
Formal Aspects of Computing (1997) 9:448-468
�9 1997 BCS Formal Aspects

of Computing

Theories for Mechanical Proofs of Imperative
Programs

W i m H. Hesse l ink

Department of Mathematics and Computing Science, Rijksuniversiteit Groningen, Groningen,
The Netherlands

Keywords: Theorem proving; While theorem; Shared variables; Peterson's
algorithm; Fairness

Abstract. For convenient application of a first-order theorem prover to verification
of imperative programs, it is important to encapsulate the operational semantics in
generic theories. The possibility to do so is illustrated by two theories for the
Boyer-Moore theorem prover Nqthm.

The first theory is an Nqthm version of the classical while-theorem. Here the
main interest is to show how one can use Nqthm's facilities to constrain and to
functionally instantiate for the development and application of a generic theory.
The theory is illustrated by a linear search program.

The second theory is a finitary approach to progress for shared-memory
concurrent programs. It is illustrated by Peterson's algorithm for mutual exclusion
of two processes. The proof of progress for Peterson's algorithm is new. The
assertion of bounded fairness is slightly stronger than the conventional notion of
weak fairness. This new concept may have other applications.

1. Introduction

The purpose of this paper is to present two theories that can be used in combination
with a general purpose theorem prover to certify correctness of imperative
programs. The theories are developed for the theorem prover Nqthm of Boyer and
Moore, cf. [BOMB8]. The imperative programming language used is as simple as
possible. It only contains assignment, conditional choice, sequential composition,

Correspondence and offprint requests to: Wim H. Hesselink, Dept. of Mathematics and Computing
Science, Rijksuniversiteit Groningen, Postbox 800, 9700 AV Groningen, The Netherlands.
http ://www.cs.rg.nl/~ wim, email: wim@cs.rug.nl

Theories for Mechanical Proofs of Imperative Programs 449

and the repetition (while). We use an operational semantics and treat repetitions by
means of invariants and variant functions. The first theory is the classical theorem
for the total correctness of a repetition. Here the main point is that this classical
approach can be conveniently formulated and applied in a first-order theorem
prover.

In the second part of the paper, we present a theory for concurrent processes
with shared variables. In that case, we use program counters and goto's instead of
repetitions, because the prover must argue about arbitrary interleavings of
elementary commands.

The language has no nondeterministic constructs. Its expression level contains
all Nqthm expressions and is therefore very powerful. We have omitted variable
declarations and type restrictions, since the verifications associated can be delegated
to compilers (in the case of concurrency, the shared variables are declared to
distinguish them from the private ones).

The sequential case is illustrated by a proof of total correctness for a linear
search algorithm. For the case of concurrency we prove that Peterson's algorithm
establishes mutual exclusion for two processes and that each process gets access to
the critical section under bounded fairness, which is a strengthening of weak
fairness.

1.1. Motivation

A central goal of computer science is to enlarge the trustworthiness of computer
programs. It is well known that testing is important but not sufficient. Formal
verification when the design phase is concluded is usually impossible. We therefore
prefer formal verification during design.

In all cases however, there is the problem of the trustworthiness of the tester or
the verifier. A partial solution to that problem is to use formal verification by means
of a mechanical theorem prover of acknowledged quality. For then, anyone who
trusts the prover and can read the assertions that the prover verifies, can be
convinced of the validity of these assertions without going through the whole proof
(cf. [Moo96]).

An important source of programming errors is modification. Programs must be
modified, but every modification threatens the correctness. This holds a forteriori
for verification during design. In these cases, mechanical correctness proofs are very
helpful, for it is often relatively easy to adapt the correctness proof to the modified
program. The prover can do the tedious but critical verification that most of the old
arguments still work, whereas the human modifier can provide insights at points
where new arguments are needed.

The choice of a theorem prover is diffficult but important. The prover must be
trustworthy and well documented, it must have sufficient intelligence to prove
routine lemmas, its language must be rich enough to conveniently express the
assertions that have to be proved. This is the minimum: one may also want
adequate libraries, a good user interface, good user support, etc.

We are working with the Boyer-Moore theorem prover Nqthm, cf. [BOMB8,
BoM92], which satisfies at least our minimum requirements. It also has extensive
libraries, good user support, and a large user group. An important point is that its
expression language is relatively poor, we come back to this below. A positive point
is that it is freely available (public domain) and that it runs on all kinds of platforms.
It has a rather primitive emacs user interface.

450 W.H. Hesselink

Our goal is verified design of programs (algorithms). So we assume that the
program is executed on a reliable system. Our goal is thus complementary to the
goal of a reliable and verified system, as represented by [Moo96].

The classical methods to prove program correctness rely on Hoare triples or
Dijkstra's weakest preconditions, cf. [Dij76, Gri81, Kal90]. In both cases one has to
calculate with predicates. Therefore predicates must not be treated as syntactic
objects, but as boolean functions. Hoare triples are boolean functions on pairs of
predicates. Weakest preconditions are functions from predicates to predicates
(predicate transformers). Therefore these methods need functions of functions, i.e.
higher order functions.

There are good theorem provers that can work with higher order functions, e.g.,
HOL [GoM93], PVS [OSR93], etc. A logic with higher order functions requires a
sophisticated type system to avoid paradoxes. In fact, it must not allow the
definition of a boolean function p with the property that (p x) = (no t (x x)),
since then the value of (p p) would be its own negation. In a theorem prover,
higher order facilities make the number of possible choices in a proof bigger. This
should make it harder to guide the prover intelligently or to provide it with
adequate heuristics, but at this point we do not speak from own experience with
such provers.

The prover Nqthm is at the other extreme: it does not have higher order
functions, and it is untyped in the sense that every function with arity r can be
applied to every sequence of r values. Indeed Nqthm's great theorem proving power
is based on this simplicity. On the other hand, Nqthm has facilities that mimic
higher order logic: it provides the possibility to functionally instantiate the results
of an axiomatic theory and it has a function e v a l $ that can interpret syntactic
terms. We shall use these two facilities in a crucial way.

1.2. Ways to Use a Prover to Reason about Programs

As indicated above, we have chosen to use an existing reliable and powerful
theorem prover as a starting point. There are many ways of adapting an existing
tool to construct a proof checker for a given language, see [SKS93]. One approach
is to use the existing tool as a subroutine to a newly constructed proof checker. This
approach is used in the TLA [Lain94] proof checker where the Larch Prover (LP)
[GAG88] is used as a back-end theorem prover [EGL92]. It is also possible to
encapsulate the prover by providing a special purpose interface, i.e. a parser/
unparser which translates the programming logic into the logic of the prover and
vice versa. This is the way the duration calculus proof assistant of [SKS93] is built
on top of the Prototype Verification System (PVS) of [OSR93]. It is also possible to
express the semantics of the programming language directly in the language of the
prover, as is done for instance by Hooman [Hoo94], who also uses the theorem
prover PVS. Other projects have used HOL in the same way, e.g., [Gor89, BaW90].

We have chosen not to hide or encapsulate the prover. There are two reasons.
Firstly, the user must be able to guide the prover. In our view, this requires the user
to have knowledge and experience with the prover and its language. We expect that
an encapsulation could work nicely for simple problems, but become a hindrance
when the proof is harder.

A second argument against hiding is that we expect the proof system to yield a
certificate of validity. If the prover is accepted as sound, an input file that leads to
a complete proof may be regarded as a certificate, at least if the proof obligations

Theories for Mechanical Proofs of Imperative Programs 451

are adequate and complete, and the axioms introduced are valid. When the prover
is encapsulated in a new tool, however, the soundness of the combination is
questionable again.

We have therefore chosen to work directly with the prover. The question then
arises how to represent programs and specifications of programs. As mentioned
above, Hooman [Hoo94] uses a semantic encoding. For example, on p. 30, he
encodes

r:= r -- y ; z:= z+l

as the function

seq (assign (r, LAMBDA s: val(s) (r) -- val(s) (y)),

assign(z, LAMBDA s : val(s) (z) + i))

In [BaW90], almost the same representation is used, but function v a l is not needed.
Of course, such an encoding can be generated mechanically by some

preprocessor, but then the soundness of the preprocessor is a new proof obligation.
We therefore prefer to use a syntactic encoding of the program. Below we propose
an imperative programming language in which the above fragment is written as

' ((put r (difference r y))

(put z (plus z i)))

This is much closer to an actual programming language. In particular, the state
variable s, the functions v a l and seq, and the lambda abstraction have been
removed. In a simple program, the semantic overhead may be acceptable, but in
larger programs it can soon become unmanageable. In [Hes951, we had a shared-
variable distributed algorithm of 32 elementary commands. In [Hes96] we treat a
message-passing tree algorithm (GHS) with 11 different messages for which the
syntactic representation fills two pages. In such cases the correspondence between
the syntactic representation and the semantic object becomes a new source of
programming errors.

Next to syntax comes semantics. If one wants to prove theorems about
programs, the semantics of the programming notation must be well defined. There
are many ways to define semantics of programming languages: operational,
denotational, axiomatic, etc. For work with a first-order theorem prover, the
easiest way is to use operational semantics, i.e. to define the meaning of a program
by means of an interpreter which is a function in the logic of the prover, cf.
[BOMB8], Section 3.6, and [Moo96].

1.3. Working with Nqthm

In this subsection we briefly sketch how to work with Nqthm. We refer to the
Handbook [BoM88] for more information.

The interaction with Nqthm is a dialogue in which the user submits definitions
and lemmas to the prover and the prover ideally answers by accepting the
definitions and proving the lemmas. In this way a data base of known facts (rewrite
rules) is built. In practice the user often submits a lemma the prover cannot prove
(often because it is not valid). In that case, the user must try and diagnose the failure
by inspecting Nqthm's output. It may be helpful to submit an auxiliary lemma first,
or to instruct Nqthm that some definition must (or must not) be unfolded.

Nqthm is deterministic and it backtracks only when it starts a proof by
induction. Therefore the search path of Nqthm is very important. This path can be
influenced, implicitly or explicitly, by many decisions of the user. For example, the

452 W.H. Hesselink

order of the hypotheses of a lemma may influence the way the lemma can be used
as a rewrite rule later.

The result of proof design with Nqthm is a so-called event file. Such a file is an
input file for the prover with a theory consisting of definitions, axioms, and
theorems (lemmas). It is an ordinary text file that can be inspected and modified. If
well designed, submission of this file to Nqthm leads to a mechanical proof of the
theorems in the theory, without any user interaction. In this way the event file is a
certificate of the correctness of its theory. Event files either start from scratch or
start from a library file created by other event files.

In this paper we describe four event files. The files w h i l e and we a k f a i r ne s s
start from scratch, whereas linsearch builds o n while, and peterson builds
on w e a k f a / r n e s s . These event files are available from our Web site [Hes@].
They are rather small, together less than 900 lines.

1.4. Generic Theories and Functional Instantiation

In a higher order theorem prover, one can universally quantify over functions and
also use embedded universal quantification. So, one may have a theorem saying
that, for every function g, always A implies always B, i.e.

(Vge R-+ S: :(Vx: :A) ~ (Vy: :B))

Here A and B are formulae that may mention function g. Such a theorem can then
be used by instantiating g with a concrete function gl e R -+ S. In a first order logic
as Nqthm, this is not directly possible. Nqthm provides, however, the possibility to
declare an undefined function symbol g, to postulate the axiom A which is then
automatically universally quantified over x, to prove B as a theorem, and finally to
use the theorem by functional instantiation of gl for g. Of course, the last step
requires verification that A holds when g is replaced by gl.

The unrestricted introduction of axiom A has the danger that A may be
inconsistent. Then the functional instantiation may even succeed, since false is
provable from A. The authors of Nqthm therefore strongly discourage the use of
unrestricted axioms. Instead they offer a harmless way to postulate axioms by
means of the c o n s t r a i n command. This serves as an axiom, but the user is forced
to submit a witness for the undefined function symbols, for which the axiom can be
proved. The witness is often completely trivial and uninteresting.

We use the e on s t r a i n facility to develop two generic theories. The first theory
is the classical theorem for total correctness of a repetition. The main interest of this
case is the applicability of a generic theory.

The second theory is a treatment of concurrency with shared variables and
interleaving semantics. Here one has to formalize the assumption that all processes
make progress. For this purpose we develop a finitary theory of fairness. Such a
finitary theory is convenient but not strictly necessary for the treatment of fairness
with Nqthm. See Russinoff [Rus92] for an alternative.

1.5. Nqthm Notation

Many proofs published by Boyer, Moore, and their associates (e.g., [Moo94])
rephrase definitions and lemmas into more traditional notation to make them more
broadly accessible. Since we want to explain how Nqthm can be used to verify
proofs, we cannot always do so. Actually, it is our experience, e.g., while reading

Theories for Mechanical Proofs of Imperative Programs 453

[Moo94] with a group of non-users of Nqthm, that rendering into more traditional
notation frequently raises questions that can only be answered by discussion of the
Nqthm notation. Finally, this paper relies on the interpretation of quotations of
terms for which a more traditional notation could be utterly confusing.

2. Representation and Modification of the State

In this section we describe the construction of the interpreter, but first, briefly, some
aspects of Nqthm's language and logic. Nqthm's language is a dialect of pure LISP.
In particular, all operators are prefix functions. The application of a function f n on
two arguments x and y is denoted (fn x y) .

Nqthm's truth values are (t r u e) and (f a l s e) , which can be abbreviated to
t and f . The most fundamental logical operator is " i f " , characterized by the
axiom that (i f x y z) equals z if x = f , and otherwise y. In fact, Nqthm is weakly
typed and its functions are almost always total: when x is not a truth value, the term
(i f x y z) is well defined and also equal to y. The only nontotal functions are

relatives of e v a l $, see below.

2.1. Association Lists and the Evaluator

The operational semantics of an imperative programming language requires the
concept of state. The state of a computer program determines the values of all
program variables. So it can be represented by an association list, a list of pairs
where each pair consists of a variable and the associated value. The function that
retrieves the first pair with given key (first element) is defined by

(assoc key x) =
(if (nlistp x) f

(if (equal key (caar x)) (car x)
(assoc key (cdr x))))

The first line says that (a s s o c k e y x) = f i f x is empty when regarded as a list.
If x is nonempty, the first pair is (c a r x) and the first key is (c a r (c a r x)),
abbreviated (c a a r x) . If k e y differs from (c a a r x) , function a s s o c is called
recursively on the tail of list x, denoted by (c d r x) . If we only need the value
associated to a given key, we may use function l o o k u p given by

(lookup key x) = (cdr (assoc key x))

Our event file wh i i e begins with the definition of a function to modify the state.
This function is called p u t a s s o c , and is given by

(p u t a s s o c v a r w x) =
(if (nlistp x) (cons (cons var w) nil)

(if (equal var (caar x))
(cons (cons var w) (cdr x))
(cons (car x) (putassoc var w (cdr x)))))

If x represents the empty list, the first line specifies that the result is an association
list with the pair (cons v a r w) as its only element. Otherwise, the first key-value
pair with key equal to v a r gets the new value w. After these definitions Nqthm
easily proves the crucial identity

(assoc key (putassoe var w x)) =
(if (equal key var) (cons var w) (assoc key x))

454 W.H. Hesselink

Below we need the Nq thm function 1 i s t which takes an arbitrary number of
arguments and returns the corresponding list:

(list) : nil ;
(list a .. z) ---- (cons a .. (cons z nil)..)

Nqthm has a function eval$ to interpret quotations of terms where the
interpretation of atoms is given by an association list. For example,

(eval$ t ' (plus 5 vii) x) = 12

if (lookup ' vii x) : 7. Function eval$ is partial: (eval$ t ' (gg 5) x) is
only defined if the user has defined a function gg. These examples may be sufficient
for our purposes. We don ' t want to explain all intricacies of quotations of terms and
of the function e v a l $ (for our purposes, the first argument of e v a l $ can always
be t) . Yet we have to say more about quotation of terms.

In computer science we often need to argue about big nested structures like
expressions or programs. For these purposes the Nq thm logic has an abbreviation
convention that uses the symbol q u o t e , abbreviated ' . I f x is a symbol or an S-
expression, then (q u o t e x) or shorter ' x is usually the quotation of a term. This
goes as follows. The quotation of a symbol like p l u s is the literal a tom ' p l u s .
Now, recursively, if ' x, ' Y, . . . , ' z are abbreviations of terms, then ' (x Y ... 7.) is
the abbreviation of (1 2 s t ' x ' Y . . . ' z). For example,

(car ' (plus 5 vii)) = 'plus
(caddr ' (plus 5 vii)) : 'vii

We refer to [BoM88] for more and more precise information.

2.2 . T h e Interpre ter and L i n e a r S e a r c h

We now construct an interpreter for while-programs. We use a well known linear
search program as an example. So, assume given an unknown array a [0 . . n) and a
value y. The program must determine the least index m with a[m] = y. I f value y
does not occur in the array, then m = n must hold in the postcondition. We use the
program

k : = 0 ; m:=n;
while k # m do

if a[k] = y then m := k else k := k + 1 fi
od

The postcondition required is

(m = n V a [m] = y) A (V i : 0 ~ < i < m : a [l] ~ y)

We construct an interpreter e x e for a language in which the above program can be
written:

(linsearch) =
' (((put k 0) (put m n))

(while (not (equal k m))
(if (equal (lookup k a) y)

(put m k)
(put k (addl k))))))

Theories for Mechanical Proofs of Imperative Programs 455

The first two p u t expressions are the initializing assignments to k and m. They are
taken together to form the initialization. The expression (l o o k u p k a) stands for
a[k]; here we assume that the value of ' a is an association list.

We now define a command interpreter exe . It is a function that modifies the
global state according to the command it executes. We model the global state as an
association list x which binds values to the program variables, which for
l i n s e a r c h are ' k , 'm, ' n , ' y , and ' a . The expressions in the program are
evaluated by e v a l $ with respect to the global state. The assignments (pu t) are
performed by means of the function

(m o d i f y v a r e x p x) = (p u t a s s o c v a r (e v a l $ t e x p x) x)

Since a while-program need not terminate, we give the interpreter e xe an argument
r d to bound the recursion depth. We let e x e yield f in case of nontermination or
too large recursion depth. Since x -- f stands for nontermination, this state must
always yield the final state f . In this way we arrive at the definition

(e x e r d cmd x) =
(c o n d ((o r (z e r o p rd) (n o t x)) f)

((n l i s t p cmd) x)
((n l i s t p (c a r cmd))

(c a s e (c a r cmd)
(p u t (m o d i f y (c a d r cmd) (c a d d r cmd) x))
(i f (i f (e v a l $ t (c a d r cmd) x)

(exe r d (c a d d r cmd) x)
(e x e r d (c a d d d r cmd) x)))

(w h i l e (i f (e v a l $ t (c a d r cmd) x)
(e x e (s u b l rd) cmd

(ex e r d (c a d d r cmd) x))
x))

(otherwise f)))
(t (exe rd (cdr cmd) (exe rd (car cmd) x))))

The functions c o n d and c a s e serve to make case distinctions. Function c o n d
expects its arguments to be pairs. It yields the c d r of the first pair for which the ca r
has a value # f . The c a r of the last pair must be equal to t . The function c a s e
evaluates its first argument and treats the remaining arguments as an association
list. The c a s e expression in e x e distinguishes the constructors ' p u t , ' i f , and
' w h i l e . The last case of the c o n d expression is the sequential composition of a list
of commands. Notice that first the head (c a r) of the list is executed and then the
tail (cdr) .

Termination of function e xe follows from the fact that in each recursive call the
sum of r d with the size of cmd is smaller. For easy recursive definitions Nqthm finds
such a termination measure automatically, but in this case it needs a hint.

In Nqthm (unlike LISP), the c a r of a nonlist is welldefined and equal to 0. It
follows that in our interpreted language, the i f statement with guard false without
else branch is equivalent to skip.

For reasoning about program 1 i n s e a r c h , we give names to its components

(initO) = ' ((put k O) (put m n))
(guardO) ---- ' (not (equal k m))
(bodyO) : ' (if (equal (lookup k a) y) (put m k)

(put k (addl k)))
(linloop) : (list 'while (guardO) (bodyO))

456 W.H. Hesselink

Now one can prove that (l i n s e a r c h) equals (l i s t (i n i t 0) (l i n l o o p)) .
In order to argue about the values of the variables ' n, ' m, ' y, ' k, ' a, we define

corresponding state functions nn, etc., by

(nn x) = (l o o k u p ' n x)
(aa i x) = (l o o k u p i (l o o k u p ' a x))

and ram, yy, kk in the same way as nn. Notice that nn, yy, aa depend on the state
x, although the program does not change them.

Nqthm can now directly prove that the initialization works as expected:

(prove-lemma exe-initO (rewrite)
(implies (and x (not (zerop rd)))

(and (exe rd (initO) x)
(equal (mm (exe rd (initO) x)) (nn x))
(equal (nn (exe rd (initO) x)) (nn x))
(equal (yy (exe rd (initO) x)) (yy x))
(equal (aa i (exe rd (initO) x)) (aa i x))
(equal (kk (exe rd (initO) x)) O))))

Here we give the command to prove as it is submitted to Nqthm. Every lemma
needs to have a name, here e x e - i n i t 0. The argument (r e w r i t e) means that
the lemma if proven can be used later as a rewrite lemma. Notice that we exclude
the virtual state x = f initially- and, hence, as a resulting state.

2.3. A General Theory for the Repetition

The repetition requires more work than the initialization. Since repetitions are
always proved in the same way, we develop a general theory for repetitions of the
form while B do S. For this purpose we axiomatically introduce five Nqthm
functions. We represent the guard B, the body S, the invariant, and the variant
function by functions g u a r d , l b o d y , i n v a r i a n t , and a v f , respectively. We also
need a function upbe xe as an upper bound of the recursion depth for the execution
of the body.

The axiom is submitted in such a way that no inconsistency in the database can
be generated. For this purpose, the axiom is accompanied by a list of instantiations
for the functions, such that the axiom is satisfied.

(constrain while-axiom (rewrite)
(and (implies (and (invariant x)

(eval$ t (guard) x))
(and (invariant (exe (upbexe) (ibody) x))

(lessp (avf (exe (upbexe) (Ibody) x))
(avf x))))

(not (zerop (upbexe)))
(not (invariant f)))

((invariant (lambda (x) f)) ; an instantiation
(avf (!ambda (x) I))
(upbexe (lambda () i))
(guard (lambda () (false)))
(ibody (lambda () nil))))

The axiom consists of three conjuncts: the first one says that, if the guard holds,
execution of l b o d y preserves the invariant and decreases the variant function. The

Theories for Mechanical Proofs of Imperative Programs 457

requirement that upbexe differs from 0 is mainly for convenience. The third
requirement says that the invariant does not hold in the virtual state f. Therefore,
the first requirement implies termination of the body within upbexe unfoldings.

It is straightforward to verify that the axiom holds for the trivial instantiation
provided. The axiom is used to argue about the repetition given by

(loop) = (list 'while (guard) (ibody))

In fact, the axiom is used to prove that, if the invariant holds initially and the
number rd is sufficiently large, the l oop terminates in a state where the invariant
and the negation of the guard hold. This is expressed in

(prove-lemma invariant-theorem (rewrite)
(implies (and (not (lessp rd (plus (avf x) (upbexe))))

(invariant x))
(and (not (eval$ t (guard) (exe rd (loop) x))

(invariant (exe rd (loop) x)))))

2.4. The Application of the General Theory

The invariant theorem can be applied in concrete cases by giving instantiations for
the five functions introduced in w h i l e - a x i o m . Of course, the validity of the
instantiated axiom must then be verified. This is exemplified in the concrete case of
l i n s e a r e h . The postcondition required is formalized in

(postO i x) =
(and x

(or (equal (ram x) (nn x))
(equal (aa (ram x) x) (yy x)))

(implies (and (numberp i) (lessp i (ram x)))
(not (equal (aa i x) (yy x)))))

The first conjunct of p o s t 0 expresses that the final state must differ from f, i.e.,
that the program must terminate. The second conjunct says that m = n or a[m] = y.
The third conjunct says that a[l] # y holds for arbitrary i with 0 ~< i < m.

We define the invariant j q* with arguments i and x as the conjunction of
invariants representing

(Jq0) m = n V a[m]=y ,
(Jql) 0 ~ < i < k =~ a[t]#y,
(Jq2) k e n A meN,
(Jq3) m >~ k,
(Jq4) x • f.

For example (Jql) is represented by

(jql i x) ---
(implies (and (numberp i) (lessp i (kk x)))

(not (equal (aa i x) (yy x))))

The invariant (Jq4) is unusual: it expresses that the body of the loop always
terminates.

Remark. We number the invariants consecutively, so that during the design it is easy
to see whether all current invariants have been treated. They get names with second

458 W.H. Hesselink

letter q, so that even in large files they can easily be located and renamed when
necessary.

Having defined the invariants, we also construct a variant function v f -- m - k , and
then prove that the w h i l e - a x i o m holds in our application. The first conjunct is
expressed in

(prove-lemma while-lemma (rewrite)
(implies (and (jq* i x)

(eval$ t (guardO) x))
(and (jq* i (exe 1 (bodyO) x))

(lessp (vf (exe 1 (bodyO) x))
(vf x)))))

The other two conjuncts of w h i l e - a x i o m are easier. Now the axiomatic theory
can be applied in the Nqthm command

(functionally-instantiate linsearch-loop (rewrite)
implies (and (not (lessp rd (plus (vf x) i)))

(jq* i x))
(and (not (eval$ t (guardO) (exe rd (linloop) x)))

(jq* i (exe rd (linloop) x))))
invariant-theorem
((invariant (lambda (x) (jq* i x))) ; the instantiation
(upbexe (lambda () i))
(guard guardO) (avf vf) (ibody bodyO) (loop linloop))

This is a functional instantiation of the invariant theorem determined by the
association list with i n v a r i a n t as its first key. For simplicity we have omitted the
hints to the prover. In this case the body of the loop is a straightline command.
Therefore we can take u p b e x e equal to 1, as shown in w h i l e - l e m m a . Nested
loops can also be treated, but then termination of the body needs bigger recursion
depth.

It is easy to verify that the conclusion of l i n s e a r c h - l o o p implies the post-
condition p o s t 0 . Combining these results with lemma e x e - i n i t 0 , we finally
obtain correctness of l i n s e a r c h :

(prove-lemma linsearch-correct (rewrite)
(implies (and x ; the initial state is valid

(lessp (nn x) rd)
(numberp (nn x)))

(postO i (exe rd (linsearch) x))))

Unfortunately, if this assertion is the specification of linsearch, the following
program is an easier implementation

m : = 0 ; y:=a[0], that is
' ((p u t m 0) (p u t y (l o o k u p 0 a))) .

To avoid such unsatisfactory implementations, we also specify that the program
variables n, a, and y must not be modified. For this purpose, we introduce a
function wr i t t e n v a r s that, given a command, yields the list of variables that are
threatened to be modified by the command. This function satisfies

(writtenvars (linsearch)) = ' (m k)

It follows that n, a, and y are constants for l i n s e a r c h .

Theories for Mechanical Proofs of Imperative Programs 459

3. Multiprogramming

We now show how one can treat sequential processes that communicate by means
of shared variables. So we have a number of processes, each of which executes a
sequential program, which is divided into atomic statements. The processes execute
the atomic statements interleaved in an arbitrary way. The global state consists of
the values of the shared variables, together with the values of the private variables
of the processes. A transition of the system is a step from one state to another in
which one process executes an atomic statement. An execution of the algorithm is
a sequence of transitions that starts in some initial state. A state is called reachable
if it occurs in an execution.

An invariant is defined to be a predicate that holds in all reachable states.
Following [Tel94], we write {P}-+{Q} to denote that every atomic step of the
algorithm that starts in a state where P holds, terminates in a state where Q holds.
We define a predicate P to be a strong invariant if it holds initially and satisfies
{P} -+ {P}. It is easy to see that every predicate implied by a strong invariant is itself
invariant. Note that Tel ([Tel94] p. 51) calls invariants what we call strong
invariants.

We now go into the Nqthm modelling of such systems. As above we want to use
function e v a l $ for the evaluation of expressions, but now we want that, when
process q evaluates an expression, it uses the values of its own private variables. The
shared variables must be visible to all processes. In order to force the fight
distinction between shared variables and private variables, we use a declaration, say
d, of the list of shared variables and we filter the shared state, say z, by means of
function cleanalist given by

(cleanalist d z) =
(if (nlistp d) nil

(cons (cons (car d) (cdr (assoc
(cleanalist (cdr d) z)))

(car d) z)))

We then structure the global state x as a pair of association lists, one for the private
states and one for the shared variables. We thus define the shared state and the
private states by

(shared d x) -- (cleanalist d (cdr x))
(privstate q x) -- (cdr (assoc q (car x)))

We define the function e v that yields the value of expression e x p for process q in
global state x, according to declaration d, by

(ev d q exp x) :
(eval$ t exp

(append (shared d x)
(cons (cons 'self q)

(privstate q x))))

Thus, as noticed by a referee, if a private variable clashes with a shared variable, the
shared variable takes precedence.

All processes execute the same program. The above definition binds the
constant s e l f to the executing process. We construct a function p u t g e n with
arguments d, q, v a r , exp , x, which modifies the global state x by binding the value

460 w.H. Hesselink

o f e x p according to d, q, x to the variable v a t , which is treated as a global variable
if it belongs to d, and as a private variable otherwise.

Then we construct a function e x e c analogous to the sequential version e x e in
2.2, but now without a while statement, and with a ease statement. Just as in the
sequential case, the i f statement with guard false without else branch is equivalent
to skip.

We give each process a private variable pc, its program pointer. We write pc.q
to denote pc of process q. Prior to execution of a command by process q, the value
ofpc.q is incremented by default with 1. For this purpose, we subject the program
to function addlpc, defined by

(addlpc-prim prog) ---
(if (nlistp prog) nil

(cons (cons (caar prog)
(cons ' (put pc

(addlpc-prim (cdr prog)))

(addlpc prog) = (list* 'case 'pc

For example, if p r o g is the program

' ((0 (p u t y (a d d l y)))
(i (put pc 0)))

then (addlpc prog) equals

' (case pc
(0 (put pc (addl pc))
(i (put pc (addl pc))

(addl pc)) (cdar prog)))
)

(addlpc-prim prog))

(put y (addly)))
(put pc 0))) .

3.1. Peterson's Algorithm

Peterson's algorithm [Pet81] is the simplest algorithm for mutual exclusion for two
processes. The algorithm establishes that two processes (say 0 and 1) are never at
the same time in the state crit, while it enables each of them to reach crit from time
to time.

For this purpose it uses two shared variables active: array[0. . 1] of boolean and
you: {0, 1}. A process may enter state crit when it equals you or when the other
process is not active. A process that "wishes" to access state critassigns to you the
name of the other process, as if it were politely saying "af ter you" .

In the state with pc.q = 0, process q has the nondeterminate choice between
staying asleep or trying to access crit. It may remain asleep forever, but there is
never a guarantee that it remains asleep forever. This part of the program belongs
to the modelling, not to the protocol. The program is as follows.

0 goto 0 [] active[sell] := true;
1 you := 1 - self;
2 if you = self then goto 4;
3 if acEve[1- self] then goto 2;
4 active[sell] := false; goto 0.

State function crit is defined by

crit.q =- pc.q = 4

Theories for Mechanical Proofs of Imperative Programs 461

Mutual exclusion is therefore expressed by the invariant

(Jq0) -~(pc.O = 4 /x pc.1 = 4)

Remarks. In this program, the processes leave the critical section "immediately",
that is, in the next step they take. Yet, since the model is untimed, they may remain
in the critical section for an arbitrarily long period of time. In this period they may
perform critical actions, but these actions need not be modeled in the program.

The tests in lines 2 and 3 of the program are often combined in one test;

wait until ~ a c t i v e [1 - sell] v y ou : se l f

(cf. [ApO91] p. 285). This has the disadvantage that two shared variables must be
evaluated in one atomic statement. With respect to safety it is obvious that the two
versions are equivalent; but this is less obvious for the progress requirement. See
also [ChM88] pp. 362-367.

In order to prove the invariance of (Jq0), we postulate the invariants

(Jql) active[q] = (pc .q~{1 ,2 ,3 ,4}) ,
(Jq2) -~(pc.you~{2,3,4} A pc . (1 - -you) : 4).

For the proof of (Jq2) we need the obvious invariant

(Jq3) you~{O, 1}.

We define (Jq*) to be the conjunction of (Jq0), (Jql), (Jq2), (Jq3). The initial state
satisfies (Jq*). Every atomic action preserves (Jq*), that is {(Jq*)}-+{(Jq*)}.
Therefore, (Jq*) is a strong invariant, and the predicates (Jq0), (Jql), (Jq2), (Jq3)
are invariants, as required.

For the mechanical verification, we model the nondeterminate choice at p c = 0
by means of a private variable o r a c l e : ~ together with an unknown boolean
function w a i t . To guarantee that it has a new value each time it is inspected,
o r a c l e is incremented after each inspection. We model the array a as an
association list. We thus get the program

(peterson) =
'((0 ((if (wait oracle)

(put pc O)
(put active (putassoc self (true) active))

(put oracle (addl oracle))))
(i (put you (other self)))
(2 (if (equal you self) (put pc 4)))
(3 (if (lookup (other self) active) (put pc 2)))
(4 (put active (putassoc self (false) active))

(put pc O)))

Here (o t h e r p) stands for the process not equal to p.
The semantics of this program are determined by the declaration of the shared

variables d c l - p and the function s t e p .

(dcl-p) ---- ' (you active)
(step p x) = (exec (dcl-p) p (addlpc (peterson)) x)

The remainder of the mechanical proof of safety of the algorithm goes as follows.
We define state functions to express the values of the variables (both private and
shared). We formulate lemmas to express how these values change under the atomic
steps of the algorithm (these lemmas are useful later on, but also form an important

462 W.H. Hesselink

check on the correctness of the modelling used). We then define the invariants. For
example, invariant (Jql) is expressed by

(jql q x) =
(equal (lookup q (active x))

(member (pc q x) ' (i 2 3 4)))

and its invariance is proved in

(prove-lemma jql-kept-valid (rewrite)
(implies (jql q x)

(jql q (step p x))))

Similarly, (Jq2) is expressed by

(jq2 x) =
(not (and (equal (pc (other (you x)) x) 4)

(member (pc (you x) x) ' (2 3 4)))))

Its proof of invariance is more involved

(prove-lemma jq2-kept-valid (rewrite)
(implies (and (jq2 x)

(jq3 x)
(member p ' (0 i))
(jql (other p) x))

(jq2 (step p x))))

Notice that (Jql) is a strong invariant, but (Jq2) is not.
We then form the conjunction j q* to represent (Jq*), and we prove that it is

a strong invariant. It follows, for example, that j q l is an invariant. For details we
refer to the event file p e t e r s o n .

The invariance of(Jq0) expresses mutual exclusion, the essential safety property.
Mutual exclusion can be trivially established, however, by precluding one of the
processes to enter crit. Peterson's algorithm is better than that. It also satisfies the
progress requirement that, if one of the processes, say q, indicates the "wish" to
enter crit and if both processes do sufficiently many steps, then process q indeed will
enter crit. So we also have to formalize and prove this progress requirement.

A process q indicates its wish to enter crit by making pc.q = 1. So, there is a pair
of predicates, P and Q, on the state, and we want to prove that, if an execution starts
in a state where P holds and all processes perform sufficiently many actions, the
execution contains a state where Q holds.

In order to prove this progress requirement we first formalize it in the more
general context of bounded fairness for a finite number of processes. The traditional
notion of weak fairness says that every execution sequence that starts in a state
where P holds and in which every process performs infinitely many actions,
contains a state where Q holds. In Nqthm it is not convenient to argue about infinite
sequences. We therefore prefer a finitary and slightly stronger notion of bounded
fairness, which only needs finite sequences.

3.2. Progress under Bounded Fairness

We write q: x ->y to indicate that, if process q performs an action in the (global)
state x, the resulting (global) state can be y. We write q: {P} -~ {Q} to indicate that,

Theories for Mechanical Proofs of Imperative Programs 463

if process q performs an action in a state where predicate P holds, the action
necessarily terminates in a state where Q holds. As announced above, we write
{P}-+ {Q} to indicate that q:{P}-+ {Q} holds for all processes q.

A schedule is a sequence of process names. An execution sequence is a sequence
of (global) states. An execution sequence y = (Yo ,Yn) satisfies a schedule
s = (s o sn_l), i ffwe have si:Yi---~Yi+l for all i < n.

We say that a state x leads to predicate Q under schedule s iff every execution
sequence y wi thy 0 = x that satisfies schedule s, contains some state yiwhere Q holds
(it need not be the last one).

Let L be a set of process names. A schedule s is called 1-fair for L iffit contains
all elements of L. The schedule is called k-fair for L iff it is a catenation of k
schedules that are each 1-fair for L. Here, it is not sufficient to require that the
schedule contains all elements of L at least k times.

We say that predicate P leads to Q under bounded fairness for L iff, for every state
x where P holds, there is a number k such that x leads to Q under every k-fair
schedule for L. I f we omit L, we mean that L is the set of all processes.

Remark. Note that we assume that every process is always enabled, although its
action may be equivalent to skip. Under this assumption it is not hard to prove that,
if P leads to Q under bounded fairness, it also does so under weak fairness.

In fact, let t be an infinite fair execution sequence starting in a state where P
holds. Then t has a prefix in which every process acts at least once. This prefix is
1-fair. The corresponding suffix is still fair. By induction, it follows that t has a
k-fair prefix (for every k). Therefore t contains a state where Q holds, thus proving
weak fairness.

Bounded fairness is stronger than weak fairness. For example, consider two
processes q0 and ql with shared integer variables y and z, given by

q0: . [y : = y + z]
ql: .[z : = - 1]

Here, the star * means infinite repetition. Precondition y = z = 1 leads to y = 0
under weak fairness, since ql will be executed while y ~> 0 holds and then q0 can
decrement y until y = 0. There is no number k such that y = z = 1 leads to y = 0
under every k-fair schedule (since q0 may act more than k times before ql).
Therefore, y = z = 1 does not lead to y = 0 under bounded fairness.

The above definition allows the following rule to prove leadsto-relations. It is
inspired by the rules for UNITY, cf. [ChM88].

Theorem. Let P and Q be predicates and let L be a set of processes. Let avfand hot
be state functions, av fwi th integer values, and hot with process values.

Assume that

(i) P implies avs O,
(ii) {av f> 0}-+{avf> 0 v Q},

(iii) a v f > 0 implies h o t e L ,
(iv) for every pair of processes p, q, and every positive integer V, we have

p: {av f = V A hot = q}-+{avf < V v (av f = V A hot = q Ap va q)}.

Then predicate P leads to Q under bounded fairness for L.

Remarks. As above, avfs tands for abstract variant function. State function hot
refers to the process that is responsible for decrementing avf.

It is clear that, if predicate P implies P' and P' leads to Q, then P leads to Q.
Without loss of generality, we may therefore replace predicate P by a v f > O. In that

464 W.H. Hesselink

way, the theorem gets simpler. We prefer to give the above version, however, since
it more clearly separates the specifying predicates P and Q from the auxiliary state
functions a v f and hot.

Condition (iv) is equivalent to the conjunction of three conditions. For every
pair of processes p, q, and every positive integer V:

(a) If avfis positive, it descends: {avf= V}-+{avf<. V}.

(b) If avf is positive and process hot acts, avfdecreases:

p: {avf= V A hot = p}-~ {av f < V}.

(c) If avfis positive, then hot is constant unless avfdecreases:

{av f = V A hot = q}-~{avf < V v hot = q}.

Proof o f the theorem. Let x be a state where P holds. Put k -- avf.x. By (i), we have
k > O. Let s be a k-fair schedule for L. It suffices to prove that x leads to Q under
schedule s.

It follows from (iii) and (iv) that, i f z is a state with avf.z = V > O, then z leads
to a v f < Vfor every 1-fair schedule for L. In fact, ho te L and hot remains constant
while avfdoes not decrease. If process hot itself acts, avfdecreases.

Since schedule s is a catenation of k 1-fair schedules, every execution y with
Y0 -- x that satisfies schedule s contains a state Yi with avf .y i <. O. By condit ion (ii),
the first state with this property satisfies predicate Q. []

The event file we a k f a i r ne s s contains the mechanical proof of this theorem.
This proof starts with the axiom that represents the assumption (iii) and (iv) of the
theorem:

(constrain avf-axiom (rewrite)
(and (numberp (avf x))

(implies (not (equal (avf x) 0))
(and (member (hot x) (plist))

(lessp (avf (next (hot x) x))
(avf x))

(not (lessp (avf x) (avf (next p x))))
(implies (not (lessp (avf (next p x))

(avf x)))
(equal (hot (next p x))

(hot x))))))
((avf (lambda (x) 0))
(hot (lambda (x) 0))
(plist (lambda () ' (0)))
(next (lambda (p x) x))))

Here p l i s t represents L and n ex t is an abstraction of the transition relation. We
may assume that n e x t is deterministic, for all nondeterminacy can be hidden in
hidden variables of the state x.

In order to follow a schedule until a v f = 0 is reached, we define function n e x t *
by

(next* s x) :
(cond ((nlistp s) x)

((zerop (avf x)) x)
(t (next* (cdr s) (next (car s) x))))

Theories for Mechanical Proofs of Imperative Programs 465

We construct a function subset* such that (subset* k L S) expresses that
schedule s is k-fair for L. We then prove that a v f > 0 leads to avs 0:

(lemma next*terminates (rewrite)
(implies (and (not (lessp n (avf x)))

(subset* n (plist) s))
(zerop (avf (next* s x)))))

We relate this result to the goal Q by first postulating an axiom that represents (ii):

(constrain goal-axiom (rewrite)
(implies (and (not (equal (avf x) 0))

(equal (avf (next p x)) O))
(goal (next p x)))

((goal (lambda (x) t))))

and then proving

(lemma next*terminates-at-goal (rewrite)
(implies (and (not (lessp n (avf x)))

(not (equal (avf x) 0))
(subset* n (plist) s))

(goal (next* s x))))

The relation with the initial condition via (i) is so obvious that we need not treat it
in the abstract theory.

Remarks. In the theorem we do not introduce an invariant, since we only need to
argue about states with avs 0. In applications we will use invariants, but we then
define avfin such a way that avf> 0 implies the invariants.

3.3. Progress for Peterson's Algorithm

We claim that pc.q = 1 leads to crit.q under bounded fairness. In order to prove this
we construct state functions avfand hot, so as to apply the theorem of the previous
section.

We take q = 0 and analyse the possible states and their transitions with regard
to the question how process 0 proceeds to crit. Since the number of states is small,
it would be easy to use a model checker for this purpose. Actually, we do it by hand.
Because of invariant (Jql), the reachable states are characterized by the value of
you and the two values of pc. So the state is characterized by the triple (you, pc.O,
pc.l). We thus get the diagram below.

(_, 1,3) (_, 1,2) (_, 1,4) (_, 1,0) (_,1, 1)

t t l 1 1
(1, 2, 3)-- -,-(1, 2, 2)-- -~(1, 2, 4)-- -,-(1, 2, 0) (0, 2, _)-,- --(1, 2, 1)

IT It It 1 / t II
(1, 3, 3) - - 0 , 3, 2)- -(1, 3,4)- § 3, o) ~ (., <_) (o, 3, _)- - (< 3, ~)

The aim of process 0 is to reach state (_, 4, _), where crit.O holds. Here, " _ " indicates
a don't care component. The solid arrows in the diagram represent transitions that
process 0 can do. The broken arrows represent transitions by process 1, that are
needed for process 0 to reach crit. It is clear from the diagram that process q cannot
further approximate crit when it satisfies

blocked.q: pc.qe{2,3} A you # q A pc.you # 0

466 W.H. Hesselink

We therefore define

hot.q = if blocked.q then 1 - q else q fi

In order to find a variant function avfwe proceed as follows. We extend the diagram
with all actions by process 1. We then assign values v f to the states, starting with
v f= 0 at the aim (_, 4,_), in such a way that condition (iv) of the theorem is
satisfied. For example, v f= 1 at (0, 2, _), v f= 2 at (0, 3, _), etc. When all states have
a value for vf, we invent some recipe that expresses vfas a function. In this way,
we arrive at the definition

vf.q = if pc.q = 1 then 9
elsif p c . q e {0, 4} then 0
elsif y o u = q then p c . q - 1
else case pc.(other.q) of

0: 7 - p c . q ;
1 : 3 ; 2 : 7 ; 3 : 8 ; 4 : 6

case ft.

Now we let Nqthm verify that, if vf.q > 0 and (Jq*) holds, no process can increment
vf.q and each action of hot.q decrements vf.q. Moreover, hot.q does not change
unless vf.q decreases, and crit.q is established when vf.q = 0 is reached. It follows
that the theorem can be used with for avf the function vfc.q given by

vfc.q = if (Jq*) then vf.q else 0 fi

This shows that indeed pc.q = 1 leads to crit.q under bounded fairness.
The final fairness result of the mechanical proof is

(lemma wish-leads-to-crit (rewrite)
(implies (and (equal (pc q x) i)

(member q (bit))
(jq* x)
(subset* 9 (bit) s))

(crit q (step* q s x))))

Here (b i t) is the list of processes ' (0 1) and (s t e p * q s x) is the state reached
from state x, when the algorithm executes according to schedule s, and not longer
than needed for process q to reach c r i t . So this proves that, if some process
qe{0, 1} has pc.q = 1 and the invariant holds, every execution under a 9-fair
schedule leads to crit.q.

We do not know other formal or mechanical proofs of progress for Peterson's
algorithm. It is likely that Russinoff's approach [Rus92] can be used to give a proof
based on the classical concept of weak fairness. Yet it may be easier to give an
Nqthm proof that bounded fairness implies weak fairness.

4. C o n c l u d i n g R e m a r k s

Although Nqthm is a first-order theorem prover, its facility to instantiate results of
an axiomatic theory allows the development of generic theories for the treatment of
imperative programs. We use Nqthm's facility to interpret quotations of terms to
express algorithms in a concise and formal way. In this way Nqthm's lack of higher
order functions is somewhat compensated.

Theories for Mechanical Proot~ of Imperative Programs 467

In both examples treated we formulated a final result with explicit bounds.
Nqthm does not provide existential quantification to abstract from such bounds.
See also the discussion in [lVloo961 Section 6.3.

For Peterson's mutual exclusion algorithm, we have proved progress trader
bounded fairness, a notion slightly stronger than weak fairness.

From our experience [Hes95, Hes97], we can say that the methods proposed are
applicable to bigger programs, in partictdar to bigger distributed programs. We
fear that the lack of higher-order abstractions may become inconvenient for
specifications in large modutar~ed software.

Acknowledgement

Remarks and questions of the referees have led to some important improvements.

References

[ApO91]*

IBaW90]

[BoM88]

[BoM92]

[ChM88]

[~j76]
[EGL92]

[GAG88]

IGor89]

[GoM931

[Gri81]
[Hes95 l

[Hes961

[Hes98]

[Hes@]
[Hoo94]

[Katg01

[Lam94]

[Moo94]

[Moo961

Apt, K, R. and Olderog, E.-R. : Verification of Sequential and Concurrent Programs.
Springer, 1991.
Back, R. J, R. and yon Wright, J. : Refinement concepts formalized in higher order logic.
Formal Aspects of Computing 2 (t990) 247-272.
Boyer, R. S, and Moore, J. S,: A Computational Logic Handbook. Academic Press,
Boston etc., t988~
Boyer, R. S. and Moore, J. S.: A Computational Logic Handbook, Authorized Excepts
from a Proposed Second Edition, to be obtained by ftp from Computational Logic Inc.
Information available at nq thm- reque$ t @ c l i . com.
Chandy, K. M. and Misra, J.: Parallel Program Design, A Foundation. Addison-Wesley,
1988.
INjkstra, E. W.: A discipline of programming. Prentice-Halt t976.
Engberg, U , Gronning, P. and Lamport, L.: Mechanical verification of concurrent
systems with TLA. In Computer Aided Verification. Springer Verlag 1992, LNCS 663.
Garland, S. J, and Guttag, J. V. : LP: the Larch Prover. In E. Lusk and R. Overbeek,
(eds.): 9th Conference on automated deduction (CADE). Springer 1988, LNCS 310, pp.
748-749.
Gordon, M. J. C. : Mechanizing programminglogics in higher-order logic, tn G~ Birtwistle
and P. A. Subrahmanyam, (eds.): Current trends in hardware verification and theorem
proving. Springer 1989, pp. 387-439.
Gordon, M. J. C, and Melham, T. F, (eds.): Introduction to HOL: A theorem proving
environment for higher order logic, Cambridge University Press, Cambridge, UK, 1993,
Gries, D. : The science of programming. Springer 1981,
Hesselink, W. H.: Wait-free linearization with a mechanical proof. Distributed Computing
9 (1995) 21-36,
Hesselink, W. H.: The verified incremental design of a distributed ~anning tree algorithm
- extended abstracL See [Hes@l.
Hesselink, W. H.: The design ofa linearization of a concurrent data object. To appear in
Proceedings Proeomet '98. See [Hes@].
Hesselink, W. H. : Web site: httzp ://www. cs . ruq . nl/~w•
Hooman, J.: Correctness of real time systems by construction. In: H. Langmaack,
W.-P. de Roever and J. Vytopil, (eds.): Formal Techniques in real-time and fault-tolerant
S)~stems. Springer 1994. LNCS 863. pp, t9--40,
Kaldewaij, A.: Programming: the Derivation of Algoritllms~ Prentice Hall International,
1990.
Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16 (1994) 872-923.
Moore, J. S. : A formal model of asynchronous communication and its use in mechanically
verifying a biphase mark protocol, l~brmal Aspects of Computing 6 (1994) 60~.91,
Moore, J. S. : Piton: A mechanically verified assembly-level language. Kluwer, 1996,

468 W.H. Hesselink

[OSR93] Owre, S., Shankar, N. and Rushby, J. M. : User Guide for the PVS Specification and
Verification System, Language, and Proof Checker (Beta Release). CSL, SRI In-
ternational, Menlo Park, CA, February 1993 (three volumes).

[Pet81] Peterson, G. L. : Myths about the mutual exclusion problem. IPL 12 (1981) 115-116.
[Rus92] Russinoff, D. M. : A verification system for concurrent programs. Formal Aspects of

Computing 4 (1992) 597-611.
[SKS93] Skakkeb~ek, J. U. and Shankar, A. : A duration calculus proof checker: Using PVS as a

semantic framework. SRI, CSL Tech. Report, December 1993.
[Tel94] Tel, G. : Distributed Algorithms. Cambridge University Press, 1994.

Received June 1997
Accepted in revised form October 1997 by E. C. R. Hehner

