
Formal Aspects of Computing (1994) 6:440-465
@ 1994 BCS Formal Aspects

of Computing

Inductive Famil ies 1

Peter Dybjer
Department of Computer Sciences, Chalmers University of Technology, GiAteborg, Sweden

Keywords: Intuitionistic type theory; Inductive definitions; Natural deduction

Abstract. A general formulation of inductive and recursive definitions in Martin-
LiSf's type theory is presented. It extends Backhouse's 'Do-It-Yourself Type The-
ory' to include inductive definitions of families of sets and definitions of functions
by recursion on the way elements of such sets are generated. The formulation is
in natural deduction and is intended to be a natural generalisation to type theory
of Martin-Li~f's theory of iterated inductive definitions in predicate logic.

Formal criteria are given for correct formation and introduction rules of a new
set former capturing definition by strictly positive, iterated, generalised induction.
Moreover, there is an inversion principle for deriving elimination and equality
rules from the formation and introduction rules. Finally, there is an alternative
schematic presentation of definition by recursion.

The resulting theory is a flexible and powerful language for programming
and constructive mathematics. We hint at the wealth of possible applications
by showing several basic examples: predicate logic, generalised induction, and a
formalisation of the untyped lambda calculus.

1. Introduction

The inference rules of Martin-L~Sf's type theory can be separated into three parts:

�9 general rules;
�9 rules for ordinary set formers;
�9 rules for universes.

1 A shorter preliminary version of this paper appeared under the title 'An inversion principle for
Martin-L~if's type theory' in the Proceedings of the Workshop on Programming Logic in B~tstad,
May 1989, Programming Methodology Group Report 54, Chalmers University of Technology and
the University of G~Steborg, pages 177-190.
Correspondence and offprint requests to : Peter Dybjer, Department of Computer Sciences, Chalmers
University of Technology, S-412 96 G~Steborg, Sweden.

Inductive Families 441

Typically the second part includes the set formers H, Z, +, I, N,, N, W and
List (Martin-LSf [MaL84]), but it is often remarked that this collection can be
extended when there is a need for it. However, the desire for such extensions is
so common that general principles need to be layed down which ensure their
correctness. There are two possibilities:

�9 using a general purpose construction which is part of the theory;

�9 giving external criteria for correct extensions of the theory.

An example of a general purpose construction is impredicative quantification,
which is part of system F, the calculus of constructions [COH88], and related
systems.

This construction is not part of Martin-LSf's type theory, which is predicative.
But in the extensional version [MaL84] wellorderings W can be used instead. It
can for example be proved [Dyb88] that for any strictly positive set operator �9
built up by constants, variables, +, x, and 4 , there is a set A and a family of
sets B over A, such that

(~(X) ~- Zx:A XB(x).

Since Wx:AB(X) satisfies the isomorphism

X ~- ~.x:A XB(x)

we are justified in using it as a representation for the set generated inductively
by O. But this method does not work in the intensional version of type theory
given by Martin-LSf in 1986 [MaL86, NPS90]), since it makes use of 'extensional
isomorphisms', such as Na -~ X N~ and X ~- X ul.

Another possibility is to add fixed point operators to type theory. But the for-
mulation of Mendler [Men87] has the drawback that it needs a notion of subtype
and therefore require fundamental changes of the theory. A new formulation
which does not assume a notion of subtype has been proposed by Coquand and
Paulin [COP90].

The second possibility is the topic of this paper: to specify a scheme which
determines correct extensions of a theory. Thus we do not deal with a fixed theory
but an open theory. But note that what we consider fixed and open is a matter
of convention. We can make the theory closed by formalising rules for sequents

T ; F ~- J ,

where a judgement J is made in a current theory T as well as in a context of
assumptions F, and where there are formal rules for a correct current theory T
as well as for a correct context F. (Compare the presentation of the rules for the
Edinburgh LF system in Harper, Honsell, and Plotkin [HHP87], which contain
rules for correct signatures as well as for contexts. Signatures play a similar
rule to our current theories, but cannot contain definitional equalities. Moreover,
correctness of a signature is only a form of type correctness which does not
require that the constants are interpreted in terms of inductive definitions.)

The main point here is that Martin-LOf's type theory is a theory of inductive
definitions formulated in natural deduction. Each set former (logical constant) is
defined inductively by its introduction rules. The elimination rule expresses a
principle of definition by recursion (proof by induction). Equality rules express
how these definitions are eliminated (proofs are normalised).

First we specify what it means to be a correct definition of a set former by

442 R Dybjer

giving formal criteria for the formation and introduction rules. Then we show
how such a definition determines the elimination and equality rules by a so
called inversion principle. We also give an alternative formulation where recursive
definitions are presented schematically.

The scheme is for monomorphic, intensional type theory and covers strictly
positive, iterated, generalised induction. All the ordinary set formers II, Z, +,
I, Nn, N, W and List follow this scheme. This does not cover all forms of
intuitionistically meaningful induction, and thus not all ways of forming sets in
Martin-L~Sf's type theory. An example is the definition of a universe fi la Tarski
U [MaL84] which is defined simultaneously with a decoding function T (a family
which maps an element in U to the set it codes). T appears negatively in the
U-introduction rule

(x : T(a))
a : U b(x) : U

~z(a, b) : U

for example. (It is however possible to extend the scheme in a natural way to
include universes and similar constructions, see Dybjer [Dyb92].)

The present scheme is very close to a scheme developed independently by
Thierry Coquand and Christine Paulin [COP90, PaM93]. They have arrived at
essentially the same combinatorial structure, but develop it in the context of an
impredicative system, so there are some differences in the type structure. The
resulting system 'the Calculus of Inductive Constructions' is the basis of Coq
[DFH91] - a system for interactive proof in an extension of the Calculus of
Constructions [COH88]. I am very grateful to Thierry Coquand and Christine
Paulin for many interesting discussions on the topic of inductive definitions in
type theory.

The possibility of developing a general formulation of inductive definitions
in type theory was already mentioned in an early paper on type theory by
Martin-L~Sf [MaL72, page 10]:

'The type N is just the prime example of a type introduced by an ordinary inductive definition.
However, it seems preferable to treat this special case rather than to give a necessarily much more
complicated general formulation which would include (Nx c A)B(x), A + B, Nn and N as special cases.
See Martin-LiSf 1971 [MaL71] for a general formulation of inductive definitions in the language of
ordinary first order predicate logic.'

The present scheme generalises a scheme given by Backhouse [Bac88, BCM89]
under the name 'Do-It-Yourself Type Theory'. The existence of a scheme relies on
Schroeder-Heister's notion of rule of higher level [SCH84] which made it possible
for Martin-L/Sf to formulate the rules for 1-I so as to conform to the pattern for
the other set formers. (Note that gl was not mentioned in the quotation above.)
Schroeder-Heister [SCH85] also formulated a scheme for Martin-LiSf's logical
theory which is close to Backhouse's scheme for type theory.

The present scheme subsumes both Martin-LiSf's scheme for the intuitionistic
theory of iterated inductive definitions mentioned in the quotation above [MaL71]
(translated to the language of type theory under the propositions-as-sets principle)
and Backhouse's scheme. It generalises Backhouse's scheme [Bac88] in several
ways:

Inductive Families 443

�9 The main point is that families of sets (predicates and relations) such as the
identity relation I and the finite sets N~ (viewed as a family of sets over the
natural numbers N) are covered by the scheme.

�9 Definitions may depend on earlier definitions (iterated induction). For example
the definition of the set of ordinals of the second number class (9 depends on
N having been defined earlier.

�9 Sets may be defined by simultaneous induction. (Examples of simultaneous
induction were given in [BCM89].)

�9 General parameters, which can be elements as well as (families of) sets are
allowed. Thus the generalised well-founded trees of Petersson and Synek
[PeS89] are covered by the scheme. Another nice application of having a
general notion of parameter is a new definition of the equality relation. The
usual definition of equality in type theory is as the least reflexive relation
on a given set, see Martin-L/Sf [MaL82]. An alternative definition due to
Christine Paulin, which is also an instance of the scheme, is to define it as a
unary predicate 'to be equal to a' given a set A and an element a : A. The
elimination rule for this new equality predicate is the rule of substitution,
provided proof objects are suppressed.

We do not discuss quotients of sets arising from stipulating definitional equal-
ities between elements of sets a -- b : P as in [BCM89]. On the other hand it is
easy to introduce quotients arising from propositional equalities as in section 5.3
where the untyped 2-calculus with t-conversion is presented.

There is an accompanying paper [Dyb91], which presents essentially the same
scheme. The purpose of that paper is to prove consistency by constructing a
set-theoretic model. The purpose of this paper is to show examples and hint
at the wealth of possible applications. There are also some differences in the
formulation of the scheme. The present scheme uses Martin-LiSf's theory of
logical types, whereas the theory of the other paper is formulated without this in
the style of Martin-Ltif 's earlier presentations [MaL75, MaL82, MaL84]. It can
therefore directly be used as a discipline for introducing new constants in the
ALF system (developed by Augustsson, Coquand, Magnusson and NordstriSm),
an implementation of Martin-LiSf's theory of logical types. Another difference is
that the present paper shows explicitly how to derive elimination and equality
rules for new set formers. Moreover, the class of admissible schematic recursive
definitions has been extended here.

The contents of the paper are the following. In section 2 we present the theory
of logical types, which is the underlying framework for the inductive and recursive
definitions. In section 3 we present the scheme for inductive definitions. We
illustrate the scheme by giving three simple instances: natural numbers, lists, and
lists of a certain length. In section 4 we present recursive definitions schematically.
In section 5 we give some more examples. First we show how predicate logic
is subsumed by the scheme. Then we discuss generalised induction: the well-
orderings and the well-founded part of a relation. Finally, we show a formalisation
of the untyped 2-calculus which can be used for proving metamathematical
properties about it. In section 6 we extend the scheme to simultaneous inductive
definitions. In section 7 we finish by giving some references which use the present
theory for more extensive examples.

444 R Dybjer

2. The Theory of Logical Types

We make use of the theory of logical types (logical framework) which was pre-
sented by Martin-L6f in 1986. (See Nordstr6m, Petersson, and Smith [NPS90]
for a presentation of this theory and a general introduction to Martin-L6f's
type theory.) This is a typed 2flq-calculus with dependent function types written
(a : a)'c[a] 2 (or (a)z when z does not depend on a); a special base type set; and
a rule which states that each set A, that is, each object of the type set, is also
a base type. Application is written p(q) and abstraction is written (a)p[a]. Ordi-
nary conventions about parentheses apply. Repeated application may be written
P(ql ,qn) instead of P(ql) ' " (qn) and repeated abstraction may be written
(ab . . . , a~)p[al an] instead of (al)" �9 �9 (a,)p[ab.. . , a,].

The theory is formulated A la Martin-L6f's type theory with four forms of
judgements: a type, p : a, a = z, and p = q : a. Judgements are made under lists
of assumptions of the form (al :~q,. . . ,an :an[a1 a~-l]).

We formulate the rules in natural deduction. In addition to rules of assumption
and substitution there are the following rules.

Rules of type formation:

set type,

A : set
A type'

(a :~)
type z[a] type

(a : a)~[a] type

The rules of object formation:

(a : a)
p [a] : z [a]

(a)p[a] : (a : a)z[a]'

p : (a : o-)~[al q :
p(q) :z[q]

The equality rules are typed fl- and q-conversion:

(a : o)
q : a p[a] :z[a]

((a)p[a])(q) = p[q] : z[q] '

p : (a : G)~[a]

p = (a)(p(a)) : (a : a)z[a]"

Moreover, equality is an equivalence relation and we may everywhere substitute
equals for equals:

er type p : cr
a = c r ' p = p : a '

2 The notation z[a] explicitly indicates that the expression z may depend on a

Inductive Families

Gt : i f ' pr : p : i f '

G = 0 "l 1:71 .~. (7II

(7 =- G ' !

p : a a : a '

p : G ~

A = A' : set

A = A' '

(a :o)
a = o-' z [a] = "c' [a]

(a : a)'c[a] = (a : a')'c'[a] '

(a :~)
p [a] =/)I [a] : z [a]

(a)p[a] = (a)p'[a] : (a : a)z[a]'

p = p ' : (a :G)z[a] q = q ' :or

p(q) =- p'(q') : z[q]

445

a = a' : a a t = a ~' : G

a = a " : a

p = p ' : a a : a '

p = pr : Gr

A theory in the framework sense is specified by giving a finite sequence of
typings of fresh constants c : o- and a finite sequence of equalities between terms
p = q : a .

When the framework is used for formalising Martin-L/Sf's type theory, then
the rules of the framework are the general rules. Formation, introduction, and
elimination rules for the set formers are given by typing fresh constants. For
example, the universe introduction rule above would be given by

n : (a : U) (b : (x : T (a)) U) U

Equality rules are given by equalities between terms.
We shall need to distinguish 'set-like' types (s-types) from other types, since

we wish that the rules for 17I (with F ([unsplit) as the constant in the elimination
rule, see the preface of Mart in-L6f [MaL84]) to be instances of the scheme. An
s-type is either a set or a type of functions from an s-type to an s-type. (Another
possible name for s-type is purely func t ional type.)

We use de Bruijn's telescope notation [dBrgl] and write (a :: a) as an
abbreviation of the sequence (al : a l) " - (a, : o-,) and refer to a as a 'sequence of
types'.

3. A Scheme for Inductive Definitions

In this section I shall present the scheme for introducing a new set former. Firstly,
there is the general form of formation and introduction rules. Secondly, there
is the inversion principle for deriving elimination and equality rules from the
formation and introduction rules.

The scheme is illustrated by presenting the rules for the inductive sets N of
natural numbers and Lis t (A) of lists with elements in the set A, and the inductive
f ami l y Lis t ' (A) of lists with elements in the set A which is indexed by the length
of the list.

446 R Dybjer

In general the definition of a set former P may depend on other set formers
defined previously. Let T stand for the theory which contains the formation,
introduction, elimination, and equality rules for these previously defined set
formers. (In section 4 we propose to let the theory be open with respect to
recursive definitions as well as to inductive definitions. In that case, T stands
for the theory which contains formation and introduction rules for previous set
formers defined inductively and the typing and equality rules for functions defined
by P-recursion.)

In the scheme below we will state requirements such as '0- is a sequence of
types' which means that '0-1 is a type in T, ..., 0-n is a type in T under the
assumptions a l : o-1, ..., an-1 : 0-n-l ' .

3.1. Formation Rule

3.1.1. Scheme

There is one formation rule (unless we have simultaneous induction, see section
6). It has the form

P : (A :: a)
(a :: e[A])
s e t ,

where

�9 a is a sequence of types;

�9 e[A] is a sequence of s-types under the assumptions A :: 0-.

We refer to A as the parameters of P. Observe that the premises A :: 0- appear
first in all rules for P : they are global to the definition. When PA is thought of as
a family of sets, then a are the indices. (PA is the same as P(A). We write some
arguments in index position to improve readability.)

3.1.2. Examples

Natural numbers. The formation rule is

N : set.

There are no parameters and no indices.
Lists. The formation rule is

List : (A : set)set.

The set A is a parameter and will appear as the first premise of all the rules for
lists. There are no indices.

Lists of a certain length. The formation rule is

Lis t ' : (A :set)
(a :N)
set.

The set A is a parameter. N is the index set. This definition depends on the
natural numbers N having been defined before.

Inductive Families 447

3 . 2 . I n t r o d u c t i o n R u l e s

3.2.1. Scheme

There are finitely many introduction rules for each set former. Each introduction
rule has the form

intro : (A : : a)
(b :: iliA])
(u :: y[A,b])
PA(p[A,b]),

where

�9 iliA] is a sequence of s-types under the assumptions A :: a;

�9 each 7i [A, b] has the form

(x :: ~i[A,b])
PA(pi[A,b,x]),

where

- ~i [A, b] is a sequence of s-types under the assumptions A :: a and b :: fi [A]

- and Pi[A,b,x] :: ~[llt] under the assumptions A :: a, b :: iliA] and x ::
~,i[A, b];

�9 p[A,b] :: a[A] under the assumptions A :: a and b :: fl[A].

We refer to b as the non-recursive and u as the recursive arguments of the
constructor intro. 4/is to make provision for generalised induction. Since P cannot
occur in ~i the induction is strictly positive. I f all ~i are empty then we have
ordinary induction.

3.2.2. Examples

N a t u r a l numbers. The first introduction rule is

O : N .

There are neither non-recursive nor recursive premises.
The second introduction rule is

s :(u : N) N .

There is only a recursive premise which is ordinary.
Lists. The first introduction rule is

nil : (A :set)
ListA.

There are neither recursive nor non-recursive premises.
The second introduction rule is

cons : (A :set)
(b :A)
(u : ListA)
LiSt A.

448 R Dybjer

There is one non-recursive premise b : A and one ordinary recursive premise
u : ListA.

Lists of a certain length. The first introduction rule is

nil': (A : set)
List~A(O).

There are neither recursive nor non-recursive premises. It is distinguished from
the corresponding rule for LiStA by the presence of the index 0 in the conclusion.

The second introduction rule is

cons': (A :set)
(bl :N)
(b2 :A)
(u : List~(bl))
List~(s(bl)).

There are two non-recursive premises bl : N and b2 : A and one ordinary recursive
premise u : LiSt'A(bl). The rule is also distinguished from the rule for ListA by
the presence of the index bl in the recursive premise and the index S(bl) in the
conclusion.

3.3. Elimination Rule

3.3.1. Scheme

Given the formation and introduction rules for P we can derive the following
elimination rule:

elim : (A :: a)
(C : (a ::c~[A])

(C : PA(a))
set)

(e :: e[A])
(a :: e[A])
(c :PA(a))
C(a, c).

c : PA(a) is called the major premise and e :: e[A] are called the minor premises.
There is one minor premise for each constructor. The type ej [A] in the minor
premise corresponding to the constructor intro is

(b :: iliA])
(u :: 7[A,b])
(v :: 5[A,b])
C(p[A, b], intro A(b, u)).

5 [A, b] has the same length as 7 [A, b] and 6i [A, b] is

(x :: ~i[A,b])
C(pi[A, b, x], ui(x)).

When the elimination rule is viewed as an induction rule then each minor premise
is a case of the induction. If intro has no recursive argument, then it is a base
case, otherwise it is a step case. C(pi[A, b,x], ui(x)) is the (generalised) induction
hypothesis and ui(x) are the predecessors of introA(b, u).

Inductive Families 449

3.3.2. Examples

Natural numbers. From the information in the formation and the introduction
rules for lists we can derive the elimination rule (the rule of primitive recursion
or mathematical induction)

nrec : (C :(c : N) s e t)
(el :C(0)
(e2 : (u : N)

(v : C(u))
C(s(u)))

(c :N)
C(c).

Lists. Here we can derive the elimination rule (the rule of list recursion or list
induction):

listrec : (A :set)
(C : (c : Lis tA)set)
(el : C(nilA))
(e2 : (b : A)

(u : LiStA)
(v : C(u))
C(consA(b, u)))

(c : ListA(a))
C(c).

Lists of a certain length. Here we can derive the elimination rule

listreC : (A :set)
(C " (a " N) (c " Lis t~(a))set)
(el " C(0,nil~))
(e2 : (bl :N)

(b2 :A)
(u " Lis t~(bl))
(v : C(bl, u))
C(s(bl) , cons~(bl , b2, u)))

(a :g)
(c : List~(a))
C(a,c).

3.4. Equality Rules

3.4.1. Scheme

There is one equality rule for each introduction rule. The one corresponding to
the constructor intro is

450

(A, C, e, b, u)elim a,c(e, p[A, b], intro A(b, u))
(A, C, e, b, u)ej(b, u, v)
(A :: ~)
(C : (a ::c~[A])

(C :PA(a))
set)

(e :: e[A])
(b :: fi[A])
(u :: 7[A,b])
C(p[A, b], introA(b, u)),

where vi is

(x)elimA,c(e, Pi [A, b, x], ui(x)).

R Dybjer

3.4.2. Examples

Natural numbers. The equality rule for the constructor 0 is

(C, el, e2)nrecc(el, e2, O) = (C, el, e2)el :

The equality rule for the constructor s is

(C, el, e2, u)nrec c(eb e2, s(u))
= (C, el, e2, u)e2(u, nrecc(el, e2, u))
: (C :(c :N))set)

(ea :C(0)
(e2 : (u : g)

(v : C(u))
C(s(u)))

(u :N)
c(o).

Lists. The equality rule for the constructor nil is

(A, C, eb e2)listrec A,c(eb e2, nil A)
= (A, C, el,e2)el
: (A :set)

(C : (c : LiStA))set)
(el : C(niIA)
(e2 : (b :A)

(u : ListA)
(v : C(u))
C(consA(b, u)))

C(nilA).

The equality rule for the constructor cons is

(C :(c :N))set)
(el :C(0)
(e2 : (u : N)

(v : C(u))
C(s(u)))

c(o).

Inductive Families 451

(A, C, el, e2, b, u)listrec A,c(eb e2, cons A(b, u))
= (A, C, el, e2, b, u)e2(b, u, l istrecA,c(eb e2, u))
�9 (A "set)

(C �9 (c : Lis tA)set)
(el : C(nilA)
(e2 : (b : A)

(u " ListA)
(v "C(u))
C(consA(b, u)))

(b :A)
(u " LiStA)
C(consA(b, u)),

Lists of a eertain length�9 The equality rule for the constructor nil' is

(A, C, el, e2)Iistrec~A,C (e b e2, O, niff A)
= (A,C, ea,e2)el
�9 (A "set)

(C " (a �9 N) (c " LiS(A(a))set)
(el " C(O, niffA))
(e2 �9 (bl "N)

(b2 :A)
(u " LiS(A(bt))
(v " C (b b u))
C(s(bl), cons~A(bb b2, u)))

C(O, nil'A).

The equality rule for the constructor cons is
(A, C, el, e2, bl, b2, u)listrec'A,C(el, e2, constA(bl, b2, u))

= (A, C, el, e2, bl, b2, u)e2(bl, b2, u, listrec'A,c(el, e2, u))
�9 (A "set)

(C " (a " N) (c " LiS(A(a))set)
(el " C(0, niffA))
(e2 : (bl "N)

(b2 "A)
(u : Lis t~(bl))
(V " C(b l ,u))
C(s(bl), cons'A(bb b2, u)))

(ba :N)
(b2 :A)
(u " LiSt~A(bl))
C (s(bl), conSA (bl, b2, u))

As an application of Lis t ' -recursion we define a function which maps a list in
List'A(n) to the corresponding list in LiStA:

forget length
= (A)listrecrA,(a,c)LiStA(nilA, (bl, b2, u, v)consA(b2, v))
�9 (A "se t) (a : N) (c :LiS(A(n))Lis t A.

From this definition we can derive the recursion equations from the equality rules
for listrec1:

�9 !

forgetlengthA(O, ndA) = nilA,

forget lengthA(S(bl) ,consrA(bl ,bz , u)) = consA(bz , forget lengthA(bl ,u)) .

452 R Dybjer

4. A Scheme for Recursive Definitions

It would be desirable to generalise the scheme for elimination and equality rules
by allowing C to be an arbitrary family of types instead of requiring that it is a
family of sets. In this way the result of a function defined by P-recursion can be
an object of an arbitrary type, for example, a set, and not necessarily an element
of a set. The standard way of achieving this effect is to use the usual elimination
rule in conjunction with H-sets and universes.

It would be convenient to integrate this principle directly into the scheme, but
we cannot simply replace set above by type in the typing of C, because we do
not have type:type. One solution is to index the elimination rule by a family of
types C, see [Smi89], but if we want to keep the notion of a finitary theory (and
not extend the theory of logical types) then we must treat the theory as open
(potentially infinite) with respect to recursive definitions as well as for inductive
definitions. This is one argument that leads us towards the idea that it is the
recursive scheme rather than the elimination rule which is the basic concept, see
[Dyb91].

Furthermore, this view is essential, and not only a matter of convenience, both
for enlarging the scheme to capture universes and other simultaneous inductive-
recursive definitions [Dyb92] and for Coquand's [Coq92] approach to pattern
matching with dependent types.

We shall now give precise criteria for schematic recursive definitions in a
similar way as we did for schematic inductive definitions above. This schema
will for example yield the typing rule and recursion equations offorgetlength as
instances, so it will not be necessary to define it in terms of the elimination rule.
Note also that the elimination and the equality rules themselves are instances of
the schema.

The schema specifies the general form for the typing rule and recursion
equations for a new function or family defined by P-recursion. As before, such
a definition may depend on other constants defined previously by induction or
recursion. Let as before T stand for the theory which contains the formation and
introduction rules for each inductive set or family and the typing and equality
rules for each recursive function or family. (A similar modification of the notion
of current theory T for an inductive definition is of course needed in section 3.)

4.1. Schematic Elimination Rule

The typing rule for a function defined by P-recursion has the form

f : (B ::z)
(a :: c~[Q[B]])
(c :: PA(a))
~p[B,a,c],

where

�9 ~ is a sequence of types;

�9 Q[B] :: a under the assumptions B :: ~;

�9 tp[B,a,c] is a type under the assumptions B :: z,a :: c~[A],c :: PA(a);

Inductive Families 453

and a and c~ refer to the formation rule for P. We refer to B as the parameters of
f . (Note that Q is a sequence of constants here: we can define f with arbitrary
parameters, but we must instantiate the parameters of P.)

Note that an appropriate choice of z, Q, and ~p will yield the ordinary
elimination (and equality) rules given before.

As an example we can check that the typing rule forforgetlength is an instance
of this scheme, where z = set, Q[B] = B :'c, and ~[B, a, c] = LiStB.

4.2. Schematic Equality Rules

There is one equality rule for f for each introduction rule for P. The one
corresponding to the constructor intro is

(B, a, b, u) f B(p[Q[B], b], introoABl(b, u))
(B, O [B], b, u)ej(b, u, v)
(B :: z)
(b :: fi[Q[B]])
(u :: 7 [Q [B], b])
~p [B, p[Q[B], b], introQ[B] (b, u)],

where v~ is

(x)f ~(pi[A, b, x], ui(x)),

and fi, ~, p, and Pi refer to the introduction rule for intro.

5. More Examples

5.1. Predicate Logic

The logical constants A_ = 0, -7 = 1, v = +, A = x, ==---~, S = E, and V = II are
examples of inductive propositions (= sets), and were thus part of Backhouse's
scheme. We just point out that 2_ is the unique set which has no introduction
rule, and show the rules for D, since the notion of s-type is essential there.

We also show rules for propositional equality, which is an inductive predicate
(= family), and hence not covered by Backhouse's scheme. There are two versions.
The first is the formulation by Martin-LiSf [MaL71] of an inductive relation. The
second formulation by Christine Paulin is of a unary inductive predicate which
can be seen as a predicative version of Leibnitz equality. It is a nice example of
a definition parameterised over elements of a set.

5.1.1. Implication

Formation rule.

~: (A1 : set)
(A2 :set)
set.

A1 and A2 are parameters.

454 E Dybjer

Introduction rule.

2 : (A1 :set)
(A2 :set)
(b : (x:A1)

A2)
A1 D A2.

This introduction rule has one non-recursive premise, the type of which is (x :
AI)A2 which is an s-type but not a set.

Elimination rule.

F : (A1 :set)
(A2 : (x : A1)set)
(C :set)
(e : (b : (x : A1)A2(x))C)
(c : A1 = A2)
C.

This is the ~-elimination rule introduced by Schroeder-Heister [SCH85]. In the
more general form, where A2 and C are families, it becomes the H-elimination
rule introduced in the preface of Martin-L~Sf [MaL84]. A synonym for F is

funsplit.

5.1.2. Equality h la Mar t in -L6f

This is equality defined as the least reflexive relation [MaL71].
Formation rule.

I : (A : s e t)
(al :A)
(a2 :A)
set.

The set A is a parameter and the elements al, a2 : A are indices.
Introduction rule.

r : (A : set)
(b :A)
IA(b,b).

Elimination rule.

J : (A : set)
(C : (al :A)(a2 : A)set)
(e : (b : A)C(b, b))
(al :A)
(a2 :A)
C(al, a2).

5.1.3. Equality d la Paulin

This is equality defined as the least unary predicate containing a given element (a
predicative version of Leibnitz equality).

Inductive Families 455

Formation rule.
I ' : (A : set)

(al :A)
(a2 :A)
set.

The set A and the given element al : A are parameters, and a: : A is an index.
Introduction rule.

r' : (A : set)
(al :A)
FA,a~(al).

Elimination rule.
J' : (A : set)

(al :A)
(C :(a2 :A)set)
(e : C(al))
(a2 :A)
(c : I ' A,al(a2))
C(a2).

Note that the difference only is visible in the elimination rule, which is the
usual rule of equality elimination in predicate logic and simpler than equality
elimination ~ la Martin-Liif.

5.2. Generalised Induction

All definitions given so far have used ordinary induction, that is, the lists of
premises ~i of recursive premises have been empty. We shall now give two
examples of generalised induction: the wellorderings introduced by Martin-Lift
[MaL82] and the wellfounded part of a relation. Other examples are the ordinals
of the second and higher number classes, see Martin-Li3f [MaL84] and Petersson
and Synek's generalised trees [PeS89].

5.2.1. Well-Orderings

The well-orderings are an important instance of the scheme. It is the special case
where we define an inductive set and where there is one introduction rule, which
has one non-recursive premise b : A1 and one recursive premise u : (x : A2(b))P
(which has one hypothesis x : A2(b)). It is thus the instance of Backhouse's
scheme, where the word several (possibly none) has been replaced by one.

Backhouse [Bac88] and Coquand and Paulin [COP90] allowed the inessential
generalisation where recursive premises may precede non-recursive ones. I prefer
to put all non-recursive premises before the recursive ones, since the former cannot
depend on the latter here (but the situation changes in [Dyb92]). This restriction
simplifies the presentation of the scheme and emphasises the relationship with
the well-orderings.

Formation rule.
W : (At :set)

(A2 :(At)set)
set.

456

Introduction rule.
sup : (A1 :se t)

(A2 : (A1)set)
(b :A1)
(U : (X : A2(b))WAI,A2)
WAi ,A2"

Elimination rule.
T : (A1 :se t)

(A2 : (A1)set)
(C : (WA,,A2)Set)
(e : (b:A1)

(u : (x : A2(b))WAI,&)
(v : (x : A2(b))C(u(x)))
C(sup(b, u)))

(C : WA1,A2)
C(c).

P. Dybjer

AecAI,A2(b).

Elimination rule.
accrec : (AI:

(A2:
(C:

(e :

(a :
(c:
C(a, c)

set)
(A1)(A1)set)
(a :A1)
(c : ACCAI,A2(a))
set)
(b :A1)
(U :(XI :A1)(x2 :A2(Xl,b))ACCAbA2(Xl))
(v :(xl : A1)(x2 : A2(xl ,b))C(Xl ,U(Xl ,X2))
C(b, acc A1,A 2 (b, u)))
A1)
ACC AI,A2 (a))

5.2.2. The Well-Founded Part o f a Relation

If A1 is a set and A2 is a binary relation on that set, then ACCAI,Az(a) is true iff a
is in the well-founded part of A2.

An application of this notion in the context of type theory can be found in
[Nor88]. He suggested to add general recursion along a well-founded relation to
a version of type theory in which propositions and sets are not identified and
which is also extended with subset formation. Compare also the discussion in
[Dyb90].

Formation rule.
Acc : (AI :se t)

(A2 : (A1)(A1)set)
(a :A1)
set.

Introduction rule.
a c c : (A1 :set)

(A2 : (A1)(A1)set)
(b :A1)
(U :(Xl :A1)(x2 :Az(xl,b))ACCA1,A2(Xl))

Inductive Families 457

5.3. Finite Sets and n-Tuples

In this and the following subsection we use our theory for formalising basic
notions of the untyped 2-calculus. The formalisation uses bounded de Bruijn-
indices (compare Curien [Cur92]) rather than the more common unbounded
ones (see, for example, the 2-calculus theory developed by Huet [Hue93]).

Our bounded de Bruijn-indices are elements of the inductive family of finite
sets indexed by N and defined in a similar way to List ' above.

We have the following rules:
N1-formation:

N ' : (N) se t

N'-introduetion:

O' : (n : N)N1(s(n)) ,

s' : (n : N) (N ' (n))N ' (s (n)) .

We use the notation 1 = s(0),2 = s(1),Nn = N'(n),On = O'(n),sn(i) = s'(n,i),
and Is(n) = Ss(n)(On). (From now on we shall use somewhat less formal notation:
we often drop some parameters and A in a -- b : A, etc.)

We also need sets of n-tuples. We could have used Lis t r for this purpose but
instead we define them by recursion on the natural numbers. The typing rule is

r u p l e :(A : set)(n : N) s e t ,

where A : set is a parameter and ~v [m, n] = set in the scheme in section 3. We use
the notation A n = T up l e (A , n). The equality rules are

A ~ = T,
A s(n) = A n x A.

(Note that this defines snoclists, which have their heads at the end and are more
natural for defining substitutions in the 2-calculus.)

In a similar way we define a m a p - f u n c t i o n for n-tuples

map : (A , B : s e t) (f : (A)B) (n : N) (A n) B n

by recursion on N. A,B : set , and f : (A)B are parameters and ~p [A, B, f , n] =
(A~)B n. We use the notation f n = map(A, B , f , n). The equality rules are

f~ = (I,

fs(n)(as) = (f f (f s t (a s)) , f (s n d (a s))) .

The projection function

rr :(A : se t) (n :N)(i : Nn)(An)A

can then be defined by Nn-recursion, where A : set is a parameter and ~p [A, n, i] =
i re(A, n, i). The equality rules are (An)A. We use the notation nn =

Zrs~ = snd(as),

~z s~ = rd~(fst(as)). s(n) tu~J

We also need to consider certain n-tuples of elements in Nm, which will be
used for creating certain substitutions in the 2-calculus.

458 P. Dybjer

Firstly there is the sequence used for the identity substitution:

id :(n : N) N ~

which is defined by N-recursion

ido = (),

ids(,, =

Then there is the sequence used for lifting (or thinning or projection);

"~ : (n : N)N~(.)

which is defined by N-recursion

To = () ,

=

5.4. The Untyped A-Calculus

First we define 2-terms as an inductive family indexed by N. An represents 2-terms
with at most n free variables.

A-formation:

A : (N)se t .

A-introduction:

var : (n :N)(i :N~)An,

2 : (n :N)(As(n))An,

ap : (n :N)(An)(A,)An.

The reader should check that these rules follow the scheme. Note that the index
only varies in the rule for 2.

The identity combinator 2x.x is represented by

2o(varl(01)) :A0,

and the K-combinator 2xy .x is represented by

2O(~l(var2(12))) :A0.

Next, we shall define simultaneous substitution of terms for all free variables
of a 2-term. To this end we need to use n-tuples of 2-terms, that is, substitutions,
in A~m .

The substitution function is explicit in the sense that it is formalised explicitly
in type theory, which serves as a metalanguage here. It is not explicit in the
sense of Abadi, Cardelli, Curien, and L~vy [ACC90] however, since it is not
a constructor for 2-terms, but instead defined by higher type A-recursion on
n : N,g : An:

sub :(n �9 N)(g " A~)(m " N) (f s ' A~)Am,

where ~ [n, g] = (m �9 N) (f s " A~,)Am.

subn(varn(i) ,m, f s) = nin(fs),

subn(2n(g),m, f s) = 2m(subs(,)(g,s(m), (lift~,(f s),vars(m)(Om)))),

subn(apn(h , f) , r n , i s) = apm(subn(h, m, f s) , sub , (f , c, f s)) ,

Inductive Families

where lifting

lift : (n : N)(A~)As(~)

is defined by

l i f t . (f) = rename(n, f , T.),

and

rename : (n : N)(g : A,)(m : N)(is : N~)Am

459

is s imul taneous subst i tut ion of variables for free variables, that is, changes of
variables in a 2-term. I t is defined by higher-type A-recursion on n : N, g : An
with ~p[n, g] = (m : N)(as :An)Am.

rename : (n : N)(g : An)(m : N)(is : N~)Am,

rename,(var~(i),m, is) = var(rci~(is)),

rename~(2~(g),m, is) : 2m(rename,(n)(g,s(m), (s~(is),Om))),

renamen(ap~(h, f) , re, f s) = apm(rename~(h,m, f s),rename~(f , c, f s)).

Finally, we can define E-convertibil i ty as an inductive family of relations.
~-formation:

"-~ : (n : N) (f , f : A~)A~.

There are no paramete rs : n, f , f ' are all indices.
~-introduetion:

varcong : (n :N) (i : N~)var~(i)~var~(i) ,

: (n : N) (g , g ' :~s(n))(g~s(n)g'))t(g)~n2(g'),
apcong : (n : N)(h ,h r : ~ n) (h ~ h ') (f , f ' : ~ ,~n)(f~, f r)

ap~(h , f)~ap~(h ' , f ') ,

: (n : N)(g : gs(~))(f : g ~)
ap(2~(g), f)"~nsubs(~l(g, n, (var~(id~), f)),

trans : (n : N) (f , g , h : A ~) (f ~ g) (g . . ~ h) f ~ h ,

sym : (n : N) (f , g : A ~) (f ~ n g) g " ~ f .

F r o m this we could cont inue and formalise proofs of theorems abou t the
untyped 2-calculus using A- and ~---induction, etc.

6. Simultaneous Induction

The scheme above introduces one new set former at a time. It can be generalised
so that finitely m a n y are in t roduced simultaneously. We call such a definition a
block.

460

6.1. Formation Rules

R Dybjer

6.1.1. Scheme

There is one format ion rule for each set former introduced in the block. They
each have the form

P k : (A :: a)
(a :: ~Zk [A])
set,

where

�9 a is a sequence o f types (common to all set formers in the block);

�9 ak [A] is a sequence o f s-types under the assumptions A :: a.

6.1.2. Example: even and odd numbers

This definition presupposes N. There are no parameters. The index set is N.
Formation rules.

Even : (a : N)set , Odd : (a : N)set .

6.2. Introduction Rules

6.2.1. Scheme

Each introduct ion rule has the form

intro : (A ::a)
(b :: fl[A])
(u :: 7[A,b])
PkA(p[A,b]),

where

�9 fi[A] is a sequence o f s-types under the assumptions A :: a ;

�9 each 7i[A,b] has the form

(X :: ~i[A,b])
Pk, A(Pi[A, b, x]),

where

~i[A,b] is a sequence o f s-types under the assumptions A :: a and b :: iliA],
and pi [A, b, x] :: aki under the assumptions A :: a, b :: fl [A] and x :: ~i [A, b] ;

�9 p[A, b] :: ~k under the assumptions A :: a and b :: fl[A].

Inductive Families

6.2.2. Example

introl :Even(O),

intro2 : (b : N)
(u :Even(b))
Odd(s(b)),

intro3 : (b : N)
(u :Odd(b))
Even(s(b)).

461

6.3. Elimination Rules

6.3.1. Scheme

eliml : (A : :a)
(c :: q~[A])
(e :: e[A])
(a :: ctlEA])
(c : PIA(a))
C(a,c).

The length of ~b is the number of set formers introduced in the block, q~k [A] is

(a :: ak[A])
(PkA(a))
set.

There is one minor premise for each constructor in the whole block. The type
ej of the minor premise corresponding to the constructor intro follows the same
pattern as above.

6.3.2. Example

evenelim : (C1 :(a :N)(Even(a))set)
(C2 :(a :N)(Odd(a))set)
(e l : Cl(O, introl))
(e2 : (b : N)

(u :Even(b))
(v : Cl(b, u))
C2(s(b), introz(b, u)))

(e3 : (b : N)
(u :Odd(b))
(V : C2(b, u))
Cl (s(b), intro3(b, u)))

(a :N)
(c :Even(a))
C1 (a, c),

462

oddelim : (C1 : (a : N)(Even(a))set)
(C2 : (a :N)(Odd(a))set)
(e l : Cl(O, introl))
(e2 : (b : N)

(u :Even(b))
(v : Cl(b, u))
C2(s(b), intro2(b, u)))

(e3 : (b : N)
(u :Odd(b))
(v : C2(b, u))
Cl (s(b), intro3(b, u)))

(a :N)
(c :Odd(a))
C2(a, C).

R Dybjer

6.4. Equality Rules

Omitted.

6.5. Scheme for Recursive Definitions

Omitted.

6.6. More Examples

Initial many-sorted algebras. With simultaneous induction it is easy to see how to
construct initial many sorted algebras [GTW78]. Each sort will denote a (constant)
set and each operator an introduction rule with only ordinary recursive premises.
If there are equations we associate an inductively defined relation on each set.
Note that the inversion principle gives us a formal structural induction principle
inside type theory.

Iterated inductive definitions in predicate logic. We can also essentially inter-
pret Martin-L~Sf's intuitionistic theory of iterated inductive definitions [MaL71],
provided we only allow finitely many predicate symbols in that theory. First, we
define the set of individuals by letting each function symbol correspond to a con-
structor. Then we see that each ordinary or generalised production for a predicate
symbol corresponds to an introduction rule for an inductive family. The level of
a predicate symbol will determine the order in which it can be introduced and
linked predicate symbols have to be introduced in a block.

An application of this theory is as foundation for logic programming as
proposed by Hagiya and Sakurai [HAS84].

7. Further References

Several people have used the present formulation of inductively defined sets,
families of sets, and predicates in type theory for formal (and sometimes machine-
assisted) program derivation and theorem proving.

Inductive Families 463

One example is the normalisation of if-expression, which occurs as part of
Boyer and Moore's tautology-checker for propositional logic [BoM79]. The set
of if-expressions is an inductively defined set and the subset of normatised if-
expressions is naturally represented in type theory as an inductively defined
predicate, see [Dyb90].

Michael Hedberg has looked at the similar but simpler example of normalisa-
tion of binary trees: 'normalising the associative law' [Hed91]. He uses inductively
defined sets and predicates in a variety of ways to show that Martin-LSf type
theory can be used not only as an 'integrated logic' (based on the Curry-Howard
identification), but also as an 'external logic' which can be used for verifying
an externally given general recursive program. Hedberg has implemented his
examples using Paulson's Isabelle-system [Pau89].

Nora Szasz [Sza92] has formalised the proof that Ackermann's function is
not primitive recursive. The basic definition is a binary inductive family of tuples
of primitive recursive functions T P R (m , n) , where n is the number of functions
in the tuple and m is the arity of each function. Szasz has implemented her proof
in the ALF-system.

Presently, there are a number of ongoing formalisation projects using type
theory with inductive definitions and implemented in the new version ALF-system
of Coquand, Magnusson and NordstrSm. This version supports a powerful form
of pattern matching with dependent types which has recently been proposed by
Thierry Coquand [Coq92]. It can be viewed as a strengthening of the schematic
approach to elimination rules described in section 4. Firstly, it allows the definition
of functions by case analysis on several arguments simultaneously and uses a
criterion that recursive calls must refer to structurally smaller arguments to ensure
termination. Secondly, unification is used to generate possible cases. This entails
a strengthening of case analysis for inductively defined families. An example is
that the proof of

peano4 : (I(N,O, 1))2_

now follows directly by pattern matching. The introduction rule for equality
is reflexivity, and since this rule cannot be unified with I(N,0,1) no cases are
generated.

The reader is referred to Coquand's paper [Coq92] for details.
Finally, we would like to refer to the developments using similar schemes

for inductive definitions in the context of impredicative type theory, which are
explored by groups at INRIA using the Coq-system [DFH91] and in Edinburgh
using the LEGO-system [LPT89].

References

[ACC90]

[Bac88]

[BCM89]

[BoM79]
[COH88]

Abadi, M., Cardelli, L., Curien, P-L. and L6vy, J-J.: Explicit substitutions. In ACM
Conference on Principles of Programming Languages, San Francisco, 1990.
Backhouse, R.: On the meaning and construction of the rules in Martin-LSf's theory
of types. In Proceedings of the Workshop on General Logic, Edinburgh, February 1987.
Laboratory for Foundations of Computer Science, Department of Computer Science,
University of Edinburgh, 1988. ECS-LFCS-88-52.
Backhouse, R., Chisholm, P., Malcolm, G. and Saaman, E.: Do-it-yourself type theory.
Formal Aspects of Computing, 1(1):19-84, 1989.
Boyer, R. and Moore, J.: A Computational Logic. Academic Press, 1979.
Coquand, T. and Huet, G.: The calculus of constructions. Information and Computation,
76:95-120, 1988.

464 R Dybjer

[Coq92]

[COP90]

[Cur92]

[dBr91]

[DFH91]

[DybS8]

[Dyb90]

{Dyb91]

[Dyb921

[GTW781

[Hed91]

[HHP87]

[HAS84]

[Hue93]
[LPT89]

[Men87]

[MaL71]

[MaL72]
[MaL75]

[MaL82]

[MaL84]
[MaL86]

[Nor88]
{NPS90]

{Pau89]

[PaM93]

[PeS891

[SCH84]

[SCH85]

Coquand, T.: Pattern matching with dependent types. In Proceedings of The 1992
Workshop on Types for Proofs and Programs, June 1992.
Coquand, T. and Paulin, C.: Inductively defined types, preliminary version. In LNCS
417, COLOG "88, International Conference on Computer Logic. Springer-Verlag, 1990.
Curien, P-L.: An abstract framework for environment machines. Theoretical Computer
Science, 1992.
de Bruijn, N. G.: Telescopic mappings in typed lambda calculus. Information and
Computation, (91):189-204, 1991.
Dowek, G., Felty, A., Herbelin, H., Huet, G., Paulin, C. and Werner, B.: The Coq proof
assistant version 5.6, user's guide. Technical report, INRIA Rocquencourt - CNRS ENS
Lyon, 1991.
Dybjer, R: Inductively defined sets in Martin-LiSf's type theory. In Proceedings of the
Workshop on General Logic, Edinburgh, February 1987. Laboratory for Foundations of
Computer Science, Department of Computer Science, University of Edinburgh, 1988.
ECS-LFCS-88-52.
Dybjer, R: Comparing integrated and external logics of functional programs. Science
of Computer Programming, 14:59-79, 1990.
Dybjer, E : Inductive sets and families in Martin-LiSf's type theory and their set-theoretic
semantics. In Logical Frameworks, pages 28(~306. Cambridge University Press, 1991.
Dybjer, E: Universes and a general notion of simultaneous inductive-recursive definition
in type theory. In Proceedings of the 1992 Workshop on Types for Proofs and Programs,
1992.
Goguen, J. A., Thatcher, J. W., Wagner, E. G. and Wright, J. B.: An Initial Algebra
Approach to the Specification, Correctness, and Implementation of Abstract Data Types.
Prentice Hall, 1978.
Hedberg, M.: Normalising the associative law: An experiment with Martin-L6f's type
theory. Formal Aspects of Computing, 3(3):218 252, 1991.
Harper, R., Honsell, F. and Plotkin, G.: A framework for defining logics. In The Second
Annual Symposium on Logic in Computer Science, pages 193-204, 1987.
Hagiya, M. and Sakurai, T.: Foundation of logic programming based on inductive
definition. New Generation Computing, 2:59 77, 1984.
Huet, G.: Residual theory in 2-calculus: a complete Gallina development. 1993.
Luo, Z., Pollack, R. and Taylor, R: How to use LEGO (a preliminary user's manual).
Technical report, University of Edinburgh, 1989.
Mendler, R E: Inductive Definition in Type Theory. PhD thesis, Cornell University,
September 1987.
Martin-LiSf, E: Hauptsatz for the intuitionistic theory of iterated inductive definitions.
In J. E. Fenstad, editor, Proceedings of the Second Scandinavian Logic Symposium, pages
179-216. North-Holland, 1971.
Martin-L~Sf, R : An intuitionistic theory of types. Unpublished report, 1972.
Martin-L~Sf, E: An intuitionistic theory of types: Predicative part. In Logic Colloquium
"73, pages 73 118. North-Holland, 1975.
Martin-LiSf, R: Constructive mathematics and computer programming. In Logic,
Methodology and Philosophy of Science, VI, 1979, pages 153-175. North-Holland, 1982.
Martin-L~Sf, R: Intuitionistic Type Theory. Bibliopolis, t984.
Martin-L6f, R: Amendment to intuitionistic type theory. Notes from a lecture given in
G~Steborg, March 1986.
Nordstr~Sm, B.: Terminating general recursion. BIT, 28:605-619, 1988.
Nordstr6m, B., Petersson, K. and Smith, J.: Programming in Martin-LOf's Type Theory:
an Introduction. Oxford University Press, 1990.
Paulson, L. C.: The foundation of a generic theorem prover. Journal of Automated
Reasoning, 5:363-397, 1989.
Paulin-Mohring, C.: Inductive definitions in the system Coq - rules and properties. In
Proceedings Typed 2-Calculus and Applications, pages 328-245. Springer-Verlag, LNCS,
March 1993.
Petersson, K. and Synek, D.: A set constructor for inductive sets in Martin-L~Sf's
type theory. In Category Theory and Computer Science, pages 128 140. Springer-Verlag,
LNCS 389, 1989.
Schroeder-Heister, R: A natural extension of natural deduction. Journal of Symbolic
Logic, 49(4), December 1984.
Schroeder-Heister, R: Judgements of higher levels and standardised rules for logical
constants in Martin-L6f's theory of logic. Unpublished paper, June 1985.

Inductive Families 465

[Smi89]

[Sza92]

Smith, J.: Propositional functions and families of types. Notre Dame Journal of Formal
Logic, 30(3) :442458, 1989.
Szasz, N.: A Machine Checked Proof that Ackermann's Function is not Primitive
Recursive. In G. Huet and G. Plotkin, editors, Proceedings of the Second Workshop on
Logical Frameworks. Cambridge University Press, 1992.

Received June 1990
Accepted in revised form July 1993 by C. B. Jones

