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Thelosslesembeddingroblem,alsoknownasthe Darlingtonsynthesisr unitaryextensiomproblem,considers
the extensionof a given contractivesystemto becomethe partial input-ouput operatorof a losslesssystem.
In the paper the embeddingproblemis solvedfor discrete-timetime-varyingsystemswith finite but possibly
time-varyingstatedimensionsfor the strictly contractiveaswell asthe boundarycase. The constructioris done
in a statespacecontextand givesrise to a time-varyingRiccati differenceequationwhich is shownto havea
closed-formsolution. As a corollary, a discrete-timeBoundedRealLemmais formulated Jinking contractiveness
of an input-output operatorto conditionson its staterealization.
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1. INTRODUCTION

In a Hilbert spacesetting,a boundeddiscrete-timeinear time-varyingsystemis specifiedby its input-output
mapping: a boundedoperatorT : (41 — ¢, where ¢! and ¢ are certaingeneralized/, sequences.The
losslessembeddingproblem which we study is, given a causalinput-ouput operatorT, to find a minimal
extensionof this systemby addingmoreinputsand outputsto it suchthatthe resultingsystemz,
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is lossless:z™ =1, ¥3P=1, andhasT asits partial input-outpt operatorwhenthe extrainputsare forced to

zero: T = ¥;;. The extensionshouldbe minimal in the sensethat only a minimal numberof inputsand outputs
are added,and alsothe degreeof the resultingsystemshouldnot be increased.The solutionof the embedding
probleminherentlyinvolvesthe (spectral)factorizationof £5,5,; = 1 - T°T and of £1,2%, = | = TT". Hence,a
necessaryonditionfor the existenceof a losslessembeddings that T is a contractivesystem:|| T|| < 1.

We will solve the losslessembeddingproblemfor contractivetime-varying systemsin a statespacecontext,
under the assumptionthat the number of statesof T is finite at any point in time. While it is clear that
contractivityis a necessaryonditionfor the existenceof an embeddingwe will showin the sequelthat strict
contractivityis also sufficient to constructa solutionwhen T is of locally finite degree. This resulthasbeen
reportedin condensedorm in [VD2]. If T is contractivebut not strictly contractive,then we needan extra
conditionto be satisfiedin orderto constructan embeddingthe rangeof the Hankeloperatorassociateavith T
shouldbe closed. Not all systemshavethis property This is reminiscentof the LTI infinite-dimensioal case,
whereit is knownthat not all contractivesystemshave an embeddingsee[D2].
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The losslessembeddingproblemis known undervariousnamesin a numberof fields: in mathematicasinner
dilationsor as the unitary extensionproblem,in control as the BoundedReal Lemma (BRL), andit is largely
equivalentto the computationof a spectralfactor of (I - T™T). Thereare many applicationsof this problem. In
networktheory the classicalapplicationis Darlington synthesiswhich providesa structuredway to construct
a realizationof a passivesystemusinglosslesscomponentonly. OnceX is obtained,it can be factoredinto
variouskinds of “ladder’ or “lattice” cascadeealizationsconsistingof losslesglegree-Isectiong VD3], similar
to [DD1, D1] for time-invariantsystems.This providesone of the most stabletypesof realizationof transfer
functions,with respectto parametewvariationsand noisesensitivity Particularapplicationscould be switched
multi-ratefilter banks,wherethe switchesprovidea time-varyingstatedimensionandimplementation®f non-
uniformly sampledsystems.In control, the BRL relatesthe contractivity of a systemto propertiesof its state
spacerealization[AV, AHD, V1], which hasapplicationsin . optimal control and sensitivity minimization.
Thereis a close connectionbetweenthe BRL and certain Riccati equations,and thereis growing interestin
extensionf resultsto time-varyingsystems.Referencematerialon Riccati equationds containedn the book
[BLW].

In the presentpaper the classicaltime-invarianttheoryis extendedo the time-varyingcontext. We describea
causallinear time-varyingsystemby a boundedupperoperator
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mappinginput sequence$n £, u=[--- U4 Uy Uy ---], to correspondingutputsequencey via 'y = uT.

The i-th row of T containsthe impulseresponseof the systemfor an impulseat time i; causalityimplies that
the impulseresponseés zero beforetime i, henceT is uppertriangular The entriesT;; of T are matrices;the
numberof rows of T;; correspondgo the numberof inputsof the systemat time instanti, while the number
of columnsof T is equalto the numberof outputsof the systemat time instantj. Thesenumbersare not
necessarilconstant.In fact, we will showin this paperthatthe concepiof time-varyingstatedimensiongwhich

is necessaryor minimal realizations)Yorcesoneto adoptthe conceptof time-varyinginput-outpt dimensions,
too. A physicalinterpretationis that the systemcontainsswitchesthat switch on or off certaininputs,outputs,
or statesat certaintimes. Time-varyinginput-ouput dimensionsalso occurin multirate sampleddatasystems,
andin time-varyingHankel-normmodel reduction[DV]. With the conceptof time-varyinginput and output
dimensionsiit is also possibleto incorporatefinite uppertriangular matricesT into the framework of time-

varying systems by choosingthe dimensionsof T; to be zerofor i, j outsidea certaininterval. This leadsto

new computationahlgorithmsfor certaintypesof linear algebraproblems[VD3, VD4].

We assumehat the upperinput-ouput operatorsT admit a statespacerealizationof the form

Xi+1
Yi

XA+ UB; _|A G
XCi + ub; Ti= [ B D ] (11)

in which the matrices {A;,B;, C;,D;} are uniformly boundedand have finite (but not necessarilyconstant)
dimensions.For a given systemT with realization{T;}, we seekto determinea losslessembeddingsystemZ
with statespacerealization{Z;} of the form

R A G| Gy R
3= | B Di | Dy, | (1.2)
I Boi Do21i Do I
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Z; containsthe givenrealizationT;, suitablystatespacetransformedby someboundedlyinvertible R;, so that
>3 is equalto the giveninput-outpt operatorT. X is extendedoy matricesB;, Cp, D21, D12, D2, corresponding
to the secondaryinputs and outputs. It can be shownthat a systemis losslessif its realizationis unitary at
all times, and hencewe immediately obtain a losslessembeddingZ of T if we require 2 = I, M5 = |.
The embeddingproblemthusreducego the problemof finding the statetransformation®R; andthe embedding
matricesB;, C,, D21, Dy2 in (1.2) suchthat ¥ is unitary. The inducedsetof orthonormally conditionsgives
rise to a setof equationsvhosesolutiondependsat eachtime instanti on the positivity of a matrixM; = R'R,
which satisfiesthe recursiveRiccati equation

Mis1 = AMIA + BB + [ATMCi + B'Di] (1 - D{D; - CiMiC) ™ [D{Bi + C'MIA] . (1.3)

This Riccati equationis similar to thatwhich is obtainedn optimal controlproblems.If T is strictly contractive,
then (1.3) hasa positive semidefinitesolution{ M; }, which canbe specifiedexplicitly in termsof the operator
T and the controllabilty operatorof the given realization. The connectionis obtainedby elaboratingon the

following idea: partition T as

Tvia | Tiwi o _| Ki Hi
0 Ti 0 E

(1.4)

T is contractiveonly if K; is contractive,for all i in turn. Given the contractivenes®f K; for somei, the
conditionsfor havingK;.1 contractivecan be specifiedin termsof K; andthe new column of K;;;. Whenwe
assumea staterealizationfor T, then it turns out that we can define a finite matrix M; in terms of K; and
the controllabilty operatorof the realization,suchthat the contractivenessf K; (or positivity of | = KFK;) is
summarizedby havingMy = 0 for all k < i. Given the contractivity of K;, the extra conditionsto ensurethat
Ki+1 is alsocontractivels summarizedy havingMj.; = 0, whereM,; is obtainedby the Riccatirecursion(1.3).
The explicit solutionfor M canbe usedto give simple derivationsof propertiesof the Riccatirecursion.

We also considerthe (mathematicallyjcomplicated)boundarycasewhere T is contractive,but not necessarily
in the strict sense. In that case,the invertedterm in (1.3) is not necessarilypoundedand the inversehasto
be replacedby a pseudo-inverse.Under the sufficient conditionthat the realizationis uniformly observable,
we showthat the modified recursionhasa hermitian, positive, boundedsolution{ M; }, which we also give in
closedform.

Section2 introducesa convenientdiagonalalgebranotationfor time-varyingsystemswhich is usedin section
3 to definea diagonaloperatorform for K; andH;. The recursiveequationfor M is derivedin sections4 and
5, for the strictly contractiveand the boundarycase,respectively Theseresultsare usedin section6 to solve
the embeddingproblem.

2. DIAGONAL ALGEBRA NOTATION

Expression#n time-varyingstatespacetheoryquickly leadto anabundancef time indices. This canbeavoided
by collecting statespacequantites A; etc. into diagonals. The resulting‘diagonal algebra’was introducedin
[AD] andrefinedin [ADD, VD1, DD2, DV]. We adoptthe notationfrom the latter paper

2.1.Spaces

Our theorywill take placein spacesof non-unibrm £, series. The sequenceN = [N Jinz (N; O N ) is called
anindex sequencelUsing N, signalslive in the spaceof non-uniformsequences

N:DN—]_D@DNlDNZD O CN,
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whereV; OCM. (The box denotesthe positionof the 0-th component.)We write N = #(\). The spacely
imposesan ¢, norm on the series:

& = {XOW, [|X]lz<}.
We will think of vectorsin the \/j’s to be row vectors,and (row) sequencein A to haveentriesin Aj. Thus,
the action of matricesor operatorshappensat the right of the agument,asin aA, which is the result of the
applicationof the operatorA to the sequencea. Finite vectorscan be coveredin many ways by taking the
dimensionsf all excepta finite numberof the NV;’s equalto zero. The following classesof boundedoperators
1 - ) aredefined:

X (M, N): thespaceof boundedperatorgs* — . AnoperatofT 0 X' (M, ') hasamatrix representation
T =[T;]%,, with T;; O M; x Nj. We usuallydrop the indexingspacesas relaxationof notation.

UM, N), LIM,N), DM, N) : the spaceof boundeduppertriangular lower triangular and diagonalop-
eratorsé4! — ¢, respectively

Our input-ouput operatorsT will be operatordn X'. Causalinput-output operatorsarein additionupper Next,
shifted spacesandthe shift operatorare defined:

N® - the k-th shift rightwardsin the seriesof spacesasin NO =[-.. N, |N_1| No,---].
Z: the causalbilateral shift operatorZ : IZJZV - EJZV(D, definedby (x2)i = X—1.

AW : the ‘diagonal’ shift of an operatorA O X in the South-Eastlirection: A® = (Z<)"AZ«.
Ty  O0DWM®, N): the k-th diagonalabovethe main (0-th) diagonalof an operatorT 0 #(M,.N). T canbe
formally decomposedhto a sumof shifteddiagonaloperatorsasin T=",_; Z<Ty -

2.2.Realizations

Time-varyingstaterealizationsof the type (1.1) can be rewrittenin global operatorform by assemblinghe
matrices{A}, {Bi} etc.into diagonaloperatorsA = diag(Aj), etc.,actingonsequences =[--- Up Uy ---]1 0
y=[- Yoy - 106, x=[--- % x¢ ---]1 0¢5. TogetherA,B,C,D definea realizationT of T as

xZ1

xA+ uB [A C
y

A L A ] D (BxM) = (BEYxN). (2.1)

This definition constituteghe samesetof time-varyingstateequationsasin (1.1), but now written in an index-
free form and acting on sequences.T is a realizationof T if a solution of (2.1) satisfiesuT = vy, that is,

if
0, k<0 0, i>]
T[k] = D, k=0 or Tij = Di , i :j (2.2)
BKAKD .. A(l)c, k>0 BiAi+1 - - Aj_]_CJ , <j .

An importantnotionin this contextis strict stability of a realization.Let ¢ A be the spectralradiusof the operator
AZ (p =1imy_ || (A" ||Y". We shall saythatthe realization(2.1) is strictly stableif £5 <1 In thatcase the
operator(l - AZ)™! existsasa boundedoperatorandby substitutonin (2.1) one obtains

T=D+BZI-A2C. (2.3)

If anupperoperatoihasa statespacerealizationwith statespacesequence whereeach; hasfinite dimension,
thenwe shall say that the operatoris locally finite. We will assumethroughoutthe paperthatall input-output
operatorshavethis property

ISince(AZ)" = Z"A ... ADAD), we haveln = liMp_e ||AD ... AAAD YN = fimp e sup, || Aken - - - Ac2Aket |7, which leadsto
the more usualdefinition of exponentiaktability for time-varyingrealizations.
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An equivalentrealizationis found by applying a statetransformationk = xR on the state sequencex of the
system,whereR O D(B, B) is a boundedandboundedlyinvertible diagonaloperator The realizationT is then

transformedo .
SRS L]
| B D |

It is easyto seethatfRA[F«_D]_l = {a, hencethat strict stability is preservedunderthe transformation.

In the questionwhetherthere exist statetransformationsuch that the resultingrealizationis in input normal
form (AFA + B™B = ) or outputnormalform (AAF+ CCF = I), the following Lyapunovequationsarise:

ATAA+BB=AY  resp.  AACDAT+CCI=A,.

For strictly stablerealizations(¢a < 1), boundedsolutionsexist and are unique,A\¢ = 0, A, = 0, and are given
by the uniformly conveging sums

Ao = Yo (AHEBB)KDAK | where Al = AR ... AD | AL0} = |,
N = E:):o (A[k])D(BDB)(k+l)A[k] , where AK = A. .. ACKD) A0 = |,

/¢ is calledthecontrollabily Gramian,\, is calledtheobservabilityGramian. A realizationis calledcontrollable
if A¢c > 0 anduniformly controllablef A is uniformly positivedefinite,A; > 0, sothatit is invertible. Similarly,
a realizationis called observabldéf A, > 0 anduniformly observabléf A, > 0. A realizationis minimal if it
is both controllableand observable If T admitsa locally finite realization,thenit is alwayspossibleto choose
this realizationto be either uniformly controllabk or uniformly observablealthoughit may not be possibleto
haveboth[VD1, V2]. A uniformly controllablerealizationcanbe transformednto a realizationin inputnormal
form by a statetransformatiorR givenby A, = R°R, anda uniformly observableealizationcanbe transformed
to outputnormalform by choosingR a factor of AZ2.

(2.4)

If a strictly stablerealizationT is unitary: T-T = I, TT" = |, then the correspondingnput-outpt operator
T O U is lossless(or inner): T'T = |, TTZ = 1. A slightly more generalversionof this, not using normalized
realizationsjs given by the following lemma:

Lemma 2.1. LetT OU beaninput-outpt operatorwith strictly stablestaterealizationT. Then
)
MOD: TD[M I]T:[M I] O TT =1
)
MOD: T[M I]TD:[M I] O TT =1

ProOOF In thefirst relationto prove,the assumptioris thatthereis an M [0 D suchthat

A"MA+BB=MD; AMC+B™D=0; CMC+DD=1I.
Note that the first equationis the Lyapunovequation,so thatM is in fact the controllabiity GramianA ¢ of T.
Using theseequationswe derivethat

| -To7 | - [D+BZ(1-A27"C]"[D+BZ(I -A2'C]

| - D'D - CHI-Z"A91Z"B™D - D'BZ(I -AZ)iC
- CHI-Z"AD 128" BZz(1 - AZ)1C
CcMC + CHI-ZFAD1ZPABMC + CMAZ(I - AZ)iC -
- CHI - ZFAD 1 ZHMED - ATMA)Z (1 - AZ)IC
CHI -Z"AD) ™ {(1 -ZPA9M(1 - A2) + Z"APM(1 - AZ) +
+(1 -Z"ADMAZ - Z5MY - ATMA)Z} (1 -ADIC
0.



The secondrelationfollows likewise. O
If aninput-ouputoperatorT 0 ¥ is invertible, andthe inverseT ! 0 &/ (T is calledouter), thenD is boundedly
invertible and a realizationT * of T™! is obtainedby rewriting (2.1) as
xZ1 X(A-CD'B) + yD'B T = A-CD'B -CD*? 2.5)
u = -xCD1? + yD1 DB D! ' '

2.3. Hilbert-Schmidt spaces

In the analysisof time-varyingsystems,we frequentlyneedto apply input sequenceshat are zero up to, or
after a pointi in time, fori =---,-1,0,1,--- in turn. To apply an input-ouput operatorto all suchsequences
in a singleexpressionit is conveniento act on a stackof £,-sequencesThuslet

—fy= |U : -
A ={u= {0, wOB: lullas=) llulf<e}.

XM is a Hilbert-Schmidtspace with respectto the HS inner product

(A, B)us = traceAB". (2.6)
We will alsoneedHilbert-Schmidtspaced/,, L2, D, which are subspacesf X, and consistof thoseelements
of U, L, D, respectivelyfor which the HS normis bounded.

ForuOxM, TO X (M,N), the expressiory = uT is well defined,andgivesy 0 X3V. Thei-th row y; of y
satisfiesy; = uT [ EJZV. The elementsof U/, containall £, sequenceshatare zerobeforepointi in time, for all
i, andlikewise, we will usethe spaceL,Z* to obtainall sequenceshatare zerofrom pointi on, for all i. We
definePy, asthe projectionoperatorof A, ontol/», Py asthe projectionoperatorof x> ontoD,, andP,,7+ as
the projectionoperatorof X', onto £,Z2.

Among all operatord.X, — 5], we will only considerthosethat are left D-invariant y = uT 0 Dy = (Du)T,
for all D O D. Left D-invariantoperatorsessentiallytreateachrow of u [0 X', independently Operatorsan X’
are left D-invariant,and so are the above-definegbrojectionoperators.

2.4.Diagonal expansions

Thereis anisomorphisimbetweerelementf X, andthe spacel>(D) of £;-sequencesf diagonas. In particulay
whenwe write u 0 x> asa sumof its diagonals,

U=---+ g +Zl{1] +ZZU[2] +.o0 = o+ U +UE]1)Z+UE]2)ZZ+... ,
we canassociateo u the sequence
a=[--- Ug uﬁ]l) UEJZ) -1 0£(D).

We call 0 the diagonalexpansiorof u [0 X',. Left D-invariantboundedoperatord ¥, — X’] havea convenient
matrix representatiorftensorrepresentation)n termsof the diagonalexpansion.For example,for T O U, we
canwrite y =uT = §=0T, where

2.7)

—
I
ey
.

The entriesin this matrix representatiom@re themselvesliagonals.
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3. PRELIMINAR Y RELATIONS

The analysisof the statespacestructureneededto representan input-ouput operatorT O ¢/ is basedon the
propertiesof an operatormapping‘past’ inputs (inputsin £ ,Z?) to ‘future’ outputs(the part of outputsin i ,)

and which we shall call the correspondingHankel operator Other operatorshetweensubspace®f A, will

play animportantrole aswell. Usingthe projectionoperatorsdefinedin the previoussection,the actionof an

input-ouput mappingT O ¢« on aninputu 00 £ >Z? can be brokendown into a few operatorson a reduced
domainandrange. Thus, definethe operatorsHy, Ky andVy in the following way:

Ht : ﬁzz_l - Us, UHr = PuZ(UT)
KT . L:zz_l — EZZ_l, UKT = Pﬁzz—l(u-r)
Vi L£.Z1 o Dy, uVr = Po(uT).

Foru O £,Z we havethatuT = uKr + uHr. We call Hy the Hankel operatorof T: it is the map of inputsin
L£,Z71 to the partin U, of the correspondingutputs,and playsa crucial role in realizationtheory[VD1, V2.
Kt canbe calleda ‘past Toeplitz’ operatorassociatedo T. NotethatVr is a furtherrestrictionof Hr.

We will definethe one-sideddiagonalexpansionf signalsu in £,Z? andy in U, as

(o 10 60),
= Iyo Y ¥ -1 06(0D).

Inducedby theisomorphy the definitions

<—L Cf

y=uHr O U - y = THrO6(D)
y=uKy O L£Z7 - A T Ky O 4;(D)
D=uvy O D, - D = aTV;OD,
leadto diagonalmatrix representationsf Hr, Kr, andVr as
Tiy 3@2 TR Tuy ﬁgi 0
~ Tz [3] ~ Ti2) _— T% T%i
Ar sy | K= 1}[1 e . (31)

T3

Note that theseare (mirrored) submatricesf T in (2.7). Takingthe i-th entry of eachdiagonalgives back the
(mirrored) submatrice<;, H; of T asdefinedin (1.4).

Connectedo a staterealization,we can distingush controllabilty and observabilityoperators

B®W

B@AD
C:= | gAIA@AD 0 = [C ACTY AADCH .. ], (3.2)

which play the samerole as the correspondingoperatorsin the time-invariantcontext. If the realizationis
strictly stable,£x < 1, thenC" and O are boundedoperators[D, — ¢;(D)] and[D, - ¢;(D)], andin fact,
they are diagonalexpansionf [BZ(I — AZ2)™1]" and (I - AZ)"'C, respectively From equation(2.4) it is seen
that the controllabilty and observabilityGramiansare given by A = C*C and A\, = OOU, respectively It is
straightforwardo verify using(2.2) thatif {A,B,C,D} is a realizationof T, then Hy admitsa decomposition

HT:CO.
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SinceVr is the first columnof Hr, we havefrom equation(3.2) that
Vr=CILTC, (3.3)

andfrom (3.2) and(3.1), it is seenthatC and K7 satisfythe shift-invarianceproperties

- B ~(- T 0
S G | o

4. STRICTLY CONTRACTIVE SYSTEMS

As indicatedin the introduction a losslessembeddingof an input-ouput operatorT O ¢ is possibleonly if

T is at leastcontractive. In this section,we will explorethe consequencesf assuminghe strict contractivity
of T, to determinesufficient conditionsfor an embeddingto exist if T is strictly contractive. This is done
in two steps. Lemma 4.4 derivesa generalrelationin termsof V and Ky which is a direct consequencef
the strict contractivity of T. Theorem4.5 usesthis relationto showthat somequantityM O D, definedby
M = (1l - KTKP)™1¢, is positive,and will give a recursionfor this M in termsof statespacequantitiesof T.

This recursionturns out to be the sameRiccati recursionas for M in the embeddingproblem (viz. equation
(1.3)), and will provethe essentiaktepin the embeddingproblemfor strictly contractivesystems(section6).

The casewhereT is contractive but not necessarilystrictly contractive,is discussedn section5.

4.1. Contractivity of an input-output operator

A left D-invariant hermitian operatorA : [X, — 5] is positive semidefinite,A = 0, if for all u O X,
(uA,uyns = 0. This definition is equivalentto the usualdefinition of positivity of operatorsin Hilbert space,
but now appliesto argumentsu [0 X,. A is uniformly positivedefinite, notationA > 0, if thereexistsane >0
suchthat, for all uin X', (UA,U)us = e(u,U)ns. It is knownthata positivedefiniteoperatorA O X' is uniformly
positiveif andonly if A is boundedlyinvertiblein X'. We will sometimeausethe following form of the above
definitions,which are obtainedby usingthe definition of the Hilbert-Schmidtinner product(2.6).

Lemma 4.1. LetAO[X, - X>] bea left D-invariant hermitianoperator Then

A=20 < Po(UAW) =0, forallul x,,
A>0 < [O&>0:PyUAL) = ePo(uu), for all ud A,.

PROOF (UA,U)ps = tracePo(UAUY). Becauseof left D-invariance tracePo(UAW) = 0 for all u O X', impliesthat
DPo(UALPDP = 0 for all D O P: in particular all individual entriesof the diagonalP o(UAWP) mustbe positive
semidefinite so that Po(UAUY) = 0. The reverseis obvious. O

Let T be aninput-ouput operatorin /. We defineT to be contractive respectivelystrictly contractive,if
I-TT >0, resp. |-TT > 0.

In the lattercase,| — TT™ is boundedlyinvertible. In this section,we will from now on focuson the casethat T
is strictly contractive.The more generalcaseis treatedin section5. Becauseof theidentity | + TH1 - TT9)™1T =
(1-T™N) it is clearthat] — TT" > 0 impliesthat! — TFT > 0 also.

Lemma 4.2. If TO X is strictly contractive,thenK+ and K7 are strictly contractive.

ProOF Letu O £,Z7%, andy = uKy. SinceT is strictly contractive we havefrom the abovedefinition that
Po [u(l = KK U] Po(uud) — Po(yy”)

Po [u(l =TT u"

£Po(uld (somee>0).
8

vV v



HenceK;s is strictly contractive.A similar derivationholdsfor K+, which is isometricallyisomorphicto K.
O

4.2. Strict contractivity in terms of a state spacerealization

The following lemmais standard.It will be usedto derive a recursiverelationthat describeghe contractivity
of K& in termsof that of Kr.

Lemma 4.3. (Schur Complementsand Inversion Formula) With 7, andH, Hilbert spacesletA: H1 -
Ho, B:H1 - Ha, C:H2 - H2 beboundedoperators,andlet A and C be self-adjont. Then

_[A B (1) C>0
X'_[B c] >0 - {(2) A-BCB > 0.

If X> 0, then

[ g (E;D ]_l _ [ 8 C‘L ] + [—C—IlB] (A-BC'B)[I -BCY.

PrROOF X > 0 impliesthatC >> 0, sothatC™! exists. The resultis immediate,from the factorization

321 T 2l

Lemma 4.4. LetT OU beaninput-output operator If T is strictly contractive,then
| =Ty Ty = VE (1 - KeKD) V> 0.

PROOF SinceT is strictly contractivelemma4.2 ensureghat Kt and K‘{D are alsostrictly contractive.Using
equation(3.4), we havethat

1) | =T g - VPVr  -VEK
| - K{ORED = [0 19~ ¥TET 7. 4.1

T -KNr | - KIKy (4.1)
With lemma4.3, it is seenthatthis expressioris uniformly positiveif andonly if

{ (1) 1-KKr>o0
(2) 1 =TT = VVr = VPR (I - KIKr) 1KV > 0.

The first conditionis satisfiedbecauseT is strictly contractive. The secondconditionis equalto the result,
becauseof the equality | + K7(I — KiKy) 1KY = (I - KyKP)™. o

Theorem 4.5. LetT O U be a locally finite input-ouput operator with state spacerealization{A,B,C,D},
where A O D(B, BtD) is strictly stable(¢a < 1). If T is strictly contractive,thenM O D(B, B), definedby

M = ¢ - KtKP) ¢, (4.2)
satisfiesthe relationsM = 0, | - DD - CEMC > 0, and
MED = AMA+B™B + [A"MC+B™D] (I -D'D - C"'MC)™* [D'B + CMA] . (4.3)

If in additionthe statespacerealization is uniformly controllable, thenM >> 0.

9



ProOOF If T is strictly contractive,thenM is well-definedand M = 0. With the definition of M and usingthe
factthatD = Tq andV7 = C [T (equation(3.3)), the uniform strict positivity of 1 - D D — CEMC follows directly
from lemmad4.4. Therecursiverelationfor M is obtainedby anapplicationof Schutsinversionformula (lemma
4.3) to equation(4.1), which gives

RN T 0
| - KEDRED | = o + o
0T ] (I - KPRy L (1-KEK 1) 1KVr

] ®2[I VEKr(1-KFK7)™ (4.4)
with o o

®2 = | =Ty T — VPVr = VEK(1 - KPKT) 1KV
| -DD - C™MC.

The invertibility of ®2 was alreadyshown. Insertingthis expressiorinto the definition of M D, and usingthe
expressiorfor D in (3.4), MY is obtainedas

MED = Do [, ~RED ,'{(T—l)m] oy -

= ¢ [I +REY (1 - REIRED) B K‘T‘l)ﬂ] D
B T 0
= 0 A + 0 aAle A1
B AD][CA] B AD][VT KT]D

Lo o-roo | Lo-reey e, | @21 Re0-Riko) ) o 2 r%]m[ci]

= BB+ATCTA + ATCKT(-KK)TKIECA +
+(B™ + ATCP[1 + Ky (I-KFK7) ™ KF] ¢C) Bp2 DB + CCU[I + K7 (1-K7K7) 1 K7] CA)
= BB+AMA + (AMC+B'D)®?(D'B+CMA).

O

The equation(4.3) for M is actually a recursiveequation,which becomesapparentf we write M = diag[M;]
andtakethei-th entry of everydiagonalin the equation:this produceghe Riccatirecursion(1.3). Theorem4.5
claimsthat for a strictly contractivesystem,the Riccati recursionhasa positive solutionM, which is givenin
explicit form. This M playsa crucial role in the constructiorof a losslessembeddinglaterin section6. It also
furnishespart of the proof of the BoundedReal Lemma.

5. CONTRACTIVE SYSTEMS: THE BOUNDARY CASE

We will now derivean equivalentof theoremd4.5 for the casewhereT is contractivebut not necessarilystrictly
contractive:| - TTZ = 0. While the mathematicablerivationis more complicatednow, the resultingtheoremis
only slightly altered. It will turn outthatK 1 is not strictly contractive,andthat, insteadof (I - K+K5)™, we will
haveto usethe pseudo-inversef (I - K{Ky). Mathematicakcomplicationsarisebecausehe rangeof (I - KfKr)
is not necessarilyclosed,so thatits pseudo-inversean be unbounded.

5.1. Schur inversion formulas for positive semi-definite operators

Let be givensomeoperatorA on a Hilbert space}{. Therangeof A is R(A) = {Ax: x O H}, its closureis R (A),
andits nullspaceis denotedby N (A) = {x : Ax = 0}, which is a closedsubspace An orthogonalcomplement
is denotedby 0. The operatorpseudo-inversef A is definedas follows (following Beutlerand Root[BRY]).

10



Definition 5.1. Let X be a Hilbert space,and A be a boundedlinear operator definedon . The linear
operatorAf : 'H - 'H is a pseudo-inversef A if andonly if it is definedon R(A) O R(A)” (whichis densein
‘H) and satisfiesthe following conditions:

1)  N@A) = RA"
2 R@AH) = NA" (=RAY))
(3) AAtx = x forall xOR(A).

It is provenin [BR] that (A")f = A, (A" = (ADT, (A"A)T = ATAT, andthat At is boundedf andonly if R(A)
is closed.We will alsoapply a resultof Douglas[D3] on majorizationof operatorson Hilbert spaces:

Theorem 5.2. Let A and B be boundedoperatorson a Hilbert space’?{. Thefollowing are equivalent:

(1) AAY < A?2BB” (someir>0),
(2 R(A) O R(B),
3) A = BC for someboundedoperatorC onH .

If (1)-(3) are valid, thena uniqueoperator C existssuchthat

@ [IC] inf{ 4 : AA”< uBB},
(b))  NA N(Q),
© R O REY.

The ‘unique operatorC’ in this theoremis in fact C = BA, sincealsoB! is uniquelydefinedand BfA qualifies
for C. Consequentlyif AA” < BB, thenthis C satisfies||C|| < 1.

Using pseudo-inverseghe Schurinversionformula (lemma4.3) can be extendedto the casewhere X is not
uniformly positive.

Lemma 5.3. With H; and H, Hilbert spacesjet A : H1 - Hz, B: H1 - H2, C:Ho - H> be bounded
operators,andlet A and C be self-adjoint Then

A B 1) C = o0,
X:= [ B C ] >0 - 2) R(B) O R(CY?); i.e., By =Cl?Bisbounded
(3) A-BB, = 0.

Lemma 5.4. LetA,B,C,X beasin lemma5.3. Let X = 0 andwrite B; = C/2B. Definethe operator\W:

W:[(A—B?Bl)ﬂz IHl —IB?Hl CT/Z]'

ThenW! is well-definedand boundedon R (XY?). If v is someboundedoperatorwith rangein R(XY?), andif
v; = X2y, v, = Why

thenv; and v, are boundedand viv; = V5vs.

The proof of bothlemmasappearsas an appendix.Note that W £X172, but ratherwt = UX!2 on R(X¥2), where
U is someHilbert spaceisometry suchthat UPU = I. The point is that W* is specifiedin termsof A,B,C,
whereast is hardto do so for X172,
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5.2. Contractivity in terms of a state spacerealization

We arenow readyto derivea solutionto the embeddingproblemalongthe lines of section4 for the casewhere
T is contractive but not necessarilystrictly contractive.Recallthe definition of Hy and Ky of section3.

Lemma 5.5. LetT bean input-ouput operatorin . If T is contractive,then
| -KKP = HiHF > 0, (5.1)

and henceKy and Kt are contractive.
ProoF Letu O £Z%, andputy = uT = uKy + uHr. The contractivityof T implies

Po(uu’) = Po(yy’) 2 0
o Po(uI-TTu) 2 0
= Py (U[l —KTK-|D——HTH-|E—I]UD) >0
o P()(U[l —KTK-lt—l]UD) 2 Po(UHTH-lm—UD) > 0.

Hencel - K{K{= 0 on £,z Kr is isometricallyisomorphicto Ky andis also contractive. m]

Corollary 5.6. If T is a uniformly observablerealization of T, thenR(KYC) O R(lI - KiK7)¥2 and henceCy
definedby
C1 = (1 - KEKD1"2KE ¢ (5.2)

is bounded.

PrROOF Apply theorem5.2 to (5.1). From | — KtKJ = HtHY it follows that Hr = (I - KtKP)Y2N, for some
operatorN with ||N|| < 1. Taking diagonalexpansionswe havethat Hr = (I - KyKP)Y2N, and with Hr = CO
suchthat @O" > 0, we obtain

Kfc = KRcooHooH?
= KfHr0Y00H™
= KHI - KKDY2NoHooh ™
= (I-K{Kp¥2e,
whereC; = KIN OO0 is bounded. o

For C; definedin (5.2), definethe operatorM O D by
M=CYC +CiCy . (5.3)

M is boundedandM > 0 if CYC > 0, i.e., if the realizationis uniformly controllable. This definition of M
is compatiblewith the definition of M in (4.2) if T is strictly contractive,viz. M = € (I - KyKY)™*¢C, because
thenCiC; = C°K7(1 - K¥K)IKEC, and | + K7(I - KiKy)IKE = (1 - KyKY)™L. The latter relationis howevernot
necessarilyalid if a pseudo-inversés used.

The following theoremsubsumesheorem4.5.

Theorem 5.7. LetT O beaninput-ouputoperatorwith a strictly stablestatespacerealization{A,B,C,D}.
If T is contractiveand the realizationis uniformly observable then M definedby (5.2) and (5.3) is bounded,
M =0, and

MY = APMA + BB + ([A™MC + B"D]®1) [{dT[D'B + C™MA]) (5.4)

with @ = (I -D™D - C'MC)¥2 and| - D™D - C"MC = 0. If, in addition, the statespacerealizationis [uniformly]
contmllable thenM >0 [M > Q].
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PrOOF The proof usesthe expressiondor Vi, Kt and C as given by equations(3.3) and (3.4). To find an
expressiorfor MY, put

>0 | =T Tig — VPVr VK
— (| - KEZ\D = [op '@~ vVrvT T )
X = (1-Keko) ~KoVr | - KPRy
According to lemma5.5, X > 0. Lemma 5.3 then implies that R(KiVy) O R(l - KiK)Y2 so that (I -
KIKn)2KVr = €,C is bounded. (This result would also follow from corollary 5.6 becauseR(KVy) =
R(KFCC) O R(KFC).) Let
® = [I-TTo - V- c:D(leclc]:J]Z“2
[I - D™D - CCTC +C5iey)C]
(I - D™D - CMC)¥2.

The third item of lemma5.3impliesthatl - D™D - CP™MC > 0. Put

[ ot | CP)[ !
L R | R (e
01D _ -y [ B ] _ [ D"B+CHCHCA
[Kee]™ " = K5 [CA] "[ KHCcA

<
1

Thenlemma’5.4 yields that the operatorv; = Xt/2v = Cg"l) is boundedandv, = WAv is suchthat Viv; = V5vs.
Evaluationof v, gives

[ Pt | CHcY I DB + CHeECA

i | | (I - K§Kn)t72 KicA

_ [ ot | CcP ][ D'B+CCA
T | | 1A
[ ®f(D'B + CTMA) ]

C1A '

Vo = Why

Hence o
[efes]) ™ = vive = B,
= ADClD(ZlA+ ([BDD +ADMC]CDT) E(CDT[DDB+ CEI\/IA])

andwith ¢V = [ 2] we finally obtain
(7)™ + [efey)

BB + A"CTCA + ATCLC1A + ([B'D + ATMC] @) [t [D'B + CTMA])
A'MA + B'B + ([B'D + A'MC]®t) [(®![D'B + C'MA]) .

MED

O

The resultof this sectionis thusa relatively simple extensionof theorem4.5, althoughwe needthe givenreal-
izationto be uniformly observable This conditionis too strong: we only need“observabilityat the boundary”,
butthisis hardto express.The recursionfor M is very closeto (andencompasseshe expressiorthatwe have
obtainedbeforein the strictly contractivecase. The abovetheoremwill allow the embeddingheoremsin the
next sectionto include contractivesystemsthat neednot be strictly contractive.It alsogives part of the proof
of the BoundedReal Lemma.
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6. LOSSLESSEMBEDDING

In this section,we will solvethe losslessembeddingproblemas definedin the introdwction. We startwith an
intermediateresult.

Theorem 6.1. (Isometric embedding) LetT O %/ (M, N') bea locally finite input-output operatorwith strictly
stablestaterealizationT = {A,B,C,D}. If I =TFT > 0, or | = T°T = 0 and T is uniformly observablethenT
hasan extensior, O U (M x N, N),
| T
o [ 22 ]

suchthat=[5, =1 and A5, = A. A realizationfor 3, is

A C

_| A C |_
221‘[52 D21]‘[—¢T(DEB+CEMA) m] (&)
whete ® = (I - D™D - C"MC)¥2 and M is as definedin (5.3).
ProoOF Let X, be of the form
A C
5. = | B D (6.2)
B> Do
in which B, andD»; are to be determinedsuchthat=5, = I. Usinglemma2.1, this is the caseif thereis an
M > 0 suchthat
AMA + BB + BB, = MM
AMC + BD + BDxy = 0 (6.3)
CMC + DD + D5Dy = |

We will showthatM givenby equation(5.3)is a positivesemidefinitesolutionto theseequations.Indeed,under
the conditionsimposedon T, theoremd.5 [theorem5.7] ensureghatthis M satisfiesM >0, | -D™D-C'MC > 0
[l -D™D -C™MC = 0], and

M = A'MA+BB + ([A'MC+ B'D]ot) (@' [D'B + C"MA)) , (6.4)

where® = (I - DD - C"'MC)¥2, with B, andD»; asin (6.1), it immediatedlyfollows that equationg6.3) are
satisfied. m|

In the abovetheoremM canbe interpretedas the controllabilty Gramianof %, andsinceM = CC + C[C; with
C1 asin (5.2),it is seenthat C}C; is the controllabiity Gramianof Z,;. (A more detailedanalysisshowsthat
-C; is its controllabilty operator)

Supposehat || T|| < 1 sothatl = TT is invertible. A resultof Arveson[A], which is applicablein the present
context,claims thatthereis a factor £,; of | = T-T which is outer, i.e., suchthat 5} 0 #/. We will showthat
our choicefor 2,1, as definedby the realizationXy; in (6.1), is in fact outer To this end, we will look at a
possiblerealizationfor 51, viz. (2.5),

A< C* ] _ [ A-CD;}B, -CD3} (65)

3=
. [ B* D~ DyiB>  Da
andwill showthatthis realizationis strictly stable: ¢ a« < 1. In thatcase,we canconcludethat 35} O .

Proposition 6.2. Supposé| T|| < 1. DefineZ}, asin (6.5) andtheoem®6.1. Then{a <1, and Z is outer
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PROOF We first assertthatthe controllabilty operatorof 3 is givenby €* = —(1 - K{K7)IKEC. It is sufficient

to show that the given formula of C* satisfiesthe recursionC*™) = [C?AX]' Indeed, with equations(3.3),
(3.4),(4.4),
Y = (1 - KIK7) ORI DY =
- _(|0 | -2 T - (| —ROR-)~1 D" V? B
- ([ (I-K?KT)‘l] ' [u—@@rlk‘%] @[ ViRe-Kek ] ) | 2| | e
- _ 0 _ I -2
= | o-rrien | | o-mmiyiree | @B e

—®2(D'B + CTMA)
~(I - K{K7)IKHC[A + CO2(DB + C"MA)]
_ D318,
C*(A-CD51By) | -
The controllablity Gramianof X, is A* = CKy(I - KfK7)KE¢, which is boundedbecausethe inverseis

boundedand C™C is bounded.Accordingto a resultof AndersonandMoore [AM , thm. 4.3] (seealso [N]), if
A* is boundedandfa <12 then/a < 1. It follows thatZ5} O, sothatZy,, is outer O

Usingtheorem6.1, it is straightforwardo solve the losslessembeddingoroblem.

Theorem 6.3. (Orthogonal embedding) Let T O ¢ (M1, N1) be a locally finite input-ouput operator with
strictly stablestaterealizationT = {A,B,C,D}. If I-TFT > 0, or | = TFT >0 and T is uniformly observable,
and if the realization T is uniformly controllable, then the losslessembeddingproblemhas a solution> [
UM 1 x N1, N1 x N>) suchthat X is inner, 211 = T, 25 is outer and = hasa unitary realization X wheee As is
stateequivalentto A. If A0 D(B, Bt), then\; is specifiedby #(N>) = #(B) - #(BY) + #(M,).

PrROOF The proofis by construction.Let X be of the form

M A C C,
[Za Zp] = B D |Dp ]

| Bo D2 | D

"R J [R(_l)]_l (6.6)
b2 = I [Za Zp] [ ] = [Z, %,

L I ] I

in which R 00 D(B, B) is a boundedlyinvertible statetransformation.R, B, D12, D21, D2, areto be determined
suchthat X is unitary, in which caseX is inner(lemma2.1).

First, determineM, B,, D;» andhenceX, asin theorem6.1. BecauseT is uniformly controllable,M > 0. If
we definethe statetransformatiorR by M = R'R, thenR is invertible, and Z; is anisometry(Z'Z, =1). The
extensionof a rectangularisometricmatrix to a squareunitary matrix by addingcolumnsis a standardinear
algebraprocedurghat alwayshasa solution. The sameholdsfor diagonalsof matrices.Hence,we canextend
¥, to aunitarymatrix £, which is the realizationof aninner systemz. The resultingdimensionsequencef X
is given by [#(B) + #(M 1) + #(VN1)], andthe numberof columnsof eachdiagonalentry of X is the sequence
[#(BCD) + #(V1)], hencethe numberof columnsto be addedis equalto #(\») = #(B) — #(BD) + #(M4). This
numberis non-negativebecausehe columnsof X, are linearly independent. m|

One differencewith the time-invariantsituationis that the solutionof the embeddingproblemgivesrise to a
time-varyingnumberof addedextraoutputsif the numberof statesof T is time-varying(B #8¢2), evenif the

2The actualconditionin [AM ] is that (A—CDE}BZ, DE}BZ) is uniformly stabilizable, butit is alsoshownthatthis is the caseif andonly
if (A, DE}BZ) is uniformly stabilizable.For this, it is sufficient that £4 < 1.
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numberof inputs and outputsof T is fixed. Anotherdifferenceis that, for the boundarycase,we needboth
uniform controllabilty anduniform observabilityin orderto constructan embedding It is knownthatnot every
time-varyingsystemadmitssucha realization,not evenif it hasa finite statedimension;the conditionis that
the rangeof Hy mustbe closed. See[VD1, V2].

The constructionusedin the proof of the theoremis computationalit canbe usedto recursivelycomputethe

realizationof a losslessembeddingrom a realizationof T. The recursionrunsforwardin time: from My and
the realizationof T at time instantk, we can computeboth M. (usingrecursion(1.3)) and Z, the realization
of Z atinstantk. An exactinitial pointfor the recursioncan be obtainedfor the specialcasesvhereT haszero
statesbeforea certainpoint n in time (take M,, to be a 0 x 0 matrix), or whenT is time-invariantor periodic
beforepoint n in time, in which caseM,, is the solution of the resultingalgebraicRiccati equation. In other,

more generalcases,we cantake M, = 0 as an approximateinitial value. It can be shownthat the Riccati
recursionwith this initial value doesnot breakdown (becauséit is the exactinitial value of a relatedsystem,
which haszero statesbeforetime instantn andis the sameasthe original systemafter time n), and conveges
to the exactsolutionif the systemis strictly stable[V2]. A proof of this is omittedfor brevity.

A reformulationof theorem6.1 andproposition6.2 leadsto the BoundedRealLemmawhich appearsn system
and controltheory

Theorem 6.4. (Bounded Real Lemma) Let T O (M, N) be a boundedcausallocally finite input-outpt
operatoy with strictly stablestaterealization T = {A,B,C,D}, andA 0 D(B, B().

« | T|| <1if andonlyif there existsM O D(B, B), B, O DN, BtY), D,y O DN, N) solving

AMA + BB + BB, = M
CMC + DD + DZDy = | (6.7)
AMC + BD + BDy = 0

withM=>0, | -D'D-C"MC > 0 and £ cpz1p, < 1.
* If T is uniformlyobservablethen|| T|| < 1 if andonlyif (6.7) hasa solutionM, B ;, D21 suchthatM = 0.

ProOF The‘only if’ partis directly derivedfrom theorem6.1 andpropositon6.2. The‘if * partis a corollary of
theorem6.1: givensuchM, it follows thatthereexistsanisometricembedding , suchthat> 5, = T'T+55,5 =
I, sothat>5 55 = 1 =TT 2 0. If in additionDy; is invertibleandéA_CDﬁBZ < 1, thenby proposition6.2 we can
concludethat %5, is invertible,sothat! =TT > 0, i.e., || T|| < 1. 0

7. CONCLUDING REMARKS

Many control applicationggive rise to the Riccati equation(1.3). Usually, the existenceof a stabilizingsolution
is of importance.In the contextof our embeddingproblem,this would be a solutionfor which A—CD 31B; is
strictly stable,or 2, is outer The uniquenes®f sucha solutionis a standardesultwhich is straightforwardo
prove.

While this paperwasin review morehasbecomeknown on time-varyingRiccatiequations.We mentionin par
ticularthe paperdN], in which detailedattentionis paidto the convegenceof therecursionto maximal/minimal
solutions,and [HI], wherethe solutionof a Kalman-Szeg-Popov-¥akubovch (KSPY) systemof equationds
presented.The equationg6.7) can be viewed as a particularinstanceof theseequations.Although[HI] gives
solutionsto a more generalclassof problems,the boundarycaseis not considered.A major differencewith
[HI] is in the proofsof the results:whereaqHl] reliesheavily on insightsgainedin optimal control theory the
approachtakenin this paperis more basedon first principles: | = T°T = 55,55 = | -KKy = K§ Ks,,. The
analysisof the latter equationdirectly leadsto a recursionin which the given expressiondor M, D 21, B, turn
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up, alongwith an explicit expressiorfor the controllabilty operatorof the realizationfor X ;. Similar analysis
of Ki;% = (Ks,,) ™! leadsto the realizationof the inverse,the given expressiorfor the controllablity operatoy
andthe fact that our choicefor %, is outer.

A. APPENDIX: DERIVATION OF LEMMAS 5.3 AND 5.4

The contentsof lemmas5.3 and5.4 is well known for finite matrices(seee.g.,[CHM, BCHM]) for generalized
inverseformulasinvolving Schurcomplements) The matrix caseis readilyextendedo operatorsf the operators
areassumedo haveclosedrange. Without this condition,complicationsarisebecausehe pseudo-inversethat
areinvolved are unboundedperators.

We will repeatedlyusetheorem5.2 in the following form. Let X = 0 be a boundedoperatoron a Hilbert space
‘H. If v is a boundedoperatorwhoserangeis in R (X), thenv = Xv, for someboundedv; [0 R(XD) for which
we cantakev; = Xfv. A secondfact thatis usedin the proof of lemmab5.4 is that X! X = Pya: the orthogonall
projectoronto R (XY, with domain [BR].

A.1. Proof of lemma5.3

Supposefirst that X = 0; we showthat (1), (2), (3) hold. It is immediatethat A > 0, C = 0. The fact that
R(B) O R(CY?) is provenby showingthat thereexists A suchthat BB < AC; Douglas’theoremthenimplies
the result. The proof is by contradiction. Supposethat thereis not sucha A. Then there existsa sequence
{X, : nON } suchthat

(BBXn, %) = N(Cx,%) > 0. (A.1)
In particular || B%, || > 0 (all n). For any u,, X =0 implies

(2 2]z] [5)eo

i.e., (A, Un) + (B, Un) + (Bly, %) + (C¥,, X,) = 0. Chooseu,, = —%Bmxn. Using (A.1), we obtain

(B{ﬁ—%+;}8[‘xn,xn) > 0.

Butif n > || I+A[|?, thetermin bracess smallerthan-1/,/n, whichgivesa contradiction.HenceR (B) O R(C?).

Define L = CV2 (althoughL = L, we will not usethis), andlet B; = LtB. ThenB; is boundedandB = LB;
with R(B1) O R(LY), which implies

N(BE’) O N(). (A.2)
To prove A - B{B; = 0, we will showthat
A BfLY A B}
= > >
X [ LB, LLC ] >0 a [ B, | >0, (A.3)

from which A-B[B,; = 0 follows directly by applyingvectorsof the form [_'Bl] a. Thusfor x O H, O H,, take
x of theform

7 [ XlJlin ] - [ N(L)glR(L[) ]

wherex; O NV(L) andx, O R(LY). Notethat N'(L) O R(L") is densein H,. Then N(B)) O N(L) implies
Bx = 0, while x, 0 R(LY) impliesthat x, = L™X,, for someboundedx,. Usingtheseobservationsit follows
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that

A B u u
([ '1] [X1+X2]'[X1+X2])
(Au,u) + (BfXq, u) + (Byu,xq) + (X1, X1) + (B5Xz, U) + (B1U,X2) + (X2, X2)

(Au,u) + (B, U) + (B1U,%2) + (X2, X2)
(Au,u) + (B, u) + (B1U,%,) + (X5, X5)

o[22 o

Hencerelation(A.3) holdson a densesubsebf H1 0 H,. By continuity, it holdseverywhereand consequently
A-B[B; 20.

It remainsto prove the reverseimplication: X = 0 if the three conditiors are satisfied. BecauseC = 0 a
decompositiorof C asC = LL" is defined. Using this decompositiorand B = LB;,

wo|[ A BLIT_[1 BY][A-BB | _
LB, LL® L | || B, L®

Underthe statedconditions,the operator
I | BY A - BB;)Y?
ol S | el | Ry A

is well defined,andis a factor of X suchthatX = WW-. HenceX = 0. 0O

o8}
it

1wV

A.2. Proof of lemma 5.4

Let X > 0 havea factorizationX = WW, thenR (X¥2) = R(W) (by theorem5.2). It canbe inferredfrom Beutler
andRoot[BR] that Xt = WAWF = Xt2X1"2 "henceif R(v) 0 R(XY2) = R(W), thenv; andv, definedby

Vi Xt2y, R(vy) O R(XV2)
vo = Wy, R(v2) ORMWD

are boundedand® viv; = 5v,.
Let L = CY2, B, = L'B andput W asin (A.4), sothat X = WW. Definethe operator\} by

wh = | (A-BB |][I —IB?H' u]'

We will provethat W# = WF on R(W). The resultwill be, for a boundedoperatorv with R(v) O R(XY?) =
R(W), that Wiv = Whv, so thatv; = X?v andv, := Whv are boundedand satisfy viv; = V5v,. Indeed,for
any v with rangein R(W) we have that the operatorv; = Wiv is boundedand suchthatv = Ww. Hence
Wh = WEWy, = WIWy = Wiy, so that W = WE on R(W) if andonly if

WW=WW onRW).

To analyzeWtW, we first provethat Bf - BfLL = 0. Indeed,if x O A(L) thenx O N(B}) (by equation(A.2)),
andhenceboth Bfx = 0 andLx = 0. If, on the otherhand,x O AV(L)Y, thenLLx = x sinceL'L is the projector
onto V/(L)”, andhenceBiLTLx = Bx.

3We arecarefulherenot to write Xtv. AlthoughR(X) = R(XV2), we only havethat R(X) 0 R(XY2), andhenceXtv canbe unbouned
with R(v) O R(XY2).
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With the definition of W# andthe aboveresult,

WHW

R St Bt S | el | R

[ (A-BiBy)1"2 | BY-BOLIL ][ (A-B{By)Y2
i | LtL |
_ [ (A-BB)HA-BB,)2 [P

Lt | P, |-

P, and P, are projectorsonto R (A — B;B;)Y2 and R (LY), respectively Now, using

o[

andR(B;) O R(LY), we havethat

cunor] G ].

Since WIW is the projectoronto R (W), and WHW is the projectoronto the rangeat the right handside of the
expressionthis provesthat W*W = WtW on R (W), asrequired. HenceWt = W on R (W), which alsoimplies

thatWt is well-definedon R(W). O
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