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Abstract: Standard edge detectors fail to find most rele- 
vant edges, finding either too many or too few, because 
they lack a geometric model to guide their search. We 
present a technique that integrates both photometric and 
geometric models with an initial estimate of the bound- 
ary. The strength of this approach lies in the ability of the 
geometric model to overcome various photometric anom- 
alies, thereby finding boundaries that could not otherwise 
be found. Furthermore, edges can be scored based on 
their goodness of fit to the model, thus allowing one to 
use semantic model information to accept or reject the 
edges. 
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1 Introduction 

In real-world images object boundaries cannot be 
detected solely on the basis of their photometry be- 
cause of the presence of noise and various photo- 
metric anomalies. Thus, all methods for finding 
boundaries based on purely local statistical criteria 
are bound to err, finding either too many or too few 
edges based on arbitrary thresholds. 

To supplement the weak and noisy local informa- 
tion, we consider the geometric constraints that ob- 
ject models can provide. We do this by describing a 
boundary as an elastic curve with a deformation 
energy derived from the geometric constraints, as 
suggested previously (Terzopoulos 1987; Kass et al. 
1988). Local minima in this energy correspond to 
boundaries that match the object model exactly. We 
incorporate the photometric constraints by defining 
photometric energy as the average along the curve 
of a scalar energy field derived from the photomet- 
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ric model of an edge. Local minima in this energy 
correspond to boundaries that match the photomet- 
ric model exactly. We find a candidate boundary by 
deforming the curve in such a way as to minimize its 
total energy, which is the sum of the deformation 
and photometric energies. We call this deformation 
process "optimizing" the curve. Once a curve has 
been optimized, that is, once it has settled in a local 
minimum of the total energy, a compromise be- 
tween the two constraints has been effected. We 
can then utilize the object models to determine if 
the curve actually corresponds to an object bound- 
ary. 

Such "energy-minimizing curves" have two key 
advantages: 

�9 The geometric constraints are directly used to 
guide the search for a boundary. 

�9 The edge information is integrated along the en- 
tire length of the curve, providing a large support 
without including the irrelevant information o f  
points not on the curve. 

Taken together, they allow energy-minimizing 
curves to find photometrically weak boundaries that 
local edge detectors simply could not find without 
also finding many irrelevant boundaries. 

Energy-minimizing curves, as we call them, were 
originated by Terzopoulos, Kass, and Witkin (Ter- 
zopoulos 1987; Kass et al. 1988) as "snakes".  This 
paper was motivated by the need to solve two major 
problems with snakes. First, the precise relation- 
ship between the local minima found by these 
snakes and the standard definitions of an edge had 
not been elucidated. Second, snakes were basically 
designed for use in interactive environments. Con- 
sequently, they require fairly extensive parameter 
adjustments from one image to the next, and even 
from one part of an image to the next. 

In this paper we offer three major contributions. 
(1) We show the precise relationship between the 
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local minima of the energy-minimizing curve and 
the standard definitions of an edge. (2) We present a 
procedure for automatically adjusting the parame- 
ters of these curves. (3) We briefly show how the 
relationship and the procedure can be combined in 
an automated system that extracts roads and build- 
ings from aerial images, described extensively in 
Fua and Hanson (1988). 

tion normal to the curve. That is, all points along 
the curve (called edge points) satisfy 

olW(r(s))l = 0 (2) 
0n(t(s)) 

where s is the arc-length o f ~ ,  f(s) is a vector func- 
tion mapping the arc-length s to points (x, y) in the 
image, and n(f(s)) is the normal to %. 

2 A Photometric Model: Step Edges 

Several authors (Haralick 1984; Canny 1986; Torre 
and Poggio 1986) define step-edge points as those 
for which the first directional derivative of image 
intensity, in the direction of the gradient, is extre- 
mal. That is, an edge point (x0, y0) satisfies 

02~ Y) ( x )  x ----- 0 
0g  2 ,Y =(0,Y0) 

(1) 

where 

0 
0go go V 

V3~(Xo, Yo) 
go = g(xo, Yo) - ]V~(Xo, Yo)I 

Note that this definition is equivalent to the Hara- 
lick et al. definition for ideal noise-free step edges. 

To incorporate this photometric model into the 
energy-minimizing curve approach, we define the 
photometric energy of the curve % as 

_ 1 fl~k 

where I(~ I is the length of %. For simplicity of nota- 
tion, the limits on this integral will not be repeated 
in the remainder of the text. 

To understand the relationship between opti- 
mized curves and edges, consider the following. 
When % is either an open or closed curve that has 
been optimized, that is, when it is a local minimum 
of %e with respect to infinitesimal deformations of 
the curve, we prove in the Appendix that 

and #(x, y) represents the image intensities after 
convolution with a twice differentiable kernel (typi- 
cally a Gaussian). 1 It can be shown that equation (1) 
is equivalent to 

oN#(x, Y)I (x,Y>=(xo,Yo) = 0 0g0 

In other words, the Haralick et al. criterion for an 
ideal step-edge point is equivalent to the criterion 
that the magnitude of the image intensity gradient 
be maximal in the gradient direction. 

However, for noisy nonideal step edges the gra- 
dient direction may become very unreliable, espe- 
cially at some distance from the edge itself. We 
therefore use the following somewhat more general 
definition of an edge: 

Definition An edge is a curve ~ whose points have 
a gradient magnitude that is maximal in the direc- 

i This definition is a good approximation to the position of 
discontinuities in the underlying intensity function when the di- 
ameter of support of the operator is much smaller than the radius 
of curvature of the edge. In particular, it is not applicable at 
comers and junctions of edges. 

~lV~(f(s))l ( Iw (f(s))l- 1 as) 
On(f(s)) - y(s) ~ f JV3(f(s))) (3) 

where y(s) is the curvature of %. Furthermore, we 
prove that when ~ is an open curve that has been 
optimized, 

IV,~(t(o))l : Iv~(f(l~l)l : ~ f ]v,~(f(s))l ds (4) 

also holds. These two equations have the following 
consequences. 

Equation (3) implies that the points along an opti- 
mized curve are all edge points when either its cur- 
vature is zero (i.e., it is a straight-line segment) or 
the magnitude of the gradient along the curve is 
constant. Consequently, optimized curves whose 
curvature is small or for which the magnitude of  the 
gradient is approximately constant are good ap- 
proximations to edges. In particular, we have found 
that replacing [V#(x, y)[ by log IVS~(x, y)[ (which 
has no effect for ideal step edges) yields more stable 
solutions because the second term in equation (3) is 
smaller for nonconstant edge strengths, and hence 
the approximation is generally better. 

For an open-ended curve, equation (4) must also 
be satisfied. This equation implies that the curve is 
stable only when the gradient magnitude at the end 
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points equals the average. In other words, an open- 
ended energy-minimizing curve placed exactly 
along an edge will shrink or expand, following the 
edge, until this condition is met. When the gradient 
magnitude is constant, of course, this condition is 
always met and curves therefore remain un- 
changed. Thus, again, using log IVY(x, Y)I yields 
more stable solutions because this equation is more 
nearly satisfied for nonconstant edge strengths. An 
important note is that if we had chosen to use the 
integral of gradient magnitude, as opposed to the 
average, this equation would not hold: Curves 
would simply expand without bound. 

After optimization candidate edges can be scored 
on how well they match the photometric model by 
computing the proportion of points along the curve 
that satisfy equation (2) to within some tolerance. 
We use this score in our applications to accept or 
reject any given edge. 

3 A Geometric Model: Smooth Curves 

3.1 Theory 
We have seen in the previous section that energy, 
minimizing curves match edges well wherever the 
curves have a low curvature. To ensure stable 
results, we define the deformation energy of such 
curves so that their curvature remains small and the 
minimum energy state is close to the photometric 
edge. This can be achieved simply by defining the 
deformation energy of a curve % as 

%D(~) = f y(s) z ds 

where y,(s) is the curvature of %. The total energy of 
such a curve is then % (~) = %e(% ) + X%0(%), where 
%e(%) is the photometric energy defined in the pre- 
vious section. 

To delineate a photometric edge using one of 
these curves, one must provide an initial estimate of 
the location of the curve and then optimize it using 
the procedure described in the next subsection. Pre- 
viously (Kass et al. 1988), )t was chosen interac- 
tively. We have found that a single value of h, how- 
ever carefully chosen, is inadequate for use across a 
wide variety of images. Instead, we compute )t in 
the following adaptive manner. 

Let %i be the initial curve and %I be the curve 
after optimization. Let 8i denote the operator 

Since, by definition, ~f%(~) = 0, then 

x 

When the initial estimate is known to be close to the 
final answer, we choose 

x -- 

so that we remain as close to the initial estimate as 
possible. If instead we want to smooth the initial 
estimate, we can use higher values of h. This is in 
fact the simplest way of imposing a geometric 
model, in this case smoothness, upon the data. 

3.2 Implementation 
In the actual implementation the curves are de- 
scribed as polygons with n equidistant vertices X = 
{(xiyi), i = 1 . . . . .  n} and the deformation energy 
can be made discrete as 

%D = E (2Xi --  X i - I  - -  Xi+I) 2 q- (2yi - Y i - 1  - Yi+I) 2 (5) 
i 

when y(s) is small. To perform the optimization, we 
could use a simple gradient descent technique (Le- 
clerc and Fua 1987), but it would be extremely slow 
for curves with a large number of vertices. Instead, 
we embed the curve in a viscous medium and solve 
the equation of dynamics: 

0% dX 
O-~+ ~ -  = 0 

where % = %p + ~ D  and ~ is the viscosity of the 
medium (Terzopoulos 1987). Since the deformation 
energy %D in equation 5 is quadratic, its derivative 
with respect to X is linear, and therefore 

0 % D  - -  K X  
OX 

where K is a pentadiagonal matrix. Thus, each iter- 
ation of the optimization amounts to solving the lin- 
ear equation 

0%e 
K X t  + oL(Xt  - S t - l )  : - ~  x t - i  (6) 

= 8 
~i ~'~ %=%i 

that is, 6;i is the variational operator evaluated at the 
initial curve. Define 8f similarly for the final curve. 

Because K is pentadiagonal, the solution to this set 
of equations can be computed efficiently in O(n) 
time using LU decomposition and backsubstitution. 
Note that the LU decomposition needs to be recom- 
puted only when a changes. When ot is constant, 
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Figure 1. (A) Initial estimates 
for both an open and a closed 
boundary; (B) final outlines af- 
ter optimization. 

only the backsubstitution step is required. For a 
curve with 100 vertices, the LU decomposition step 
takes 0.05 seconds on a 3675 Symbolics Lisp Ma- 
chine with a Floating Point Accelerator, and the 
backsubstitution step takes only 0.012 seconds. 

Previously (Terzopoulos 1987), a was chosen in- 
teractively and remained fixed throughout the opti- 
mization process. Since this has proven to be inade- 
quate for use across a variety of images, we use the 
following adaptive procedure for computing a. 

We start with an initial step size A and compute 
the viscosity so that 

a A OX 

where n is the number of vertices. This ensures that 
the initial displacement of each vertex is on the av- 
erage of magnitude A. Because of the nonlinear 
term, we must verify that the energy has decreased 
from one iteration to the next. If, instead, the en- 
ergy has increased, the curve is reset to its previous 
position, the step size is decreased, and the viscos- 
ity is recomputed accordingly. This is repeated until 
the step size becomes less than some threshold 
value. In most cases, because of the presence of the 
linear term that propagates constraints along the 
whole curve in one iteration, it only takes a small 
number of iterations to optimize the initial curve. 
For example, going from the initial estimate of the 
closed curve with about 20 vertices shown in Figure 
la to the optimized result shown in Figure lb took 
20 iterations and 3.9 seconds on a 3675 Symbolics 
Lisp Machine with a Floating Point Accelerator. 
Only 18 iterations and 2.8 seconds were required for 
the open curve. Note that the time actually spent 

solving the equations of the dynamics represents 
only a relatively small fraction of the total time re- 
quired to perform the complete optimization; most 
of the time is actually spent updating the snakes and 
fetching the image values. 

3.3 Evaluation Criterion 
To illustrate the utility of our edge-point criterion 
[equation (2)], consider the synthetic image shown 
in Figure 2, wherein one boundary of the central 
region is smooth while the other is jagged. Two en- 
ergy-minimizing curves were entered interactively 
(Figure 3a) and optimized using the smoothness 
constraint above (Figure 3b). Removing all points 
along the optimized curves that do not satisfy equa- 
tion (2) yields Figure 3c. 

Although most of the pixels belonging to the 
smooth boundary satisfy the edge criterion, very 
few of those belonging to the jagged boundary do. 
Also note that a small part of the topmost curve 

Figure 2. A synthetic image generated by adding white 
noise of variance 20 to a foreground with mean value 150 
and a background with mean value 100. The lower and 
upper boundaries of the foreground are sinusoids of differ- 
ent frequencies. 
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Figure 3. (A) initial interactive estimates; (B) final 
outlines after optimization; (C) points in the final 
outlines that satisfy the edge criterion. Very few 
pixels of the bottom curve are left, while most of 
the pixels of the upper curve survive, except for 
the small section in which the optimization proce- 
dure failed. 

failed to settle correctly along the edge because of 
noise. However, this failure is easily identified be- 
cause it is the only part of the curve for which a 
significant fraction of the points fail to satisfy the 
criterion. 

Thus, computing the proportion of edge points in 
the optimized edges is an efficient and reliable way 
to measure how well the photometric boundaries 
match the smoothness constraint. 

4 A p p l i c a t i o n s  

In this section we present two applications of our 
energy-minimizing curves. First, we describe an ap- 
plication of our model to road delineation in an in- 
teractive context, where the user provides a rough 
initial estimate of the location of the contours. This 
interactive procedure has been integrated into the 
SRI Cartographic Modeling Environment (Hanson 
and Quam 1988). It allows a cartographer to sketch 
roughly features of interest and then interactively 
adjust the resultant optimized contours. We then 
outline an application of our model to road and 
building delineation in the context of the fully auto- 
mated system described in detail in Fua and Hanson 
(1988). 

4.1 Interactive Road Delineation 
We can apply the smooth curve model of the pre- 
vious section directly to the problem of finding road 
boundaries in aerial images. We model roads as rib- 
bons whose smoothly curved edges are approxi- 
mately' parallel. A ribbon is implemented as a poly- 
gonal curve forming the center of the road. Associ- 
ated with each vertex i of this curve is a width wi, 
which defines the two curves that are the candidate 
road boundaries. The photometric energy is defined 

as the sum of the photometric energies of the two 
boundary curves, and the deformation energy is the 
sum of the smoothness term described earlier and 
an additional term that enforces the parallel con- 
straint: 

Z (Wi- W i - 1 )  2 
i 

We have applied this model to two road seg- 
ments in the aerial image of Figure 4a. Figure 4b 
shows the initial estimates for two road segment 
boundaries and Figure 4c shows the final optimized 
boundaries. 

This image is an excellent example of a situation 
where a local edge detector such as the Canny edge 
detector is insufficient, by itself, to find the relevant 
boundaries. Because the roads are dirt roads with 
ill-defined edges, no single edge-strength threshold 
yields a satisfactory set of boundaries: When the 
threshold is too high, most of the road edges are 
lost, whereas when the threshold is too low, there is 
a plethora of irrelevant edges (see Figure 5). 

In the next section we briefly describe an auto- 
mated system that exploits the power of energy- 
minimizing curves to overcome this problem. 

4.2 Automated Road and Building Delineation 
In our automated system (Fua and Hanson 1988) 
roads are modeled as described previously, while 
buildings are modeled as polygons whose edges 
meet at right angles. 

We begin by using the synthetic image of Figure 
2 to demonstrate how the system uses energy-mini- 
mizing curves to extract smooth and straight edges 
from a set of Canny edge maps. Since a full descrip- 
tion of the system is beyond the scope of this paper, 
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Figure 4. (A) An aerial image showing a net- 
work of dirt roads; (B) two initial interactive 
estimates of the road outlines; (C) final delinea- 
tions after optimization. 

Figure 5. Edge images gener- 
ated by the Canny edge detec- 
tor for the dirt road image with 
two different sets of edge- 
strength thresholds. Note that 
when the thresholds are too 
high as in (A) most edges are 
lost, whereas many irrelevant 
edges are found when the 
thresholds are dropped as in 
(a). 
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Figure 6. (A) Canny edge im- 
age with high threshold 400 
and low threshold 200; (B) 
Canny edge image with thresh- 
olds 200 and 100; (C) Canny 
edge image with thresholds 100 
and 50. 

we can only briefly outline the subsequent steps that 
lead to the generation of road and building outlines, 
and show the results of this system applied to an 
aerial image. 

4.2.1 Smooth edges. The system begins by 
applying the Canny edge detector to the image using 
several thresholds (Figure 6). The pixels in each of 
these maps are then linked using a linker (Fischler 
and Wolf 1983). Each of these linked segments is 
used as the starting point for an energy-minimizing 
curve. After optimization the curves are broken 
into segments wherever sharp bends are found. 
Those segments for which at least 70 percent of the 
points satisfy the edge criterion are accepted as can- 
didates for the next step (Figures 7a, 7b, and 7c). 
This 70 percent figure has been used for all exam- 
ples in this paper, and indeed for every other appli- 
cation of the automated system. Experimentally, 
curves with less than 50 percent of the points satis- 
fying the edge criterion are almost always spurious, 
whereas curves with more than 90 percent are al- 
most always correct. We chose 70 percent as a com- 
promise that rejects most of the spurious edges 
without losing a significant number of correct ones. 

Since the same edge may be discovered, in whole 
or in part, in several of the Canny edge maps the 
system must choose an appropriate subset of these 
curves. The basic goal of this selection process is 
to choose the longest possible curves that do not 
overlap and have good edge quality. This goal is 
achieved by selecting the largest subset of nonover- 
lapping curves that maximize the number of pixels 
satisfying the edge criterion minus the number of 

pixels that do not. The result of this selection pro- 
cess is shown in Figure 7d. 

This technique provides an effective way of se- 
lecting the smooth boundaries in the image. Fur- 
thermore, by combining the output of the Canny 
edge detector using several arbitrary thresholds, we 
have eliminated the necessity of carefully choosing 
an appropriate threshold. This is a substantial ad- 
vantage since, as discussed previously, choosing 
this threshold is in general a very difficult task. 

4.2.2 Straight edges. The system begins with 
the same linked Canny edge images as before, finds 
points of high curvature in the linked segments, and 
fits straight lines between those points. The straight 
lines are used as the starting points for energy-mini- 
mizing curves with only two vertices. As previ- 
ously, the curves are optimized and only those with 
70 percent of points satisfying the edge criterion are 
retained (Figures 8a, 8b, and 8c). A subset of these 
curves is selected using the same procedure as be- 
fore (Figure 8d). Note that in this particular case all 
the final curves could have been extracted from a 
single Canny edge map. This rarely occurs in prac- 
tice because the noise across a real image is never 
as uniform as it is in this synthetic image. 

4.2.3 Automatic road delineation. Applying 
the smooth edge technique to the aerial image of 
Figure 9 yields the edges shown in Figure 10a. 
These edges are then grouped into sets of parallel 
edges, each of which is used as the starting point for 
a ribbon, as described in section 4.1. After optimi- 
zation the system uses a selection criterion to retain 
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Figure 7. (A), (B), (C) Smooth edges extracted from the 
first, second, and third canny edge images, respectively; (D) 
final result generated by selecting the best nonoverlapping 
edges. Note that the longest edge that is retained is the one 
that was initially found in the second edge image. 

only the best road candidates (Figure lOc). The 
groups from which these candidates arose are 
shown in Figure lOb. 

4.2.4 Automatic building delineation. Apply- 
ing the straight-edge technique to the same aerial 
image yields the edges shown in Figure 1 la. These 
edges are then grouped into rectilinear edge struc- 
tures and closed using a simple edge tracker. Fi- 
nally, the outline of these rectilinear contours is op- 
timized by using an energy-minimizing curve and a 
rectilinearity constraint. Once again, the system 
uses a selection criterion to retain only the best 
building candidates (Figure 1 lc). The groups from 
which these candidates arose are shown in Figure 
l ib.  

5 S u m m a r y  and  C o n c l u s i o n  

We have presented a technique for finding object 
boundaries that integrates both photometric and ge- 
ometric models with an initial estimate of the 
boundary. The models are incorporated by defining 
an energy function that is minimal when the models 
are satisfied exactly. The initial estimate is used as 
the starting point for finding a local minimum of this 
energy function by embedding the initial curve in a 

A 

B 
Q 

C 

Figure 8. (A), (B), (C) Straight edges extracted from the 
first, second, and third canny edge images, respectively; (D) 
final result generated by selecting the best nonoverlapping 
edges. In this case (B), (C), and (D) are identical. 
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Figure 9. (A) An aerial scene with industrial buildings and roads. (B), (C), (D) Canny edge images with thresholds (400, 
200), (200, 100), and (100, 50), respectively. No single setting of the edge parameters can be used to extract all relevant 
edges. 

Figure 10. (A) Smooth edges extracted by the system; (B) 
best groups of geometrically related edges; (C) correspond- 
ing road candidates. 
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Figure 11. (A) Straight edges extracted by the system; (B) 
best groups of geometrically related edges; (C) correspond- 
ing building candidates. 

viscous medium and solving the equations of dy- 
namics. 

The strengths of  this "energy-minimizing cu rve"  
approach are that the geometric constraints are di- 
rectly used to guide the search for a boundary and 
that the edge information is integrated along the en- 
tire length of  the curve,  thereby providing a large 
support. 

We have shown the precise relationship between 
optimized curves and a standard definition of an 
edge and that this relationship can be used to deter- 
mine when an optimized curve should be accepted 
as a candidate edge for further processing. We have 
also presented methods for automatically choosing 
the optimization parameters  and how they should 
change over  time. We found that these contribu- 
tions were crucial to our ability to embed energy- 
minimizing curves in the automated system briefly 
discussed here and presented in detail elsewhere 
(Fua and Hanson 1988); these methods have pro- 
vided us with the ability to find photometrically 
weak boundaries that local edge detectors simply 
could not find without also finding many irrelevant 
boundaries.  
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Theorem.  Equation (5) holds for  all "0(s) and z(s) if  
and only if equations (2) and (3) are satisfied. 

Proof .  By  definition, 

f G(fx(sx)) dsx 
(6) % (~x) = 

dsx 

where sx is the arc-length of %x. We can rewrite this 
in terms of  s by using the equality 

A p p e n d i x  

In this appendix,  we show that a necessary and suffi- 
cient condition for an open curve q~ to be a local 
ex t remum of  

(~) 
G(f(s)) ds 

- (1) 

with respect  to all infinitesimal deformations is that 

dG(f(s)) [G(f(s)) f G(f(s))ds] 
- (2) dn(s) y(s) ( 

J ds 

and 

f G(f(s)) ds 
G(f(0)) = G(f(]% [)) - ~ ds (3) 

where the curve % is parameterized by its arc-length 
s; f(s) is a vector  function mapping the arc-length s 
to points (x, y) along the curve; n(s) is the normal to 
the curve; t(s) is the tangent to the curve; and y(s) 
is its curvature.  Fur thermore ,  equation (2) alone is 
the necessary and sufficient condition for closed 
curves. 

To prove this result, consider deformations of  
the curve ~ ,  which we shall call %x, such that the 
mapping from arc-length s to points (x, y) is of the 
form 

fx(s) = f(s) + h(~(s)n(s) + z(s)t(s)) (4) 

where ~(s) and r(s) are arbitrary continuous and 
differentiable functions. When % is a closed curve, 
~(s) and z(s) are constrained to be periodic of pe- 
riod [qg 1. Since % is a local ext remum of % (qg) if and 
only if 

d% (%x) 
d-; x=0 = 0 (5) 

for all ~(s) and r(s), we now prove the following 
theorem. 

dsx = IlL(s)[ ds (7) 

Thu s, 

f G(fx(s))lfx(s)l ds 

~(%) = f Ifi(~)[ ds 
(8) 

and therefore,  to within the nonzero factor of 
1/(f If;(s)l ds) 2 

dk dk 

- [ f  d,] f lr (s)l ds 
[ (dG(f~,(s)) ~r,s,~ + ~ r  (s)) d tt;,(s)l ds] 

= LJ - - - d  - I  ~ ,i ~ ~ 
• fir's(s)1 ds-[f  c(r (s))lr;(s)l ds] 

,9) 

The first term we need to evaluate in equation (9) 
is d [f[(s)l/dX, for which we need the following 
equalities: 

dr(s) 
ds = f'(s) = t(s) 

dr(s) 
ds - t'(s) = y(s)n(s) 

dn(s) 
ds = n'(s) = -y(s)t(s) 

Therefore,  

f;,(s) = r(s) + x['0(s)n(s) + n(s)n'(s) + ~-'(s)t(s) 

+ ~-(s)t'(s)] 

= t(s) + h[•'(s)n(s) - vt(s)y(s)t(s) 

+ z'(s)t(s) + z(s)~/(s)n(s)l 

= t(s)[1 + k(r'(s) - ~(s)y(s)] 

+ n(s)[X(n'(s) + r(s),/(s))] (10) 
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Since t(s) and n(s) are, by definition, orthogonal unit 
vectors,  we have 

tr 
= V'[I + h0"(s) - '0(S)'y(S))] 2 + [~k(gJ'(S) + q ' ( S ) ~ ( S ) ) ]  2 

(11) 

and therefore, 

d Ir~(s)l 
dh 

[1 + x0-'(s) - n(s)~,(s))lO-'(s)  - n(s) 'y(s))  
+ x(~'(s) + ~.(s)3,(s)) 2 

= ~ [ 1  + X(r'(s) - ~(s)y(s))] 2 
+ [x(n'(s) + ~-(s)~,(s))] 2 

(12) 

= i , , o ( , ( s , ,  

+ f w(s) dt(s-----~ + "r'(s) f d, 

A necessary and sufficient condition for the first 
integral to be zero for all ~)(s) is that the term multi- 
plying ~(s) be zero, which is equation (2). 

Integrating the second integral by parts, we have 

dc(f(~)) (~(f(~))_ f o(f (s) )%1~ 
f~-( , )~ds+,( , )  f~s :lo 

- f ~-(s) ~ d~ -- o (14) dr(s) 

The second term we need to evaluate is 

dG(fx(s)) - ('O(s)n(s) + r(s)t(s)) �9 VG(fx(s)) 
dh 

dG(fx(s)) dG(fx(s)) 
= ~(s) dn(s) + .r(s) dt(s) (13) 

Substituting equations (11), (12), and (13) into 
equation (9), evaluating at X = 0, and multiplying by 
the nonzero factor 1/(f l f 'As)l  ds) z, we obtain 

a~(%)[ 
dh Ix=o 

f dG(f(s)) dG(f(s)) 
= 0 = ~(s) tin(s------S- + r(s) dr(s) 

+ G(f(s))(.r'(s) - ~(s)~,(s)) ds f ds 

- f Gff(s)) ds f (z'(s) - ~l(s)y(s)) ds 

Dividing by f ds and rean'anging terms, we have 

therefore, 

" f e ,  

A necessary and sufficient condition for this equal- 
ity to hold for all z(s) is that both terms be zero, 
which is equation (3). 

Thus, a necessary and sufficient condition for an 
open curve �9 to be a local extremum of%(%) is that 
both equations (2) and (3) hold. 

Furthermore,  for closed curves, r(0) -- z(l% I) 
and G(f(0)) ~ G(f(l~t)), hence equation (15) is al- 
ways satisfied. Therefore, a necessary and suffi- 
cient condition for a closed curve % to be a local 
extremum of % (%) is that equation (2) holds. 


