vx :s. b = c in the context of the theory 
denoted by SP1 does not entail the equation b = c. Thus, under the theory-level 
interpretation, b = c is not  a consequence of the specification SP. 

This discrepancy (and similar examples one may construct without relying on 
the "empty carriers" phenomenon) faces us with the necessity to choose between 
theories and classes of algebras as the basic semantic domain for specifications. 
The choice is obvious: the objects of ultimate interest here are programs, which 
are modelled as algebras, while axioms and theories are nothing more than logical 
means for describing them. In our view, the lack of agreement between theories 
and classes of algebras clearly demonstrates that theories are not in general 
adequate as denotations of specifications. But see [DGS93] for a different point 
of view. 

The alert reader may have noticed that the above example depends crucially 
on the use of equational theories. If  we reinterpret the example in the institution 
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of first-order predicate logic with equality, then the class ~SP 1]] becomes definable 
(by the sentence 3x :s. true) and the discrepancy between the theory level and the 
model class level semantics of SP disappears. This is an instance of a general 
phenomenon: as the expressive power of the logical system in use increases, the 
gap between the theory level and the model class level semantics narrows. For 
example, in the institution of second-order logic [HOS96], any class of models of 
a specification built using the specification-building operations presented above 
is definable by a set of axioms. The presence or absence of such a gap also 
depends on the expressive power of the specification-building operations in use. 
For example, if we use only basic specifications and enrich (leaving out hiding, 
as in Larch [GuH93] and ACT ONE [EhM85]), then there is no gap, no matter 
what institution we use. 

4. Specification Engineering 

The point of constructing a specification is so that it may be used to define a 
programming task by precisely delimiting the range of program behaviours that 
are to be regarded as permissible. The initial formal specification of requirements 
of a system thereby provides a reference point with respect to which all subsequent 
development activity is conducted. Specifications of system components play a 
similar role, but also serve to mediate proofs of correctness of systems containing 
them: a system (or sub-system) is proved to correctly implement its specification 
on the basis of those properties of components on which it depends that are 
recorded in their specifications. For these reasons, in the rest of this paper a 
formal specification of requirements is regarded as the starting point of system 
development. 

There are serious problems involved in beginning with a formal specification of 
requirements, its desirability notwithstanding. Perhaps the most obvious problem 
is how to obtain a formal specification which accurately reflects the needs of 
the client. A program that is correct with respect to an incomplete or inaccurate 
specification of requirements is not of much use! This issue will be addressed in 
the remainder of this section. Another problem is that in real life, the requirements 
that any moderately complex system are expected to fulfill are subject to continual 
change. It follows that any fixed specification, formal or informal, can at best 
reflect a "snapshot" of the client's needs. This suggests that the picture we present 
here needs to be augmented to accommodate changes in requirements, and that 
mechanisms are required to ensure that code (and proofs of correctness) keep in 
step with changes in requirements, cf. [GoL95]. 

The problem of writing the original requirements specification and ensuring 
that it is an accurate reflection of needs is the topic of "requirements engineering" 
[Dav90]. For some work on formal requirements analysis, see [RAH94, Li94, 
AsR95]. As suggested in the previous section, a key factor in facilitating the 
production of formal specifications is the provision of well-designed specification 
languages with good structuring operations allowing specifications to be built 
and understood in a systematic, modular fashion. Once a formal specification is 
obtained, the problem of checking that it is "correct" is of a different character 
from the problems treated in the remainder of this paper. Given a formal 
specification, it is possible, at least in principle, to prove (or disprove) that 
an alleged realization correctly implements it; this process is called verification. 
In contrast, an initial formal specification of requirements can at best be checked 
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for conformance with an informal written specification. Sometimes there will be 
no written specification at all and the formal specification can only be checked 
against the unwritten intentions of the client. The term validation is used to 
refer to the process of evaluating a specification against the client's written or 
unwritten informal requirements. 

Just because a formal specification is precise and unambiguous does not mean 
that it is more likely than an informal specification to reflect needs accurately. 
Indeed, experience shows that problems uncovered by validation are often due to 
bugs in the formal specification rather than to errors in the informal specification. 
On the other hand, the process of writing a formal specification normally uncovers 
gaps or ambiguities in the informal specification. This means that validation is not 
merely a matter of checking that the formal specification accurately records what 
is already present in the informal specification; it is an iterative process which 
involves adjustment of both formal and informal specifications, and sometimes 
checking with the client to clarify needs. Since the cost of resolving problems with 
the requirements specification late in the development lifecycle may be extremely 
high, the production of a formal specification of requirements is regarded as a 
cost-effective activity, even if the resulting formal specification is not used in later 
stages of development [Som92]. 

One way of increasing confidence that a formal specification expresses what 
is required is to enable the client to "play" with it, in order to test whether or 
not the specification indeed expresses the properties he expects. A traditional 
approach to this is to engage a team of programmers to build a prototype, a 
quickly assembled but necessarily bad and simplified realization. This can then 
be given to the client to test. Of course, such an approach is indispensable for 
some aspects of the software to be developed. For example, there can be no 
better way to test a user interface than by playing with some version of it; 
going through sample sessions with such a system seems to be the only way for 
a user to get a feel for what working with the system will be like. In general, 
however, the prototyping approach has a number of disadvantages. First, it 
involves some extra work to produce a system that is then thrown away. More 
importantly, if the original specification is loose (and it usually is) then any 
prototype will incorporate choices between the alternative behaviours permitted 
by the specification, and these choices need not necessarily be mirrored in the 
final implementation. Consequently, the user may conclude that the system will 
have some properties that are not ensured by the specification at all, and this 
undermines the sense of the whole exercise. See [HaJ89] for further convincing 
arguments in this direction. 

The overhead of prototyping may be avoided through the use of a rapid 
prototyping system like RAP [HUB85]. This demands that requirements specifi- 
cations be written in an executable specification language, not far from high-level 
programming languages like Standard ML [Pau91]. In the fundamental trade-off 
between executability and expressiveness, it is clearly the latter that is of central 
importance in a language intended for writing requirements specifications, so 
such a strong restriction seems highly undesirable. 

We believe that for many purposes prototyping should be replaced by theorem 
proving (see [Gull80] for a similar observation). To check whether a given 
specification indeed embodies a desirable property, it seems most appropriate to 
state this property explicitly and then try to prove that it is a consequence of 
the specification. This is the most general form of specification testing; the more 
usual approaches via rapid prototyping, symbolic evaluation, term rewriting etc. 
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can easily be seen as special cases, or rather as special techniques of theorem 
proving applicable in particular situations. 

Example 1 (continued). In INTLIST, the axioms for head, tail and is_in vir- 
tually constitute a prototype implementation in e.g. SML. In a prototype, we 
would be able to evaluate expressions like head(tail( [2,4] )), head (tail( [2 ,4 ,2 ]  )), 
head(tail( [ 2 , 4 , 5 , 8 ]  )), obtaining an integer value (4 in all these cases). However, 
rather than testing all these instances, we are able to prove directly from the 
specification a more general fact: 

INTLIST ~ Vl:• l i s t .  head(tail(2: :4: :1)) = 4 

Please note that some rapid prototyping systems allow the user to do somewhat 
more than evaluating just ground instances of head(tail(2:: 4 : :  l)). For example, 
in RAP [Hu1385], we could in fact evaluate head(tail(2: :4: :/)) obtaining 4, as 
expected. 

We can also prove the following fact: 

SORT ~ po(i, 2) = t r u e  ~ head(sort( [1 ,2 ,  i] )) = 1 

However: 

SORT ~= po(1, 2) = t r u e  = sort( [1 ,2 ,1 ]  ) = [1 ,1 ,2 ]  
SORT ~= po(1, 2) = t r u e  ~ sort([1,2,1]) = [1,2] 

even though a naive prototype implementation would probably satisfy one of 
these two equations. This would be misleading and potentially dangerous since 
SORT is loose: it does not specify whether or not sort should preserve repetitions. 
Sorting functions yielding either of these two results would be acceptable, and so 
would sort([1,2,1]) = [1 ,2 ,2 ] .  [] 

5. P r o o f  Systems for Specifications 

The above discussion indicated a need for formal proof systems for deriving 
consequences of specifications. Proof is also required for verifying the correctness 
of refinement steps, see below. There are two levels at which proof is necessary: 
first, we have to be able to derive consequences of sentences in the underlying 
institution (~ F q~); second, we have to be able to derive consequences of a 
specification built in a structured way (SP F (p). The first problem is familiar 
from logic, but the second has received much less attention. Here are inference 
rules that allow such consequences to be derived from specifications built using the 
specification-building operations introduced above; see [SaB83, SaT88a, Far92, 
Wir93]. 

~ocq) 

sorts S opns D axioms �9 F (p 

SP F (p 
enrich SP by sorts S opns D axioms �9 F (p 

~ p c ~  

enrich SP by sorts S opns D axioms �9 F 
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SP t-CO 
CO is a (Sig (SP) \ <S, ~))-sentence 

hide sorts S opns f~ in SP ~- CO 

SP F (Pl " ' "  SP t- CO, {COl . . . .  On} F- CO 
SP ~-CO 

The last of  these rules consti tutes the link between the two levels o f  proof.  

Example  1 (continued). Here  is an example  of  how these rules m a y  be used in 
the p r o o f  of  a simple consequence of  the specification S O R T .  For  simplicity, all 
universal  quantifiers are omitted,  and we tacitly e-conver t  where necessary to 
avoid variable clashes. 

(1) (2) (3) 
S O R T 1  ~- is_in(2, sort(O: :2:  :l)) = t r u e  
S O R T  F- is_in(2, sort(O: :2:  :/)) = t r u e  

where (1) is the following derivat ion:  

(1.1) (1.2) 
I N T L I S T  F- is_in(2, 0 : : 2: : l) = t r u e  

S O R T 1  ~- is_in(2,0: :2:  :l) = t r u e  

with (1.1) being: 

(is_in(x,y: :/ ')  = t r u e  -*==*- (x = y V is_in(x,l') = t r u e ) )  
E axioms of  I N T L I S T  

I N T L I S T  ~- is_in(x,y: : l ' )  = t r u e  <==~ (x = y V is_in(x,l') = t r u e )  

and (1.2): 

{is_in(x, y : :l ')  = t r u e  r (x = y V is_in(x, l') = t r u e ) }  F- 
is_in(2,0: :2:  :l) = t r u e ,  

(2) is: 

(2.1) (2.2) 
S O R T 1  ~- is_in(2,0: :2:  :l) = is_in(2,sort(O: :2 :  :l)) 

with (2.1) being: 

(is_in(x,l') = is_in(x, sort(l'))) E axioms of  SORT1  
S O R T 1  F- is_in(x, l') = is_in(x, sort(l')) 

and (2.2): 

{is_in(x, l') = is_in(x, sort(l'))} ~- is_in(2, 0 : :2 : :/) = is_in(2, sort(O: :2 : :/)), 

and (3) is the following entai lment:  

{is_in(2,0: :2 :  :1) = t rue ,  is_in(2,0: :2:  :/) = is_in(2, sort(O: :2:  :/))} ~- 
is_in(2, sort(O: :2 : :/)) ---- t r u e .  

[] 

The  above rules provide a sound extension to any p roo f  system for the 
underlying insti tution: if (I) ~ CO whenever  (I) ~- CO for all (I) and Co, then SP ~ Co 
whenever  SP ~- CO for all SP and Co. Completeness (SP ~ Co implies SP F- Co) 
is harder  to achieve. Even if the p roo f  system for the underlying insti tution is 
complete,  the above rules do not  in general  yield a complete  p roo f  system for 
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consequences of structured specifications (but a complete system is obtained for 
institutions satisfying an appropriate interpolation property [Cen94]). Whenever 
there is a discrepancy between model class level and theory level semantics 
as discussed in Section 3.1, no complete compositional proof system may be 
given. This does not exclude the existence of non-compositional complete proof 
systems that "massage" the structure of specifications m the course of proof, see 
[Far92, Wir93]. 

Good theorem provers that implement such proof systems are needed. In 
addition to proof search procedures used in work on automatic theorem proving, 
they should include heuristics that exploit the structure of specifications to guide 
proof search, see [SaB83, HST94]. 

Example 1 (continued). A theorem prover attempting to prove that 

S O R T  ~- V/:• l •  is_in(2,0: :2: :/) = t r u e  

should not waste time searching through the consequences of the axioms added 
in SORT1 ,  but should go straight to the level of I N T L I S T  where most of the 
work of the proof needs to be done. The following heuristics would provide the 
necessary guidance: 

* To prove hide ... in SP ~- go, try to prove SP ~- go. 

�9 To prove enrich SP by sorts Sopns f~ axioms ... k go, if go doesn't use any of 
the new operations in f~, try to prove SP ~- go. 

The latter of the above simple heuristics, even though it does not yield a complete 
proof method, in practice often helps to greatly reduce the proof search space (cf. 
[SaB83, HST94]). [] 

It would also be extremely useful for a theorem prover, in the case where it 
fails to find a proof, to provide the user with readable information on where the 
proof attempt breaks down (see e.g. LP [GuH93]), and perhaps even how the 
specification may be augmented to make the proof go through - -  a desirable 
feature which few contemporary theorem provers exhibit. 

6. Program Development 

Given a specification SP,  the programming task it defines is to construct a 
program P that is a correct realization of SP,  that is, such that [[P]] E lISPS. 

There can be no universal recipe that would ensure successful development 
of a program implementing a given specification. All we can hope to offer are 
methodologies, and particular techniques and heuristics oriented towards specific 
problem areas. 

Perhaps the most fundamental point is that it is neither easy nor desirable 
to leap in a single bound over the gap between a high-level user-oriented re- 
quirements specification and the realm of programs full of technical decisions 
and algorithmic details. An attractive alternative is to proceed systematically in a 
stepwise fashion, gradually enriching the original requirements specification with 
more and more detail, incorporating more and more design and implementation 
decisions. Such decisions include choosing between the options of behaviour left 
open by the specification, between the algorithms that realize this behaviour, be- 
tween data representation schemes, etc. Each such decision is recorded separately, 
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as a separate step hopefully consisting of a local modification to the specification. 
Developing a program from a specification then proceeds via a sequence of such 
small, easy to understand and easy to verify steps: 

S P o ~ ' * S P 1  . . . . .  SPn  

In such a chain, SPo  is the original requirements specification and SPi-1  ~ SPi  
for any i = 1, . . . ,  n is an individual refinement step. The aim is to reach a 
specification (here, S P , )  that is an exact description of a program in full detail, 
with all the technical decisions incorporated (it may simply be a program, if our 
specification formalism is rich enough). 

Example 1 (continued). The following adds to the specification S O R T  the decision 
that the sorting operation sort should preserve the number of occurrences of 
elements so that the result is a permutation of the argument list: 

S O R Tperm = 
hide opus count in 

enrich SOR T by 
opus count : int X int list -~ int 
axioms Vx:int. count(x, nil) -- 0 

Vx, y :int. V[ :int list. 
x :/: y ==~ c o u n t ( x , y :  :[) = coun t (x , l )  

Vx : int .  V[ : in t  l i s t .  count(x,  x : : l) = 1+count (x, l) 
Vx : int .  Vl : in t  l i s t .  count(x ,  [) = count(x ,  sort (l)) 

Then we choose the algorithm (insertion sort) and "code" sort but, for illustrative 
purposes, we refrain at this stage from giving the "code" for the additional 
operation insert and leave it specified only. 

INS= enrich I N T L I S T  by 
opns insert : int • int list -~ int list 
axioms Vx:int. Vl:int list. 311,12:int list. 

insert(x,  I) : l l  ~(x  : :12) A I = Ii~12 
A (VII' :int list. Vy :int. ll  = 11'@ [y] 

po(y,  x) = true) 
A (V[2' :int list. Vy "int. 12 ---- y : : 12' 

po(x ,  y) ---- true) 

S O R T i n s  = 
hide opns insert in 

enrich INS by 
opns sort : int list -~ int list 
axioms sort(nil) : nil 

VX :int .  VI : in t  l i s t .  sort (x : : l) --- insert (x, sort (1)) 

Finally, we "code" insert, preserving the "code" for sort : 
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INSdone = 
enrich I N T L I S T  by 

opns insert : int X int list -+ int list 
axioms Vx:int.  insert(x, n i l ) =  [x] 

Vx, y :int. Vl :int list. 
po(x,y)  = true ===> 

insert(x,y: :I) = x: :y:  :l 
gx, y : int .  gl :int list. 

po(x,y) = false 

insert(x,y : :I) = y: : insert(x, l) 

S O R Tdone = 
hide opns insert in 

enrich INSdone by 
opns sort : int list -~ int list 
axioms sor t (n i l )  = nil 

VX :int .  VI : in t  l i s t .  sort(x: :l) = insert(x, sort(l)) 

The above constitutes a sequence of  development steps: 

S O R T  ~ SORTperm ~,* SORTins ~,~ SORTdone 

SORTdone may be viewed as a final implementation of the original specifi- 
cation since the axioms in IN T L IST ,  INSdone and SORTdone amount to SML 
code (this disregards the fact that po is only specified as a partial order, rather 
than being coded as a specific order relation). We will make this more explicit in 
the next section. [] 

A formal definition of such refinement steps SP ~ SP'  must incorporate the 
requirement that any correct final realization of SP'  must be a correct realization 
of SP. This leads to the following straightforward definition [SAW83, SaT88b]: 

SP -~  SP'  iff lISP'I] ~- [[SP]] 

(This presupposes that Sig(SP ) = Sig(SP').) 

Example 1 (continued). The refinement steps in the above example satisfy the 
definition. This is trivial for the step S O R T  -,~ SORTperm, since SORTperm just 
adds a constraint on the class of models of SORT.  For SORTperm ~ SORTins, 
it is necessary to prove that to each model of SORTins, we can add count and 
is_sorted so that the axioms of SORTperm are satisfied. Since count and is_sorted 
are determined by the corresponding axioms in SORTperm, this amounts to 
proving that the "code" for sort entails the axioms of SORTperm, assuming 
that insert satisfies the axioms in INS and that count and is_sorted satisfy their 
axioms. Finally, SORTins ~,~ SORTdone requires a proof that the "code" for 
insert in INSdone entails the axiom in INS.  The reader is encouraged to check 
the details. 

It is perhaps worth noticing that [[SORTperrn~ = [SORTins]] = [ISORTdone]] 
(even though [INS~ ~ [IINSdone~, and count, hidden in SORTperm, is not even 
mentioned in SORTins and SORTdone); this means that the last two refinement 
steps are semantically trivial although this does not mean that the proofs are 
trivial. The reader may be worried by the fact that it then follows that, for example, 
SORTdone -'~ SORTperm. The notion of refinement is not fine enough to capture 
the sense in which SORTdone is "closer" to a program than SORTperm is. A 
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more elaborate notion of refinement, which provides a place to record "progress" 
towards a program, will be presented in the next section. [] 

The definition of refinement ensures that the correctness of the final outcome 
of stepwise development may be inferred from the correctness of the individual 
refinement steps: 

S P  o ~ S P  1 . . . . .  S P  ~ A c lISP hi] 

A �9 lISP oil 

The proof is by an easy induction on the length of the refinement sequence. 
Notice that if the final specification SPn represents an individual program P, 

i.e. [[SP]] = {lIP]I}, then the conclusion that A �9 [ISPo]] for all A �9 lISP,I] is just 
our original statement of the program development task: [[PI] �9 [[SPo]]. 

An indirect way to prove the correctness of the final outcome is to notice a 
stronger fact, namely that consecutive refinements can be composed (referred to 
as "vertical composability" [GOB80]): 

S P  "~ S P '  S P '  ~ S P "  

S P  ~ S P "  

The above gives a formal view of the stepwise development methodology. As 
mentioned before, there can be no universal recipe for coming up with useful 
refinements of a given specification - -  necessarily, this is the place where the 
developer's invention is required. Once a refinement step is proposed, though, 
we should be able to prove it correct, that is, we should have some formalism 
for proving the inclusion between the corresponding model classes. Composing 
the proofs of all the steps involved in the development of a program from a 
specification gives a proof that the program is correct with respect to the original 
specification. But there seems to be no benefit in actually producing this proof: 
individual proofs of correctness of the individual steps are easier to produce and 
easier to understand than a single monolithic proof of correctness of the resulting 
program. 

A formalism for proving correctness of refinement steps must of course incor- 
porate a theorem prover for the underlying logic, and for proving consequences 
of structured specifications, as discussed above. A new need that arises here 
is that of proving entailments between two structured specifications (we write 
S P '  ~ S P  to state that every model of S P '  is a model of S P ,  yet another formu- 
lation of S P  -,,,* S P '  that we will use in this context). If  the structures of S P  and 
S P '  match exactly (and the specification-building operations used are monotonic 
w.r.t, inclusion of model classes - -  this holds for all the specification-building 
operations in this paper and is typically the case for those considered elsewhere 
in the literature) then this problem may be reduced to proving that individual 
axioms (from SP) are consequences of certain specifications (parts of S P ' )  via 
the following fact, which is referred to as "horizontal composability" [GOB80] 
for the specification-building operation op: 

SP1 ~'* SP]  " "  SPn "~ S P '  n 
op (SP  l . . . . .  S P  n) ~ op(SP'I . . . .  , SP'n) 

Unfortunately, the structures of the two specifications need not coincide, which 
makes such a reduction very non-trivial. The only work on this important problem 
we are aware of is [Far92, Wir93]. 

Example 1 (continued). The refinements in Example 1 illustrate the point that 
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the structure of the final implementation differs from that of the original speci- 
fication, even though the difference is only that different auxiliary operations 
are used (is_sorted versus insert). The essential change happens in the step 
SORTperm ~ SORTins. There is no way to build this refinement using the 
horizontal composability rule: stripping off the hiding operations from both 
SORTperm and SORTins (naively disregarding the fact that different things are 
hidden) yields two incomparable specifications. See [Far92, Wir93] for proof rules 
that allow the user to handle this situation in a different, non-compositional 
way. [] 

Horizontal composability should not be misread as a directive to decompose 
the task of realizing a specification SP = op(SPb... ,  SPn) into separate tasks to 
realize each of SP~ . . . .  ,SPn. It is possible for the design decisions taken in the 
solutions of these separate tasks to conflict so that even once we have obtained 
realizations of SP1,. . . ,  SPn, it might not be possible to combine these to form a 
realization of SP. 

Example 2. Consider the following specification: 

SPc = enrich opns c : i n t  
axioms l < c < 1 5  

by axioms 10 < c < 27 

Since 

and 

opns c'int ) .~  (opns c ' •  ) 
axioms 1 < c < 1 5  \axioms 1 < c < 1 2  

op.ns c'int / .,~ (opns c'int 1 
axioms 1 0 < c < 2 7  \axioms 1 4 < c < 2 0  

we also have 

//enrich opns c "int 
SPc -,~ [ axioms 1 < c < 12 ) \ b y  axioms 14 < c < 20 

However, even though SPc is consistent, and both of the resulting component 
specifications are consistent as well, the resulting composed specification to which 
SPc is refined is inconsistent! 

This happens because the two specification arguments to the enrich operation 
implicitly share a loosely specified part (c : • in the example). If  the decisions 
constraining this common part in separate developments of the two specifications 
are different, as above, then putting the resulting specifications together may yield 
inconsistency. This is of course a contrived example but the same phenomenon 
arises in more realistic situations. [] 

An issue which may seem worrying here is that we have not put into our 
definition of refinement any requirement that the refined specification is consistent. 
Indeed, this can be seen as a problem, since an inconsistent specification cannot 
be implemented by any program, and so it opens a blind alley in the program 
development process. From this point of view, it would be worthwhile to be 
able to check consistency of each specification as soon as it is formulated. 
Unfortunately, in general (for any sufficiently powerful specification framework) 
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this is an undecidable property. Fortunately, inconsistency of specifications cannot 
lead to incorrect programs: if we arrive at a program at some point in the 
development process, then this program is by definition consistent (it has a 
unique model) and consequently, all the specifications leading to it must have 
been consistent as well. 

The proposed methodology of stepwise refinement does not and cannot be 
expected to guarantee success. Apart from inconsistencies, there are many sources 
of blind alleys and failures in the development process: there might be no 
computable realization of a specification, there might be no "computationally 
feasible" realization, we might not be clever enough to find a realization, we 
might run out of money to finish the project, etc. 

Example 3. Consider a specification of natural numbers with a pre-ordering 
specified by the sentence: 

m < n = t r u e  ~ Vx:nat. M m ~ x ~ M n ~ . x  

where for all natural numbers k and x, the predicate Mk ; x is specified to 
mean that the Turing machine with GiSdel number k terminates on input x. 
This specification is consistent but it has no computable models since the halting 
problem is undecidable. [] 

The main feature of the methodology we really can ensure is its safety : if we 
arrive at a program, then it is a correct realization of the original specification. 

Some refinement steps are more or less routine. For instance, there are stan- 
dard ways of implementing many data abstractions (e.g. sets, queues) and stan- 
dard ways of decomposing problems into simpler sub-problems (e.g. "divide and 
conquer"). Such refinement steps can sometimes be described schematically by 
means of so-called transformation rules such that any instance is guaranteed to be 
correct provided certain conditions are met. This reduces the burden of proving 
correctness of refinement steps: a proof that the transformation rule is correct 
is of course required, but this only needs to be done once for each rule. Then 
a simpler proof is required to show that the applicability conditions attached to 
the rule are satisfied, each time the rule is instantiated. The use of transformation 
rules also avoids the need for the programmer to come up with the idea for 
each refinement step from scratch. The need for creativity is not eliminated, of 
course: the application of transformation rules often requires invention of func- 
tions or conditions that do not appear in the specification being transformed 
to be substituted for schema variables. There has been a great deal of work on 
the transformational method of software development, much of it focussed on 
improving programs rather than on developing programs from specifications. A 
recent reference is [HKB93]. 

7. Constructor Implementations 

The simple notion of specification refinement is mathematically elegant and 
powerful enough (in the context of a sufficiently rich specification language) 
to handle all concrete examples of interest. However, it is not very convenient 
to use in practice. During the process of developing a program, the successive 
specifications incorporate more and more details arising from successive design 
decisions. Thereby, some parts become fully determined, and remain unchanged 
as a part of the specification until the final program is obtained. 
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N1 K1 N1 ~2 ~ 

It is more convenient to avoid such clutter by separating the finished parts from 
the specification, putting them aside, and proceeding with the development of  the 
unresolved parts only. 

@ -@ -+ ~1 ~2 . . . . .  * SP = E M P T Y  K3 Kn tl 

It is important  for the finished parts ~ct, . . . ,  ~cn to be independent of  the particular 
choice of  realization for what is left: they should act as constructions extending 
any realization of the unresolved part  to a realization of what is being refined. 

Example 1 (continued). An instance of the situation illustrated above may be 
found in the consecutive refinement steps SORTperm ~,* SORTins -,~ SORTdone: 
the "code" for sort introduced in SORTins, and the operation that hides insert, 
are still present in the same form in SORTdone. [] 

Each ~ci above amounts to what is known as a parameterized program [Gog84] 
with input interface SPi and output interface SPi -b  Given a program P that is 
a correct realization of SPi, the parameterized program ~ci may be instantiated 
to yield a program Ki(P) that realizes SPi-1. A programming language that 
supports stepwise development in the style suggested here needs to provide 
syntax and modularisation facilities for defining parameterized programs and 
their instantiations. For example, in the Standard ML programming language 
[Pau91] parameterized programs are called functors, and instantiation amounts 
to functor application. 3 In Modula-3 [Nelgl], parameterized programs are called 
generic modules. Once the development is finally finished (that is, when nothing 
is left unresolved, as above) we can successively instantiate the parameterized 
programs ~cn . . . . .  ~cl to obtain a correct realization of the original specification 
SPo. 

Semantically, each parameterized program ~ci defines a function (which we 
will call a constructor 4) on algebras, [[tq]] :Alg(Sig(SPi))  ~ Alg(Sig(SPi_l)), 
and instantiation is simply function application: if [[P~ E Alg(Sig(SPi)), then 
[[tq(P)]] = [[~i]]([[P]]). In practice, Ki provides a definition of the components 
(carriers and operations) of  a Sig(SPi_l)-algebra, given the components of  a 
Sig (SP i)-algebra. 

3 In the following we disregard the fact that functor application in SML is not guaranteed to 
terminate. The technicalities may be modified to capture this by modelling parameterized programs 
as partial (rather than total) functions and adding the obvious definedness condition in the definition 
of constructor implementation [SAT89]. We resist the temptation to adopt this slightly more complex 
approach for the sake of clarity of presentation. 
4 Constructors should not be confused with value constructors like nJ.1 and : : in SML and similar 
programming languages. 
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Example 1 (continued). Consider the refinement SORTperm .,~ SORTins in which 
"code" for sort is first introduced. Using a notation like that of Standard ML, a 
parameterized program corresponding to this step can be expressed as follows: 

functor KI(X:INS):SORTperm = 

struct 

open X 

fun sort(nil) = nil 

I sort(x::l) = insert(x,sort(1)) 

end 

(The effect of the declaration "open X" is to add the types and values in the 
parameter X to the context, allowing the use of names like i n s e r t  and head in 
place of the qualified names X. i n s e r t  and X.head. The reader is asked to find 
the obvious correspondence between the names used here and those used - -  in a 
different font - -  in the specifications.) 

Recall that INS is the part of SORTins that remains after "peeling off" 
sort and the operation of hiding insert, the part of the specification whose 
implementation is fixed in this step. Notice that the functor definition provides 
not only code for sort but also (implicitly) realizes the hiding of insert since insert 
is not present in the functor result signature. 

The next refinement step, SORTins ~,~ SORTdone, which introduces code for 
insert, corresponds to the following parameterized program: 

functor K2(X:INTLIST):INS = 

strict 

open X 

fun insert(x,nil) = Ix] 

insert(x,y::l) = if po(x,y) then x::y::l 

else y::insert(x,l) 

end 

The code for sort, which in the original refinement step was still present in 
SORTdone, has been dealt with in the previous step. Thus in this step we are able 
to focus on what remains, namely the insert operation, without the distraction of 
the surrounding context. 

The axioms in I N T L I S T  may be translated directly into SML code, and 
we can choose a particular realization to implement po, giving the following 
parameterized program: 

functor E3(X:EMPTY):INTLIST = 

struct 

fun po(n,m:int) = n <= m 

fun head(x::_) = x 

fun tail(_::l) = 1 

fun is in(_,nil) = false 

I is_in(x,y::l) = (x=y) orelse is_in(x,l) 

end 

Here, EMPTY stands for the empty SML signature s ig  end. 
To finish the example, we need to provide a parameterized program corre- 

sponding to the refinement step SORT-~,  SORTperm. Since all that is done in 
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this step is to impose a (non-constructive) restriction on the class of permissible 
realizations of sort, this is trivial: 

functor KO (X : SORTperm) : SORT = X 

[] 

The above considerations motivate a more elaborate version of the notion of 
refinement of the previous section, known as constructor implementation [SaT88b]. 
We write SP ~ SP' to say that a specification SP I implements a specification 
SP via ~, where ~c is a parameterized program denoting a constructor [[tc]] : 
Alg(Sig(SP')) ~ Alg(Sig(SP)), and define this as follows: 

SP ~V" SpI iff [[K~([[SP'~) a_ [rsP]] 

Here, [[~c]]([[SP']]) is the image of [[SP'~ under [[~c]]. 

Example 1 (continued). The following are examples of constructor implementa- 
tions: 

SORT~i. ~ SORTperm 
S O R Tperm-,iy INS 
IN S~ff~ IN TLIS T 
INTLIST~i, ~ E M P T Y  

The justification requires proofs similar to those sketched in Example 1 in Sec- 
tion 6 for the corresponding refinement steps. [] 

For each parameterized program tc we can (in principle) define a specification- 
building operation ~ such that [[~(SP')]] = [[~cl]([[SP']]); then constructor im- 
plementations may be viewed as refinements (SP -~ SP' is just SP ~,* -g(SP')). 
Provided that we have means for reasoning about specifications built using 
these new operations, the correctness of constructor implementations may be 
established using proof techniques for refinements. Specifically, we need a way 
of deriving entailments of the form ~(SP') ~ SP; this boils down to proving 
properties of the components of programs built by ~c. 

The correctness of the final outcome of the stepwise development process may 
be inferred from the correctness of the individual constructor implementation 
steps: 

SPo "~ SP ~ . . . . .  SPn -= E M P T Y  K1 Ir IOn 

[[~q(~c2(...~cn(empty)...))~ ~ [[SP0]I 

where E M P T Y  is the empty specification over the empty signature and empty is 
its (empty) realization. 

Example 1 (continued). In our example, 

KO (KI (K2 (K3 (empty)) ) ) 

yields a non-parameterized program (an SML structure) satisfying SORT.  Here, 
empty stands for the empty SML structure s t r u c t  end. [] 

Suppose that parameterized programs compose, that is, for any two param- 
eterized programs K and ~c' such that the signature of the output interface of ~c 
coincides with the signature of the input interface of ~c', there is a parameterized 
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program K;~c' with [[~c;x']] = [[~c~ ;[[tr (the latter semicolon stands for ordinary 
function composition, written in diagrammatic order). Then it is easy to see that 
constructor implementations (vertically) compose: 

SP "T SP' SP' ~ SP" 

SP ~r~. SP" 

The requirement that parameterized programs can be instantiated is a weaker 
requirement than that parameterized programs be composable, even though any 
programming language with decent modularisation facilities should ensure the 
latter as well. In Standard ML, there is no explicit functor composition operation 
but the composite of two functors may easily be defined using functor application 
and abstraction. 

As in the case of refinement, vertical composability is not necessary to ensure 
the correctness of the outcome of the development process. All we need is the 
condition inherent in the definition of constructor implementation, namely that 
implementations reflect realizations: 

SP "~ SP' A' E lISP'I] 
[[Ir C [[SP]] 

Many approaches to implementation (see e.g. [EKM82, SAW82, Ore83]) make 
use of a restrictive kind of constructor defined by a parameterized program having 
a particular rigid form. Then the vertical composition of two implementations 
is required to yield an implementation of the same form, which is not always 
possible. The requirement that the composition of parameterized programs be 
forced into some given normal form corresponds to requiring programs to be 
written in a rather restricted programming language. 

We have already mentioned that the internal structure of a requirements 
specification need not be mirrored by programs that realize it. This is why the 
definitions of refinement and constructor implementation above take no account 
of the structure of specifications. However, when developing a large program 
it is crucial to progressively decompose the job into smaller tasks that can be 
handled separately. Each task is defined by a specification, and solving a task 
means producing a program component that satisfies this specification. Once all 
tasks are solved, producing the final system is a simple matter of appropriately 
assembling these components. 

A development step involving the decomposition of a programming task 
into separate subtasks is modelled using a constructor implementation with a 
multi-argument parameterized program (see [SST92]): 

S P - ~ ( S P 1  . . . . .  SP~) iff [[~c~([[SP1]] x . . .  x lISP,I]) c lISP]] 

where [[~c~ : Alg(Sig(SP1)) x . . .  xAlg(Sig(SPn)) ~ AIg(Sig(SP)) is an n-argument 
constructor (an n-argument function on algebras) describing a way to put models 
of S P b . . . , S P n  together to construct a model of SP (and, as before, we use 
the same notation [[~c]] to denote the corresponding image function). Now the 
development takes on a tree-like shape. The development is complete once a tree 
is obtained that has empty sequences (of specifications) as its leaves: 
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SPI ~"T (i { 

SPnm -~" ( ) SP ~ SPnl ~,1 ~c~, 
SP n ~"T "'" 

SPnm ,c,,"~ () 

Then an appropriate instantiation of the parameterized programs in the tree yields 
a realization of the original requirements specification. The above development 
tree yields the program ~c(~Cl0 . . . .  , xdtc~fft~la()) . . . .  , Knm())), with 

II~(KIO . . . . .  K, (K,I (~ ,~I ( ) ) , . . . ,  ~,,,,,0))]] ~ [[sPll 

(We use an obvious notation to(P1,..., Pn) for instantiation of n-ary parameterized 
programs, where [Ix(P1,.--, Pn)]] - [[~c]](~P1]] . . . . .  [[Pn~).) 

The structure of the final program is determined by the shape of the de- 
velopment tree, which is in turn determined by the decomposition steps. Each 
such step corresponds to what software engineers call a design specification (and 
what [GHW82] call an organizational specification): it defines the structure of 
the system by specifying its components and describing how they fit together. 
This style of development leads to modular programs, built from fully specified, 
correct and reusable components. 

A complete development tree does not reflect the process of developing a 
system from a specification, which normally involves false starts, blind alleys 
and backtracking�9 It documents only the final outcome of this process, where all 
subtasks have been solved successfully. An incomplete development tree may be 
used to record a stage in the development process, so the development process 
corresponds to a sequence of such trees which culminates in a complete tree. 
Ideally, each tree in the sequence is an expansion of the previous one, but 
backtracking corresponds to deletion or alteration of parts of the tree that have 
already been filled in. 

Example 1 (continued). We show a simple example of a decomposition using a 
modified version of the sorting specification above: 

SORTonce = 
hide opns all_once in 

enrich SORT by 
opns all_once : i n t  l i s t  --~ boo l  
axioms all_once(nil) = t r u e  

Vx :int. Vl :int list. 
all_once(x : :1) ---- t r u e  

all_once(l) = t r u e  A is_in(x, 1) = f a l s e  
Vl :int list. all_once(sort(1)) = true 

SORTonce just adds to SORT the requirement that the result of sort does not 
contain multiple occurrences of elements. Clearly, SORT ~,* SORTonce. 

Consider an additional specification that introduces a function specified to 
remove adjacent occurrences of the same element in a list: 
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N O S T U T T E R  = 
enrich I N T L I S T  by 

opns rein_stutter : i n t  l i s t  --~ i n t  l i s t  
axioms V/,/1,12 : in t  l i s t .  Vx, y : int .  

rein_stutter(1) = / l@(x :  :y:  :/2) ~ x ~ y 
Vl :int list. Vx :int. 

is_in(x, 1) = is_in(x, rein_stutter(l)) 
VI, I1, /2: int  list. 

rein_stutter(l) = l l ~12 --->. 
313,/4:int list. 

1 = 13~14 A rein_stutter(13) = l l  
A rein_stutter(14) = 12 

Now, the problem of implementing the specification SORTonce  may be de- 
composed (perhaps not very efficiently, but certainly correctly) into the problems 
of implementing SORTperm and N O S T U T T E R  : 

S O R Tonce~i~g ( S O R Tperm, N O S TU T T E  R } 

where the parameterized program K4 is given as follows: 

f u n c t o r  K4 (X : SORTperm, Y : NOSTUTTER) : SORTonce = 
struct 

open X 
fun sort(l) = Y.rem stutter(X.sort(1)) 

end 

The specification N O S T U T T E R  can easily be implemented using the following 
functor: 

functor K5 (Z : INTLIST) : NOSTUTTER = 

struct 

fun rem_stutter(nil) = nil 
I rem_stutter([x]) = [x] 

I rem_stutter(x: :y: :l) = 
if x = y then rem stutter(y::l) 

else x::rem stutter(y::l) 
end 

Since we already have an implementation of SORTperm (obtained entirely in- 
dependently from the development for N O S T U T T E R )  and of I N T L I S T ,  the 
development is complete and we can put all these together to obtain the follow- 
ing realization of the specification SORTonce:  

K4 (KI (K2 (K3 (empty)) ), KS (K3 (empty)) ) : SORTonce 

[] 

Horizontal composability for constructor implementations takes the form: 

SP t ~ SP ~ . . .  SP n ,~"T SP'n 

op(SP 1, . . . ,  SP n) ~ op(~f(SP '1 ) , ' " ,  G(SP'n)) 

The problem illustrated by Example 2 still exists, but it cannot arise when 
op corresponds to a parameterized program, as in the decomposition steps via 
multi-argument parameterized programs above. 
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8. Specifying and Developing Parameterized Programs 

The enterprise of formal specification and development is relevant to parameter- 
ized programs, with exactly the same motivation as in the case of ordinary non- 
parameterized programs. An additional advantage this brings is that it enables 
the overall shape of a development tree (see above) to be given without the need 
to supply the parameterized programs involved in each of the steps. The provision 
of a parameterized program that fits into each step can then be regarded as a sep- 
arate task, perhaps involving further refinement and decomposition. This is one 
of the ideas underlying the Extended ML methodology for formal development 
of Standard ML programs from specifications [SAT89, SaTgl, Sangl, Kaz92]. 

For any two signatures Z and E', we can regard Z ~ E '  as a new kind of 
signature. Then Alg(E-+E') is the set of all parametric (Z~E')-algebras, that 
is functions F : A/g(2) ~ Alg(2'). Just as ordinary programs are modelled 
as algebras, parameterized programs are modelled as parametric algebras. (We 
generalize this further to multi-argument and higher-order parametric algebras 
below.) 

Note that both "constructor" and "parametric algebra" are names for the 
same concept: a function mapping algebras to algebras. We use the former 
when such a function constitutes an implementation step, and the latter when 
it is itself the outcome of a development task. This distinction is blurred below, 
especially once the extension to higher-order is considered. Another difference is 
that a constructor is assumed to be defined by a parameterized program, while a 
parametric algebra is an arbitrary set-theoretic function. 

To specify a parameterized program, we give its input and output interfaces. 
The specification SP ~ S P '  describes the class of parametric (Sig (SP)~Sig  (SP'))- 
algebras F : Alg(Sig(SP)) ~ Alg(Sig(SU)) such that F(A) E lISP']] for all A 
I[SP]]. Said another way, Sig(SP~SP' )  = Sig(SP )--*Sig(SP') and [ISP~SP']] = 
{F ~ Alg(Sig(SP)~Sig(SP'))  I F([[SP]]) ~ [[SP']]}. The statement that tc is a 
realization of S P ~ S U  is thus equivalent to the correctness of the constructor 
implementation SP'~,~ SP. The specification SP-+SP I is not a so-called param- 
eterized specification; it is a non-parameterized specification of a parameterized 
program. See [SST92] for a discussion of this distinction. 

Example 1 (continued). I N T L I S T ~ S O R T  specifies a parameterized program 
which, given an implementation of INTLIST,  delivers an implementation of 
SORT. Two (equivalent) realizations of this specification are the functors: 

functor K(X: INTLIST) : SORT = K0 (KI (K2 (X))) 

functor K' (X : INTLIST) : SORT = El (K2 (X)) 

Another, different realization is: 

functor K' ' (X : INTLIST) : SORT = K4 (KI (K2 (X)), K5 (X)) 

That is, IlK]I, [[K']], IlK' ']] E [[INTLIST--~SORT]]. [] 

The definition of refinement of specifications applies without modification to 
specifications of parameterized programs: 

sP  SP'  iff IISP2- sP'2]] IISPl- SP' ]] 
which again presupposes that Sig(SP1--+SP~) = Sig(SP2-*SP~2), i.e. Sig(SP1) = 
Sig(SP2) and Sig(SP'~) = Sig(SP'2). A sufficient condition for this refinement to 
hold is that SP2 ~ SP1 and SP] ~ SP'2. 
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Example 1 (continued). Simple examples of refinements between specifications of 
parameterized programs may be built on the examples of refinements given in Ex- 
ample 1 in Section 6: I N T L I S T ~ S O R T  refines to 1NTLIST--+SORTperm which 
further refines to 1NTLIST--*SORTins which refines to INTLIST--+SORTdone. 
[] 

The above presentation uses a particularly simple form of specification of 
parameterized programs, where the output interface does not depend on the par- 
ticular realization of the input interface. This is not sufficient when more complex 
examples are considered. The necessary extra flexibility is gained by replacing the 
specification SP-*SP '  by the generalized (dependent) product HX:SP.SP'[X].  
See [SST92] for details of this and other technicalities omitted here. 

Example 1 (continued). Specifications like INTLIST--~SORT do not capture the 
intention that their realizations, when given an argument X realizing INTLIST ,  
should produce a realization of SORT that extends X. So a realization of 
I N T L I S T ~ S O R T  might ignore the po component of its argument and produce 
a realization of S O R T  containing a completely different po function, together 
with a sorting function that is correct with respect to this new po function rather 
than the one supplied in the argument. This problem can be solved by use of the 
following dependent product specification: 

[IX :IN TLIS T. 
enrich SORT by 

axioms Vx, y: in t ,  po(x,y)  = X.po(x,y)  
Vx:int.  V1 : in t  l i s t .  is_in(x, l) = X.is_in(x, l) 
V1 : in t  l i s t .  head(1) = X.head(1) A tail(l) = X.tail(l) 

In case types are involved, this is the issue of sharing in Standard ML 
and the use of so-called sharing constraints as in Standard ML [Pau91] and 
Extended ML [SAT89, SAT91] is one way of expressing the required dependency. 
See SPECTRAL [KBS91] for a different approach. 

The need to "copy" the components of X (po, is_in, etc.) may seem ugly. In 
fact, since these components are provided by the argument X, there is no need 
to include them explicitly in the result - -  if they are needed later on somewhere 
else, they can always be recovered directly from X itself rather than via the result. 
This would lead to the following dependent product specification: 

FIX :IN TLIS T. 
hide opns is_sorted in 

opns is_sorted : int list -~ bool 
sort : int list -+ int list 

axioms is_sorted(nil) -- true 
Vx:int. VI :int list. 

is_sorted(x: :1) = t r u e  r 
((Vy : int .  X.is_in(y, l) = t r u e  = X.po(x, y) = t rue)  

A is_sorted (1) = t rue)  
Vl : in t  l i s t .  is_sorted(sort(1)) = t r u e  
V1 : in t  l i s t .  Vx :int .  X.is_in(x, l) = X.is_in(x, sort(l)) 

[] 

Constructor implementations may be similarly generalized to deal with specifi- 
cations of parameterized programs. However, the parameterized programs used to 
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define the constructors involved in such implementations are then higher-order, 
i.e. they take parameterized programs as arguments and return parameterized 
programs as results. Higher-order functors are not available in Standard ML as 
defined in [MTH90], but their semantics and implementation is a topic of current 
active research [Tof92, MAT94, Bis95]. 

8.1. Higher-Order Parameterization 

The definitions involved in dealing with parameterized programs and their speci- 
fications extend to the higher-order case in a natural way [SST92]. The set 
of generalized signatures is defined to be the least set containing ordinary 
signatures and such that if Zl . . . .  , Z,  (n t> 0) and Z are generalized signa- 
tures, then (Z1,...,Zn)--*E is a generalized signature as well; if n = 1 we 
omit the brackets. Alg((Xl . . . . .  Z,)-+X) is the set of all functions F : Alg(Xl) x 
�9 .. x A/g(Xn) --~ Alg(Z). (Alternatively, multi-argument parameterized programs 
could be presented in their "curried" form denoting parametric algebras in 
Alg (X l~ (Z2-+ ' " (Xn-*Z)"  ')).) As before, to specify a higher-order parameter- 
ized program, we give its input interfaces and output interface, which may now 
themselves be specifications of (higher-order) parameterized programs. The defi- 
nitions are exactly the same as those given above. In the following, for simplicity, 
we omit the problems of dependency of the result specification on the arguments; 
as before, a solution is to use generalized product specifications. 

The concepts of constructor implementation and decomposition step carry 
over without modification to the case of higher-order parameterized programs 
and their specifications. 

Example 1 (continued). The example of constructor implementation with de- 
composition at the end of the last section may be rephrased using these 
ideas. Instead of implementing SORTonce in terms of realizations of SORTperm 
and NOSTUTTER, we can build a realization of the specification 
INTLIST-~SORTonce in terms of realizations of the specifications 
INTLIST-+SORTperm and INTLIST-- ,NOSTUTTER : 

IN TLIS T--+ S O R Tonce ~,.~ 
(INTLIST--,SORTperm, INTLIST---~NOSTUTTER) 

where K6 is the following higher-order functor (written using an ad hoc but 
hopefully self-explanatory notation): 

functor K6( FI :INTLIST->SORTperm, F2:INTLIST->NOSTUTTER ) 

: INTLIST->SORTonce = 

( functor (X: INTLIST) :SORTonce = 

struct 

structure S = FI(X) 

open S 

structure N = F2(X) 

s sort 1 = N.rem stutter(S.sort(1)) 

end ) 

[] 

It is possible to restrict attention to parameterized programs of a partic- 
ularly simple form, since any constructor implementation SP ~'{SP1,. . . ,SPn} 
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may be replaced by the decomposition SP -~pprISP~,SP1,...,SP,}, where SP~ = 

(SP 1,..., SPn)~SP and app is the higher-order parameterized program such that 
app(F, A1 .... ,An) = F(A1 .... ,An) and where the parameterized program x is then 
provided as the realization of SP~. A decomposition like SP ~vp(SP~,SPb..., 
SP,} embodies the decision to implement SP in terms of realizations of 
SP1,..., SPn, leaving the decision of how these are used to produce a realization 
of SP as a separate development task, specified by SP~. This brings a bottom-up 
flavour into our principally top-down view of the development process. 

Example 1 (continued). Here is the above example once again: 

IN TLIS T--+ SO R Tonce -'~ 
APP 

( (1N TL I S T---~ S O R Tperm, IN TLI S T---~ N O S TU TTE R }--~ 
(INTLIST ~SORTonce), 

IN TLIS T ~ SO R Tperm, 
1NTLIST---~NOSTUTTER) 

where APP is the higher-order functor applying its first argument to its second 
and third arguments: 

functor APP 
( F : (INTLIST->SORTperm, INTLIST->NOSTUTTER) -> 

(INTLIST->SORTonce), 
FI : INTLIST->SORTperm, F2 : INTLIST->NOSTUTTER 

) :INTLIST->SORTonce = 
F(FI ,F2) 

This embodies a decision that the implementation of INTLIST~SORTonce 
may use the implementations of the specifications INTLIST~SORTperm and 
INTLIST~NOSTUTTER,  to be provided separately. One way of realizing the 
specification 

( IN TLIS T---~ SO R Tperm, IN TLIS T-* N O S TU TTER )-* 
(INTLIST--~SORTonce) 

is the functor K6 above; another possibility is to use an entirely different solu- 
tion, ignoring either or both of the realizations of INTLIST~SORTperm and 
INTLIST---~NOSTUTTER. For example: 

functor KT( FI :INTLIST->SORTperm, F2: INTLIST->NOSTUTTER ) 
: INTLIST->SORTonce = 

( functor (X: INTLIST) : SORTonce = 
struct 

open X 
fun insert(x,nil) = Kx] 

I insert(x,y: :l) = 
if x=y then y::l 
else if po(x,y) then x::y::l 

else y::insert(x,1) 
fun sort(nil) = nil 

I sort(x::l) = insert(x,sort(1)) 
end ) 

[] 
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9. Behavioural Implementations 

A specification should be a precise and complete statement of required proper- 
ties. We should try to avoid including extra requirements, even if they happen 
to be satisfied by a possible future realization. Such over-specification unneces- 
sarily limits the options left open to the implementer. Ideally, the target is to 
describe exactly the admissible program behaviours. This suggests that specifica- 
tions of programming tasks should not distinguish between programs (modelled 
as algebras) exhibiting the same behaviour. 

The intuitive idea of behaviour of an algebra has been formalised in a 
number of ways (see e.g. [ReiS1, GoM82, SAW83, Sch87, SAT87, NIO88]). 5 In 
most approaches one distinguishes a certain set OBS of sorts as observable. 
Intuitively, these are the sorts of data directly visible to the user (integers, 
booleans, characters, etc.) in contrast to sorts of "internal" data structures, which 
are observable only via the functions provided by the program. The behaviour of 
an algebra is characterised by the set of observable computations taking arguments 
of sorts in OBS and producing a result of a sort in OBS.  In the standard 
algebraic framework, such computations are modelled as terms of sorts in OBS 
with variables (representing the inputs) of sorts in OBS only. Two Z-algebras A 
and B are behaviourally equivalent (w.r.t. OBS),  written A = B, if they exhibit 
the same behaviour, that is, if all observable computations yield the same results 
in A and in B. The motivation is related to that of so-called testing equivalences 
studied in the context of concurrent systems [DNH84]. The role of behavioural 
equivalence in the context of parametric algebras is a topic of current research 
and we do not treat this here. Therefore this section deals only with ordinary 
algebras and development of non-parameterized programs. 

Example 4. A hackneyed example that illustrates the idea of behavioural equiv- 
alence is that of stacks of integers: 

S T A C K  = sorts stack 
opns empty : stack --> bool 

push : i n t  • stack --~ stack 
pop : stack -* stack 
top : stack --~ i n t  
is_empty : stack ~ boo1 

axioms is_empty(empty) = t r u e  
Vs:stack. Vn : int.  is_empty(push(n, s)) = f a l s e  
Vs:stack. Vn : int .  top(push(n, s)) = n 
gs :stack. gn : int .  pop(push(n, s) ) = s 

Suppose that the sorts i n t  and bool (included implicitly in all the specifications 
we consider) are taken as observable while the sort stack is not. The observable 
computations are all the terms of the form is_empty(s) and top(s) where s is a 
term of sort stack with variables of sort i n t  only. 

Two typical algebras which provide intuitively acceptable realizations of this 
specification can be coded as SML structures as follows: 

5 The following paragraph makes sense only in an institution in which signatures have sorts. This is 
not  much of  a restriction in practice. In any case, what follows thereafter (apart from the examples) 
applies to any institution and any equivalence relation on its algebras [SaT88b]. 
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structure SI:STACK = 

struct 

type stack = int list 

val empty = nil 

fun push(n,s) = n::s 

fun pop(nil) = nil 

I pop(_: :s) = s 

fun top(nil) = 0 

I top(n:: ) = n 

fun is_empty(nil) = true 

I is_empty(_::_) = false 

end 

structure S2:STACK = 

struct 

type stack = (int -> int) * int 

val empty = ((fn k => 0), O) 

fun push(n, (f,i)) = 

((fn k => if k = i then n else f k), i+l) 

fun pop(f,i) = if i = 0 then (f,O) else (f,i-l) 

fun top(f,i) = if i = 0 then 0 else f(i-l) 

fun is_empty(f,i) = (i=O) 

end 

S1 gives the obvious realization of stacks as list of integers and $2 codes the 
realization of stacks as (infinite) arrays with pointers to the top of the represented 
stack (arrays are coded here as functions from integer indices to values). 

Now, these two realizations of stacks are behaviourally equivalent since for 
each observable computation, like top(pop(push(n, push(4,push(6, empty))))), they 
both deliver the same result (in this case 4). However, these algebras do not act 
the same way when non-observable computations are considered: for example, 
the computations empty and pop(push(6,empty))  yield the same result in S1 but 
they yield different results in $2. [] 

Our earlier discussion would lead us to expect the class of models of a 
specification to be closed under behavioural equivalence. It is perhaps surprising 
that this is not easy to achieve directly: the class of models of a set of axioms 
typically does not have this property. Equational logic may be modified so as to 
force this to happen (cf. [NiO88]) and a similar idea for other logical systems is 
discussed in [BHW95], but it is not clear how this approach can be extended to 
deal adequately with structured specifications. An alternative is to simply close the 
class of models of a specification under behavioural equivalence [SAW83, SAT87]. 
Any specification SP determines the class lISP]] ~ Alg(Sig(SP))  of models that 
"literally" satisfy the stated requirements, as discussed in Section 3; the ultimate 
semantics of SP is taken to be the closure of this under behavioural equivalence: 

[liSP]l] = {A ] A -- B for some B E liSP]]} 

In particular, [[sorts Sopns ~ axioms q)ll contains exactly the (S, f~)-algebras that 
satisfy the axioms gP, while [[[sorts Sopns ~ axioms ~P]]] contains also the algebras 
that do not satisfy @ themselves but are behaviourally equivalent to algebras 
that do. The notation [II-m applies to specifications only; it does not apply to 
programs or parameterized program. 
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Example 4 (continued). Both the list representation S1 and the array-with-pointer 
representation $2 of stacks are in flISTACK]~ - -  and this is what we meant when 
we declared 

s t r u c t u r e  SI:STACK = . . .  
structure S2:STACK = ... 

That is, S1, S2 E ]][STACK]]]. This holds even though the latter realization 82 
does not literally satisfy the axiom Vs:s tack .Vn: int .pop(push(n,s) )  = s and so 
$2 ~ [[STACK]]. [] 

This approach typically gives extra expressive power: considering the insti- 
tution of first-order logic with equality, there are classes of algebras that may 
be finitely characterized in this way, and cannot be finitely axiomatized directly 
[Sch92]. (Of course, this property depends on the logic considered: for example, 
second-order logic allows one to specify behavioural closures directly [HOS96].) 
Also, model-oriented specifications [Jon86] can be handled: if liSP]] contains just 
a single algebra, then [liSP]]] admits any realization of the exhibited behaviour. 
In general, [lISP]I] contains all reifications of the algebras in I~SP]] (cf. [Hoa72]). 

The basic intuition for the use of behavioural equivalence in the development 
process is that it is not necessary to implement a specification SP according to 
its literal interpretation lISP]]; it is sufficient to implement it up to behavioural 
equivalence, as captured by its "ultimate" semantics [liSP]l]. The definitions of 
refinement and constructor implementation are now as follows: 

SP ~ SP '  iff [lISP'[[] ~- [lISP[[], 

SP ~ SP '  iff [[~c]]([][SP']]]) _ [[[seli]. 

Using these definitions, it is possible to develop programs from specifications 
by means of successive implementation steps exactly as described earlier. 

9.1. Stability 

The development process may take advantage of the behavioural interpretation of 
specifications in a more delicate way than suggested above. The crucial novelty, 
due to [Sch87], is that when using a realization of SP, it is convenient (and 
possible) to pretend that it satisfies the literal interpretation of SP. 

Example 4 (continued). Consider the following trivial specification 

T R I V  = opns id : i n t  x i n t  x • ~ • 
axioms Vx, n , z : i n t ,  n >= 0 ~ id (x ,n , z )  = x 

and its perhaps surprising realization in terms of stacks of integers :6 

functor TR(S : STACK) :TRIV = 

struct 

fun multipush (n, z, s : S. stack) = 

if n <= 0 then s 

else S. push(z,multipush(n-1, z+l, s) ) 

6 This is of course an extremely contrived example, but it is easy to come up with realistic programs 
using stacks where properties like this are to be proved. 



Essential Concepts of Algebraic Specification 263 

fun multipop (n, s : S. stack) = 
if n <= 0 then s else multipop(n-l,S.pop(s)) 

fun id(x,n,z) = 
S. top (mult ipop (n, mult ipush (n, z, 

S. push(x, S. empty) ) ) ) 
end 

Now, given any realization S of STACK, to verify that TR(S) E ~TRIV~], it is 
convenient to assume that the axiom Vs:stack. Vn:int. pop(push(n,s)) = s holds 
in S literally in spite of the fact that this equation is not valid in ~[STACK]B. 
Under this assumption, a simple proof by induction (on the second argument of 
• goes through. The reasoning for the induction step goes as follows: 

id (x ,n+l , z )  
= S. top  (mult ipop (n+ 1, mult  ipush  (n+ 1, z, S. push (x,  S. empty) ) ) ) 
= S. top  (mult ip  op (n, S. pop (S. push (z,  mult  ipush  (n, z + 1, 

S. push (x, S. empty))  ) ) ) )  
= S. top  (mult ipop (n, mult  ipush  (n, z+l, S. push (x, S. empty) ) ) ) 
= id(x ,n , z+l )  
= X  

where the final step follows by the induction hypothesis. [] 

These considerations lead to the following definition of behavioural implemen- 
tation [SaT88b] : 

SP @ SP' iff [[K]]([fSP'~) ~_ ~SP]]] 

The alert reader will have noticed that there is a problem here: we want to 
have our cake and eat it. On one hand, we want to allow specifications to 
be implemented up to behavioural equivalence; on the other hand, we would 
like to use any realization as if it satisfied its specification literally. Behavioural 
implementations do not compose, and the following crucial property is lost: 

SP ~ SP' A' �9 ~ISP']~ 
[[K]](A') E MSP~] 

The behavioural implementation SP ~ SP' ensures only that algebras in [[SP']] 
give rise to correct realizations of SP; this says nothing about the models in 
[]ISP']]] that are not in [[SP']]. 

Example 4 (continued). As stated above, TRIV ~ S T A C K .  Formally, neither 
the property this embodies (that TR(S) E [[[TRIV]]] for S E [[STACK]]) nor 
its suggested proof tell us anything about the application of TR to the algebra 
$2 ~ [[STACK]], even though $2 E [~STACK]]] and we have earlier identified $2 
as an acceptable realization of S TACK. It may be shown that TR ($2) E [~ TRIV ]]] 
but the most obvious proof involves the non-elementary fact that for any natural 
number n, 

mult ipop(n,  s) = S. pop(... (S. pop(s)).. .) 

n times 

and similarly for mul t ipush  (and then relies on the property that since~ S2 c 
[I[STACK]I], all observable computations in $2 yield the same results on s and 
on pop(push(z, s)), for any stack s and integer z). 

Consider, however, another trivial realization of TRIV in terms of STACK : 
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functor TR' (S:STACK) :TRIV = 

struct 

fun id(x,n,z) = let valse = S.pop(S.push(z,S.empty)) 

in if se = S.empty then x else z 

end 

end 

(TR' cannot be coded in SML since the type S. s t a c k  is not ensured to admit 
equality.) 

We can prove now that TRIV ~ STACK, hence TR' (S1) E IgTRIV]]], but 
of course TR' (82) ~ [][TRIVm. [] 

It might seem that all is lost. But there is a way out, originally suggested in 
[Sch87]. The above crucial property is recovered if we assume that the constructors 
used are stable, that is, that any constructor [[~]] : Alg(Sig(SP')) ~ Alg(Sig(SP)) 
preserves behavioural equivalence: 

Stability assumption: i fA  - B then [[~c]](A) -- [[~c]](B) 

(the exact definition of stability of  constructors in a formal development frame- 
work based on a full-blown programming language is somewhat more complex 
- -  see [Sch87, SAT89]). 

Under this assumption, the correctness of the individual implementation steps 
ensures the correctness of  the result: 

SP0 ~'* SP1 -'~ "'" ~ SP, = EMPTY  1r 1 tr 2 ten 

[[tq(~c2(... tQ(empty).. 3)]1 ~ [lIsPom 

Example 4 (continued). Clearly, the functor TR' as defined above is not stable. 
On the other hand, the functor TFt is stable (this can be proved along the lines 

of the argument given above to justify that TR(S2) E [IITRIVm). This shows that 
TR(S) C [[[TRIV]]] for all S c [~STACKm, not only for S E ~STACK]]. [] 

We could repeat here the tree-like development picture of Section 7 - -  devel- 
opments involving decomposition steps based on behavioural implementations 
with multi-argument (stable) constructors yield correct programs as well. We 
also recover vertical composability, under the assumption that parameterized 
programs compose as discussed in Section 7: 

SP ~ SP' SP' -,~ SP" 
SP ~ SP" 

tr ;to 

The correctness of a behavioural implementation SP ~ SP t is easier to verify 
than the correctness of the corresponding constructor implementation between 
the same specifications closed under behavioural equivalence: the condition 
[[tr ~_ [~SP]~ is weaker than [[lc]](~SP']]]) ~_ [HSP]]] (but semantically 
these two conditions become equivalent if [[•]] is stable). Also, the correctness 
of SP ~ SP' is in general easier to verify than the correctness of the original 
constructor implementation SP "T SP~ (that is, [[tr ~_ [][SP ]~ is weaker 

than ~c([[SP']]) c [[SP]]). For instance, viewing the structure S2 of Example 4 
as a functor with an empty parameter, we have STACK ~ EMPTY,  while 
STACK ~ EMPTY.  As we have argued, this extra flexibility reflects our intu- 
itive understanding of  what it means for an algebra to realize a specification. 
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We are still left with the need to establish the stability of constructors, and so 
one may wonder if it is worthwhile taking advantage of this property. However, 
recall that constructors are determined by parameterized programs, and these 
must be expressed in some particular programming language. Thus stability 
can be checked in advance, for the programming language as a whole (this is 
simplified somewhat by the fact that the composition of stable constructors is 
stable) and this frees the programmer from the need to prove it during the 
program development process. Other views of stability are possible, cf. [NOS95]. 

There is a close connection between the requirement of stability and the secu- 
rity of encapsulation mechanisms in programming languages supporting abstract 
data types. A programming language ensures stability if the only way to access 
an encapsulated data type is via the operations explicitly provided in its output 
interface. This suggests that stability of constructors is an appropriate thing to 
expect; following [Sch87] we view the stability requirement as a methodologi- 
cally justified design criterion for the modularization facilities of programming 
languages. 

Example 5. The limited notation of Standard ML functors we have used in 
Examples 1 and 4 throughout this paper ensures stability of constructors] In- 
tuitively, this is because the parameter signature of any SML functor provides 
sufficient insulation between the functor body and the actual parameters. Within 
the functor body we can access the parameter only using the "tools" given in the 
parameter signature. Unfortunately, signatures given for functor results and for 
structures declared in SML are much more "transparent": they do not provide 
sufficient insulation between the declaration of a structure and its use. For ex- 
ample, the following code in SML shows a non-stable extension of the structure 
$2: 

structure S2:STACK = 

struct 

type stack = (int -> int) * int 

val empty = ... 

fun pop(f,i) = if i = 0 then (f,O) else (f,i-l) 

end 

fun id(x,n,z) = let val (f,i) = S2.pop(S2.push(z,S2.empty)) 

in if f i = 0 then x else z 

end 

Changing the "internal" implementation details of $2 for example as follows: 

structure S2:STACK = 

struct 

type stack = (int -> int) * int 

val empty = ... 

fun pop(f,i) = 

if i = 0 then (f,O) 

7 Of course, considerable work would be required to turn this claim into a formal theorem with a 
precise proof. 
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else (fn k => if k = • then 0 else f k, i-1) 

end 

changes completely the behaviour of the id  function as defined in the extension, 
even though the new realization 82 of stacks is behaviourally equivalent to the 
previous one. 

This can be viewed as a deficiency in the design of the Standard ML modu- 
larization facilities. This infelicity is not present in the Extended ML formalism 
[SAT91, KST94, KST97] where access to a structure or functor result is limited 
to the use of the tools given in its signature�9 [] 

10. Conclusion 

We have outlined the main ideas of a framework to support the formal devel- 
opment of correct programs from specifications of their required behaviour. Our 
purpose has not been to introduce new technicalities, but rather to explain in a 
careful way the general ideas underlying the algebraic approach and the specific 
motivation behind the concepts involved in the formalization of the development 
process. This forced us to clarify some of the finer points of the approach, like 
the distinction between syntax and semantics in constructor implementations and 
an abstract formulation of stability in this context. 

The main challenge now is to put these ideas into practice in the formal 
development of non-trivial programs in real programming languages. We are 
moving in this direction with our work on the Extended ML framework for the 
formal development of modular Standard ML programs [SaTgl, KST94, KST97], 
although more effort is required. Subjecting foundational work to the test of 
practice is sure to bring fascinating new problems and issues to light. 
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