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1. Introduction 

This paper deals with the existence problem of a continuous time-invariant stabi- 
lizing feedback for a nonlinear control system. It is well known that the system has 
to satisfy a number of topological conditions which are generally not precluded by 
good controllability properties. 

Brockett's result [2] in this area emphasizes that these necessary conditions can 
be interpreted as resulting from the existence of a (time-invariant) Lyapunov func- 
tion for the closed-loop stabilized system. The general goal of this paper is to 
illustrate how an additional homogeneity assumption on the Lyapunov function 
leads to additional necessary conditions for the original system. 

For homogeneous systems, the conditions that we are about to introduce turn 
out to be necessary for homogeneous stabilization, i.e., for the existence of a stabiliz- 
ing feedback leaving the closed-loop system homogeneous, since in this case the 
existence of a homogeneous Lyapunov function is guaranteed (see [16]). In gen- 
eral, these conditions are necessary for a "homogeneous Lyapunov design" of the 

* Date received: May 2, 1995. Date revised: February 29, 1996. The authors gratefully acknowledge 
research support from the Belgian Programme on Interuniversity Poles of Attraction, initiated by the 
Belgian State, Prime Minister's Office for Science, Technology, and Culture, and from the EC-Science 
Project SC1-0433-C(A). The first author is Charge de rechcrehes F.N.R.S, on leave from CESAME, 
Universit~ Catholique de Louvain, Belgium. He acknowledges partial support from the following 
organizations: National Science Foundation under Grant ECS-9203491, Air Force Office of Scientific 
Research under Grant F-49620-92-J-0495, Belgian American Educational Foundation, and North 
Atlantic Treaty Organization. The scientific responsibility rests with the authors. 

I Department of Electrical and Computer Engineering, University of California, Santa Barbara, 
California 93106, U.S.A. 

:~ Department of Systems Dynamics, Universiteit Gent, Technologiepark-Zwijnaarde 9, 9052 Gent, 
Belgium. 

34 



Homogeneous Lyapunov Functions and Necessary Conditions for Stabilization 35 

stabilizing feedback; for affine systems, they are necessary for the existence of a 
homogeneous control Lyapunov function (with a small control property). Control 
Lyapunov functions play an increasing role in the stabilization literature and 
natural candidates usually exhibit homogeneity properties. 

The major contribution in this paper, contained in Section 3, is to show that 
particular subsets of the level sets of a homogeneous Lyapunov function can 
be used to obtain necessary conditions for asymptotic stability. In particular, 
for an n-dimensional system of differential equations admitting a homogeneous 
Lyapunov function, we characterize an index condition based on an ( n -  2)- 
dimensional subset of the level sets. This index condition is independent of the 
particular dilation with respect to which the Lyapunov function is assumed to be 
homogeneous. 

In Section 3 we derive natural applications in a stabilization context. In Section 
4, assuming feedback stabilization of a given control system, we derive necessary 
conditions for the existence of a homogeneous Lyapunov function for the stabi- 
lized system. Two conditions are obtained for the existence of a homogeneous 
control Lyapunov function. In particular, we recover a necessary condition for 
homogeneous stabilization, previously obtained by Dayawansa I-8]. Finally, a 
homology condition is derived from our index condition. Unlike the previous ones, 
this condition is formulated independently of a particular dilation. 

In Section 5 we discuss the interest of adding a dimension for stabilization. 
Under the extra assumption of the existence of a homogeneous Lyapunov function 
for the (extended) stabilized system, we illustrate by simple examples the benefit 
and some limitations of dynamic feedback in the stabilization problem. In particu- 
lar, we provide simple examples of systems which are homogeneous, satisfy the 
necessary conditions for homogeneous stabilization existing in the literature, and 
are not stabilizable by homogeneous feedback. 

2. Prel iminaries 

2.1. Necessary Conditions for the Stabilization Problem 

Throughout this paper we adopt the following formulation for the stabilization 
problem: a control system is defined in an open set ~) of ~" x R r~ by 

= f(x,  u), (S) 

where u ~ N" is the control, x e R" is the state, and f ~ CI(N" x R"; N"); we assume 
the equilibrium condition 

f(O, O) = O. 

Then we investigate the existence of a stabilizing feedback for (S), i.e., a mapping u 
from R" into R" such that: 

�9 U ~ C~ ~m) N C~176 ~m). 
�9 u(O) - -  O. 
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�9 The null solution x = 0 of the closed-loop system 

Yc = F(x) := f(x,  u(x)) (Sr 

is locally asymptotically stable. 

The above class of controls is motivated as follows: on the one hand, smoothness 
of the control outside the origin is not a restriction compared with continuity 
(see [4]) and guarantees existence and uniqueness of solutions over the time inter- 
val [0, +oo) for every initial condition x 0 # 0; on the other hand, by imposing 
only continuity at the origin, we can consider situations in which the linearized 
system possesses unstable uncontrollable modes. Notice that by assumption 
F e CI(R"\{0}; R")c~ C~ R") and possesses no linearization at the origin in 
general. 

It is known that in addition to some controllability requirements (in particular 
the system must be asycontrollable, see, for instance, [20]), the above stabilization 
problem is subject to topological necessary conditions. In particular, a standard 
result on asymptotic stability (see Theorem 52.1 of [15]) asserts that the closed- 
loop vector field F satisfies the following property: the index 1 of - F  at the origin 
is equal to one. A necessary condition for the stabilization of (S) is therefore the 
existence of a feedback u e C~ R m) such that u(0) = 0 and such that the index 
of the mapping - F ( . )  = - f ( . ,  u(.)) at the origin is equal to one. In the following 
we refer to this necessary condition as the index condition for stabilization. 

The popular Broekett's necessary condition for stabilization [2], requiring that 
the image of the mapping f contains a neighborhood of the origin, can be derived 
from the above index condition. More recently, a stronger necessary condition, 
also derived from the index condition, has been obtained by Coron [3]. Brockett's 
and Coron's necessary conditions are known to be insufficient for stabilization, 
even when the system is locally controllable. They remain necessary for dynamic 
stabilization, i.e., stabilization of the extended system 

Yc = f(x,  u), 
(Sdy.) 

with y e ~k an additional state vector and v ~ Rk an additional control vector. 

2.2. Homogeneity and Stabilization 

When the differential equation (Sol) admits a linearization at the origin, the first 
theorem of Lyapunov asserts that asymptotic stability of the linear approximation 
is sufficient for (local) asymptotic stability of the original system. Natural exten- 
sions have been obtained in the literature (see, for instance, [9] and [16]), showing 
that asymptotic stability of any homogeneous approximation is sufficient for (local)) 
asymptotic stability of the original system. This result applies to a general notion 

1 Let F E C~ R") have an isolated zero at the origin, and let U be a bounded domain enclosing 
the origin, sufficiently small such that F has no zero in U\ {0}. Then the index of F at the origin is equal 
to the topological degree ofF in t3U, noted deg(F, 0U) (see, for instance, p. 124 of [10]). 
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of homogeneity, defined as follows: for each n-tuple (r I . . . .  , r,) with 0 < ri < go 
for each i e {1 . . . .  , n}, the mapping h ~ C((0, oe) x Rn; ~"): (s, x) ~ h(s, x) = 
( s ' I x~ , . . . ,  s'-x~) r defines a dilation on ~". A vector field F(x)  is homogeneous of 
degree z with respect to the dilation h(s, x) if, for each i, 

f i (h(s,  x))  = 

The Euler vector field associated to a dilation h(s, x) = (s~x~ . . . .  , s~"x,) r is defined 
by v(x) = ( r ~ x D . . . ,  r,x,) r. The homogeneous rays are the solution curves of the 
differential equation 2 = v(x). 

Homogeneous control systems play a similar role as local approximations of 
general nonlinear control systems. Their role was first emphasized in the frame- 
work of local controllability. Most of the existing necessary or sufficient conditions 
for local controllability have been derived by constructing particular approxima- 
tions which retain the controllability property (see [14] for a survey). By construc- 
tion, these approximations are homogeneous in the following (extended) sense: 

Definition 1. The system (S) is homogeneous (of order z) if there exists a dilation 
h(s, x) = (s~lxl,  . . . ,  sr~x,) r on N" and a dilation h(s, u) = (sqlul, . . . ,  SqmUm) on Nm 
such that, 

Vs > O, fi(h(s, x), h(s, u)) = s~+r'f/(x, u), i = 1 . . . . .  n. 

Definition 2. The mapping fh(x, U) (or equivalently the control system (Sh)) is a 
(local) homogeneous approximation for the mapping f ( x ,  u) (the control system (S), 
respectively) if there exists a mapping g e C~ ~ x R'~; R ~) such that 

f ( x ,  u) = fh(X, U) + O(X, U) 

and such that, for each i ~ { 1, . . . ,  n}, 

g,(h(s, x), u)) 
s~+, ' + 0 as  s --+ 0 (1) 

uniformly on the sphere S "+m-1. 

Homogeneous stabilization for homogeneous systems consists in restricting the 
class of admissible stabilizing feedbacks to those which lead to a homogeneous 
closed-loop system. This imposes the constraint 

u(h(s, x)) = u(x)), (2) 

which relates the homogeneity of the feedback to the control dilation h(s, u); 
namely, the j th  component of the feedback law must be homogeneous of degree qj 
with respect to the (state) dilation h(s, x): 

uj(h(s, x)) = sq~uj(x), j = 1 . . . . .  m. 

Definition 3. A homogeneous system is stabilizable by homogeneous feedback if 
there exists a stabilizing feedback law u e CI(Rn\{0}, •") c~ C~ R '~) such that 
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the closed-loop differential equation 

Fn(x ) := f (x,  un(x)) (sh..,) 

is homogeneous, i.e., such that (2) holds. 

By definition, homogeneous stabilization of a homogeneous approximation is 
sufficient for (local) stabilization of the original system because, with a homoge- 
neous feedback, the higher-order terms neglected in the open-loop approximation 
become higher-order terms in the closed-loop system. In this sense, homogeneous 
stabilization is instrumental in the general stabilization problem. 

2.3. Homogeneous L yapunov Functions 

Definition 4. The differential equation (Sel) is said to admit a homogeneous Lyapunov 
function if, for some dilation h(s, x), some positive integer p, and some real num- 
ber k larger than p'maxl<_i<_,r~, there exists a function V e CP(N"; [0, +oe))c~ 
C~ [0, +oe)) such that 

(i) V ( x )  = o . ~  x = o.  

(ii) 35 > 0, Vx ~ B(0, ~)\{0}, VV(x)'F(x) < O. 
(iii) V is homogeneous of order k: 

Vs > O, V(h(s, x)) = skV(x). (3) 

Specializing in a natural way the concept of control Lyapunov function (see, 
for instance, [1] and [21]), we say that the function V above is a homogeneous 
control Lyapunov function for the system (S) if condition (ii) is replaced by 

(ii') 3e > 0, Vx ~ B(0, e)\{0}, 3u ~ ~'~, VV(x) ' f (x ,  u) < O. 

Using standard terminology, the homogeneous Lyapunov function is said to 
satisfy the "small control property" if (ii') is satisfied with the additional constraint 
that Ilul] --, 0 as Ilxll --, 0. A recent converse Lyapunov theorem due to Rosier [16] 
asserts the existence of a homogeneous Lyapunov function for a homogeneous 
asymptotically stable differential equation. More precisely, if F is homogeneous 
with respect to some dilation h(s, x) and if the null solution x = 0 of (&l) is 
asymptotically stable, then the system admits a Lyapunov function which satisfies 
condition (3) above. Moreover, the result is global, i.e., (ii) holds for x e N"\{0}. 

Homogeneous Lyapunov functions have special properties which impose partic- 
ular conditions on the vector field F. In the following proposition elementary 
properties are recalled which naturally follow from the additional property (3): 

Proposition 1. Let V(x) be a positive definite function, homogeneous of order k. 
Then, for each s > O, the following properties are satisfied: 
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(a) 
(b) The function VV(x) 'v (x)  is constant on W. More generally, 

Vx # 0, VV(x). v(x) = kV(x). 

(c) V S is homeomorphic to S "-a. 
(d) For each i ~ {1 . . . . .  n}, OV/Oxi is homogeneous of order (k - ri): 

_ _  k r ,  O V  OV (h(s, x)) = s - - -  (x). 
Ox, gx, 

The level set V ~ := {x[V(x) = s} of V is homogeneous, i.e., V ~ = h(s 1/k, Vl). 

(4) 

(5) 

Proof. (a) is a direct consequence of (3). 
(b) We evaluate V(x) along the homogeneous rays: 

V(h(e s, x)) = 1"~ VV(h(e ~, x))" v(h(e ~, x)) dT. (6) 
d-  gO 

By (3), the left-hand side of (6) is equal to ek~V(x). Differentiation of both sides of 
(6) with respect to s leads to 

kek~V(x) = VV(h(e S, x))" v(h(e S, x)). (7) 

The above equality evaluated in s = 0 gives (4). 
(c) Consider the projection of W onto S "-1 along the homogeneous rays. For 

each y ~ S "-1, the homogeneous ray h(., y) crosses V S exactly once (if V(y) = a, 
then h(e t, y) ~ V ~ (only) for t = ln(s/a)l/k); the projection is therefore a continuous 
bijection between compact spaces, and therefore a homeomorphism. Finally, (d) is 
obtained by differentiating both members of (3) with respect to xi; this gives 

r 0 V  kOV 
s *~-(h(t ,  x)) = s -~-(x). �9 (8) 

oxi oxi 

We stress that property (c) of the above proposition is a consequence of the 
homogeneity. In general, the level sets of a Lyapunov function are merely homo- 
topy spheres [22], hence (c) cannot be proven because of the lack of a proof of the 
Poincar6 conjecture. Property (b) of Proposition 1, usually called the Euler prop- 
erty, emphasizes that the vector field F nowhere points outward "radially," i.e., that, 
for x ~ 0, the equality 

F(x) = 2v(x) (9) 

is satisfied for no nonnegative 2. As an immediate consequence, we obtain the 
following corollary: 

Corollary 1. I f  V is a homogeneous Lyapunov function for (Sol), then, for any scalar 
function 2 e C(~"; [0, +oo)), V is also a Lyapunov function for the new system 

~ = F ( x ) - ~ ( x ) v ( x ) .  

Proof. V is a Lyapunov function for the new system since, from (4), 

1) = VV(x ) 'F(x )  - k2(x)V(x) < VV(x ) 'F (x )  < O, Vx ~ O. 
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3. More Properties for Homogeneous Lyapunov Functions 

This section contains the main contribution of the paper. Assuming that V is a 
homogeneous Lyapunov function for (S,1), we derive an additional property for V 
which in turn leads to additional constraints on the vector field F for asymptotic 
stability. For simplicity, the results of Sections 3.2 and 3.3 assume homogeneity of 
the vector field F. We show in Section 3.4 how the results can be extended to 
general differential equations. 

3.1. Motivation 

Considering the differential equation (Sol), we isolate the p first components of the 
vector field F, 1 _< p ~ n, and define the mapping 

(F)v: ~n _., Rp: x --~ (FI(x) , . . . ,  Fv(x)) r. 

In the following we denote by Ev the canonical subspace 

E~ = {x  e ~nlxp+l  . . . .  = xn = 0} 

and by (Ev) • the orthogonal complement of Ep in R n. The projection of x e N n onto 
E p (parallel to (Ep) • is denoted by zv(x). With this notation, (F)p = n p  o F. 

Then we investigate the possibility of characterizing particular properties of the 
mapping (F)v from particular properties of the Lyapunov function V. 

Our motivation is twofold: 

�9 First, we would like to "refine" the index condition recalled in Section 2.1. The 
index condition can be considered as resulting from a global property of the 
level sets in the following sense: evaluate the index of - F  by means of 
deg( - F, V s) for s > 0 sufficiently small; by definition (see Definition 4 (ii)), the 
continuous mapping 

~ C~ 1] x R~; Nn): @(t, x) = (1 - t )VV + tF(x) 

defines a homotopy between - F  and VV; since the degree is unchanged by 
homotopy, the identity deg(VV, W) = 1 gives the index condition. By anal- 
ogy, it is tempting to derive an index condition on (F)v by evaluating a degree 
quantity on a well-chosen subset of the level set W. Typically, the index 
condition on F does not distinguish the asymptotically stable vector field 
�9 (x) = ( - x l ,  - x2 ,  -x3 )  from the unstable vector field @(x) = ( - x l ,  x2, xs). 
On the contrary, the index of the planar vector field (~P)2(x) = ( - x l ,  - x 2 )  is 
different from the index of the vector field (@)2 (x) = ( - x  1, x z). We would like 
to capture this distinction in more general situations. 

�9 There exists a second interest in characterizing necessary conditions for the 
asymptotic stability of (Sol) from the mapping (F)v. The information about 
the mapping (F)p might be better than the information about the mapping F. 
This is particularly true in the framework of dynamic feedback stabilization: 
dynamic feedback stabilization results in an asymptotically stable (n + p)- 
dimensional differential equation (the n original equations plus the k added 
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equations defining the dynamic extension); necessary conditions for dynamic 
stabilization require the properties of a subsystem (that is, the n original 
equations) of the stabilized system to be characterized, independently of the 
added dynamics. 

3.2. Contracting Subsets 

Definition 5. Let s > 0 be sufficiently small. W e is called a contracting p-subset for 
(Sr if there exists a Lyapunov function V for (S~) such that: 

(i) Vp s is a compact p-submanifold of the level set V ~ of V; it is the disjoint union 
of two points if p = 1 and connected if p > 1. 

(ii) Vx ~ Vp ~, u ~ {p + i , . . . ,  n}, (~V/OXk)(X) = O. 
(iii) rcp(Vp ~) separates 2 the origin from ~ in Ep. 

Following the above definition, it is not difficult to prove that if V is a Lyapunov 
function for (Sol), then V s is an n-contracting subset for V ' (see Lemma 3.1 in 1-17]). 
We can therefore interpret a p-contracting subset as a subset of V s which preserves 
the topological properties (i) and (iii) of a level set, and which has the additional 
property (ii). 

A natural question is whether contracting subsets exist in general. One easily 
proves (without any homogeneity assumption on the system or on the Lyapunov 
function) the existence of a contracting 1-subset V~ = {x-, x + } (see Proposition 3.2 
of [-17]). On the contrary, establishing the existence of contracting p-subsets for 
1 < p < n is nontrivial in general. The following theorem provides an affirmative 
answer for p = n - 1 under the assumption that the system is homogeneous. 

Theorem 1. Let F be homogeneous in (Sr and n > 2. I f  the null solution x = 0 is 
asymptotically stable, then there exists a homogeneous L yapunov function V for (Sex) 
such that, for each s > O, V s contains a contracting (n - 1)-subset V~L~. 

Proof. The construction of V,L~ is achieved in four steps, each of which is proven 
in Section 6.1. 

Step 1. Under the assumptions of the theorem, we prove the existence of a 
homogeneous Lyapunov function V for (So0 such that the set defined by 

M := { x e x"-~: 3V (x) } = 0 (10) 

is a compact manifold of codimension 1 in S "-1. 

Step 2. Denote by x + := (0 . . . . .  0, 1) r (resp. x-  := (0, . . . ,  0, - 1) r) the north (resp. 
south) pole of S "-1. Then M separates x + and x-  in S "-1. 

2 The separation property is to be understood in the usual topological sense: Ep\l~r(V~) is the union 
of two disjoint open sets A and B, with 0 ~ A and B unbounded. 
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Step 3. Let n > 2. Then there exists a connected component of M, say M*, that 
separates x + and x-  on S ~-1. 

Step 4. For each s > O, the set defined by the projection of M* onto V' along the 
homogeneous rays is a contracting (n - 1)-subset. �9 

Corollary 2. Let F be homogeneous in (Sel) and n = 3. Then the system admits a 
homogeneous L yapunov function V such that, for each s > O, V s contains a sequence 
of nested (homogeneous) contracting subsets 

(vc) l  = (vc)2 = (vc)3 = w .  

Proof. See Section 6.2. 

A natural question is whether the conclusions of Corollary 2 extend to higher- 
dimensional systems. The definition of contracting subsets naturally suggests a 
recursive construction from p = n until p = 1: at each step of the construction an 
addition component of VV(x) is set to zero. The construction we have adopted for 
the proof of Theorem 1 uses special connectedness properties of the sphere. In 
general there is no reason to expect that M*,~  S ~-2 and more generally that 
(V~)i ~ S "  for i ~ {3, . . . ,  n - 1}. As a consequence an alternative argument to 
Step 3 must be found for a generalization of Theorem 1, i.e., for the construction of 
( V S ) ,  from (VS)i. More generally the following question can be asked. Let F be 
homogeneous in (Sol). Does there exist a homogeneous Lyapunov function V for 
(Sol) such that, for each s > 0, V ~ contains a sequence of nested homogeneous 
contracting subsets 

(V' ) l  ~ . . .  ~ (V' ) ._ l  c V'? 

3.3. An Index Condition on (F),_ 1 

Recalling our interpretation of the index condition for F resulting from a global 
property of the level sets V s, it is very natural to expect an index-like condition for 
the mapping (F)p resulting from the existence of p-contracting subsets lip. With this 
in mind we introduce the following definition. We denote by Kp the cone 

Kp := U h(s, V~). (11) 
s > O  

Definition 6. Let G a continuous mapping from Kp into ~P. Suppose that, for 
some e > 0, G is nonsingular (i.e., G(x) ~ 0) in Kp c~ B(0, e). Then for s sufficiently 
small, the degree of G on Vp ~, i.e., deg(G, Vp*), is well defined and independent of s. 
We call this value the (generalized) index of G at 0. 

Remark 1. Notice that if G is a vector field in N" and if the origin is an isolated 
zero of G, then the (generalized) index of G at the origin in the cone R"\{0} is the 
(classical) index of G at the origin in N". 
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Although extensions exist (see [10]), the definition of topological degree is 
usually considered for continuous mappings between orientable compact con- 
nected manifolds without boundaries. By definition, a contracting subset is a 
compact connected manifold without boundary. However, a contracting subset 
need not be orientable; in such a situation, the degree is an integer mod 2. For 
p = n - 1, orientability of V~_~ can be easily established (see Lemma 3.3 of [17]). 
So throughout this paper the (generalized) index of Definition 6 is an integer. 

Theorem 2. Suppose that there exists a homogeneous Lyapunov function for (Sel). 
For each p ~ {1, n - 1, n}, consider the cone Kp defined by (11). Then the (general- 
ized) index of ( -  F)p at zero in Kp is equal to one. 

Proof. See Section 6.3. 

Example 1. Let n = 3 and F(x) = (Xl ,  --X2, X3) T. We want to "detect" the insta- 
bility of (Sol) by means of topological necessary conditions. The classical index 
condition is satisfied here but not all the conditions of Theorem 2: the index of 

- (F)2 is equal to - 1 regardless of the location of the manifold M* on S 2. Also the 
index of -(F)~ is necessarily equal to - 1 .  

Example 2. Let n = 3 and F(x) = (X3Xl,  - x 3 x 2 ,  o~(x)) w i t h ,  any function such 
that F is homogeneous. Since (F)2 may not vanish in M*, the sign ofx3 is necessar- 
ily invariant in M*. As a consequence, (F)2 is homotopic to (xl, - x 2 )  on M* 
and deg(-(F)2,  M * ) =  - 1 .  We conclude that the null solution of (Sol) is not 
asymptotically stable. Notice that the index condition on (F)I can be satisfied 
in this example. This illustrates the important role played by the topological 
properties of M* (separation and connectedness). 

3.4. Extensions to Nonhomogeneous Systems 

At this point is must be emphasized that the homogeneity assumption on the 
vector field F plays a minor role in the developments of the previous sections. The 
proof of Theorem 1 requires a slight modification of the original Lyapunov func- 
tion on the unit sphere S(0, 1). By using the homogeneity properties of F, the local 
modification can be extended globally, leading to a new Lyapunov function which 
is still homogeneous (see (41)). 

If the vector field F is nonhomogeneous, the modification of the original homo- 
geneous Lyapunov function may result in a positive definite function which main- 
tains the properties of the original Lyapunov function only locally around S(0, 1). 
Nevertheless, this is sufficient to construct the manifold M* and to establish the 
degree property of (F),_ 1 in M*. As shown in the next sections, this is sufficient for 
the applications. Repeating the construction on each sphere S(0, e), e > 0, we 
obtain the following theorem: 

Theorem 3. Suppose that system (Sol) admits a homogeneous Lyapunov function. 
Then, for each e > O, there exists a positive definite function 11, possibly nonhomo- 
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geneous, and a compact connected orientable manifold M* c S(0, e) such that: 

(a) M* separates the north pole from the south pole on S(O, e). 
(b) Vx e M*, (dV/Ox,)(x) = O. 
(c) Vx ~ S(0, e), VV(x)" F(x) < 0 and VV(x)" v(x) > O. 
(d) deg(-(F)._~, M*) = 1. 

The proof of the above theorem identically follows the construction of Theo- 
rem 1. 

Remark 2. It must be emphasized that conditions (a), (b), and (d) of Theorem 3 are 
formulated independently of the particular dilation with respect to which V is 
assumed to be homogeneous. These conditions are reasonably expected to hold 
under weaker assumptions than homogeneity of V. 

4. Necessary Conditions for Homogeneous Lyapunov Design 

In this section we provide necessary conditions for the following problem: Does 
there exist a stabilizing feedback for the control system (S) such that there exists a 
homogeneous Lyapunov function for the closed-loop system? 

For homogeneous systems, necessary conditions for the problem above are neces- 
sary conditions for homogeneous stabilization. This is a consequence of the partic- 
ular converse Lyapunov theorem recalled in Section 2.3. For general systems, 
necessary conditions for the above problem are necessary conditions for a homo- 
geneous Lyapunov design of the stabilizing feedback. In particular, we obtain 
necessary conditions for the existence of a homogeneous control Lyapunov function. 

4.1. An Hautus-Like Condition 

The first condition is a direct consequence of Corollary 1. It has been previously 
proved in [5]. 

Proposition 2. Let V be a homogeneous control Lyapunov function for (S). Then, 
for each function 2 ~ C~ [0, +oo)), V is also a homogeneous control Lyapunov 
function for the system 

ir = f(x,  u) - 2(x)v(x). (12) 

Proof. Let V a homogeneous control Lyapunov function for (S). By definition, 
the following holds: given x ~ 0, there exists a u ~ W" such that 

7V(x)" f (x ,  u) < O. 

By property (b) of Proposition 1, this implies 

VV(x). (f(x,  u) - 2(x)v(x)) < O, 

which shows that V is a homogeneous control Lyapunov function for (12). �9 

Corollary 3. Let (S) be homogeneous of order z and stabilizable (resp. dynamically 
stabilizable) by homogeneous feedback. Then, for each function 2 ~ C~ [0, + ~ ) )  
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homogeneous of order z, the homogeneous system 

2~ = f (x ,  u) - 2(x)v(x) 

is stabilizable (resp. dynamically stabilizable) by homogeneous feedback. 

(13) 

Example 3. Consider the single input planar system 

X1 = Xl + U, 
(14) 

:~2 = 3X2 + Xl u2" 

This system is homogeneous with respect to the dilation h(s,x~,x2,  u ) = 
(sx x, s3xz, su). By Corollary 3, a Lyapunov function for (14) cannot be homo- 
geneous with respect to the dilation h(s, x l ,  x2)= (SXl, sax3) since this would 
imply stabilization of the system 

3r t ---- U, 
(15) 

3r -1- XxU2~ 

which does not satisfy Brockett's necessary condition for (dynamic) stabilization. 
We conclude in particular that system (14) is not (dynamically) stabilizable by 
homogeneous feedback. 

Remark 3. In general, the necessary condition of Corollary 3 is not necessary 
for (nonhomogeneous) stabilization. We have shown in [18] that system (14) is 
stabilizable by nonhomogeneous feedback. 

Remark 4. The condition of Corollary 3 can be compared with the Popov-  
Bellevitch-Hautus criterion for stabilization of linear systems (see [ 13]). For linear 
systems, the condition also becomes sufficient when considering complex values for 

= 41 + i22 with nonnegative real part (21 _ 0). 

4.2. The Hautus-Like Condition and Contracting Subsets 

The second condition is a direct consequence of the existence of contracting (n - 1) 
subsets for homogeneous Lyapunov functions. 

Proposition 3. Assume that (S) is stabilizable and that V is a homogeneous Lyapunov 
function for the closed-loop system. Then there exists a mapping u �9 CI(sn-1; A m) 
such that there exists no path from x + to x -  entirely contained in 

h + o  :=  {x �9 sn-l: (F)n_l(X) = /~(Y)n_I(X), ~ ~ 0}, 

where F( ' )  = f ( ' ,  u(.)). 

Proof. Let u be a stabilizing feedback for (S) such that V is a homogeneous 
Lyapunov function for the closed-loop system and denote by F the (asymptotically 
stable) closed-loop vector field. By Theorem 1, there exists a compact connected 
manifold M* that separates x + and x-  on S n-l, and such that dV/t3x n identically 
vanishes on M* (modulo a possible redefinition of V). Suppose that our necessary 
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condition is violated, i.e., that there exists a path from x + to x-  entirely contained 
in A+o. Then by the separation property, M* necessarily intersects A+o at some 
point 2. By definition, 

VV(~). F(X) = (VV),_I(2).(F),_,(2) = 2VV(2).v(2) >_ O, 

which contradicts the assumption that V is a Lyapunov function for the closed- 
loop system�9 I 

The following corollary immediately follows as a particular case. 

Corollary 4. Let (S) be of the particular form 

f 
:~i = Fl(xl . . . . .  x,), 

x,,-1 V,,-l(xi . . . . .  x,,), (16) 

L ~n =U. 

Suppose that V is a homogeneous control Lyapunov function for (S) and that the 
small control property is satisfied. Then there exists no path from x + to x-  entirely 
contained in A+o. 

Remark 5. If system (S) is homogeneous, then the necessary condition of Corol- 
lary 4 is necessary for homogeneous stabilization. This was independently proven 
by Dayawansa in I-7]. Our approach emphasizes that the result holds from the sole 
assumption that the closed-loop system (not necessarily homogeneous) admits a 
homogeneous Lyapunov function. 

Remark 6. In general, the condition of Corollary 4 is not necessary for stabiliza- 
tion, even if the control system is homogeneous, affine, and controllable: system 
(14) with an integrator is of the form (16), homogeneous, and controllable�9 How- 
ever, it is stabilizable by nonhomogeneous feedback (see [18] for details)�9 

Remark 7. The degree condition deg(-(F),_x,  M*) = 1 derived in the previous 
section is implied by the condition of Proposition 3: indeed, if this last condition is 
satisfied, then it is always possible to separate S "-~ by means of a compact con- 
nected manifold M* of codimension one which avoids the set A+o. Then the 
mapping 

eC([0 ,  1] • •"; ~,- i) :  ~(t, x) = (t - 1) (v),_l (x) + t(F),_l(x) 

does not vanish on [0, 1] x M* since this would imply, for some (?, 2), 

(F),-1 (2) = ~__ ?(V)n-1 (2), 

which contradicts the assumption M* c~ A+o = ~ .  As a consequence, the mapping 
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defines a homotopy on M* between 0(0, .) = -(v).-1 and ~(1, -) = (F),-1 and 
the index condition on (F)._~ is satisfied. 

4.3. Necessary Conditions Independent of  a Particular Dilation 

The conditions of Propositions 2 and 3 are explicitly dependent (through the Euler 
vector field) on the particular dilation with respect to which the Lyapunov function 
is homogeneous. In this sense, they are very sensitive to the particular choice of the 
homogeneous Lyapunov function. As an illustration, consider system (14); a simple 
argument allows us to show that a Lyapunov function for the closed-loop system 
cannot be homogeneous with respect to the dilation h(sxa, sx3) = (sxl,  S3X3) (see 
Example 3). However, the argument fails if any other dilation is considered for the 
Lyapunov function. In contrast, the degree condition deg(-(F)n-1,  M * ) =  1 of 
Theorem 3 is independent of a particular dilation. 

The following example, originally considered in [3], illustrates a situation where 
Proposition 2 gives conclusions only for one particular dilation while a degree 
argument provides conclusions for any dilation. 

Example 4 [3]. 

System (17) is homogeneous with z 
[3] that it is locally controllable 
stabilizable. The same conclusion 
consider the third-order dynamical 

~2 

Consider the single-control planar system 

= u2(x~ - u), (17) 

= u 2 ( x 2  - x O .  

= 2 and r~ = r2 = r3 = 1. It has been shown in 
and satisfies the index condition but is not 
holds when adding a pure integrator. Now 
extension 

= u 2 ( x ~  - u ) ,  

= u2(x2 - xl) ,  (18) 

-~-V. 

Let h(s, (x, y)) be an arbitrary dilation. Assume that, for some feedback (u(x, y), 
v(x, y)), V is a Lyapunov function for the closed-loop system (18). We show that V 
cannot be homogeneous with respect to h(s, (x, y)). 

First suppose that (rl, r2) = (1, 1). Then the conclusion follows from Corollary 2: 
choosing 2(x) = u2(x), we conclude that the dynamical homogeneous stabilization 
of (17) would imply the dynamical homogeneous stabilization of 

3r 1 = - - U  3, 

fr = --X1 u2 

which does not satisfy Brockett's necessary condition for dynamic stabilization. 
This simple argument fails when considering a different dilation. 

Next assume (rl, r2) ~ (1, 1). Choose e > 0 arbitrary small. By Theorem 3, there 
exists a simple closed curve M* on S(0, e), separating the north pole from the south 
pole, such that conditions (b) and (c) of Theorem 3 are satisfied. This imposes in 
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particular that u(x) does not vanish on M*. Assume that u(x) > 0 in M* (a similar 
argument applies if u(x) < 0 in M*). Using the proof of Corollary 2, it is easily 
shown that M* contains a pair {x-,  x§ with x~ < 0 and x~ > 0 such that 
F~(x-) > 0 and F~(x +) < 0. However, this is a contradiction because by assump- 
tion x-i - u(x-~) < 0. We conclude that V is not a Lyapunov function for system 
(18). 

We do not know if system (18) is stabilizable, and, in particular, if the above 
argument applies when V is not homogeneous. 

As recalled in the preliminaries, a homology condition, necessary for stabiliza- 
tion, was derived by Coron in [3] from the (classical) index condition. Following 
the same lines, we can derive a homology condition from the degree condition 
deg(-(F) ,_l ,  M*) = 1 of Theorem 3. This homology condition is necessary for the 
existence of a homogeneous Lyapunov function for the stabilized system and is 
formulated independently of a particular dilation. We do not know if the homo- 
geneity assumption on V might be removed. Following the notations used in [3], 
for an integer k < n, we denote by Hk(X) the kth singular homology group of a 
topological space X with integer coefficients. If f is a continuous mapping from X 
to Y, it induces a homomorphism f ,  from Hk(X ) into Hk(Y ). 

Theorem 4. Let, for e e (0, oo], 

~ - 1  = ((x, u) e n= n,-1 o f(x,  u) # O, Ilxll -4- IluLI < ~}. (19) 

Assume that (S) is stabilizable. Then a necessary condition for the existence of a 
homogeneous Lyapunov funetion for the closed-loop system (S~) is that, for all 
ee(0, ~3, 

(n,_ 1 o f).(H,_z(f~,'-l)) = H._2(N"-t\{0}). (20) 

Remark 8. For an affine single control system of the form (16), condition (20) does 
not add a new condition with respect to Coron's condition. More generally, it is 
shown in [3] that, for affine systems of the form 

= f ( x ,  y),  

~ = u ,  

where (x, y) s N,-m X Rm and u s Nm, a necessary condition for stabilization is 
given by 

(f),(Hn_m_ 1 (n~)) -= Hn_,,,_ 1 (~n-m\ {0})) 

with, for each e e (0, oo], 

f~,~ = {(x, y) e N "-m x N=:f(x, y) :/: 0 and Ilxll + IlYll < e}. 
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5. Adding a Dimension for Stabilization 

As an application of the results of Section 3, we discuss in this section the interest 
and some limitations of adding an integrator for the stabilization problem, once 
again assuming the existence of a homogeneous Lyapunov function for the (extended) 
closed-loop system. 

5.1. The Index Condition: Explicit Versus Implicit 

The first question we address is the role of the index condition when adding 
dimensions: although Brockett's condition and Coron's condition are necessary for 
dynamic feedback stabilization, it was shown by Coron and Praly [6] that the 
index condition is not necessary for dynamic feedback stabilization. We believe 
that the results of Section 3 provide a simple explanation of why the addition of 
dimensions may or may not help when the index condition is not satisfied on the 
original system. 

For the purpose of illustration, we restrict ourselves to single-input (m = 1) 
systems (S) and consider one-dynamical (k = 1) extensions (Sext). The subsequent 
degree calculations on the unit sphere can be reproduced on arbitrary small 
spheres centered at the origin (as a consequence, this is not a loss of generality with 
respect to the local stabilization problem). 

The index condition is satisfied on the original system (S) if, for some mapping 
t7 ~ C(N"; ~) satisfying ~(0) = 0, the following holds: 

d e g ( - f ( ' ,  ~(')), S n-l) = 1. (21) 

On the other hand, the "refined" degree condition of Theorem 2 is satisfied for the 
extended system (Sext) if, for some mapping g e C(N"+I; N) satisfying g(0) = 0, the 
following holds: 

deg ( - f ( - ,  ~(')), M*) = 1, (22) 

where M* is a suitable manifold of codimension one in S". 
Conditions (21) and (22) can be compared as follows: if (21) is satisfied, then (22) 

holds with g(x, y) = tT(x) and with M* defined as the (radial) projection on S n of the 
manifold 

M' := {(x, y) e S "-1 x N: y = ~(x)}. 

The necessary condition of Theorem 2 is therefore satisfied for the extended system 
if the index condition is satisfied for the original system. Moreover, the manifold 
M* can be chosen to be the graph of an explicit function of the original coordi- 
nates. On the contrary, condition (22) does not imply condition (21). In particular, 
the manifold M* might be the graph of an implicit function h(x, y) = 0. We illus- 
trate the above considerations by means of simple examples. 

The first example, originally considered in [6], provides a homogeneous system 
which does not satisfy the index condition and therefore is not stabilizable. Adding 
a dimension, a system is obtained which satisfies the index condition and also the 
"refined" index condition of Theorem 2. The extended system is indeed shown to 
be stabilizable by homogeneous feedback in [6]. 
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Example 5 [6]. 

with 

Consider the n-dimensional system (n _> 2) 

: t  = - 0 . 1 ( x ,  u)x (23) 

0.1(x ,u)=l lxI I  6 - C  2 u 3 -  x/z u + x ,  3 . (24) 
\ i = 1  

The system is homogeneous with r = 6, and r 1 . . . . .  r, = 1. The index condition 
is not satisfied for n odd and C sufficiently large: Indeed, the index of the closed- 
loop system is defined only if 0.1 does not vanish in a neighborhood of the origin. 
If 0.1 is positive outside the origin, the vector field - f ( . ,  u(')) is homotopic to x and 
therefore has an index + 1. If ol is negative outside the origin, the vector field 
- f ( . ,  u(" )) is homotopic to - x  and the index is therefore - 1  if n is odd. 

For C large enough, it is shown in [6] that each continuous feedback u(x) such 
that 0 is an isolated singularity of the closed-loop system implies 0.1 < 0. The index 
condition is therefore not satisfied. 

�9 n-1  2 = 0} may s e r v e  In contrast, the set M* := {(x, y) ~ S "-1 y3 _ (~i=1 xi )y + x, 
as an (n - 1)-contracting subset. For each (x, y) ~ M*, we have 0.1(x, y) = Ilxll 6 > 0 
and therefore deg ( - f ( . ,  u(.)), M*) = 1 if u(x, y) := y. It follows that the refined 
index condition of Theorem 2 is satisfied. 

It is shown in [6] that a homogeneous stabilizing feedback indeed exists for the 
extended system 

Yc = - 41 (x, y)x,  (25) 

J) = lg. 

The second example also starts from a homogeneous system which does not 
satisfy the index condition. Adding one dimension, a system is obtained which is 
asycontrollable and satisfies the index condition. However, the refined index condi- 
tion of Theorem 2 is not satisfied, showing that no homogeneous Lyapunov func- 
tion exists for the closed-loop extended system. In particular, the extended system 
is not stabilizable by homogeneous feedback, and, when adding a pure integrator, 
the resulting affine system does not admit a homogeneous control Lyapunov 
function. 

Example 6. Consider system (23) with a 1 replaced by 

�9 y 
a2(x, u) = x , u  3 - x 2 (u + x,).  (26) 

\ i = 1  

The system ~ = --a2(x,  u)x  is homogeneous of order four with respect to the 
standard dilation. Consider on S "-1 the local coordinate 0 = x,/~,~=~x~ a 
(-o% +00). Figure 1 shows the graph of the function 0.z(K1 . . . . .  K,_ 1, x,, u ) =  
a z (0, u) = 0 in the plane (0, u). 

Similarly to the previous example, each continuous feedback u(x) such that O is 
an isolated singularity of the closed-loop system implies 0"2 < O. The index condi- 
tion is therefore not satisfied when n is odd. 
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02<0 

9>0 
) 

Fig. 1. Graph of 0r2(0, u) = 0. 

Adding a dimension, the (n + 1)-dimensional system 

2 = - a2(x, u)x,  (27) 

2 9 = v  

is obtained. The index condition is now satisfied by choosing the feedback 
u = u(x), v = y with u a (homogeneous) function such that tr z < 0 for x r 0. The 
closed-loop vector field is homotopic to (x, y )r  and the index is + 1 since n + 1 is 
even. System (27) is also asycontrollable by inspection of the control Lyapunov 
function V(x ,  y) = x r x  + y2. For each x r 0, there exists a u x such that tr2(x, ux) > 
0 i therefore, for each (x, y) r (0, 0), there exists a couple (u, v) := (u~, -y ) )  such that 
V(x,  y, v, u) < 0. This implies asycontrollability (see 1-20]). 

In contrast to the first example, the refined index condition of Theorem 2 is not 
satisfied. In other words, it does not help in the present example to consider 
another manifold in order to satisfy condition (22): it is easily verified on Fig. 1 that 
not only every continuous func t ion  v(O) defined in (-o% +oe) but also every 
continuous path defined in the plane (0, v) for 0 e ( -o% +oe) either lies in the 
region a2(x, u ) >  0 or intersects the region az(X, u ) =  0. We conclude that no 
homogeneous Lyapunov function exists for the extended closed-loop system. 

R e m a r k  9. Notice that in both examples above the usual necessary conditions for 
stabilization are satisfied on the extended system. Asycontro l labi l i ty  is established 
by means of the control Lyapunov function V(x,  y) = x r x  + ya: for each (x, y), 
there exists a (u, v) such that l?(x, y, u, v) < 0. The index  condit ion is satisfied since, 
in each case, a (homogeneous) feedback exists such that, 

Vx r O, tri(x, u(x))  < O, i = 1, 2. 

Choosing v = - y ,  the index condition is satisfied for the extended system. 
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5.2. Beyond Topological Conditions 

The question addressed in the previous section can be summarized as follows: 
Suppose that (S) does not satisfy the index condition. When does it prevent the 
existence of  a homogeneous L yapunov function for the extended system (Sext)? 

Going beyond the index condition, we first remark that the discussion of the 
above section can be slightly extended as follows: suppose that, for every feedback 
u(x), the closed-loop system f (x ,  u(x)) satisfies, for some nonnegative 2 and some 
x r 0, the relation f (x ,  u(x)) = 2v(x). According to the previous discussion, this 
may or may not prevent the existence of a homogeneous Lyapunov function for 
the extended system. 

More generally, the natural question is: Suppose that (S) does not admit a homo- 
geneous Lyapunov function. When does it prevent the existence of a homogeneous 
Lyapunov function for the extended system (Sext)? For the purpose of illustration, 
consider the following planar single-input homogeneous system: 

21 = - a 2 ( x ,  u)(xl + x2), 
(28) 

)~2 = --0"2(X, U)(X2 - -  X1), 

where, as previously, 

~rE(X, u) = xzu 3 - x31(u + x2). (29) 

In compact notation, (28) is the scalar complex system ~ = -Oz(Z, u)(z + iz) with 
z = xl + iXz. This system is clearly not stabilizable since each continuous feedback 
u(z) such that z = 0 is an isolated singularity for the dosed-loop system imposes 
a2(z, u(z)) < 0 in a neighborhood of the origin. It is natural to wonder if the 
addition of an integrator may help for stabilization. Noting that z is never parallel 
to iz, it is easily noticed that the set A+0 of Proposition 4 reduces in this ease to the 
set a~ -1 (0) which does not "link" the north pole and the south pole of S 2. As a 
consequence, system (28) passes all the above tests for (homogeneous) stabilization. 
However, it is obvious that, whatever the choice of the manifold M*, the condition 
M* c~ A+o = Z~ implies, 

V(x, y) e M*, az(x, y) < O. 

On the other hand, the homogeneous function H(x) := x 2 + x 2 is a homogeneous 
positive definite function which satisfies, 

V(x, y) e R a, az(X, y) < 0 =~ VH(x)'f(x, y) > 0. (30) 

The last relation can be shown to preclude the existence of a homogeneous 
Lyapunov function for the system, leading to the following result [19]: 

Proposition 4. System (28) augmented by an integrator, i.e., 

Yq = -a2(x ,  y)(xl + x2), 

~2 = - a 2 ( x ,  y)(x2 - xl) ,  (31) 

~ = u ,  
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does not admit a homogeneous control Lyapunov function with respect to the stan- 
dard dilation. In particular, it is not stabilizable by homogeneous feedback. 

Remark 10. We proved the incompatibility between the "instability" homoge- 
neous function H and a homogeneous Lyapunov function for the particular system 
(31). It is not clear if the existence of a contracting (n - 1)-contracting subset is in 
general not compatible with the existence of a homogeneous positive definite 
function H(x) satisfying, 

V(x, y) e M*, VH(x)" f(x, y) > O. 

6. Proofs of the Main Results 

6.1. Proof of Theorem I 

Step I. For notational convenience, we use throughout the proof the notation 
0,V for the function (gV/dx,)ls.-,. We denote by x + := (0, . . . ,  0, 1) r (resp. x-  := 
(0 . . . .  ,0, - 1) r) the north (resp. south) pole of S "-1. 

Let V a homogeneous Lyapunov function for (Sol). Rosier's result asserts the 
existence of such a function. By (4), notice that 

VV(x+) �9 v(x +) = r. 0. V(x +) > 0 (32) 

and 

VV(x-)" v(x-) = - r ,  0, V(x-) > 0. (33) 

Since r, > 0, it follows from (32), (33), and the continuity of V that M = (O, V)-I(0) 
is nonempty; it is dosed as the inverse image of a closed set and thus compact since 
it is included in S"-L 

In order to prove that M is a manifold of codimension one in S "-~, we show that 
0 is a regular value for the function (8, V) or, equivalently, that (0, 1) is a regular 
value for the mapping (SV/Ox,, xTx). Supoose that this is not true. Then there exists 
a point x* e S "-1 such that 

8, V ( x * )  = O, 
(34) 

3,~ e ~, V(0, V)(x*) = ,~x*. 

We show in the rest of the proof that, for a genetic homogeneous Lyapunov 
function, this set of conditions is satisfied for no point of S "-~. This means that, up 
to a slight modification of V, the set M is a manifold, which ends the proof. �9 

For a real constant e > 0, consider the set q /o f  functions W e C| "-1, R) such 
that, for each x e S "-a, 

I V ( x )  - W(x)l < e, (35) 

V i e { l , . .  n}}, 0~ ixW i O~VxV ~ ., < 5. (36) 
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The above set q/is an open neighborhood of V in the topology of Whitney. Define 

61 : -  min{ -VV(x ) .F(x ) :  x ~ S "-1 } (37) 

and 

(~2 :m~. max{llF(x)l[: x ~ S"-1 }. (38) 

By compactness of S "-1 and by property (ii) of Definition 4, 61 and 62 exist and are 
strictly positive. Choose ~ > 0 small enough such that, 

VW ~ q/, Vx ~ S "-1, ]]VV(x) - VW(x)]] < - -  (39) 
262" 

It follows from (37) and (38) that, 

61 
VW ~ ql, Vx ~ S "-1, VW(x)" F(x) <__ - - -  < 0. (40) 

2 

Extending each W e  Yt in ~"\{0} by homogeneity and defining W(0)= 0, we 
conclude that each W ~ ~//is a homogeneous Lyapunov function for (Sol). Indeed, 
it follows from property (d) of Theorem 1 that, for each s > 0 and for each x ~ S "-1, 

VW(h(s, x)). F(h(s, x)) = t*+kVW(x). F(x) < 0. (41) 

Since h is onto, we obtain VW(x). F(x) < 0 for all x # 0. 
For each W ~ ~ ,  define the set ~(W) c S "-1 of points which satisfy the n inde- 

pendent constraints (34). The transversality theorem of Thorn (see, for instance, 
[12]) asserts that fl(W) is empty for almost every W E ~//. Thus there exists a W in 
~//, arbitrarily close to the original Lyapunov function, such that the set of condi- 
tions (34) is satisfied for no point in ~"\{0}. For this homogeneous Lyapunov 
function W, M is a compact manifold of codimension one in S "-1. �9 

Step 2. The continuous function OV/Ox, maps S n-1 onto a closed interval I of the 
real line. By (32) and (33), 0 ~ int I. The origin is therefore a cut point of I and its 
inverse image separates S "-1. �9 

Step 3. Because M is a compact submanifold of the compact manifold S "-1, it has 
only a finite number of connected components. If the union of these components 
separates x + and x-  on S "-1, then necessarily one of the components also achieves 
the separation. This results from the following topological property of the n-sphere 
(see Theorem 8-29 in [11]): if A and B are disjoint closed subsets of S", n > 1, and 
if neither A nor B separates the point x from the point y in S", then A u B does not 
separate x from y in S". �9 

Step 4. By construction, M* possesses all the properties of a contracting (n - 1)- 
subset except that M* ~ V s for some s > 0. The last step of the proof follows from 
property (d) of Proposition 1 which implies in particular, 

Vt > O, ~V (x) a V (h(t, x)) = 0. (42) ~ 
~x, = 0 => ~x~ 



Homogeneous Lyapunov Functions and Necessary Conditions for Stabilization 55 

Let s > 0 and consider the level set V ~ of V. Define V.~_~ as the projection of M* 
onto V ~ along the homogeneous rays. We show that V,~_~ satisfies properties (i)-(iii) 
of Definition 5. The argument used for the proof of (c) in Proposition i shows that 
this projection is a homeomorphisrfi. It follows that V,~_I is a connected compact 
manifold of codimension one in V ~. This establishes (i). By (42), (ii) is also satisfied 
in V,~_I. For (iii), notice that zc,_ 1 and h(t, .) commute, i.e., for each x ~ 0, and for 
each t > 0, 

n._~(h(t, x)) = h(t, n._~(x)). (43) 

It follows that ~._I(V,~_~) is the projection of ~,_~(M*) onto V ~ along the homo- 
geneous rays. Since ~._~(M*) separates the origin from infinity in E,_I, (iii) is 
satisfied. �9 

6.2. P r o o f  o f  Corollary 2 

By Theorem 1, there exists a Lyapunov function V(x) for (Sol) such that, for each 
s > 0, V s contains a contracting 2-subset V~. A Lyapunov 1-subset can be con- 
structed in V~ as follows: Let M* c S 2 be the connected manifold constructed in 
Theorem 1 in order to generate V~. Consider a continuous path 7: [0, 1] ~ M* 
such that, 

vte [0, 1], xl(7(t)) >_ o, 

V(0) = x u -- (0, x2 u, x~) r with x~ v > 0, 

7(1) = x s = (0, x s, xS) T with x s > 0. 

By property (iii) of the contracting subsets, V exists. By property (4), notice that 

0V u VV(xN) .v(x u)>O ~ Ox2(X ) > O  

and similarily 

~V  VV(xS)'v(x s) > 0 ~ - - ( x  s) < O. 
Ox2 

By continuity of the partial derivatives of V, we conclude that there exists x + ~ M* 
such that 

x~- > 0, ~ ( x  ) = (x § = 0 and (x § > 0. 

Using the same procedure in the region xl _< O, we construct x-  e M* such that 

~v ~ ~v (x-) x~- > 0, ~xz(X-) = (x-) = 0 and > 0. 

Up to a projection onto V s along the homogeneous rays, {x-, x + } is a contracting 
1-subset in V~. This ends the proof. �9 
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6.3. Proof of  Theorem 2 

The proof is direct for p = 1. For  p = n, this is just a reformulation of the classical 
index condition. Hereafter we consider the case p = n - 1. 

Consider the manifold M* = S "-I c~ K,_ 1. We compute the topological degree 
of the mapping 

Define 

and consider the mapping 

@: M* ~ S "-1:0 

tt/:__.-- 

(-F)._l(x) 
II(-F),-x(x)ll" 

(v)._~(x) 
II(v),-~(x)ll 

t(v).-i (x) - (1 - t)(F).-1 (x) 
~o ~ C~ 1] • M*, S"-2): ~o(t, x ) =  

Ilt(v)._l(x) - (1 - t)(f)._~(x)ll" 

Notice that q~(O, x) = @(x) and that (p(1, x) = ~(x). On the other hand, noting that 
(OV/8x,)(x) = 0 on M*, we have, 

V(t, x) e [0, 1] x M*, q)(t, x).(VV)._~(x) > 0 

and then also, 

V(t, x) e [0, 1] x M*, q~(t, x) ~ O. 

As a consequence, tp defines a homotopy between @ and tp. Since �9 is in turn 
homotopic to n,-1 on M*, it remains to prove that the degree of the mapping 

rc,_iiu.: M* ~ N,-t:  x ~ ( x i ,  . . . ,  Xn-1) 

is equal to one. 
Let (S"-l)+ := {x e S"- i ix ,  > 0}. If M* c (S"-1)+, then M* is homeomorphic to 

its parallel projection in the hyperplane x, = 0. The degree of a homeomorphism 
is + 1 or - 1 depending on the orientation of M*. We conclude that the mapping 
n , - t  [r has degree one (with a suitable orientation of M*). 

If M* is not included in (S"-X)+, it can be "pushed" into (S"-1)+ by means of a 
mapping which preserves the degree: let Do be a small disk on S "-1, centered at the 
south pole and separated from M*. Consider a continuous mapping 

G: sn-l\Do X [0, 1] -~ S"-ikDo, 

such that G(',  t) is injective, and for all x e S"-ikDo we have 

G(',  0) = x; G(x, 1) e (S"-l)+. 

Finally we impose that the north pole of S "-i  is a fixed point of G(' ,  t) for all 
t e  [0, 1]. 

We consider the continuous mapping 

9: M* x [0, 1] --* S"-l: (0, t) ~ G(O, t). 
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Since G(., t) is injective and maps the north pole onto itself for each t ~ [0, 1], 
rc 2 o g does not vanish on M* x [0, 1]. As a consequence, the degree of z~,_ 1 o 
g(., t) is independent of t. By definition, ~,-1 o g(', 0) = re,_1 iu.; on the other hand, 
g(S 1, 1) c (S"-1)+ which implies that zr,_ 1 o g(., 1) is a homeomorphism. We con- 
clude that the degree of re,_ x Ir is equal to one (with a suitable orientation of M*), 
which ends the proof. [] 

6.4. Proof of  Theorem 4 

The proof is an adaptation of the proof of Theorem 2 in [3] and a consequence of 
Theorem 3. Let u(x) be a stabilizing feedback, let V(x) be a homogeneous Lyapunov 
function, and, for each 5 > 0 sufficiently small, denote by M~' the manifold M* 
defined in Theorem 3. Consider as in [3] the commutative diagram 

~ h , ~ . _ 1 \ ( 0  ) 

where h(x) := re,_ t o f (x ,  u(x)), v(x) := (x, u(x)), and 5 is small enough such that, 

- -  , -1  (45) Vx ~ M L  v(x) ~ ~ . 

By Theorem 2, 

This implies 

deg(g,_ 1 o - f ( . ,  u(')), M*) = 1. 

h , ( H , _ 2 ( i ~ )  ) = Hn_2(R "-1 \ (0)). 

Theorem 4 follows from (46) and the diagram (44). 

(46) 

[]  
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