
Formal Aspects of Computing (1997) 9:229-269
@ 1997 BCS Formal Aspects

of Computing

Essential Concepts of Algebraic Specification
and Program Development
Donald Sannella I and Andrzej Tarlecki 2
1LFCS, Department of Computer Science, University of Edinburgh, Edinburgh, UK
2Institute of Informatics, Warsaw University and Institute of Computer Science, Polish
Academy of Sciences, Warsaw, Poland

Keywords: Algebraic specification; Formal program development; Specification
and program structure; Implementation of specifications, Behavioural equivalence

Abstract. The main ideas underlying work on the model-theoretic foundations
of algebraic specification and formal program development are presented in an
informal way. An attempt is made to offer an overall view, rather than new
results, and to focus on the basic motivation behind the technicalities presented
elsewhere.

Introduction

The long-term goal of work on algebraic specification is to provide a formal basis
to support the systematic development of correct programs from specifications
by means of verified refinement steps. There has been a large body of technical
work directed towards this important goal. Many interesting concepts have been
introduced and quite a number of non-trivial results have been stated and proved
(see [BKLgl] for a review and a comprehensive list of references). Instead of
providing yet another piece in the puzzle, in this paper we sketch on a rather
informal level our views on how some of the existing pieces fit into an overall
picture of what is important in the light of the ultimate goal. We focus on the
motivations for certain technicalities that we think are of crucial importance, only
suggesting, rather than presenting in full detail, the technicalities themselves. A
past paper with similar aims is [GHW82].

The literature already mentions many of the points we make here, such as the
use of "institutions" to ensure sufficient generality of the proposed framework,

Correspondence and offprint requests to : D. Sannella, LFCS, Department of Computer Science, Uni-
versity of Edinburgh, Edinburgh EH9 3JZ, UK. E-mail: dts@dcs.ed.ac.uk

230 D. Sannella and A. Tarlecki

and the use of "constructor implementations" to capture the essence of program
development steps (including steps that involve a decomposition into indepen-
dent programming tasks). Some of these ideas have been hidden amongst the
technical definitions and results, and we think they are worth restating here more
prominently, with more careful arguments in some cases. For example, we provide
a more detailed justification for the use of model classes, rather than theories,
as the appropriate semantic domain for specifications. We also give a simple
explanation of the somewhat subtle interplay between behavioural equivalence,
"stability" and refinement in formal development.

Examples are provided to illustrate some of the points we make. Chosen
for simplicity rather than to impress, they are kept as small as possible, and
some are contrived just to illustrate a particular point. This should not be taken
as an indication that large examples cannot be handled, of course. For the
sake of concreteness, and to show how the ideas fit into the context of existing
programming languages, in examples we use notation and concepts borrowed
from the Standard ML (SML) programming language [Paugl] and Extended
ML (EML) specification framework [Sangl, KST97].

Since the emphasis here is on motivation and intuition, citations to the
literature refer the interested reader to papers where complete technical details
may be found. These topics are also covered in detail in a forthcoming monograph
[SAT9?]. For readers who prefer even less detail, the material in Sections 3.1, 8.1
and 9.1 may be skipped on first reading.

1. The Logical Framework

The overall aim of work on algebraic specification is to provide semantic foun-
dations for the development of programs that are correct with respect to their
requirements specifications. In other words, the program developed must exhibit
the required input/output behaviour. We view the correctness of a program as its
most crucial property. Other desirable properties (efficiency, robustness, reliability
etc.) are disregarded in this work. Of course, this does not mean that these prop-
erties are unimportant, but this approach does not provide any formal means for
their analysis.

The assumption that the correctness of the input/output behaviour of a
program takes precedence over all its other properties allows us to abstract away
from concrete details of code and algorithms, and to model program functions
as mathematical functions. Such functions are never considered in isolation, but
always in units (program modules) comprising a collection of related functions
together with the data domains they operate on. At this level of abstraction we
are dealing directly with the information essential for the analysis of program
correctness, without the burden of irrelevant details. This leads to the most
fundamental assumption underlying work on algebraic specification: programs
are modelled as many-sorted algebras. This assumption fits most directly into the
functional programming paradigm, but there is a natural way of generalizing it to
handle e.g. imperative programs; see below.

We refrain from recalling the formal definition of many-sorted algebra (see
e.g. [EhM85]). It is enough to know that an algebra consists of a collection of
carriers (sets of data) and operations on them. Algebras are classified by signatures,
naming the algebra components (sorts and operations) and thus providing the
basic vocabulary for using the program and for making assertions about its

Essential Concepts of Algebraic Specification 231

properties. The class of all Z-algebras (algebras over the signature E) will be
denoted by Alg(E). For any program P, the algebra it denotes is written as
[IP]] c A l g (S i g (P)) , where Sig(P) is the underlying signature of P.

For any signature, we need a logical system for describing properties of
algebras over that signature. Many-sorted equational logic (cf. [GoM85, EhM85])
is the most commonly-used system for this purpose, at least in the area of
algebraic specification. Properties of E-algebras (or rather, of their operations)
may be described by universally-quantified equat ions over E, via the definition of
what it means for a E-algebra A to sat is fy a E-equation (p, written A ~ qo. This
also determines a notion of logical consequence : a set of equations (I) entails an
equation ~0, written q~ ~ ~o, if every algebra that satisfies all the equations in qb
also satisfies q~. Here is a simple example, where a signature is accompanied by a
list of equational axioms, presented using a hopefully self-explanatory notation:

sorts nat , list
opns 0 : nat

succ : nat --* nat
nil : list
cons : nat x list --* list
head : list --~ nat
tail : list --> list

a x i o m s Vx :nat. Vl :list. head (cons(x, 1)) = x
Vx:nat . Vl :list. tai l (cons(x, l)) = 1

For example now:

Vx :nat. Vl :list. head (cons(x, l)) = x, '[
Vx:nat . Vl:list . ta i l (cons(x , l)) = l S ~

V x, y :nat. head(ta i l (cons(x , cons(y , nil)))) = y

Very rarely in the process of program development does the user work with
just a single signature: operations and sorts of data are renamed, added and
hidden as the need arises. To take account of this, signatures are equipped with
a notion of signature morphism (cf. [EhM85]). A signature morphism o- : Z ~ Z I
maps the sorts and operations of E to those of Z I. This determines in a natural
way a translation of any E-equation qo to a E'-equation a(q)), and on the semantic
level, a translation of any E'-algebra A' e Alg(E ~) to its reduct A ' Io c Alg(E) - -
notice the change of direction! A typical case is when a : Z ~ Z' is a signature
inclusion; then A~I~, written A ' l z in this case, is just A' with the interpretation of
symbols not in E removed. A crucial property is that these two translations are
compatible with satisfaction: for any E-equation q) and Zr-algebra A, A'I~ N q~
iff A' ~ a(~o).

The above framework is often criticised (quite rightly!) as rather restrictive
and cumbersome to use in practice. Some important features of programs, for"
example non-termination and higher-order functions, are difficult to model in
algebras; equations are not expressive enough to conveniently capture certain
properties that one may want to state as requirements. For instance, one may
wish to add to the list of axioms above the following two properties which
cannot be expressed in equational logic and which are stated here as sentences
in first-order logic with equality (using the standard notation for negations of
equalities):

232 D. Sannella and A. Tarlecki

axioms Vn:nat.succ(n) ~ 0
Vx :nat. Vl :list. cons(x, l) 5~ nil

Fortunately, this deficiency is relatively easy to overcome using the concept of
institution. This concept was introduced by Goguen and Burstall [GOB84] to
capture the informal notion of logical system and was strongly influenced by the
understanding of this notion in the theory of specifications (see [Bar74] for an
early account of abstract model theory covering similar ideas approached from
the viewpoint of classical logic and model theory, and [BaF85] for a compendium
of more recent work in this area).

An institution defines a notion of signature together with for any signature
Z, a set of E-sentences, a class of E-models and a satisfaction relation between
Z-models and Z-sentences. Moreover, signatures come equipped with a notion of
signature morphism. Any signature morphism induces a translation of sentences
and a translation of models (the latter going in the opposite direction as above).
The only semantic requirement is that when we change signatures using a sig-
nature morphism, the induced translations of sentences and of models preserve
the satisfaction relation. Many standard logical systems have been presented
explicitly as institutions, see e.g. [GOB92] and [SAT9?]. These include first-order
predicate logic with and without equality, and logical systems for specifying par-
tial functions, exception handling, and simple imperative programs. (Most of the
examples in this paper are couched in first-order predicate logic with equality.)
It should be easy to see that any usual logical system with a well-defined model
theory fits into this mould.

Everything below, barring concrete examples, works in the framework of an
arbitrary institution, even though for the reader's convenience we avoid "insti-
tutional jargon" and refer to "algebras" rather than "models" in the sequel.
Consequently, everything in this paper applies to many different concepts of "sig-
nature", "algebra" and "sentence" used in the theory and practice of software
specification. This point of view gives rise to "reusable" methodologies, theorems,
and (ultimately) tools, all of which can be seen as parameterized by an arbitrary
institution. See e.g. [BeV87, SAT87, SaT88a, SaT88b, Far92, SST92, DGS93] for
work on various aspects of software specification and development that is generic
in this sense. Other formulations of general logic have been used for similar
purposes, see e.g. [FiS88] and [EBO93].

Strict followers of the early approaches to algebraic specification might view
this generalization as an alarming departure, and might protest that this is
not algebraic specification at all. In our view the essential idea of algebraic
specification is the stress on "algebra-like" models and the use of logical axioms
to describe such models. The use of ordinary many-sorted algebras and equations
is but a special case of this. Just as it was necessary to generalize from classical
single-sorted algebras to many-sorted algebras in order to deal with programs
handling several kinds of data, it is necessary to adopt more complicated models
to deal with other features of programming languages (polymorphism, higher-
order functions, infinite behaviour, updateable references, lazy evaluation, etc.).
The essence is that we need a notion of semantic structure that is detailed enough
to capture the program properties we want to analyse and abstract enough to
make this analysis feasible. Moreover, to specify and reason about programs, we
need a logical system with a model theory based on such structures; again, there
is a tradeoff here between expressive power and ease of use. There seems to be
no single kind of semantic structure that suffices for all purposes, and different

Essential Concepts of Algebraic Specification 233

logical systems are appropriate for the analysis of different facets of program
behaviour. The multiplicity of logical frameworks seems to be a natural state of
affairs rather than indicative of a failure to find the right approach.

2. Specifications

What is a specification? Clearly, since our aim is a formal approach to software
development, specifications must be objects as formal as (for example) programs
are. That is, we have to have a formal language to write specifications down and
to provide a vehicle on which formal techniques to manipulate specifications may
be based. It is important for such a specification language to provide a collection
of convenient notational conventions that are easy to understand and use. One
of the basic constituents of a specification will be a list of axioms the specified
program is required to satisfy.

A specification formalism must offer means for building complex structured
specifications by combining and extending simpler ones. A specification of a
real-life system typically states a huge number of properties, and building such
a specification in an unstructured, monolithic way would result in a long list
of axioms which would be neither understandable nor useful. Moreover, the
structure of a specification may be used to express intangible aspects of the
specifier's knowledge of the problem, such as the degree to which the entities
and concepts described in the specification are interrelated. For this purpose, a
specification language must provide some specification-building operations used to
put together small specifications to form more complex ones [BUG77, BUG80].
Then, an understanding of a large specification is achieved via an understanding
of its components. This is the principle of compositionality: the meaning of a
composite object depends only on the meanings of its immediate sub-components.

Various other activities involving specifications can exploit their structure.
For example, proofs of consequences of a specification can be usefully guided
by its structure [SaB83, HST94] (cf. Section 5). But this principle must not be
taken too far: for example, the structure of a specification should not constrain
the final structure of its implementations. This is one of the consequences of the
famous dogma that a specification should describe only the what s of the specified
software without constraining any of its how s. Requiring the structure of the
initial specification to be preserved in its implementation would be unrealistic
and unreasonable, even though this has been explicitly suggested by some (e.g.
[GOB80, MoA91]) and is implicit in the approaches taken by others. The aims of
structuring requirements specifications are often contradictory with the aims of
structuring software. See for instance [FiJ90] for a nice discussion of a practical
example where such a discrepancy occurs. Section 6 gives a simple example
illustrating this point, and Section 7 indicates how the design of the structure of
an implementation may be brought into our framework.

Choosing appropriate specification-building operations to be included in a
specification language is a non-trivial task, even though most specification lan-
guages share certain common operations such as those given below. The choice
involves a certain trade-off between the expressive power of the specification
language and the ease of understanding and dealing with the operations. One
way to circumvent this problem is to first develop a kernel language consisting of
a minimal set of very powerful, but perhaps awkward to use operations, and then
build on top of it a higher-level, more user-friendly language, perhaps sacrificing

234 D. Sannella and A. Tarlecki

some of the expressive power to achieve ease of use and ease of understanding.
Such an approach has been taken with the ASL kernel specification language
[SAW83, Wir86, SaT88a], on top of which languages such as PLUSS [BGM89]
and Extended ML [SAT86] have been built.

In this paper we will neither present nor use a full-blown specification lan-
guage. In examples we will rely only on the following three simple specification-
building operations:

Basic specifications: The specification

sorts S
opns
axioms

describes algebras over the signature with sorts S and operations fl that satisfy
the axioms q5.

Enrichment: The specification

enrich SP by sorts S
opns D
axioms

describes algebras that add the sorts S and operations ~) to algebras described
by SP in such a way that the axioms qb are satisfied.

Hiding: The specification

hide sorts S
opns D

in SP

describes those algebras obtained by removing the sorts S and operations
from algebras described by S P .

In examples we will omit keywords like sorts when the corresponding list of items
is empty.

Example 1. Here are some simple specifications:

B O O L = sorts bool
opns true : bool

fa l se : bool
axioms true :/: false

Vx:bool . x = true V x = f a l s e

I N T = enrich B O O L by
sorts int
opns 0 : int

s u c c : int ~ int
pred : int -* int

axioms . . . induction scheme for i n t . . .
V x : i n t . p r e d (x) :/: x A succ(x) ~ x
Vx:int . pred(succ(x)) = x A succ(pred(x)) = x

Essential Concepts of Algebraic Specification

I N TO R D =
enrich I N T by

opns po : int x int ~ bool
axioms V x : i n t . p o (x , x) = true

Vx, y :int. po(x , y) = true A po(y , x) = true :=~ x = y
Vx, y , z :int. po(x , y) = true A p o (y , z) = true

I N T L I S T : enrich I N T O R D by
sorts list
opns nil : l i s t

cons : int • list --~ list

axioms

235

p o (x , z) = t r u e

head : list --~ int
tail : list --* list
append : list x list ~ list
is_in : int x list --, bool
... induction scheme for l i s t . . .
Vx :int. Vl :list. cons(x , l) ~ 1
Vx :int. Vl :list. head(cons(x , l)) = x
Vx :int. V1 :list. tai l (cons (x, l)) = l
Vl :list. append(ni l , l) = l
V x :int. Vl, l' :list. append(cons (x , l), l') =

cons(x , append(l , l'))
Vx :int. is_in(x, nil) = f a l s e
Vx, y :int. Vl :list.

i s S n (x , cons (y , l)) = true .: >
(x = y V is_in(x, l) = true)

We're glossing over the details of induction schemes here - - think of each of
these as either an infinite set of first-order axioms given by the usual elementary
induction scheme, or (not equivalently!) as a single second-order axiom, or a
single infinitary disjunction. An alternative which is more usual in specification
languages is to introduce a separate specification-building operation that restricts
the class of admissible realizations of a specification to reachable algebras only,
see e.g. [SAW83, Wit86] (this is equivalent to the additional second-order axiom
or infinitary disjunction). Yet another potential possibility is to restrict the class
of algebras considered to reachable algebras from the very beginning [BaW82].
Also note that the axioms of I N T L I S T do not constrain the value of head(ni l) or
tail(nil) , meaning that any result is acceptable. An alternative is to specify some
error behaviour - - see [BKL91] for various approaches.

S O R T 1 = enrich I N T L I S T by
opns is_sorted : list --> bool

sort : list --> list
axioms is_sorted (nil) -- true

Vx :int. V1 :list.
i s_sor ted(cons(x , 1)) = true < - ~
((Vy :int. is_in(y, l) = true ==* po(x , y) = true)

A is_sorted(l) = true)
Vl :list. is_sorted(sort(1)) = true
Vl :list. V x :int. is_in (x, l) = is_in (x, sort (l))

S O R T = hide opns is_sorted in S O R T 1

236 D. Sannella and A. Tarlecki

The use of the hiding operation in S O R T means that the is_sorted operation does
not appear in algebras described by S O R T . It appears in the specification as an
auxiliary operation which allows us to formulate the axioms for sort conveniently.
(Don't confuse the specification S O R T containing the operation sort with the
noun "sort" and the keyword sorts!) The observant reader might have noticed
that the axioms of S O R T 1 do not require sort to preserve repetitions in its input.
We exploit this to illustrate some further points in Sections 4, 6 and 7.

The above does not take into account the fact that typical programming
languages like SML provide booleans, integers and lists as built-in types. Rather
than re-specifying and then re-implementing them from scratch, we could follow
Extended ML [KST94, KST97] by assuming that all programs implicitly extend
all the built-in types and values available, so programs and specifications may
freely refer to them. Modifying the above specifications along these lines, assuming
that the built-in types and values of SML are available, yields the following:

IN TO RD =
opns
axioms

I N T L I S T =

po : int X int -~ bool
Vx:int. po(x, x) = true
Vx, y :int. po(x, y) = true A po(y, x) = true ~ x = y

Vx, y,z:int.po(x,y) = true Apo(y,z) = true

po(x, Z) = true

enrich INTORD by
opns head : int list -~ int

tail : int list -~ int list

is_in : int x int list -~ bool
axioms Vx:int. Vl:int list. head(x: :l) = x

Vx :int. Vl :int list. tail(x : : l) = l
Vx "int. is _in (x, nil) --- false
Vx, y :int. Vl :int list.

is_in(x, y : : l) = t r u e

(x = y V is_in(x, l) = t r u e)

S O R T 1 =
enrich I N T L I S T by

opns is_sorted : i n t l i s t -+ bool
sort : int list -~ int list

axioms is_sorted(ni l) = t r u e
Vx:int. Vl :int list.

is_sorted(x: :l) = t r u e --~ ;-
((Vy : int . is_in(y, 1) = t r u e ~ po(x, y) : t r u e)

A is_sorted(1) = t ru e)
VI : in t l i s t . is_sorted(sort(l)) = t r u e
VI : in t l i s t . Vx:int . is_in(x, I) = is_in(x, sort(l))

S O R T = hide opns is_sorted in S O R T 1

We will work with this version of these specifications throughout the rest of the
paper.

In examples throughout the rest of the paper, as in the above specifications,
all signatures are taken to implicitly include all of the built-in type and value
names of SML and all algebras extend the interpretation of those names given
by the SML semantics. []

Essential Concepts of Algebraic Specification 237

3. Semantics of Specifications

Any specification language must be given a precise, formal semantics. The very
concept of "correct" program is meaningless in the absence of a definition of
what it is supposed to compute, and a specification can only provide such a
definition if it has an unambiguously-defined meaning.

Before we start assigning meanings to specifications, it is necessary to decide
what kind of mathematical objects to use to represent the meanings of specifi-
cations, i.e. to decide what specifications denote. Whatever the full answer is, a
specification at least determines the underlying signature of the specified pro-
gram. For any specification SP, we write this signature as Sig(SP). Then, one
may attempt to give a semantics of specifications on (at least) three different
levels:

�9 Presentation level: a specification SP denotes a set of sentences over Sig(SP)
(this set may be required to be finite or at least recursive or recursively
enumerable). At this level, the meaning of a specification is close to the
syntactic form in which specifications are written; the semantics extracts the
axioms, resolves references to other specifications, etc.

�9 Theory level: a specification SP denotes a theory over Sig(SP), that is,
a set of Sig(SP)-sentences that is closed under logical consequence. This
theory is much larger 1 than the set of axioms that are explicitly given in the
specification. It is always infinite 1, usually not recursive and sometimes not
recursively enumerable; thus the meaning of a specification is no longer strictly
syntactic. The semantics performs the closure under logical consequence.

�9 Model-class level: a specification SP denotes a class of Sig(SP)-algebras. At
this level, the meaning of a specification is entirely non-syntactic, except for
the signature part. The semantics abstracts away from the axioms, taking into
account only their possible realizations.

The ultimate role of any specification is to describe a class of programs which we
want to view as its correct realizations. Since we have already decided to model
programs as algebras, specifications ultimately determine classes of algebras. Given
the natural mappings from presentations to theories and from theories to model
classes, this holds whichever one of these three levels we choose for the semantic
domain.

For any specification SP, the semantics of SP determines the class of all
models of SP, denoted by [[SP]] ~ Alg(Sig(SP)) 2. This class contains algebras
that model programs which are considered to be correct realizations of SP. (There
is a subtle issue involved in ensuring that all such algebras are admitted as models;
see Section 9.) This semantics determines a notion of logical consequence of a
specification: a specification SP entails a sentence q), written SP ~ q~, if q~ holds
in every model of SP.

Of course, a specification SP may admit a number of different program
behaviours, and hence we cover so-called loose specifications. Or it might admit
no models at all, in which case it is called inconsistent.

1 Of course, this depends on the logic involved, but for example in equational logic every theory
contains all the trivially true sentences like Yx:s. x = x.
2 Note the overloading of the semantic brackets: for a program P, lIP] is an algebra, while for a
specification SP, I[SP]I is a class of algebras.

238 D. Sannella and A. Tarlecki

The semantics of a specification formalism is usually presented by giving a
number of semantic clauses, one for each specification-building operation. Each
clause defines the meaning of a specification built using the given operation in
terms of the meanings of its component specifications. This style of presentation
gives a compositional semantics.

The following defines the models of specifications formed using the three
specification-building operations that were informally presented earlier; cf. e.g.
[SaT88a]. We omit the obvious context conditions which require that Z as defined
in each case is a well-formed signature.

Basic specifications:

[[sorts Sopns ~ axioms ~p]] = {A c AIg(Z) I A ~ ~}

where Z = Sig(sorts Sopns ~ axioms @) is the signature having sorts S and
operations ~.

Enrichment:

[[enrich SP by sorts S opns ~ axioms ~]] =
{A c Alg(Z) [AIsig(SP) E [[SP]] and A ~ (I)}

where Z = Sig(enrieh SP by sorts Sopns ~ axioms (I)) is the signature Sig(SP)
with additional sorts S and operations f~.

Hiding:

[[hide sorts S opns ~ in SP]] = {AI~ I A E [[SP]]}

where Z = Sig(hide sorts Sopns ~ in SP) is the signature Sig(SP) with sorts
S and operations ~ removed.

Since specifications denote classes of algebras, specification-building operations
semantically correspond to functions mapping classes of algebras to classes of
algebras. Each of the definitions above amounts to the definition of such a
function (a nullary one, in the case of basic specifications).

Example 1 (continued). The semantics of the specification-building operations
can be used to calculate the meanings of specifications like those in Example 1
(Section 2), with the proviso given there concerning the built-in types and values
of SML. For example, Sig(INTLIST) extends the built-in type and value names
of SML by po, head, tail and is_in, and [[INTLIST]] is the class of algebras
over this signature that extend the interpretation of the built-in names given by
SML with operations po, head, tail and is_in defined in such a way that the
axioms of INTLIST are satisfied. Then, Sig(SORT1) extends Sig(INTLIST) by
is_sorted and sort, and [[SORT1]] is the class of algebras over this signature that
enrich the algebras in [[INTLIST]] so that the axioms of SORT1 are satisfied.
Finally, Sig(SORT) extends Sig(INTLIST) by sort only, and [[SORT]] is the
class of algebras over this signature that result from the algebras in [[SORT1]]
by removing the interpretation of is_sorted. []

3.1. Model Classes vs Theories

For any signature Z, there is a Galois connection between classes of Z-algebras
and sets of Z-sentences, assigning to any set of sentences the class of all algebras
that satisfy them, and to any class of algebras the set of all sentences that

Essential Concepts of Algebraic Specification 239

hold in them (see [GOB92]). The "closed" elements of this Galois connection are
theories; these are in one-to-one correspondence with closed (i.e., definable by sets
of sentences) classes of algebras. It follows from this that the theory level is less
expressive as a semantic domain for specifications than either the presentation
or the model-class level. The latter two are, however, incomparable: there are
properties that can be naturally studied at the presentation level (for example,
finiteness of an axiomatization) with no natural counterpart at the model-class
level, and vice versa.

It is not immediately obvious that working at the model-class level brings
any essential benefits over working with closed classes of algebras only, or
equivalently, working at the theory level. It is not clear whether non-closed
classes of algebras ever arise as meanings of specifications; even if they do arise,
it is not clear whether this makes any difference for the use of specifications. The
following example, built in the institution of equational logic, exhibits both of
these phenomena:

(enrich
] (hide opns a in
J ,~D / (sorts s,s'

S P] o r 1 I SPo /opns a " s
b, c �9 s'

[by axioms Vx :s. b = c

This example relies on the following well-known fact [GoM85]: Vx:s. b -- c does
not imply b = c, although it implies b = c for S ig (SP) -a lgebras with non-empty
carrier of sort s.

Now, according to the above definitions, [[SP011 is the class of all algebras
(over the indicated signature) and lISP 1]] consists of all algebras that are reducts
of Sig(SPo) -a lgebras , obtained by removing the operation name a (but of course
not its value). Consequently, lISP 1]] contains only those algebras having a non-
empty carrier of sort s. Then, selecting from lISP1]] the algebras that satisfy
Vx:s. b = c yields the class lISP]] - - and all these algebras satisfy b = c (since for
the algebras in lISP 1]], b = c follows from Vx:s. b = c). Thus, under the model-
class interpretation, the property b = c is a consequence of the specification
SP.

On the other hand, at the theory level, SP0 would clearly have to denote
the trivial equational theory containing only the equational tautologies, and so
would SP1 (there are no equations capable of expressing the fact that a carrier is
non-empty). Then, the additional axiom Vx :s. b = c in the context of the theory
denoted by SP1 does not entail the equation b = c. Thus, under the theory-level
interpretation, b = c is not a consequence of the specification SP.

This discrepancy (and similar examples one may construct without relying on
the "empty carriers" phenomenon) faces us with the necessity to choose between
theories and classes of algebras as the basic semantic domain for specifications.
The choice is obvious: the objects of ultimate interest here are programs, which
are modelled as algebras, while axioms and theories are nothing more than logical
means for describing them. In our view, the lack of agreement between theories
and classes of algebras clearly demonstrates that theories are not in general
adequate as denotations of specifications. But see [DGS93] for a different point
of view.

The alert reader may have noticed that the above example depends crucially
on the use of equational theories. If we reinterpret the example in the institution

240 D. Sannella and A. Tarlecki

of first-order predicate logic with equality, then the class ~SP 1]] becomes definable
(by the sentence 3x :s. true) and the discrepancy between the theory level and the
model class level semantics of SP disappears. This is an instance of a general
phenomenon: as the expressive power of the logical system in use increases, the
gap between the theory level and the model class level semantics narrows. For
example, in the institution of second-order logic [HOS96], any class of models of
a specification built using the specification-building operations presented above
is definable by a set of axioms. The presence or absence of such a gap also
depends on the expressive power of the specification-building operations in use.
For example, if we use only basic specifications and enrich (leaving out hiding,
as in Larch [GuH93] and ACT ONE [EhM85]), then there is no gap, no matter
what institution we use.

4. Specification Engineering

The point of constructing a specification is so that it may be used to define a
programming task by precisely delimiting the range of program behaviours that
are to be regarded as permissible. The initial formal specification of requirements
of a system thereby provides a reference point with respect to which all subsequent
development activity is conducted. Specifications of system components play a
similar role, but also serve to mediate proofs of correctness of systems containing
them: a system (or sub-system) is proved to correctly implement its specification
on the basis of those properties of components on which it depends that are
recorded in their specifications. For these reasons, in the rest of this paper a
formal specification of requirements is regarded as the starting point of system
development.

There are serious problems involved in beginning with a formal specification of
requirements, its desirability notwithstanding. Perhaps the most obvious problem
is how to obtain a formal specification which accurately reflects the needs of
the client. A program that is correct with respect to an incomplete or inaccurate
specification of requirements is not of much use! This issue will be addressed in
the remainder of this section. Another problem is that in real life, the requirements
that any moderately complex system are expected to fulfill are subject to continual
change. It follows that any fixed specification, formal or informal, can at best
reflect a "snapshot" of the client's needs. This suggests that the picture we present
here needs to be augmented to accommodate changes in requirements, and that
mechanisms are required to ensure that code (and proofs of correctness) keep in
step with changes in requirements, cf. [GoL95].

The problem of writing the original requirements specification and ensuring
that it is an accurate reflection of needs is the topic of "requirements engineering"
[Dav90]. For some work on formal requirements analysis, see [RAH94, Li94,
AsR95]. As suggested in the previous section, a key factor in facilitating the
production of formal specifications is the provision of well-designed specification
languages with good structuring operations allowing specifications to be built
and understood in a systematic, modular fashion. Once a formal specification is
obtained, the problem of checking that it is "correct" is of a different character
from the problems treated in the remainder of this paper. Given a formal
specification, it is possible, at least in principle, to prove (or disprove) that
an alleged realization correctly implements it; this process is called verification.
In contrast, an initial formal specification of requirements can at best be checked

Essential Concepts of Algebraic Specification 241

for conformance with an informal written specification. Sometimes there will be
no written specification at all and the formal specification can only be checked
against the unwritten intentions of the client. The term validation is used to
refer to the process of evaluating a specification against the client's written or
unwritten informal requirements.

Just because a formal specification is precise and unambiguous does not mean
that it is more likely than an informal specification to reflect needs accurately.
Indeed, experience shows that problems uncovered by validation are often due to
bugs in the formal specification rather than to errors in the informal specification.
On the other hand, the process of writing a formal specification normally uncovers
gaps or ambiguities in the informal specification. This means that validation is not
merely a matter of checking that the formal specification accurately records what
is already present in the informal specification; it is an iterative process which
involves adjustment of both formal and informal specifications, and sometimes
checking with the client to clarify needs. Since the cost of resolving problems with
the requirements specification late in the development lifecycle may be extremely
high, the production of a formal specification of requirements is regarded as a
cost-effective activity, even if the resulting formal specification is not used in later
stages of development [Som92].

One way of increasing confidence that a formal specification expresses what
is required is to enable the client to "play" with it, in order to test whether or
not the specification indeed expresses the properties he expects. A traditional
approach to this is to engage a team of programmers to build a prototype, a
quickly assembled but necessarily bad and simplified realization. This can then
be given to the client to test. Of course, such an approach is indispensable for
some aspects of the software to be developed. For example, there can be no
better way to test a user interface than by playing with some version of it;
going through sample sessions with such a system seems to be the only way for
a user to get a feel for what working with the system will be like. In general,
however, the prototyping approach has a number of disadvantages. First, it
involves some extra work to produce a system that is then thrown away. More
importantly, if the original specification is loose (and it usually is) then any
prototype will incorporate choices between the alternative behaviours permitted
by the specification, and these choices need not necessarily be mirrored in the
final implementation. Consequently, the user may conclude that the system will
have some properties that are not ensured by the specification at all, and this
undermines the sense of the whole exercise. See [HaJ89] for further convincing
arguments in this direction.

The overhead of prototyping may be avoided through the use of a rapid
prototyping system like RAP [HUB85]. This demands that requirements specifi-
cations be written in an executable specification language, not far from high-level
programming languages like Standard ML [Pau91]. In the fundamental trade-off
between executability and expressiveness, it is clearly the latter that is of central
importance in a language intended for writing requirements specifications, so
such a strong restriction seems highly undesirable.

We believe that for many purposes prototyping should be replaced by theorem
proving (see [Gull80] for a similar observation). To check whether a given
specification indeed embodies a desirable property, it seems most appropriate to
state this property explicitly and then try to prove that it is a consequence of
the specification. This is the most general form of specification testing; the more
usual approaches via rapid prototyping, symbolic evaluation, term rewriting etc.

242 D. Sannell~ and A. Tarlecki
/
/

can easily be seen as special cases, or rather as special techniques of theorem
proving applicable in particular situations.

Example 1 (continued). In INTLIST, the axioms for head, tail and is_in vir-
tually constitute a prototype implementation in e.g. SML. In a prototype, we
would be able to evaluate expressions like head(tail([2,4])), head (tail([2 ,4 ,2])),
head(tail([2 , 4 , 5 , 8])), obtaining an integer value (4 in all these cases). However,
rather than testing all these instances, we are able to prove directly from the
specification a more general fact:

INTLIST ~ Vl:• l i s t . head(tail(2: :4: :1)) = 4

Please note that some rapid prototyping systems allow the user to do somewhat
more than evaluating just ground instances of head(tail(2:: 4 : : l)). For example,
in RAP [Hu1385], we could in fact evaluate head(tail(2: :4: :/)) obtaining 4, as
expected.

We can also prove the following fact:

SORT ~ po(i, 2) = t r u e ~ head(sort([1 ,2 , i])) = 1

However:

SORT ~= po(1, 2) = t r u e = sort([1 ,2 ,1]) = [1 ,1 ,2]
SORT ~= po(1, 2) = t r u e ~ sort([1,2,1]) = [1,2]

even though a naive prototype implementation would probably satisfy one of
these two equations. This would be misleading and potentially dangerous since
SORT is loose: it does not specify whether or not sort should preserve repetitions.
Sorting functions yielding either of these two results would be acceptable, and so
would sort([1,2,1]) = [1 ,2 ,2] . []

5. P r o o f Systems for Specifications

The above discussion indicated a need for formal proof systems for deriving
consequences of specifications. Proof is also required for verifying the correctness
of refinement steps, see below. There are two levels at which proof is necessary:
first, we have to be able to derive consequences of sentences in the underlying
institution (~ F q~); second, we have to be able to derive consequences of a
specification built in a structured way (SP F (p). The first problem is familiar
from logic, but the second has received much less attention. Here are inference
rules that allow such consequences to be derived from specifications built using the
specification-building operations introduced above; see [SaB83, SaT88a, Far92,
Wir93].

~ocq)

sorts S opns D axioms �9 F (p

SP F (p
enrich SP by sorts S opns D axioms �9 F (p

~ p c ~

enrich SP by sorts S opns D axioms �9 F

Essential Concepts of Algebraic Specification 243

SP t-CO
CO is a (Sig (SP) \ <S, ~))-sentence

hide sorts S opns f~ in SP ~- CO

SP F (Pl " ' " SP t- CO, {COl On} F- CO
SP ~-CO

The last of these rules consti tutes the link between the two levels o f proof.

Example 1 (continued). Here is an example of how these rules m a y be used in
the p r o o f of a simple consequence of the specification S O R T . For simplicity, all
universal quantifiers are omitted, and we tacitly e-conver t where necessary to
avoid variable clashes.

(1) (2) (3)
S O R T 1 ~- is_in(2, sort(O: :2: :l)) = t r u e
S O R T F- is_in(2, sort(O: :2: :/)) = t r u e

where (1) is the following derivat ion:

(1.1) (1.2)
I N T L I S T F- is_in(2, 0 : : 2: : l) = t r u e

S O R T 1 ~- is_in(2,0: :2: :l) = t r u e

with (1.1) being:

(is_in(x,y: :/ ') = t r u e -*==*- (x = y V is_in(x,l') = t r u e))
E axioms of I N T L I S T

I N T L I S T ~- is_in(x,y: : l ') = t r u e <==~ (x = y V is_in(x,l') = t r u e)

and (1.2):

{is_in(x, y : :l ') = t r u e r (x = y V is_in(x, l') = t r u e) } F-
is_in(2,0: :2: :l) = t r u e ,

(2) is:

(2.1) (2.2)
S O R T 1 ~- is_in(2,0: :2: :l) = is_in(2,sort(O: :2 : :l))

with (2.1) being:

(is_in(x,l') = is_in(x, sort(l'))) E axioms of SORT1
S O R T 1 F- is_in(x, l') = is_in(x, sort(l'))

and (2.2):

{is_in(x, l') = is_in(x, sort(l'))} ~- is_in(2, 0 : :2 : :/) = is_in(2, sort(O: :2 : :/)),

and (3) is the following entai lment:

{is_in(2,0: :2 : :1) = t rue , is_in(2,0: :2: :/) = is_in(2, sort(O: :2: :/))} ~-
is_in(2, sort(O: :2 : :/)) ---- t r u e .

[]

The above rules provide a sound extension to any p roo f system for the
underlying insti tution: if (I) ~ CO whenever (I) ~- CO for all (I) and Co, then SP ~ Co
whenever SP ~- CO for all SP and Co. Completeness (SP ~ Co implies SP F- Co)
is harder to achieve. Even if the p roo f system for the underlying insti tution is
complete, the above rules do not in general yield a complete p roo f system for

244 D. Sannella and A. Tarlecki

consequences of structured specifications (but a complete system is obtained for
institutions satisfying an appropriate interpolation property [Cen94]). Whenever
there is a discrepancy between model class level and theory level semantics
as discussed in Section 3.1, no complete compositional proof system may be
given. This does not exclude the existence of non-compositional complete proof
systems that "massage" the structure of specifications m the course of proof, see
[Far92, Wir93].

Good theorem provers that implement such proof systems are needed. In
addition to proof search procedures used in work on automatic theorem proving,
they should include heuristics that exploit the structure of specifications to guide
proof search, see [SaB83, HST94].

Example 1 (continued). A theorem prover attempting to prove that

S O R T ~- V/:• l • is_in(2,0: :2: :/) = t r u e

should not waste time searching through the consequences of the axioms added
in SORT1 , but should go straight to the level of I N T L I S T where most of the
work of the proof needs to be done. The following heuristics would provide the
necessary guidance:

* To prove hide ... in SP ~- go, try to prove SP ~- go.

�9 To prove enrich SP by sorts Sopns f~ axioms ... k go, if go doesn't use any of
the new operations in f~, try to prove SP ~- go.

The latter of the above simple heuristics, even though it does not yield a complete
proof method, in practice often helps to greatly reduce the proof search space (cf.
[SaB83, HST94]). []

It would also be extremely useful for a theorem prover, in the case where it
fails to find a proof, to provide the user with readable information on where the
proof attempt breaks down (see e.g. LP [GuH93]), and perhaps even how the
specification may be augmented to make the proof go through - - a desirable
feature which few contemporary theorem provers exhibit.

6. Program Development

Given a specification SP, the programming task it defines is to construct a
program P that is a correct realization of SP, that is, such that [[P]] E lISPS.

There can be no universal recipe that would ensure successful development
of a program implementing a given specification. All we can hope to offer are
methodologies, and particular techniques and heuristics oriented towards specific
problem areas.

Perhaps the most fundamental point is that it is neither easy nor desirable
to leap in a single bound over the gap between a high-level user-oriented re-
quirements specification and the realm of programs full of technical decisions
and algorithmic details. An attractive alternative is to proceed systematically in a
stepwise fashion, gradually enriching the original requirements specification with
more and more detail, incorporating more and more design and implementation
decisions. Such decisions include choosing between the options of behaviour left
open by the specification, between the algorithms that realize this behaviour, be-
tween data representation schemes, etc. Each such decision is recorded separately,

Essential Concepts of Algebraic Specification 245

as a separate step hopefully consisting of a local modification to the specification.
Developing a program from a specification then proceeds via a sequence of such
small, easy to understand and easy to verify steps:

S P o ~ ' * S P 1 SPn

In such a chain, SPo is the original requirements specification and SPi-1 ~ SPi
for any i = 1, . . . , n is an individual refinement step. The aim is to reach a
specification (here, S P ,) that is an exact description of a program in full detail,
with all the technical decisions incorporated (it may simply be a program, if our
specification formalism is rich enough).

Example 1 (continued). The following adds to the specification S O R T the decision
that the sorting operation sort should preserve the number of occurrences of
elements so that the result is a permutation of the argument list:

S O R Tperm =
hide opus count in

enrich SOR T by
opus count : int X int list -~ int
axioms Vx:int. count(x, nil) -- 0

Vx, y :int. V[:int list.
x :/: y ==~ c o u n t (x , y : :[) = coun t (x , l)

Vx : int . V[: in t l i s t . count(x, x : : l) = 1+count (x, l)
Vx : int . Vl : in t l i s t . count(x , [) = count(x , sort (l))

Then we choose the algorithm (insertion sort) and "code" sort but, for illustrative
purposes, we refrain at this stage from giving the "code" for the additional
operation insert and leave it specified only.

INS= enrich I N T L I S T by
opns insert : int • int list -~ int list
axioms Vx:int. Vl:int list. 311,12:int list.

insert(x, I) : l l ~(x : :12) A I = Ii~12
A (VII' :int list. Vy :int. ll = 11'@ [y]

po(y, x) = true)
A (V[2' :int list. Vy "int. 12 ---- y : : 12'

po(x , y) ---- true)

S O R T i n s =
hide opns insert in

enrich INS by
opns sort : int list -~ int list
axioms sort(nil) : nil

VX :int . VI : in t l i s t . sort (x : : l) --- insert (x, sort (1))

Finally, we "code" insert, preserving the "code" for sort :

246 D. Sannella and A. Tarlecki

INSdone =
enrich I N T L I S T by

opns insert : int X int list -+ int list
axioms Vx:int. insert(x, n i l) = [x]

Vx, y :int. Vl :int list.
po(x,y) = true ===>

insert(x,y: :I) = x: :y: :l
gx, y : int . gl :int list.

po(x,y) = false

insert(x,y : :I) = y: : insert(x, l)

S O R Tdone =
hide opns insert in

enrich INSdone by
opns sort : int list -~ int list
axioms sor t (n i l) = nil

VX :int . VI : in t l i s t . sort(x: :l) = insert(x, sort(l))

The above constitutes a sequence of development steps:

S O R T ~ SORTperm ~,* SORTins ~,~ SORTdone

SORTdone may be viewed as a final implementation of the original specifi-
cation since the axioms in IN T L IST , INSdone and SORTdone amount to SML
code (this disregards the fact that po is only specified as a partial order, rather
than being coded as a specific order relation). We will make this more explicit in
the next section. []

A formal definition of such refinement steps SP ~ SP' must incorporate the
requirement that any correct final realization of SP' must be a correct realization
of SP. This leads to the following straightforward definition [SAW83, SaT88b]:

SP -~ SP' iff lISP'I] ~- [[SP]]

(This presupposes that Sig(SP) = Sig(SP').)

Example 1 (continued). The refinement steps in the above example satisfy the
definition. This is trivial for the step S O R T -,~ SORTperm, since SORTperm just
adds a constraint on the class of models of SORT. For SORTperm ~ SORTins,
it is necessary to prove that to each model of SORTins, we can add count and
is_sorted so that the axioms of SORTperm are satisfied. Since count and is_sorted
are determined by the corresponding axioms in SORTperm, this amounts to
proving that the "code" for sort entails the axioms of SORTperm, assuming
that insert satisfies the axioms in INS and that count and is_sorted satisfy their
axioms. Finally, SORTins ~,~ SORTdone requires a proof that the "code" for
insert in INSdone entails the axiom in INS. The reader is encouraged to check
the details.

It is perhaps worth noticing that [[SORTperrn~ = [SORTins]] = [ISORTdone]]
(even though [INS~ ~ [IINSdone~, and count, hidden in SORTperm, is not even
mentioned in SORTins and SORTdone); this means that the last two refinement
steps are semantically trivial although this does not mean that the proofs are
trivial. The reader may be worried by the fact that it then follows that, for example,
SORTdone -'~ SORTperm. The notion of refinement is not fine enough to capture
the sense in which SORTdone is "closer" to a program than SORTperm is. A

Essential Concepts of Algebraic Specification 247

more elaborate notion of refinement, which provides a place to record "progress"
towards a program, will be presented in the next section. []

The definition of refinement ensures that the correctness of the final outcome
of stepwise development may be inferred from the correctness of the individual
refinement steps:

S P o ~ S P 1 S P ~ A c lISP hi]

A �9 lISP oil

The proof is by an easy induction on the length of the refinement sequence.
Notice that if the final specification SPn represents an individual program P,

i.e. [[SP]] = {lIP]I}, then the conclusion that A �9 [ISPo]] for all A �9 lISP,I] is just
our original statement of the program development task: [[PI] �9 [[SPo]].

An indirect way to prove the correctness of the final outcome is to notice a
stronger fact, namely that consecutive refinements can be composed (referred to
as "vertical composability" [GOB80]):

S P "~ S P ' S P ' ~ S P "

S P ~ S P "

The above gives a formal view of the stepwise development methodology. As
mentioned before, there can be no universal recipe for coming up with useful
refinements of a given specification - - necessarily, this is the place where the
developer's invention is required. Once a refinement step is proposed, though,
we should be able to prove it correct, that is, we should have some formalism
for proving the inclusion between the corresponding model classes. Composing
the proofs of all the steps involved in the development of a program from a
specification gives a proof that the program is correct with respect to the original
specification. But there seems to be no benefit in actually producing this proof:
individual proofs of correctness of the individual steps are easier to produce and
easier to understand than a single monolithic proof of correctness of the resulting
program.

A formalism for proving correctness of refinement steps must of course incor-
porate a theorem prover for the underlying logic, and for proving consequences
of structured specifications, as discussed above. A new need that arises here
is that of proving entailments between two structured specifications (we write
S P ' ~ S P to state that every model of S P ' is a model of S P , yet another formu-
lation of S P -,,,* S P ' that we will use in this context). If the structures of S P and
S P ' match exactly (and the specification-building operations used are monotonic
w.r.t, inclusion of model classes - - this holds for all the specification-building
operations in this paper and is typically the case for those considered elsewhere
in the literature) then this problem may be reduced to proving that individual
axioms (from SP) are consequences of certain specifications (parts of S P ') via
the following fact, which is referred to as "horizontal composability" [GOB80]
for the specification-building operation op:

SP1 ~'* SP] " " SPn "~ S P ' n
op (SP l S P n) ~ op(SP'I , SP'n)

Unfortunately, the structures of the two specifications need not coincide, which
makes such a reduction very non-trivial. The only work on this important problem
we are aware of is [Far92, Wir93].

Example 1 (continued). The refinements in Example 1 illustrate the point that

248 D. Sannella and A. Tarlecki

the structure of the final implementation differs from that of the original speci-
fication, even though the difference is only that different auxiliary operations
are used (is_sorted versus insert). The essential change happens in the step
SORTperm ~ SORTins. There is no way to build this refinement using the
horizontal composability rule: stripping off the hiding operations from both
SORTperm and SORTins (naively disregarding the fact that different things are
hidden) yields two incomparable specifications. See [Far92, Wir93] for proof rules
that allow the user to handle this situation in a different, non-compositional
way. []

Horizontal composability should not be misread as a directive to decompose
the task of realizing a specification SP = op(SPb... , SPn) into separate tasks to
realize each of SP~ ,SPn. It is possible for the design decisions taken in the
solutions of these separate tasks to conflict so that even once we have obtained
realizations of SP1,. . . , SPn, it might not be possible to combine these to form a
realization of SP.

Example 2. Consider the following specification:

SPc = enrich opns c : i n t
axioms l < c < 1 5

by axioms 10 < c < 27

Since

and

opns c'int) .~ (opns c ' •)
axioms 1 < c < 1 5 \axioms 1 < c < 1 2

op.ns c'int / .,~ (opns c'int 1
axioms 1 0 < c < 2 7 \axioms 1 4 < c < 2 0

we also have

//enrich opns c "int
SPc -,~ [axioms 1 < c < 12) \ b y axioms 14 < c < 20

However, even though SPc is consistent, and both of the resulting component
specifications are consistent as well, the resulting composed specification to which
SPc is refined is inconsistent!

This happens because the two specification arguments to the enrich operation
implicitly share a loosely specified part (c : • in the example). If the decisions
constraining this common part in separate developments of the two specifications
are different, as above, then putting the resulting specifications together may yield
inconsistency. This is of course a contrived example but the same phenomenon
arises in more realistic situations. []

An issue which may seem worrying here is that we have not put into our
definition of refinement any requirement that the refined specification is consistent.
Indeed, this can be seen as a problem, since an inconsistent specification cannot
be implemented by any program, and so it opens a blind alley in the program
development process. From this point of view, it would be worthwhile to be
able to check consistency of each specification as soon as it is formulated.
Unfortunately, in general (for any sufficiently powerful specification framework)

Essential Concepts of Algebraic Specification 249

this is an undecidable property. Fortunately, inconsistency of specifications cannot
lead to incorrect programs: if we arrive at a program at some point in the
development process, then this program is by definition consistent (it has a
unique model) and consequently, all the specifications leading to it must have
been consistent as well.

The proposed methodology of stepwise refinement does not and cannot be
expected to guarantee success. Apart from inconsistencies, there are many sources
of blind alleys and failures in the development process: there might be no
computable realization of a specification, there might be no "computationally
feasible" realization, we might not be clever enough to find a realization, we
might run out of money to finish the project, etc.

Example 3. Consider a specification of natural numbers with a pre-ordering
specified by the sentence:

m < n = t r u e ~ Vx:nat. M m ~ x ~ M n ~ . x

where for all natural numbers k and x, the predicate Mk ; x is specified to
mean that the Turing machine with GiSdel number k terminates on input x.
This specification is consistent but it has no computable models since the halting
problem is undecidable. []

The main feature of the methodology we really can ensure is its safety : if we
arrive at a program, then it is a correct realization of the original specification.

Some refinement steps are more or less routine. For instance, there are stan-
dard ways of implementing many data abstractions (e.g. sets, queues) and stan-
dard ways of decomposing problems into simpler sub-problems (e.g. "divide and
conquer"). Such refinement steps can sometimes be described schematically by
means of so-called transformation rules such that any instance is guaranteed to be
correct provided certain conditions are met. This reduces the burden of proving
correctness of refinement steps: a proof that the transformation rule is correct
is of course required, but this only needs to be done once for each rule. Then
a simpler proof is required to show that the applicability conditions attached to
the rule are satisfied, each time the rule is instantiated. The use of transformation
rules also avoids the need for the programmer to come up with the idea for
each refinement step from scratch. The need for creativity is not eliminated, of
course: the application of transformation rules often requires invention of func-
tions or conditions that do not appear in the specification being transformed
to be substituted for schema variables. There has been a great deal of work on
the transformational method of software development, much of it focussed on
improving programs rather than on developing programs from specifications. A
recent reference is [HKB93].

7. Constructor Implementations

The simple notion of specification refinement is mathematically elegant and
powerful enough (in the context of a sufficiently rich specification language)
to handle all concrete examples of interest. However, it is not very convenient
to use in practice. During the process of developing a program, the successive
specifications incorporate more and more details arising from successive design
decisions. Thereby, some parts become fully determined, and remain unchanged
as a part of the specification until the final program is obtained.

250 D. Sannella and A. Tarlecki

N1 K1 N1 ~2 ~

It is more convenient to avoid such clutter by separating the finished parts from
the specification, putting them aside, and proceeding with the development of the
unresolved parts only.

@ -@ -+ ~1 ~2 * SP = E M P T Y K3 Kn tl

It is important for the finished parts ~ct, . . . , ~cn to be independent of the particular
choice of realization for what is left: they should act as constructions extending
any realization of the unresolved part to a realization of what is being refined.

Example 1 (continued). An instance of the situation illustrated above may be
found in the consecutive refinement steps SORTperm ~,* SORTins -,~ SORTdone:
the "code" for sort introduced in SORTins, and the operation that hides insert,
are still present in the same form in SORTdone. []

Each ~ci above amounts to what is known as a parameterized program [Gog84]
with input interface SPi and output interface SPi -b Given a program P that is
a correct realization of SPi, the parameterized program ~ci may be instantiated
to yield a program Ki(P) that realizes SPi-1. A programming language that
supports stepwise development in the style suggested here needs to provide
syntax and modularisation facilities for defining parameterized programs and
their instantiations. For example, in the Standard ML programming language
[Pau91] parameterized programs are called functors, and instantiation amounts
to functor application. 3 In Modula-3 [Nelgl], parameterized programs are called
generic modules. Once the development is finally finished (that is, when nothing
is left unresolved, as above) we can successively instantiate the parameterized
programs ~cn ~cl to obtain a correct realization of the original specification
SPo.

Semantically, each parameterized program ~ci defines a function (which we
will call a constructor 4) on algebras, [[tq]] :Alg(Sig(SPi)) ~ Alg(Sig(SPi_l)),
and instantiation is simply function application: if [[P~ E Alg(Sig(SPi)), then
[[tq(P)]] = [[~i]]([[P]]). In practice, Ki provides a definition of the components
(carriers and operations) of a Sig(SPi_l)-algebra, given the components of a
Sig (SP i)-algebra.

3 In the following we disregard the fact that functor application in SML is not guaranteed to
terminate. The technicalities may be modified to capture this by modelling parameterized programs
as partial (rather than total) functions and adding the obvious definedness condition in the definition
of constructor implementation [SAT89]. We resist the temptation to adopt this slightly more complex
approach for the sake of clarity of presentation.
4 Constructors should not be confused with value constructors like nJ.1 and : : in SML and similar
programming languages.

Essential Concepts of Algebraic Specification 251

Example 1 (continued). Consider the refinement SORTperm .,~ SORTins in which
"code" for sort is first introduced. Using a notation like that of Standard ML, a
parameterized program corresponding to this step can be expressed as follows:

functor KI(X:INS):SORTperm =

struct

open X

fun sort(nil) = nil

I sort(x::l) = insert(x,sort(1))

end

(The effect of the declaration "open X" is to add the types and values in the
parameter X to the context, allowing the use of names like i n s e r t and head in
place of the qualified names X. i n s e r t and X.head. The reader is asked to find
the obvious correspondence between the names used here and those used - - in a
different font - - in the specifications.)

Recall that INS is the part of SORTins that remains after "peeling off"
sort and the operation of hiding insert, the part of the specification whose
implementation is fixed in this step. Notice that the functor definition provides
not only code for sort but also (implicitly) realizes the hiding of insert since insert
is not present in the functor result signature.

The next refinement step, SORTins ~,~ SORTdone, which introduces code for
insert, corresponds to the following parameterized program:

functor K2(X:INTLIST):INS =

strict

open X

fun insert(x,nil) = Ix]

insert(x,y::l) = if po(x,y) then x::y::l

else y::insert(x,l)

end

The code for sort, which in the original refinement step was still present in
SORTdone, has been dealt with in the previous step. Thus in this step we are able
to focus on what remains, namely the insert operation, without the distraction of
the surrounding context.

The axioms in I N T L I S T may be translated directly into SML code, and
we can choose a particular realization to implement po, giving the following
parameterized program:

functor E3(X:EMPTY):INTLIST =

struct

fun po(n,m:int) = n <= m

fun head(x::_) = x

fun tail(_::l) = 1

fun is in(_,nil) = false

I is_in(x,y::l) = (x=y) orelse is_in(x,l)

end

Here, EMPTY stands for the empty SML signature s ig end.
To finish the example, we need to provide a parameterized program corre-

sponding to the refinement step SORT-~, SORTperm. Since all that is done in

252 D. Sannella and A. Tarlecki

this step is to impose a (non-constructive) restriction on the class of permissible
realizations of sort, this is trivial:

functor KO (X : SORTperm) : SORT = X

[]

The above considerations motivate a more elaborate version of the notion of
refinement of the previous section, known as constructor implementation [SaT88b].
We write SP ~ SP' to say that a specification SP I implements a specification
SP via ~, where ~c is a parameterized program denoting a constructor [[tc]] :
Alg(Sig(SP')) ~ Alg(Sig(SP)), and define this as follows:

SP ~V" SpI iff [[K~([[SP'~) a_ [rsP]]

Here, [[~c]]([[SP']]) is the image of [[SP'~ under [[~c]].

Example 1 (continued). The following are examples of constructor implementa-
tions:

SORT~i. ~ SORTperm
S O R Tperm-,iy INS
IN S~ff~ IN TLIS T
INTLIST~i, ~ E M P T Y

The justification requires proofs similar to those sketched in Example 1 in Sec-
tion 6 for the corresponding refinement steps. []

For each parameterized program tc we can (in principle) define a specification-
building operation ~ such that [[~(SP')]] = [[~cl]([[SP']]); then constructor im-
plementations may be viewed as refinements (SP -~ SP' is just SP ~,* -g(SP')).
Provided that we have means for reasoning about specifications built using
these new operations, the correctness of constructor implementations may be
established using proof techniques for refinements. Specifically, we need a way
of deriving entailments of the form ~(SP') ~ SP; this boils down to proving
properties of the components of programs built by ~c.

The correctness of the final outcome of the stepwise development process may
be inferred from the correctness of the individual constructor implementation
steps:

SPo "~ SP ~ SPn -= E M P T Y K1 Ir IOn

[[~q(~c2(...~cn(empty)...))~ ~ [[SP0]I

where E M P T Y is the empty specification over the empty signature and empty is
its (empty) realization.

Example 1 (continued). In our example,

KO (KI (K2 (K3 (empty))))

yields a non-parameterized program (an SML structure) satisfying SORT. Here,
empty stands for the empty SML structure s t r u c t end. []

Suppose that parameterized programs compose, that is, for any two param-
eterized programs K and ~c' such that the signature of the output interface of ~c
coincides with the signature of the input interface of ~c', there is a parameterized

Essential Concepts of Algebraic Specification 253

program K;~c' with [[~c;x']] = [[~c~ ;[[tr (the latter semicolon stands for ordinary
function composition, written in diagrammatic order). Then it is easy to see that
constructor implementations (vertically) compose:

SP "T SP' SP' ~ SP"

SP ~r~. SP"

The requirement that parameterized programs can be instantiated is a weaker
requirement than that parameterized programs be composable, even though any
programming language with decent modularisation facilities should ensure the
latter as well. In Standard ML, there is no explicit functor composition operation
but the composite of two functors may easily be defined using functor application
and abstraction.

As in the case of refinement, vertical composability is not necessary to ensure
the correctness of the outcome of the development process. All we need is the
condition inherent in the definition of constructor implementation, namely that
implementations reflect realizations:

SP "~ SP' A' E lISP'I]
[[Ir C [[SP]]

Many approaches to implementation (see e.g. [EKM82, SAW82, Ore83]) make
use of a restrictive kind of constructor defined by a parameterized program having
a particular rigid form. Then the vertical composition of two implementations
is required to yield an implementation of the same form, which is not always
possible. The requirement that the composition of parameterized programs be
forced into some given normal form corresponds to requiring programs to be
written in a rather restricted programming language.

We have already mentioned that the internal structure of a requirements
specification need not be mirrored by programs that realize it. This is why the
definitions of refinement and constructor implementation above take no account
of the structure of specifications. However, when developing a large program
it is crucial to progressively decompose the job into smaller tasks that can be
handled separately. Each task is defined by a specification, and solving a task
means producing a program component that satisfies this specification. Once all
tasks are solved, producing the final system is a simple matter of appropriately
assembling these components.

A development step involving the decomposition of a programming task
into separate subtasks is modelled using a constructor implementation with a
multi-argument parameterized program (see [SST92]):

S P - ~ (S P 1 SP~) iff [[~c~([[SP1]] x . . . x lISP,I]) c lISP]]

where [[~c~ : Alg(Sig(SP1)) x . . . xAlg(Sig(SPn)) ~ AIg(Sig(SP)) is an n-argument
constructor (an n-argument function on algebras) describing a way to put models
of S P b . . . , S P n together to construct a model of SP (and, as before, we use
the same notation [[~c]] to denote the corresponding image function). Now the
development takes on a tree-like shape. The development is complete once a tree
is obtained that has empty sequences (of specifications) as its leaves:

254 D. Sannella and A. Tarlecki

SPI ~"T (i {

SPnm -~" () SP ~ SPnl ~,1 ~c~,
SP n ~"T "'"

SPnm ,c,,"~ ()

Then an appropriate instantiation of the parameterized programs in the tree yields
a realization of the original requirements specification. The above development
tree yields the program ~c(~Cl0 , xdtc~fft~la()) , Knm())), with

II~(KIO K, (K,I (~ ,~I ()) , . . . , ~,,,,,0))]] ~ [[sPll

(We use an obvious notation to(P1,..., Pn) for instantiation of n-ary parameterized
programs, where [Ix(P1,.--, Pn)]] - [[~c]](~P1]] [[Pn~).)

The structure of the final program is determined by the shape of the de-
velopment tree, which is in turn determined by the decomposition steps. Each
such step corresponds to what software engineers call a design specification (and
what [GHW82] call an organizational specification): it defines the structure of
the system by specifying its components and describing how they fit together.
This style of development leads to modular programs, built from fully specified,
correct and reusable components.

A complete development tree does not reflect the process of developing a
system from a specification, which normally involves false starts, blind alleys
and backtracking�9 It documents only the final outcome of this process, where all
subtasks have been solved successfully. An incomplete development tree may be
used to record a stage in the development process, so the development process
corresponds to a sequence of such trees which culminates in a complete tree.
Ideally, each tree in the sequence is an expansion of the previous one, but
backtracking corresponds to deletion or alteration of parts of the tree that have
already been filled in.

Example 1 (continued). We show a simple example of a decomposition using a
modified version of the sorting specification above:

SORTonce =
hide opns all_once in

enrich SORT by
opns all_once : i n t l i s t --~ boo l
axioms all_once(nil) = t r u e

Vx :int. Vl :int list.
all_once(x : :1) ---- t r u e

all_once(l) = t r u e A is_in(x, 1) = f a l s e
Vl :int list. all_once(sort(1)) = true

SORTonce just adds to SORT the requirement that the result of sort does not
contain multiple occurrences of elements. Clearly, SORT ~,* SORTonce.

Consider an additional specification that introduces a function specified to
remove adjacent occurrences of the same element in a list:

Essential Concepts of Algebraic Specification 255

N O S T U T T E R =
enrich I N T L I S T by

opns rein_stutter : i n t l i s t --~ i n t l i s t
axioms V/,/1,12 : in t l i s t . Vx, y : int .

rein_stutter(1) = / l@(x : :y: :/2) ~ x ~ y
Vl :int list. Vx :int.

is_in(x, 1) = is_in(x, rein_stutter(l))
VI, I1, /2: int list.

rein_stutter(l) = l l ~12 --->.
313,/4:int list.

1 = 13~14 A rein_stutter(13) = l l
A rein_stutter(14) = 12

Now, the problem of implementing the specification SORTonce may be de-
composed (perhaps not very efficiently, but certainly correctly) into the problems
of implementing SORTperm and N O S T U T T E R :

S O R Tonce~i~g (S O R Tperm, N O S TU T T E R }

where the parameterized program K4 is given as follows:

f u n c t o r K4 (X : SORTperm, Y : NOSTUTTER) : SORTonce =
struct

open X
fun sort(l) = Y.rem stutter(X.sort(1))

end

The specification N O S T U T T E R can easily be implemented using the following
functor:

functor K5 (Z : INTLIST) : NOSTUTTER =

struct

fun rem_stutter(nil) = nil
I rem_stutter([x]) = [x]

I rem_stutter(x: :y: :l) =
if x = y then rem stutter(y::l)

else x::rem stutter(y::l)
end

Since we already have an implementation of SORTperm (obtained entirely in-
dependently from the development for N O S T U T T E R) and of I N T L I S T , the
development is complete and we can put all these together to obtain the follow-
ing realization of the specification SORTonce:

K4 (KI (K2 (K3 (empty))), KS (K3 (empty))) : SORTonce

[]

Horizontal composability for constructor implementations takes the form:

SP t ~ SP ~ . . . SP n ,~"T SP'n

op(SP 1, . . . , SP n) ~ op(~f(SP '1) , ' " , G(SP'n))

The problem illustrated by Example 2 still exists, but it cannot arise when
op corresponds to a parameterized program, as in the decomposition steps via
multi-argument parameterized programs above.

256 D. Sannella and A. Tarlecki

8. Specifying and Developing Parameterized Programs

The enterprise of formal specification and development is relevant to parameter-
ized programs, with exactly the same motivation as in the case of ordinary non-
parameterized programs. An additional advantage this brings is that it enables
the overall shape of a development tree (see above) to be given without the need
to supply the parameterized programs involved in each of the steps. The provision
of a parameterized program that fits into each step can then be regarded as a sep-
arate task, perhaps involving further refinement and decomposition. This is one
of the ideas underlying the Extended ML methodology for formal development
of Standard ML programs from specifications [SAT89, SaTgl, Sangl, Kaz92].

For any two signatures Z and E', we can regard Z ~ E ' as a new kind of
signature. Then Alg(E-+E') is the set of all parametric (Z~E')-algebras, that
is functions F : A/g(2) ~ Alg(2'). Just as ordinary programs are modelled
as algebras, parameterized programs are modelled as parametric algebras. (We
generalize this further to multi-argument and higher-order parametric algebras
below.)

Note that both "constructor" and "parametric algebra" are names for the
same concept: a function mapping algebras to algebras. We use the former
when such a function constitutes an implementation step, and the latter when
it is itself the outcome of a development task. This distinction is blurred below,
especially once the extension to higher-order is considered. Another difference is
that a constructor is assumed to be defined by a parameterized program, while a
parametric algebra is an arbitrary set-theoretic function.

To specify a parameterized program, we give its input and output interfaces.
The specification SP ~ S P ' describes the class of parametric (Sig (SP)~Sig (SP'))-
algebras F : Alg(Sig(SP)) ~ Alg(Sig(SU)) such that F(A) E lISP']] for all A
I[SP]]. Said another way, Sig(SP~SP') = Sig(SP)--*Sig(SP') and [ISP~SP']] =
{F ~ Alg(Sig(SP)~Sig(SP')) I F([[SP]]) ~ [[SP']]}. The statement that tc is a
realization of S P ~ S U is thus equivalent to the correctness of the constructor
implementation SP'~,~ SP. The specification SP-+SP I is not a so-called param-
eterized specification; it is a non-parameterized specification of a parameterized
program. See [SST92] for a discussion of this distinction.

Example 1 (continued). I N T L I S T ~ S O R T specifies a parameterized program
which, given an implementation of INTLIST, delivers an implementation of
SORT. Two (equivalent) realizations of this specification are the functors:

functor K(X: INTLIST) : SORT = K0 (KI (K2 (X)))

functor K' (X : INTLIST) : SORT = El (K2 (X))

Another, different realization is:

functor K' ' (X : INTLIST) : SORT = K4 (KI (K2 (X)), K5 (X))

That is, IlK]I, [[K']], IlK' ']] E [[INTLIST--~SORT]]. []

The definition of refinement of specifications applies without modification to
specifications of parameterized programs:

sP SP' iff IISP2- sP'2]] IISPl- SP']]
which again presupposes that Sig(SP1--+SP~) = Sig(SP2-*SP~2), i.e. Sig(SP1) =
Sig(SP2) and Sig(SP'~) = Sig(SP'2). A sufficient condition for this refinement to
hold is that SP2 ~ SP1 and SP] ~ SP'2.

Essential Concepts of Algebraic Specification 257

Example 1 (continued). Simple examples of refinements between specifications of
parameterized programs may be built on the examples of refinements given in Ex-
ample 1 in Section 6: I N T L I S T ~ S O R T refines to 1NTLIST--+SORTperm which
further refines to 1NTLIST--*SORTins which refines to INTLIST--+SORTdone.
[]

The above presentation uses a particularly simple form of specification of
parameterized programs, where the output interface does not depend on the par-
ticular realization of the input interface. This is not sufficient when more complex
examples are considered. The necessary extra flexibility is gained by replacing the
specification SP-*SP ' by the generalized (dependent) product HX:SP.SP'[X].
See [SST92] for details of this and other technicalities omitted here.

Example 1 (continued). Specifications like INTLIST--~SORT do not capture the
intention that their realizations, when given an argument X realizing INTLIST ,
should produce a realization of SORT that extends X. So a realization of
I N T L I S T ~ S O R T might ignore the po component of its argument and produce
a realization of S O R T containing a completely different po function, together
with a sorting function that is correct with respect to this new po function rather
than the one supplied in the argument. This problem can be solved by use of the
following dependent product specification:

[IX :IN TLIS T.
enrich SORT by

axioms Vx, y: in t , po(x,y) = X.po(x,y)
Vx:int. V1 : in t l i s t . is_in(x, l) = X.is_in(x, l)
V1 : in t l i s t . head(1) = X.head(1) A tail(l) = X.tail(l)

In case types are involved, this is the issue of sharing in Standard ML
and the use of so-called sharing constraints as in Standard ML [Pau91] and
Extended ML [SAT89, SAT91] is one way of expressing the required dependency.
See SPECTRAL [KBS91] for a different approach.

The need to "copy" the components of X (po, is_in, etc.) may seem ugly. In
fact, since these components are provided by the argument X, there is no need
to include them explicitly in the result - - if they are needed later on somewhere
else, they can always be recovered directly from X itself rather than via the result.
This would lead to the following dependent product specification:

FIX :IN TLIS T.
hide opns is_sorted in

opns is_sorted : int list -~ bool
sort : int list -+ int list

axioms is_sorted(nil) -- true
Vx:int. VI :int list.

is_sorted(x: :1) = t r u e r
((Vy : int . X.is_in(y, l) = t r u e = X.po(x, y) = t rue)

A is_sorted (1) = t rue)
Vl : in t l i s t . is_sorted(sort(1)) = t r u e
V1 : in t l i s t . Vx :int . X.is_in(x, l) = X.is_in(x, sort(l))

[]

Constructor implementations may be similarly generalized to deal with specifi-
cations of parameterized programs. However, the parameterized programs used to

258 D. Sannella and A. Tarlecki

define the constructors involved in such implementations are then higher-order,
i.e. they take parameterized programs as arguments and return parameterized
programs as results. Higher-order functors are not available in Standard ML as
defined in [MTH90], but their semantics and implementation is a topic of current
active research [Tof92, MAT94, Bis95].

8.1. Higher-Order Parameterization

The definitions involved in dealing with parameterized programs and their speci-
fications extend to the higher-order case in a natural way [SST92]. The set
of generalized signatures is defined to be the least set containing ordinary
signatures and such that if Zl , Z, (n t> 0) and Z are generalized signa-
tures, then (Z1,...,Zn)--*E is a generalized signature as well; if n = 1 we
omit the brackets. Alg((Xl Z,)-+X) is the set of all functions F : Alg(Xl) x
�9 .. x A/g(Xn) --~ Alg(Z). (Alternatively, multi-argument parameterized programs
could be presented in their "curried" form denoting parametric algebras in
Alg (X l~ (Z2-+ ' " (Xn-*Z)" ')).) As before, to specify a higher-order parameter-
ized program, we give its input interfaces and output interface, which may now
themselves be specifications of (higher-order) parameterized programs. The defi-
nitions are exactly the same as those given above. In the following, for simplicity,
we omit the problems of dependency of the result specification on the arguments;
as before, a solution is to use generalized product specifications.

The concepts of constructor implementation and decomposition step carry
over without modification to the case of higher-order parameterized programs
and their specifications.

Example 1 (continued). The example of constructor implementation with de-
composition at the end of the last section may be rephrased using these
ideas. Instead of implementing SORTonce in terms of realizations of SORTperm
and NOSTUTTER, we can build a realization of the specification
INTLIST-~SORTonce in terms of realizations of the specifications
INTLIST-+SORTperm and INTLIST-- ,NOSTUTTER :

IN TLIS T--+ S O R Tonce ~,.~
(INTLIST--,SORTperm, INTLIST---~NOSTUTTER)

where K6 is the following higher-order functor (written using an ad hoc but
hopefully self-explanatory notation):

functor K6(FI :INTLIST->SORTperm, F2:INTLIST->NOSTUTTER)

: INTLIST->SORTonce =

(functor (X: INTLIST) :SORTonce =

struct

structure S = FI(X)

open S

structure N = F2(X)

s sort 1 = N.rem stutter(S.sort(1))

end)

[]

It is possible to restrict attention to parameterized programs of a partic-
ularly simple form, since any constructor implementation SP ~'{SP1,. . . ,SPn}

Essential Concepts of Algebraic Specification 259

may be replaced by the decomposition SP -~pprISP~,SP1,...,SP,}, where SP~ =

(SP 1,..., SPn)~SP and app is the higher-order parameterized program such that
app(F, A1 ,An) = F(A1 ,An) and where the parameterized program x is then
provided as the realization of SP~. A decomposition like SP ~vp(SP~,SPb...,
SP,} embodies the decision to implement SP in terms of realizations of
SP1,..., SPn, leaving the decision of how these are used to produce a realization
of SP as a separate development task, specified by SP~. This brings a bottom-up
flavour into our principally top-down view of the development process.

Example 1 (continued). Here is the above example once again:

IN TLIS T--+ SO R Tonce -'~
APP

((1N TL I S T---~ S O R Tperm, IN TLI S T---~ N O S TU TTE R }--~
(INTLIST ~SORTonce),

IN TLIS T ~ SO R Tperm,
1NTLIST---~NOSTUTTER)

where APP is the higher-order functor applying its first argument to its second
and third arguments:

functor APP
(F : (INTLIST->SORTperm, INTLIST->NOSTUTTER) ->

(INTLIST->SORTonce),
FI : INTLIST->SORTperm, F2 : INTLIST->NOSTUTTER

) :INTLIST->SORTonce =
F(FI ,F2)

This embodies a decision that the implementation of INTLIST~SORTonce
may use the implementations of the specifications INTLIST~SORTperm and
INTLIST~NOSTUTTER, to be provided separately. One way of realizing the
specification

(IN TLIS T---~ SO R Tperm, IN TLIS T-* N O S TU TTER)-*
(INTLIST--~SORTonce)

is the functor K6 above; another possibility is to use an entirely different solu-
tion, ignoring either or both of the realizations of INTLIST~SORTperm and
INTLIST---~NOSTUTTER. For example:

functor KT(FI :INTLIST->SORTperm, F2: INTLIST->NOSTUTTER)
: INTLIST->SORTonce =

(functor (X: INTLIST) : SORTonce =
struct

open X
fun insert(x,nil) = Kx]

I insert(x,y: :l) =
if x=y then y::l
else if po(x,y) then x::y::l

else y::insert(x,1)
fun sort(nil) = nil

I sort(x::l) = insert(x,sort(1))
end)

[]

260 D. Sannella and A. Tarlecki

9. Behavioural Implementations

A specification should be a precise and complete statement of required proper-
ties. We should try to avoid including extra requirements, even if they happen
to be satisfied by a possible future realization. Such over-specification unneces-
sarily limits the options left open to the implementer. Ideally, the target is to
describe exactly the admissible program behaviours. This suggests that specifica-
tions of programming tasks should not distinguish between programs (modelled
as algebras) exhibiting the same behaviour.

The intuitive idea of behaviour of an algebra has been formalised in a
number of ways (see e.g. [ReiS1, GoM82, SAW83, Sch87, SAT87, NIO88]). 5 In
most approaches one distinguishes a certain set OBS of sorts as observable.
Intuitively, these are the sorts of data directly visible to the user (integers,
booleans, characters, etc.) in contrast to sorts of "internal" data structures, which
are observable only via the functions provided by the program. The behaviour of
an algebra is characterised by the set of observable computations taking arguments
of sorts in OBS and producing a result of a sort in OBS. In the standard
algebraic framework, such computations are modelled as terms of sorts in OBS
with variables (representing the inputs) of sorts in OBS only. Two Z-algebras A
and B are behaviourally equivalent (w.r.t. OBS), written A = B, if they exhibit
the same behaviour, that is, if all observable computations yield the same results
in A and in B. The motivation is related to that of so-called testing equivalences
studied in the context of concurrent systems [DNH84]. The role of behavioural
equivalence in the context of parametric algebras is a topic of current research
and we do not treat this here. Therefore this section deals only with ordinary
algebras and development of non-parameterized programs.

Example 4. A hackneyed example that illustrates the idea of behavioural equiv-
alence is that of stacks of integers:

S T A C K = sorts stack
opns empty : stack --> bool

push : i n t • stack --~ stack
pop : stack -* stack
top : stack --~ i n t
is_empty : stack ~ boo1

axioms is_empty(empty) = t r u e
Vs:stack. Vn : int. is_empty(push(n, s)) = f a l s e
Vs:stack. Vn : int . top(push(n, s)) = n
gs :stack. gn : int . pop(push(n, s)) = s

Suppose that the sorts i n t and bool (included implicitly in all the specifications
we consider) are taken as observable while the sort stack is not. The observable
computations are all the terms of the form is_empty(s) and top(s) where s is a
term of sort stack with variables of sort i n t only.

Two typical algebras which provide intuitively acceptable realizations of this
specification can be coded as SML structures as follows:

5 The following paragraph makes sense only in an institution in which signatures have sorts. This is
not much of a restriction in practice. In any case, what follows thereafter (apart from the examples)
applies to any institution and any equivalence relation on its algebras [SaT88b].

Essential Concepts of Algebraic Specification 261

structure SI:STACK =

struct

type stack = int list

val empty = nil

fun push(n,s) = n::s

fun pop(nil) = nil

I pop(_: :s) = s

fun top(nil) = 0

I top(n::) = n

fun is_empty(nil) = true

I is_empty(_::_) = false

end

structure S2:STACK =

struct

type stack = (int -> int) * int

val empty = ((fn k => 0), O)

fun push(n, (f,i)) =

((fn k => if k = i then n else f k), i+l)

fun pop(f,i) = if i = 0 then (f,O) else (f,i-l)

fun top(f,i) = if i = 0 then 0 else f(i-l)

fun is_empty(f,i) = (i=O)

end

S1 gives the obvious realization of stacks as list of integers and $2 codes the
realization of stacks as (infinite) arrays with pointers to the top of the represented
stack (arrays are coded here as functions from integer indices to values).

Now, these two realizations of stacks are behaviourally equivalent since for
each observable computation, like top(pop(push(n, push(4,push(6, empty))))), they
both deliver the same result (in this case 4). However, these algebras do not act
the same way when non-observable computations are considered: for example,
the computations empty and pop(push(6,empty)) yield the same result in S1 but
they yield different results in $2. []

Our earlier discussion would lead us to expect the class of models of a
specification to be closed under behavioural equivalence. It is perhaps surprising
that this is not easy to achieve directly: the class of models of a set of axioms
typically does not have this property. Equational logic may be modified so as to
force this to happen (cf. [NiO88]) and a similar idea for other logical systems is
discussed in [BHW95], but it is not clear how this approach can be extended to
deal adequately with structured specifications. An alternative is to simply close the
class of models of a specification under behavioural equivalence [SAW83, SAT87].
Any specification SP determines the class lISP]] ~ Alg(Sig(SP)) of models that
"literally" satisfy the stated requirements, as discussed in Section 3; the ultimate
semantics of SP is taken to be the closure of this under behavioural equivalence:

[liSP]l] = {A] A -- B for some B E liSP]]}

In particular, [[sorts Sopns ~ axioms q)ll contains exactly the (S, f~)-algebras that
satisfy the axioms gP, while [[[sorts Sopns ~ axioms ~P]]] contains also the algebras
that do not satisfy @ themselves but are behaviourally equivalent to algebras
that do. The notation [II-m applies to specifications only; it does not apply to
programs or parameterized program.

262 D. Sannella and A. Tarlecki

Example 4 (continued). Both the list representation S1 and the array-with-pointer
representation $2 of stacks are in flISTACK]~ - - and this is what we meant when
we declared

s t r u c t u r e SI:STACK = . . .
structure S2:STACK = ...

That is, S1, S2 E]][STACK]]]. This holds even though the latter realization 82
does not literally satisfy the axiom Vs:s tack .Vn: int .pop(push(n,s)) = s and so
$2 ~ [[STACK]]. []

This approach typically gives extra expressive power: considering the insti-
tution of first-order logic with equality, there are classes of algebras that may
be finitely characterized in this way, and cannot be finitely axiomatized directly
[Sch92]. (Of course, this property depends on the logic considered: for example,
second-order logic allows one to specify behavioural closures directly [HOS96].)
Also, model-oriented specifications [Jon86] can be handled: if liSP]] contains just
a single algebra, then [liSP]]] admits any realization of the exhibited behaviour.
In general, [lISP]I] contains all reifications of the algebras in I~SP]] (cf. [Hoa72]).

The basic intuition for the use of behavioural equivalence in the development
process is that it is not necessary to implement a specification SP according to
its literal interpretation lISP]]; it is sufficient to implement it up to behavioural
equivalence, as captured by its "ultimate" semantics [liSP]l]. The definitions of
refinement and constructor implementation are now as follows:

SP ~ SP ' iff [lISP'[[] ~- [lISP[[],

SP ~ SP ' iff [[~c]]([][SP']]]) _ [[[seli].

Using these definitions, it is possible to develop programs from specifications
by means of successive implementation steps exactly as described earlier.

9.1. Stability

The development process may take advantage of the behavioural interpretation of
specifications in a more delicate way than suggested above. The crucial novelty,
due to [Sch87], is that when using a realization of SP, it is convenient (and
possible) to pretend that it satisfies the literal interpretation of SP.

Example 4 (continued). Consider the following trivial specification

T R I V = opns id : i n t x i n t x • ~ •
axioms Vx, n , z : i n t , n >= 0 ~ id (x ,n , z) = x

and its perhaps surprising realization in terms of stacks of integers :6

functor TR(S : STACK) :TRIV =

struct

fun multipush (n, z, s : S. stack) =

if n <= 0 then s

else S. push(z,multipush(n-1, z+l, s))

6 This is of course an extremely contrived example, but it is easy to come up with realistic programs
using stacks where properties like this are to be proved.

Essential Concepts of Algebraic Specification 263

fun multipop (n, s : S. stack) =
if n <= 0 then s else multipop(n-l,S.pop(s))

fun id(x,n,z) =
S. top (mult ipop (n, mult ipush (n, z,

S. push(x, S. empty))))
end

Now, given any realization S of STACK, to verify that TR(S) E ~TRIV~], it is
convenient to assume that the axiom Vs:stack. Vn:int. pop(push(n,s)) = s holds
in S literally in spite of the fact that this equation is not valid in ~[STACK]B.
Under this assumption, a simple proof by induction (on the second argument of
• goes through. The reasoning for the induction step goes as follows:

id (x ,n+l , z)
= S. top (mult ipop (n+ 1, mult ipush (n+ 1, z, S. push (x, S. empty))))
= S. top (mult ip op (n, S. pop (S. push (z, mult ipush (n, z + 1,

S. push (x, S. empty))))))
= S. top (mult ipop (n, mult ipush (n, z+l, S. push (x, S. empty))))
= id(x ,n , z+l)
= X

where the final step follows by the induction hypothesis. []

These considerations lead to the following definition of behavioural implemen-
tation [SaT88b] :

SP @ SP' iff [[K]]([fSP'~) ~_ ~SP]]]

The alert reader will have noticed that there is a problem here: we want to
have our cake and eat it. On one hand, we want to allow specifications to
be implemented up to behavioural equivalence; on the other hand, we would
like to use any realization as if it satisfied its specification literally. Behavioural
implementations do not compose, and the following crucial property is lost:

SP ~ SP' A' �9 ~ISP']~
[[K]](A') E MSP~]

The behavioural implementation SP ~ SP' ensures only that algebras in [[SP']]
give rise to correct realizations of SP; this says nothing about the models in
[]ISP']]] that are not in [[SP']].

Example 4 (continued). As stated above, TRIV ~ S T A C K . Formally, neither
the property this embodies (that TR(S) E [[[TRIV]]] for S E [[STACK]]) nor
its suggested proof tell us anything about the application of TR to the algebra
$2 ~ [[STACK]], even though $2 E [~STACK]]] and we have earlier identified $2
as an acceptable realization of S TACK. It may be shown that TR ($2) E [~ TRIV]]]
but the most obvious proof involves the non-elementary fact that for any natural
number n,

mult ipop(n, s) = S. pop(... (S. pop(s)).. .)

n times

and similarly for mul t ipush (and then relies on the property that since~ S2 c
[I[STACK]I], all observable computations in $2 yield the same results on s and
on pop(push(z, s)), for any stack s and integer z).

Consider, however, another trivial realization of TRIV in terms of STACK :

264 D. SanneUa and A. Tarlecki

functor TR' (S:STACK) :TRIV =

struct

fun id(x,n,z) = let valse = S.pop(S.push(z,S.empty))

in if se = S.empty then x else z

end

end

(TR' cannot be coded in SML since the type S. s t a c k is not ensured to admit
equality.)

We can prove now that TRIV ~ STACK, hence TR' (S1) E IgTRIV]]], but
of course TR' (82) ~ [][TRIVm. []

It might seem that all is lost. But there is a way out, originally suggested in
[Sch87]. The above crucial property is recovered if we assume that the constructors
used are stable, that is, that any constructor [[~]] : Alg(Sig(SP')) ~ Alg(Sig(SP))
preserves behavioural equivalence:

Stability assumption: i fA - B then [[~c]](A) -- [[~c]](B)

(the exact definition of stability of constructors in a formal development frame-
work based on a full-blown programming language is somewhat more complex
- - see [Sch87, SAT89]).

Under this assumption, the correctness of the individual implementation steps
ensures the correctness of the result:

SP0 ~'* SP1 -'~ "'" ~ SP, = EMPTY 1r 1 tr 2 ten

[[tq(~c2(... tQ(empty).. 3)]1 ~ [lIsPom

Example 4 (continued). Clearly, the functor TR' as defined above is not stable.
On the other hand, the functor TFt is stable (this can be proved along the lines

of the argument given above to justify that TR(S2) E [IITRIVm). This shows that
TR(S) C [[[TRIV]]] for all S c [~STACKm, not only for S E ~STACK]]. []

We could repeat here the tree-like development picture of Section 7 - - devel-
opments involving decomposition steps based on behavioural implementations
with multi-argument (stable) constructors yield correct programs as well. We
also recover vertical composability, under the assumption that parameterized
programs compose as discussed in Section 7:

SP ~ SP' SP' -,~ SP"
SP ~ SP"

tr ;to

The correctness of a behavioural implementation SP ~ SP t is easier to verify
than the correctness of the corresponding constructor implementation between
the same specifications closed under behavioural equivalence: the condition
[[tr ~_ [~SP]~ is weaker than [[lc]](~SP']]]) ~_ [HSP]]] (but semantically
these two conditions become equivalent if [[•]] is stable). Also, the correctness
of SP ~ SP' is in general easier to verify than the correctness of the original
constructor implementation SP "T SP~ (that is, [[tr ~_ [][SP]~ is weaker

than ~c([[SP']]) c [[SP]]). For instance, viewing the structure S2 of Example 4
as a functor with an empty parameter, we have STACK ~ EMPTY, while
STACK ~ EMPTY. As we have argued, this extra flexibility reflects our intu-
itive understanding of what it means for an algebra to realize a specification.

Essential Concepts of Algebraic Specification 265

We are still left with the need to establish the stability of constructors, and so
one may wonder if it is worthwhile taking advantage of this property. However,
recall that constructors are determined by parameterized programs, and these
must be expressed in some particular programming language. Thus stability
can be checked in advance, for the programming language as a whole (this is
simplified somewhat by the fact that the composition of stable constructors is
stable) and this frees the programmer from the need to prove it during the
program development process. Other views of stability are possible, cf. [NOS95].

There is a close connection between the requirement of stability and the secu-
rity of encapsulation mechanisms in programming languages supporting abstract
data types. A programming language ensures stability if the only way to access
an encapsulated data type is via the operations explicitly provided in its output
interface. This suggests that stability of constructors is an appropriate thing to
expect; following [Sch87] we view the stability requirement as a methodologi-
cally justified design criterion for the modularization facilities of programming
languages.

Example 5. The limited notation of Standard ML functors we have used in
Examples 1 and 4 throughout this paper ensures stability of constructors] In-
tuitively, this is because the parameter signature of any SML functor provides
sufficient insulation between the functor body and the actual parameters. Within
the functor body we can access the parameter only using the "tools" given in the
parameter signature. Unfortunately, signatures given for functor results and for
structures declared in SML are much more "transparent": they do not provide
sufficient insulation between the declaration of a structure and its use. For ex-
ample, the following code in SML shows a non-stable extension of the structure
$2:

structure S2:STACK =

struct

type stack = (int -> int) * int

val empty = ...

fun pop(f,i) = if i = 0 then (f,O) else (f,i-l)

end

fun id(x,n,z) = let val (f,i) = S2.pop(S2.push(z,S2.empty))

in if f i = 0 then x else z

end

Changing the "internal" implementation details of $2 for example as follows:

structure S2:STACK =

struct

type stack = (int -> int) * int

val empty = ...

fun pop(f,i) =

if i = 0 then (f,O)

7 Of course, considerable work would be required to turn this claim into a formal theorem with a
precise proof.

266 D. Sannella and A. Tarlecki

else (fn k => if k = • then 0 else f k, i-1)

end

changes completely the behaviour of the id function as defined in the extension,
even though the new realization 82 of stacks is behaviourally equivalent to the
previous one.

This can be viewed as a deficiency in the design of the Standard ML modu-
larization facilities. This infelicity is not present in the Extended ML formalism
[SAT91, KST94, KST97] where access to a structure or functor result is limited
to the use of the tools given in its signature�9 []

10. Conclusion

We have outlined the main ideas of a framework to support the formal devel-
opment of correct programs from specifications of their required behaviour. Our
purpose has not been to introduce new technicalities, but rather to explain in a
careful way the general ideas underlying the algebraic approach and the specific
motivation behind the concepts involved in the formalization of the development
process. This forced us to clarify some of the finer points of the approach, like
the distinction between syntax and semantics in constructor implementations and
an abstract formulation of stability in this context.

The main challenge now is to put these ideas into practice in the formal
development of non-trivial programs in real programming languages. We are
moving in this direction with our work on the Extended ML framework for the
formal development of modular Standard ML programs [SaTgl, KST94, KST97],
although more effort is required. Subjecting foundational work to the test of
practice is sure to bring fascinating new problems and issues to light.

Acknowledgements

Most of the above ideas have been presented elsewhere, and have been dis-
cussed with and influenced by many of our colleagues. Thanks especially to
Michel Bidoit, Rod Burstall, Jordi Farr&, Joseph Goguen, Fernando Orejas,
Oliver Schoett and Martin Wirsing. Thanks also to Bernd Krieg-Briickner, Luis
Dominguez and the referees for comments which helped to improve the presenta-
tion. This research was supported by the EC-funded COMPASS Basic Research
working group and MeDiCiS and EuroFoCS Scientific Cooperation Networks
(DS, AT), by EPSRC grants GR/H73103 and GR/J07303 and an EPSRC Ad-
vanced Fellowship (DS), and by KBN grant 2 P301007 04 (AT).

References

[AsR95]

[Bar74]
[BaF85]
[BaW82]

Astesiano, E. and Reggio, G.: Formally-driven fiiendly specifications of concurrent
systems: a two-rail approach. Proc. ICSE-17 Workshop on Formal Methods Application
in Software Engineering Practice, Seattle, 158-165 (1995).
Barwise, J.: Axioms for abstract model theory. Ann. Math. Logic 7:221-265 (1974).
Barwise, J. and Feferman, E.: (eds.) Model-Theoretic Logics. Springer (1985).
Bauer, F. and WSssner, H.: Algorithmic Language and Program Development. Springer
(1982).

Essential Concepts of Algebraic Specification 267

[BeV87]

[BGM89]

[BHW95]

[BKL91]

[Bis95]

[BUG77]

[BUG80]

[Cen94]

[Dav90]
[DNH84]

[DGS93]

[EBO93]

[EKM82]

[EhM85]

[Far92]

[FiS88]

[FiJ90]

[Gog84]

[GOB80]

[GOB84]

[GoB92]

[GoL951

[GoM82]

[GoM85]

[GWM92]

[Gull80]

Beierle, C. and VoB, A.: Viewing implementations as an institution. Proc. 1987 Conference
on Category Theory and Computer Science, Edinburgh. Springer LNCS 283, 196 218
(1987).
Bidoit, M., Gaudel, M.-C. and Mauboussin, A.: How to make algebraic specifications
more understandable? An experiment with the PLUSS specification language. Science
of Computer Programming 12:1 38 (1989).
Bidoit, M., Hennicker, R. and Wirsing, M.: Behavioural and abstractor specifications.
Science of Computer Programming 25:149-186 (1995).
Bidoit, M., Kreowski, H.-J., Lescanne, R, Orejas, K and Sannella, D.: (eds.) Algebraic
System Specification and Development: A Survey and Annotated Bibliography. Springer
LNCS 501 (1991).
Biswas, S.: Higher-order functors with transparent signatures. Proc. 22rid ACM Syrup.
on Principles of Programming Languages, San Francisco, 154-163 (1995).
Burstall, R. and Goguen, J.: Putting theories together to make specifications. Proc. 5th
Intl. Joint Conf. on Artificial Intelligence, Cambridge, Massachusetts, 1045-1058 (1977).
Burstall, R. and Goguen, J.: The semantics of Clear, a specification language. Proc.
1979 Copenhagen Winter School on Abstract Software Specification. Springer LNCS 86,
292-332 (1980).
Cengarle, M.V.: Formal specifications with higher-order parameterization. Ph.D. thesis,
LMU Miinchen (1994).
Davis, A.: Software Requirements: Analysis and Specification. Prentice Hall (1990).
De Nicola, R. and Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34:83-133 (1984).
Diaconescu, R., Goguen, J. and Stefaneas, R: Logical support for modularization. In:
Logical Environments (G. Huet and G. Plotkin, eds.). Cambridge Univ. Press, 83-130
(I993).
Ehrig, H., Baldamus, M. and Orejas, E: New concepts of amalgamation and extension of
a general theory of specifications. Selected Papers from the 8th Workshop on Specification
of Abstract Data Types, Dourdan. Springer LNCS 655, 199-221 (1993).
Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, E: Algebraic implementation of
abstract data types. Theoretical Computer Science 20:209-263 (1982).
Ehrig, H. and Mahr, B.: Fundamentals of Algebraic Specification I: Equations and lnitial
Semantics. Springer (1985).
Farr+s-Casals, J.: Verification in ASL and Related Specification Languages. Ph.D. thesis,
report CST-92-92, Dept. of Computer Science, Univ. of Edinburgh (1992).
Fiadeiro, J. and Sernadas, A.: Structuring theories on consequence. Selected Papers from
the 5th Workshop on Specification of Abstract Data Types, Gullane. Springer LNCS 332,
44-72 (1988).
Fitzgerald, J. and Jones, C.: Modularizing the formal description of a database system.
Proc. VDM'90 Conference, Kiel. Springer LNCS 428, 198-210 (1990).
Goguen, J.: Parameterized programming. IEEE Trans. on Software Engineering SE-
10(5):528-543 (1984).
Goguen, J. and Burstall, R.: CAT, a system for the structured elaboration of correct
programs from structured specifications. Technical report CSL-118, SRI International
(1980).
Goguen, J. and Burstall, R.: Introducing institutions. Proc. Logics of Programming
Workshop, Carnegie-Mellon. Springer LNCS 164, 221-256 (1984).
Goguen, J. and Burstall, R.: Institutions: abstract model theory for specification and
programming. Journal of the Assoc. for Computing Machinery 39:95-146 (1992).
Goguen, J. and Luqi.: Formal methods and social context in software development.
Proc. 6th Joint Conf. on Theory and Practice of Software Development, TAPSOFT'95,
Aarhus. Springer LNCS 915, 62-81 (1995).
Goguen, J. and Meseguer, J.: Universal realization, persistent interconnection and im-
plementation of abstract modules. Proc. Intl. Colloq. on Automata, Languages and Pro-
gramming, Aarhus. Springer LNCS 140, 265-281 (1982).
Goguen, J. and Meseguer, J.: Completeness of many-sorted equational logic. Houston
Journal of Mathematics 11(3):307-334 (1985).
Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K. and Jouannaud, J.-R: Introducing
OBJ3. Techical Report SRI-CSL-92-03, SRI International (1992).
Guttag, J. and Horning, J.: Formal specification as a design tool. Proc. 7th ACM Symp.
on Principles of Programming Languages, Las Vegas, 251-261 (1980).

268 D. Sannella and A. Tarlecki

[Gull93]

[GHW82]

[HST94]

[Ha J89]

[Hoa72]

[HKB93]

[HOS96]

[HUB85]

[Jon86]
[KST94]

[KST97]

[Kaz92]

[KBS91]

[Li94]

[MaT94]

[MTH90]
[MoA91]

[NOS95]

[Nel91]
[NIO88]

[Ore83]

[Pau91]
[Rci81]

[RAH94]

[San91]

[SaB83]

[SST92]

[SAT86]

Guttag, J. and Horning, J.: Larch: Languages and Tools for Formal Specification. Springer
(1993).
Guttag, J., Homing, J. and Wing, J.: Some notes on putting formal specifications to
productive use. Science of Computer Programming 2:53-68 (1982).
Harper, R., Sannella, D. and Tarlecki, A.: Structured theory presentations and logic
representations. Annals of Pure and Applied Logic 67:113-160 (1994).
Hayes, I.J. and Jones, C.B.: Specifications are not (necessarily) executable. Software
Engineering Journal 4(6):320-338 (1989).
Hoare, C.A.R.: Proofs of correctness of data representations. Acta Informatica 1:271-281
(1972).
Hoffmann, B. and Krieg-Briickner, B.: (eds.) PROgram Development by SPECification
and TRAnsformation: Methodology - Language Family - System. Springer LNCS 680
(1993).
Hofmann, M. and Sannella, D.: On behavioural abstraction and behavioural satisfaction
in higher-order logic. Theoretical Computer Science 167:3-45 (1996).
HuBmann, H.: Rapid prototyping for algebraic specifications: RAP system user's man-
ual. Report MIP-8504, Universit~it Passau (1985).
Jones, C.: Systematic Software Development using VDM. Prentice Hall (1986).
Kahrs, S., Sannella, D. and Tarlecki, A.: The definition of Extended ML. Report
ECS-LFCS-94-300, Dept. of Computer Science, Univ. of Edinburgh (1994).
Kahrs, S., SanneUa, D. and Tarlecki, A.: The definition of Extended ML: a gentle
introduction. Theoretical Computer Science 173, to appear (1997).
Kazmierczak, E.: Modularizing the specification of a small database system in Ex-
tended ML. Formal Aspects of Computing 4:100-142 (1992).
Krieg-Briickner, B. and Sannella, D.: Structuring specifications in-the-large and in-the-
small: higher-order functions, dependent types and inheritance in SPECTRAL. Proc. 4th
Joint Conf. on Theory and Practice of Software Development, TAPSOFT'91, Brighton.
Springer LNCS 494, 313-336 (1991).
Li, W.: A logical framework for evolution of specifications. Proc. 5th European Syrup.
on Programming, Edinburgh. Springer LNCS 788, 394-408 (1994).
MacQueen, D. and Tofte, M.: A semantics for higher-order functors. Proc. 5th European
Syrup. on Programming, Edinburgh. Springer LNCS 788, 409-423 (1994).
Milner, R., Tofte, M. and Harper, R.: The Definition of Standard ML. MIT Press (1990).
Morris, J. and Ahmed, S.: Designing and refining specifications with modules. Proc. 3rd
Refinement Workshop, Hursley Park, 1990. Springer Workshops in Computing, 73-95
(1991).
Navarro, M., Orejas, E and Sanchez, A.: On the correctness of modular systems.
Theoretical Computer Science 140:139-177 (1995).
Nelson, G.: (ed.) System Programming with Modula-3. Prentice Hall (1991).
Nivela, R and Orejas, E: Initial behaviour semantics for algebraic specifications. Selected
Papers from the 5th Workshop on Specification of Abstract Data Types, Gullane. Springer
LNCS 332, 184-207 (1988).
Orejas, E: Characterizing composability of abstract implementations. Proc. 1983 Intl.
Conf. on Foundations of Computation Theory, Borgholm. Springer LNCS 158, 335-346
(1983).
Paulson, L.: ML for the Working Programmer. Cambridge Univ. Press (1991).
Reichel, H.: Behavioural equivalence - - a unifying concept for initial and final specifi-
cation methods. Proc. 3rd Hungarian Computer Science Conference, 27-39 (1981).
Robertson, D., Agusti, J., Hesketh, J. and Levy, J.: Expressing program requirements
using refinement lattices. Fundamenta Informaticae 21:163-183 (1994).
Sannella, D.: Formal program development in Extended ML for the working program-
mer. Proc. 3rd BCS/FACS Workshop on Refinement, Hursley Park. Springer Workshops
in Computing, 99-130 (1991).
Sannella, D. and Burstall, R.: Structured theories in LCE Proc. Colloq. on Trees in
Algebra and Programming, L'Aquila. Springer LNCS 159, 377-391 (1983).
Sannella, D., Sokotowski, S. and Tarlecki, A.: Toward formal development of programs
from algebraic specifications: parameterization revisited. Acre Informatica 29:689-736
(1992).
Sannella, D. and Tarlecki, A.: Extended ML: an institution-independent framework for
formal program development. Proe. Intl. Workshop on Category Theory and Computer
Programming, Guildford. Springer LNCS 240, 364-389 (1986).

Essential Concepts of Algebraic Specification 269

[SAT87]

[SaT88a]

[SaT88b]

[SAT89]

[SAT91]

[SAT9 ?]

[SAW82]

[SAW83]

[Sch87]

[Sch92]

[Som92]
[Tof921

[Wir86]

[Wir93]

Sannella, D. and Tarlecki, A.: On observational equivalence and algebraic specification.
J. of Computer and System Sciences 34:150-178 (1987).
Sannella, D. and Tarlecki, A.: Specifications in an arbitrary institution. Information and
Computation 76:165-210 (1988).
Sannella, D. and Tarlecki, A.: Toward formal development of programs from algebraic
specifications: implementations revisited. Acta Informatica 25:233-281 (1988).
Sannella, D. and Tarlecki, A.: Toward formal development of ML programs: foundations
and methodology. Proc. 3rd Joint Conf. on Theory and Practice of Software Development,
Barcelona. Springer LNCS 352, 375-389 (1989).
Sannella, D. and Tarlecki, A.: Extended ML: past, present and future. Proc. 7th Intl.
Workshop on Specification of Abstract Data Types, Wusterhausen. Springer LNCS 534,
297-322 (1991).
Sannella, D. and Tarlecki, A.: Foundations of Algebraic Specifications and Formal Program
Development. Cambridge Univ. Press, to appear (1997).
Sannella, D. and Wirsing, M.: Implementation of parameterized specifications. Proc.
Intl. Colloq. on Automata, Languages and Programming, Aarhus. Springer LNCS 140,
473-488 (1982).
Sannella, D. and Wirsing, M.: A kernel language for algebraic specification and im-
plementation. Proc. 1983 Intl. Conf. on Foundations of Computation Theory, Borgholm.
Springer LNCS 158, 413-427 (1983).
Schoett, O.: Data Abstraction and the Correctness of Modular Programming. Ph.D.
thesis, report CST-42-87, Dept. of Computer Science, Univ. of Edinburgh (1987).
Schoett, O.: Two impossibility theorems on behavioural specification of abstract data
types. Acta Informatica 29:595-621 (1992).
Sommerville, I.: Software Engineering (4th edition). Addison-Wesley (1992).
Tofte, M.: Principle signatures for higher-order program modules. Proc. 19th ACM
Syrup. on Principles of Programming Languages, Albuquerque, 189-199 (1992).
Wirsing, M.: Structured algebraic specifications: a kernel language. Theoretical Computer
Science 42:123-249 (1986).
Wirsing, M.: Structured specifications: syntax, semantics and proof calculus. Logic and
Algebra of Specification (F. Bauer, W. Brauer and H. Schwichtenberg, eds.). Springer,
411-442 (1993).

Received May 1995
Accepted in revised form August 1996 by J. M. Wing

