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Thelosslessembeddingproblem,alsoknownastheDarlingtonsynthesisor unitaryextensionproblem,considers
the extensionof a given contractivesystemto becomethe partial input-output operatorof a losslesssystem.
In the paper, the embeddingproblemis solvedfor discrete-timetime-varyingsystemswith finite but possibly
time-varyingstatedimensions,for thestrictly contractiveaswell astheboundarycase.Theconstructionis done
in a statespacecontextandgivesrise to a time-varyingRiccati differenceequationwhich is shownto havea
closed-formsolution.As acorollary, adiscrete-timeBoundedRealLemmais formulated,linking contractiveness
of an input-output operatorto conditionson its staterealization.
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1. INTRODUCTION

In a Hilbert spacesetting,a boundeddiscrete-timelinear time-varyingsystemis specifiedby its input-output
mapping: a boundedoperatorT :

���
2 →

���
2 , where

���
2 and

���
2 are certaingeneralized

�
2 sequences.The

losslessembeddingproblem which we study is, given a causal input-output operatorT, to find a minimal
extensionof this systemby addingmore inputsandoutputsto it suchthat the resultingsystemΣ,

Σ =

�
Σ11 Σ12

Σ21 Σ22 � ,

is lossless:Σ∗Σ = I, ΣΣ∗ = I, andhasT as its partial input-output operatorwhenthe extra inputsare forcedto
zero: T = Σ11. The extensionshouldbe minimal in the sensethat only a minimal numberof inputsandoutputs
areadded,andalsothe degreeof the resultingsystemshouldnot be increased.The solutionof the embedding
probleminherentlyinvolvesthe (spectral)factorizationof Σ ∗

21Σ21 = I − T∗T andof Σ12Σ∗
12 = I − TT∗. Hence,a

necessaryconditionfor the existenceof a losslessembeddingis that T is a contractivesystem: � T � ≤ 1.

We will solve the losslessembeddingproblemfor contractivetime-varyingsystemsin a statespacecontext,
under the assumptionthat the number of statesof T is finite at any point in time. While it is clear that
contractivityis a necessaryconditionfor the existenceof an embedding,we will showin the sequelthat strict
contractivity is also sufficient to constructa solutionwhen T is of locally finite degree. This result hasbeen
reportedin condensedform in [VD2]. If T is contractivebut not strictly contractive,then we needan extra
conditionto be satisfiedin orderto constructan embedding:therangeof the Hankeloperatorassociatedwith T
shouldbe closed. Not all systemshavethis property. This is reminiscentof the LTI infinite-dimensional case,
whereit is known that not all contractivesystemshavean embedding,see[D2].
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The losslessembeddingproblemis known undervariousnamesin a numberof fields: in mathematicsas inner
dilationsor as the unitary extensionproblem,in control as the BoundedRealLemma(BRL), and it is largely
equivalentto the computationof a spectralfactor of (I − T∗T). Therearemanyapplicationsof this problem. In
network theory, the classicalapplicationis Darlingtonsynthesis,which providesa structuredway to construct
a realizationof a passivesystemusing losslesscomponentsonly. OnceΣ is obtained,it can be factoredinto
variouskindsof “ladder” or “lattice” cascaderealizationsconsistingof losslessdegree-1sections[VD3], similar
to [DD1, D1] for time-invariantsystems.This providesoneof the most stabletypesof realizationof transfer
functions,with respectto parametervariationsand noisesensitivity. Particularapplicationscould be switched
multi-ratefilter banks,wheretheswitchesprovidea time-varyingstatedimension,andimplementationsof non-
uniformly sampledsystems.In control, the BRL relatesthe contractivityof a systemto propertiesof its state
spacerealization[AV, AHD, V1], which hasapplicationsin � ∞ optimal control andsensitivityminimization.
There is a closeconnectionbetweenthe BRL and certainRiccati equations,and there is growing interestin
extensionsof resultsto time-varyingsystems.Referencematerialon Riccati equationsis containedin the book
[BLW].

In the presentpaper, the classicaltime-invarianttheoryis extendedto the time-varyingcontext. We describea
causallinear time-varyingsystemby a boundedupperoperator

T =

��������
�

. . .
...

...
T−1,−1 T−1,0 T−1,1 �����

T00 T01

0 T11 �����
. . .

�	�������



mappinginput sequencesin
�

2, u = [ ����� u−1 u0 u1 ����� ] , to correspondingoutputsequencesy via y = uT.
The i-th row of T containsthe impulseresponseof the systemfor an impulseat time i; causalityimplies that
the impulseresponseis zero beforetime i, henceT is uppertriangular. The entriesTij of T are matrices;the
numberof rows of Tij correspondsto the numberof inputsof the systemat time instant i, while the number
of columnsof Tij is equal to the numberof outputsof the systemat time instant j. Thesenumbersare not
necessarilyconstant.In fact, we will showin thispaperthattheconceptof time-varyingstatedimensions(which
is necessaryfor minimal realizations)forcesoneto adoptthe conceptof time-varyinginput-output dimensions,
too. A physicalinterpretationis that the systemcontainsswitchesthat switch on or off certaininputs,outputs,
or statesat certaintimes. Time-varyinginput-output dimensionsalsooccur in multiratesampleddatasystems,
and in time-varyingHankel-normmodel reduction[DV ]. With the conceptof time-varyinginput and output
dimensions,it is also possibleto incorporatefinite upper triangularmatricesT into the framework of time-
varying systems,by choosingthe dimensionsof Tij to be zero for i, j outsidea certain interval. This leadsto
new computationalalgorithmsfor certaintypesof linear algebraproblems[VD3, VD4].

We assumethat the upperinput-output operatorsT admit a statespacerealizationof the form

xi+1 = xiAi + uiBi

yi = xiCi + uiDi
T i =

�
Ai Ci

Bi Di � (1.1)

in which the matrices � Ai, Bi, Ci, Di � are uniformly boundedand have finite (but not necessarilyconstant)
dimensions.For a given systemT with realization � T i � , we seekto determinea losslessembeddingsystemΣ
with statespacerealization � ΣΣΣ i � of the form

ΣΣΣ i =

�� Ri

I
I

�
 �� Ai Ci C2,i

Bi Di D12,i

B2,i D21,i D22,i

�
 �� R−1
i+1

I
I

�
 (1.2)
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ΣΣΣ i containsthe given realizationT i, suitablystatespacetransformedby someboundedlyinvertible Ri, so that
Σ11 is equalto thegiveninput-output operatorT. ΣΣΣ is extendedby matricesB2, C2, D21, D12, D22 corresponding
to the secondaryinputsand outputs. It can be shownthat a systemis losslessif its realizationis unitary at
all times, and hencewe immediatelyobtain a losslessembeddingΣ of T if we require ΣΣΣ iΣΣΣ∗

i = I, ΣΣΣ∗
i ΣΣΣ i = I.

The embeddingproblemthusreducesto the problemof finding the statetransformationsRi andthe embedding
matricesB2, C2, D21, D12 in (1.2) suchthat ΣΣΣ is unitary. The inducedsetof orthonormality conditionsgives
rise to a setof equationswhosesolutiondependsat eachtime instanti on the positivity of a matrix M i = R∗

i Ri,
which satisfiesthe recursiveRiccati equation

Mi+1 = A∗
i MiAi + B∗

i Bi + � A∗
i MiCi + B∗

i Di � (I − D∗
i Di − C∗

i MiCi)−1 � D∗
i Bi + C∗

i MiAi � . (1.3)

This Riccatiequationis similar to thatwhich is obtainedin optimalcontrolproblems.If T is strictly contractive,
then(1.3) hasa positivesemidefinitesolution � M i � , which canbe specifiedexplicitly in termsof the operator
T and the controllability operatorof the given realization. The connectionis obtainedby elaboratingon the
following idea: partitionT as

T =

�����
�

. . .
...

...
Ti−1,i−1 Ti−1,i �����

0 Tii �����
. . .

�	����

 =

�
Ki Hi

0 Ei � (1.4)

T is contractiveonly if K i is contractive,for all i in turn. Given the contractivenessof K i for some i, the
conditionsfor havingK i+1 contractivecan be specifiedin termsof Ki and the new columnof Ki+1. Whenwe
assumea staterealizationfor T, then it turns out that we can define a finite matrix M i in terms of Ki and
the controllability operatorof the realization,suchthat the contractivenessof K i (or positivity of I − K ∗

i Ki) is
summarizedby havingMk ≥ 0 for all k ≤ i. Given the contractivityof K i, the extra conditionsto ensurethat
Ki+1 is alsocontractiveis summarizedby havingMi+1 ≥ 0, whereMi+1 is obtainedby theRiccati recursion(1.3).
The explicit solutionfor M canbe usedto give simplederivationsof propertiesof the Riccati recursion.

We also considerthe (mathematicallycomplicated)boundarycasewhereT is contractive,but not necessarily
in the strict sense. In that case,the invertedterm in (1.3) is not necessarilyboundedand the inversehas to
be replacedby a pseudo-inverse.Under the sufficient condition that the realizationis uniformly observable,
we showthat the modifiedrecursionhasa hermitian,positive,boundedsolution � M i � , which we alsogive in
closedform.

Section2 introducesa convenientdiagonalalgebranotationfor time-varyingsystems,which is usedin section
3 to definea diagonaloperatorform for K i andHi. The recursiveequationfor M is derivedin sections4 and
5, for the strictly contractiveand the boundarycase,respectively. Theseresultsare usedin section6 to solve
the embeddingproblem.

2. DIAGONAL ALGEBRA NOTATION

Expressionsin time-varyingstatespacetheoryquickly leadto anabundanceof time indices.Thiscanbeavoided
by collectingstatespacequantitiesAi etc. into diagonals.The resulting‘diagonalalgebra’was introducedin
[AD] andrefinedin [ADD, VD1, DD2, DV]. We adoptthe notationfrom the latter paper.

2.1. Spaces

Our theorywill takeplacein spacesof non-uniform
�

2 series.The sequenceN = [ Ni ] i∈ ZZ (Ni ∈ |N ) is called
an index sequence.Using N, signalslive in the spaceof non-uniformsequences

�
= ����� ⊕ �

−1 ⊕
�

0 ⊕
�

1 ⊕
�

2 ⊕ ����� ∈ |CN ,
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where
�

i ∈ |CNi . (The box denotesthe positionof the 0-th component.)We write N = #(
�

). The space
� �

2

imposesan
�

2 norm on the series: � �
2 = � x ∈

�
, � x � 2 < ∞ � .

We will think of vectorsin the
�

j ’s to be row vectors,and(row) sequencesin
�

to haveentriesin
�

j. Thus,
the action of matricesor operatorshappensat the right of the argument,as in aA, which is the result of the
applicationof the operatorA to the sequencea. Finite vectorscan be coveredin many ways by taking the
dimensionsof all excepta finite numberof the

�
j’s equalto zero. The following classesof boundedoperators� �

2 →
� �

2 aredefined:�
( � ,

�
) : thespaceof boundedoperators

� �
2 →

���
2 . An operatorT ∈

�
( � ,

�
) hasamatrixrepresentation

T = [Tij]∞
−∞, with Tij ∈ � i ×

�
j. We usuallydrop the indexingspacesasrelaxationof notation.�

( � ,
�

), � ( � ,
�

), � ( � ,
�

) : the spaceof boundeduppertriangular, lower triangular, anddiagonalop-
erators

� �
2 →

���
2 , respectively.

Our input-output operatorsT will be operatorsin
�

. Causalinput-output operatorsare in additionupper. Next,
shiftedspacesandthe shift operatoraredefined:

�
(k) : the k-th shift rightwardsin the seriesof spaces,as in

�
(1) = [ ����� �

−2
�

−1
�

0, ����� ] .

Z : the causalbilateralshift operatorZ :
� �

2 →
��� (1)

2 , definedby (xZ)i = xi−1.

A(k) : the ‘diagonal’ shift of an operatorA ∈
�

in the South-Eastdirection: A (k) = (Zk)∗AZk .

T[k] ∈ � ( � (k),
�

): the k-th diagonalabovethe main (0-th) diagonalof an operatorT ∈
�

( � ,
�

). T canbe
formally decomposedinto a sumof shifteddiagonaloperatorsas in T = � ∞

k=0 ZkT[k] .

2.2. Realizations

Time-varyingstaterealizationsof the type (1.1) can be rewritten in global operatorform by assemblingthe
matrices� Ai � , � Bi � etc. into diagonaloperatorsA = diag(Ai), etc.,actingon sequencesu = [ ����� u0 u1 ����� ] ∈� �

2 , y = [ ����� y0 y1 ����� ] ∈
� �

2 , x = [ ����� x0 x1 ����� ] ∈
���

2 . Together, A,B,C,D definea realizationT of T as

xZ−1 = xA+ uB
y = xC+ uD

T =

�
A C
B D � : ( � × � ) → ( � (−1) ×

�
) . (2.1)

This definitionconstitutesthe samesetof time-varyingstateequationsas in (1.1), but now written in an index-
free form and acting on sequences.T is a realizationof T if a solution of (2.1) satisfiesuT = y, that is,
if

T[k] =

	
 � 0 , k < 0
D , k = 0
B(k)A(k−1) ����� A(1)C, k > 0

or Tij =

	
 � 0 , i > j
Di , i = j
BiAi+1 ����� Aj−1Cj , i < j .

(2.2)

An importantnotionin thiscontextis strict stabilityof a realization.Let
�

A bethespectralradiusof theoperator
AZ:

�
A = limn→∞ � (AZ)n � 1/n. We shall saythat the realization(2.1) is strictly stableif

�
A < 1.1 In that case,the

operator(I − AZ)−1 existsasa boundedoperatorandby substitution in (2.1) oneobtains

T = D + BZ(I − AZ)−1C. (2.3)

If anupperoperatorhasa statespacerealizationwith statespacesequences� whereeach� i hasfinite dimension,
thenwe shall say that the operatoris locally finite. We will assumethroughoutthe paperthat all input-output
operatorshavethis property.

1Since(AZ)n = ZnA(n) ���� A(2)A(1), we have � A = limn→∞ � A(n) ����� A(2)A(1) � 1/n = limn→∞ supk � Ak−n
���� Ak−2Ak−1 � 1/n, which leadsto

the moreusualdefinition of exponentialstability for time-varyingrealizations.
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An equivalentrealizationis found by applying a statetransformationx̂ = xR on the statesequencex of the
system,whereR ∈ � ( � , � ) is a boundedandboundedlyinvertiblediagonaloperator. The realizationT is then
transformedto

T ′ =

�
R

I � �
A C
B D � � R(−1) � −1

I
.

It is easyto seethat
�

RA[R(−1)]−1 =
�

A, hencethat strict stability is preservedunderthe transformation.

In the questionwhetherthereexist statetransformationssuch that the resultingrealizationis in input normal
form (A∗A + B∗B = I) or outputnormal form (AA∗ + CC∗ = I), the following Lyapunovequationsarise:

A∗ΛcA + B∗B = Λ(−1)
c resp. AΛ(−1)

o A∗ + CC∗ = Λo .

For strictly stablerealizations(
�

A < 1), boundedsolutionsexist andareunique,Λc ≥ 0, Λo ≥ 0, andaregiven
by the uniformly converging sums

Λc = � ∞
k=0 (A� k � )∗(B∗B)(k+1)A� k � , whereA� k � = A(k) ����� A(1), A� 0 � = I,

Λo = � ∞
k=0 (A[k])∗(B∗B)(k+1)A[k] , whereA[k] = A ����� A(−k+1), A[0] = I.

(2.4)

Λc is calledthecontrollabiliy Gramian,Λo is calledtheobservabilityGramian.A realizationis calledcontrollable
if Λc > 0 anduniformlycontrollableif Λ c is uniformlypositivedefinite,Λc � 0, sothatit is invertible. Similarly,
a realizationis calledobservableif Λo > 0 anduniformly observableif Λo � 0. A realizationis minimal if it
is bothcontrollableandobservable.If T admitsa locally finite realization,then it is alwayspossibleto choose
this realizationto be eitheruniformly controllable or uniformly observable,althoughit may not be possibleto
haveboth[VD1, V2]. A uniformly controllablerealizationcanbetransformedinto a realizationin inputnormal
form by a statetransformationR givenby Λc = R∗R, anda uniformly observablerealizationcanbe transformed
to outputnormal form by choosingR a factor of Λ−1

o .

If a strictly stablerealizationT is unitary: T∗T = I, TT∗ = I, then the correspondinginput-output operator
T ∈

�
is lossless(or inner): T∗T = I, TT∗ = I. A slightly more generalversionof this, not usingnormalized

realizations,is given by the following lemma:

Lemma 2.1. Let T ∈
�

be an input-output operatorwith strictly stablestaterealizationT. Then

∃M ∈ � : T∗
�

M
I � T =

�
M(−1)

I � ⇒ T∗T = I

∃M ∈ � : T

�
M(−1)

I � T∗ =

�
M

I � ⇒ T∗T = I

PROOF In the first relationto prove,the assumptionis that thereis an M ∈ � suchthat

A∗MA + B∗B = M(−1) ; A∗MC+ B∗D = 0; C∗MC + D∗D = I .

Note that the first equationis the Lyapunovequation,so that M is in fact the controllability GramianΛ c of T.
Using theseequations,we derivethat

I − T∗T = I − � D + BZ(I − AZ)−1C� ∗ � D + BZ(I − AZ)−1C�
= I − D∗D − C∗(I − Z∗A∗)−1Z∗B∗D − D∗BZ(I − AZ)−1C

− C∗(I − Z∗A∗)−1Z∗B∗BZ(I − AZ)−1C

= C∗MC + C∗(I − Z∗A∗)−1Z∗A∗MC + C∗MAZ(I − AZ)−1C −

− C∗(I − Z∗A∗)−1 Z∗(M(−1) − A∗MA)Z (I − AZ)−1C

= C∗(I − Z∗A∗)−1 � (I − Z∗A∗)M(I − AZ) + Z∗A∗M(I − AZ) +

+ (I − Z∗A∗)MAZ − Z∗(M(−1) − A∗MA)Z � (I − AZ)−1C

= 0 .
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The secondrelationfollows likewise. �
If an input-outputoperatorT ∈

�
is invertible, andthe inverseT −1 ∈

�
(T is calledouter), thenD is boundedly

invertibleanda realizationT × of T−1 is obtainedby rewriting (2.1) as

xZ−1 = x(A − CD−1B) + yD−1B
u = −xCD−1 + yD−1 T× =

�
A − CD−1B −CD−1

D−1B D−1 � . (2.5)

2.3. Hilbert-Schmidt spaces

In the analysisof time-varyingsystems,we frequentlyneedto apply input sequencesthat are zero up to, or
after a point i in time, for i = ����� , −1, 0, 1, ����� in turn. To apply an input-output operatorto all suchsequences
in a singleexpression,it is convenientto act on a stackof

�
2-sequences.Thus let

� �
2 = � u =

���
�

...
u0
u1...

� ��

 , ui ∈

� �
2 : � u � 2

HS = � ui � 2
2 < ∞ � .

� �
2 is a Hilbert-Schmidtspace,with respectto the HS inner product

�
A, B� HS = traceAB∗ . (2.6)

We will alsoneedHilbert-Schmidtspaces
�

2, � 2, � 2 which aresubspacesof
�

2 andconsistof thoseelements
of

�
, � , � , respectively, for which the HS norm is bounded.

For u ∈
� �

2 , T ∈
�

( � ,
�

), the expressiony = uT is well defined,andgivesy ∈
� �

2 . The i-th row yi of y
satisfiesyi = uiT ∈

� �
2 . The elementsof

�
2 containall

�
2 sequencesthat arezerobeforepoint i in time, for all

i, and likewise, we will usethe space� 2Z−1 to obtainall sequencesthat arezerofrom point i on, for all i. We
defineP� 2 asthe projectionoperatorof

�
2 onto

�
2, P0 asthe projectionoperatorof

�
2 onto � 2, andP�

2Z−1 as
the projectionoperatorof

�
2 onto � 2Z−1.

Among all operators[
�

2 →
�

2], we will only considerthosethat are left D-invariant: y = uT ⇒ Dy = (Du)T,
for all D ∈ � . Left D-invariantoperatorsessentiallytreateachrow of u ∈

�
2 independently. Operatorsin

�
are left D-invariant,andso arethe above-definedprojectionoperators.

2.4. Diagonal expansions

Thereis anisomorphismbetweenelementsof
�

2 andthespace
�

2(� ) of
�

2-sequencesof diagonals. In particular,
whenwe write u ∈

�
2 asa sumof its diagonals,

u = ����� + u[0] + Zu[1] + Z2u[2] + ����� = ����� + u[0] + u(−1)
[1] Z + u(−2)

[2] Z2 + ����� ,

we canassociateto u the sequence

~u = [ ����� u[0] u(−1)
[1] u(−2)

[2] ����� ] ∈
�

2(� ) .

We call ~u the diagonalexpansionof u ∈
�

2. Left D-invariantboundedoperators[
�

2 →
�

2] havea convenient
matrix representation(tensorrepresentation)in termsof the diagonalexpansion.For example,for T ∈

�
, we

canwrite y = uT ⇔ ~y = ~u~T, where

~T =

��������
�

. . .
...

...
T(1)

[0] T[1] T(−1)
[2] �����

T[0] T(−1)
[1]

T(−1)
[0] �����

. . .

� �������



(2.7)

The entriesin this matrix representationare themselvesdiagonals.
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3. PRELIMINAR Y RELATIONS

The analysisof the statespacestructureneededto representan input-output operatorT ∈
�

is basedon the
propertiesof an operatormapping‘past’ inputs(inputsin � 2Z−1) to ‘future’ outputs(the part of outputsin

�
2)

and which we shall call the correspondingHankel operator. Other operatorsbetweensubspacesof
�

2 will
play an importantrole aswell. Using the projectionoperatorsdefinedin the previoussection,the actionof an
input-output mappingT ∈

�
on an input u ∈ � 2Z−1 can be brokendown into a few operatorson a reduced

domainandrange.Thus,definethe operatorsHT, KT andVT in the following way:

HT : � 2Z−1 →
�

2 , uHT = P� 2 (uT)
KT : � 2Z−1 → � 2Z−1 , uKT = P�

2Z−1(uT)
VT : � 2Z−1 → � 2 , uVT = P0(uT) .

For u ∈ � 2Z−1 we havethat uT = uKT + uHT. We call HT the Hankeloperatorof T: it is the mapof inputsin� 2Z−1 to the part in
�

2 of the correspondingoutputs,andplaysa crucial role in realizationtheory [VD1 , V2].
KT canbe calleda ‘past Toeplitz’ operatorassociatedto T. Note that VT is a further restrictionof HT.

We will definethe one-sideddiagonalexpansionsof signalsu in � 2Z−1 andy in
�

2 as

~u− = [ u(1)
[−1] u(2)

[−2] ����� ] ∈
� −

2(� ) ,
~y+ = [ y[0] y(−1)

[1] y(−2)
[2] ����� ] ∈

� +
2 ( � ) .

Inducedby the isomorphy, the definitions

y = uHT ∈
�

2 ⇔ ~y+ = ~u− ~HT ∈
� +

2( � )
y = uKT ∈ � 2Z−1 ⇔ ~y− = ~u− ~KT ∈

� −
2 ( � )

D = uVT ∈ � 2 ⇔ D = ~u− ~VT ∈ � 2

leadto diagonalmatrix representationsof HT, KT, andVT as

~HT =

�����
�

T[1] T(−1)
[2] T(−2)

[3] �����
T[2] T(−1)

[3]

T[3]
. . .

...

�	����

 , ~VT =

����
�

T[1]

T[2]

T[3]
...

�	���

 , ~KT =

�����
�

T(1)
[0] 0

T(1)
[1] T(2)

[0]

T(1)
[2] T(2)

[1] T(3)
[0]

...
...

. . .

�	����

 . (3.1)

Note that theseare (mirrored)submatricesof ~T in (2.7). Taking the i-th entry of eachdiagonalgivesback the
(mirrored)submatricesKi, Hi of T asdefinedin (1.4).

Connectedto a staterealization,we candistinguishcontrollability andobservabilityoperators

�
:=

����
�
B(1)

B(2)A(1)

B(3)A(2)A(1)

...

�	���

 �

:= � C AC(−1) AA(−1)C(−2) ����� � , (3.2)

which play the samerole as the correspondingoperatorsin the time-invariantcontext. If the realizationis
strictly stable,

�
A < 1, then

� ∗ and
�

are boundedoperators[ � 2 →
� −

2( � )] and [ � 2 →
� +

2 (� )], and in fact,
they are diagonalexpansionsof [BZ(I − AZ)−1]∗ and (I − AZ)−1C, respectively. From equation(2.4) it is seen
that the controllability and observabilityGramiansare given by Λ c =

� ∗ � and Λo =
��� ∗, respectively. It is

straightforwardto verify using(2.2) that if � A,B,C,D � is a realizationof T, then ~HT admitsa decomposition

~HT =
���

.
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Since ~VT is the first columnof ~HT, we havefrom equation(3.2) that

~VT =
�

⋅ C, (3.3)

andfrom (3.2) and(3.1), it is seenthat
�

and ~KT satisfythe shift-invarianceproperties

� (−1) =

�
B
�

A � , ~K(−1)
T =

�
T[0] 0
~VT

~KT � . (3.4)

4. STRICTL Y CONTRACTIVE SYSTEMS

As indicatedin the introduction, a losslessembeddingof an input-output operatorT ∈
�

is possibleonly if
T is at leastcontractive. In this section,we will explorethe consequencesof assumingthe strict contractivity
of T, to determinesufficient conditionsfor an embeddingto exist if T is strictly contractive. This is done
in two steps. Lemma 4.4 derivesa generalrelation in termsof ~VT and ~KT which is a direct consequenceof
the strict contractivityof T. Theorem4.5 usesthis relation to show that somequantityM ∈ � , definedby
M =

� ∗(I − ~KT
~K∗

T)−1 � , is positive,and will give a recursionfor this M in termsof statespacequantitiesof T.
This recursionturnsout to be the sameRiccati recursionas for M in the embeddingproblem(viz. equation
(1.3)), and will prove the essentialstepin the embeddingproblemfor strictly contractivesystems(section6).
The casewhereT is contractive,but not necessarilystrictly contractive,is discussedin section5.

4.1. Contractivity of an input-output operator

A left D-invariant hermitian operatorA : [
�

2 →
�

2] is positive semidefinite,A ≥ 0, if for all u ∈
�

2,�
uA,u� HS ≥ 0 . This definition is equivalentto the usualdefinition of positivity of operatorsin Hilbert space,

but now appliesto argumentsu ∈
�

2. A is uniformly positivedefinite,notationA � 0, if thereexistsan ε > 0
suchthat, for all u in

�
2,

�
uA,u� HS ≥ ε

�
u,u� HS . It is knownthata positivedefiniteoperatorA ∈

�
is uniformly

positiveif andonly if A is boundedlyinvertible in
�

. We will sometimesusethe following form of the above
definitions,which areobtainedby usingthe definitionof the Hilbert-Schmidtinner product(2.6).

Lemma 4.1. Let A ∈ [
�

2 →
�

2] be a left D-invariant hermitianoperator. Then

A ≥ 0 ⇔ P0(uAu∗) ≥ 0 , for all u ∈
�

2,
A � 0 ⇔ ∃ ε > 0 : P0(uAu∗) ≥ ε P0(uu∗) , for all u ∈

�
2.

PROOF
�
uA,u� HS = traceP0(uAu∗). Becauseof left D-invariance,traceP0(uAu∗) ≥ 0 for all u ∈

�
2 impliesthat

DP0(uAu∗)D∗ ≥ 0 for all D ∈ � : in particular, all individualentriesof the diagonalP 0(uAu∗) mustbe positive
semidefinite,so that P0(uAu∗) ≥ 0. The reverseis obvious. �
Let T be an input-output operatorin

�
. We defineT to be contractive,respectivelystrictly contractive,if

I − TT∗ ≥ 0 , resp. I − TT∗ � 0 .

In the lattercase,I − TT∗ is boundedlyinvertible. In this section,we will from now on focuson the casethat T
is strictly contractive.The moregeneralcaseis treatedin section5. Becauseof the identity I + T∗(I − TT∗)−1T =
(I − T∗T)−1 it is clear that I − TT∗ � 0 implies that I − T∗T � 0 also.

Lemma 4.2. If T ∈
�

is strictly contractive,thenKT and ~KT are strictly contractive.

PROOF Let u ∈ � 2Z−1, andy = uKT. SinceT is strictly contractive,we havefrom the abovedefinition that

P0 � u (I − KTK∗
T) u∗ � = P0(uu∗) − P0(yy∗)

≥ P0 � u (I − TT∗) u∗ �
≥ ε P0(uu∗) (someε > 0) .
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HenceKT is strictly contractive.A similar derivationholdsfor ~KT, which is isometricallyisomorphicto KT.
�

4.2. Strict contractivity in terms of a state spacerealization

The following lemmais standard.It will be usedto derivea recursiverelationthat describesthe contractivity
of ~K(−1)

T in termsof that of ~KT.

Lemma 4.3. (Schur Complementsand Inversion Formula) With � 1 and � 2 Hilbert spaces,let A : � 1 →� 2, B : � 1 → � 2, C : � 2 → � 2 be boundedoperators,and let A and C be self-adjoint. Then

X :=

�
A B∗

B C � � 0 ⇔ (1) C � 0
(2) A − B∗C−1B � 0 .

If X � 0, then �
A B∗

B C � −1

=

�
0 0
0 C−1 � +

�
I

−C−1B� (A − B∗C−1B)−1 � I − B∗C−1 � .

PROOF X � 0 implies that C � 0, so that C−1 exists. The result is immediate,from the factorization�
A B∗

B C � =

�
I B∗C−1

0 I � �
A − B∗C−1B 0

0 C � �
I 0

C−1B I � .

�

Lemma 4.4. Let T ∈
�

be an input-output operator. If T is strictly contractive,then

I − T∗
[0]T[0] − ~V∗

T (I − ~KT
~K∗

T)−1 ~VT � 0 .

PROOF SinceT is strictly contractive,lemma4.2 ensuresthat ~KT and ~K(−1)
T arealsostrictly contractive.Using

equation(3.4), we havethat

I − ~K(−1)∗
T

~K(−1)
T =

�
I − T∗

[0]T[0] − ~V∗
T

~VT − ~V∗
T

~KT

− ~K∗
T

~VT I − ~K∗
T

~KT � . (4.1)

With lemma4.3, it is seenthat this expressionis uniformly positiveif andonly if

(1) I − ~K∗
T

~KT � 0
(2) I − T∗

[0]T[0] − ~V∗
T

~VT − ~V∗
T

~KT(I − ~K∗
T

~KT)−1 ~K∗
T

~VT � 0 .

The first condition is satisfiedbecauseT is strictly contractive. The secondcondition is equal to the result,
becauseof the equality I + ~KT(I − ~K∗

T
~KT)−1 ~K∗

T = (I − ~KT
~K∗

T)−1. �

Theorem 4.5. Let T ∈
�

be a locally finite input-output operatorwith statespacerealization � A,B,C,D � ,
where A ∈ � ( � , � (−1)) is strictly stable(

�
A < 1). If T is strictly contractive,thenM ∈ � ( � , � ), definedby

M =
� ∗(I − ~KT

~K∗
T)−1 � , (4.2)

satisfiesthe relationsM ≥ 0, I − D∗D − C∗MC � 0 , and

M(−1) = A∗MA + B∗B + � A∗MC+ B∗D � (I − D∗D − C∗MC)−1 � D∗B + C∗MA� . (4.3)

If in addition the statespacerealization is uniformly controllable, thenM � 0.
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PROOF If T is strictly contractive,thenM is well-definedandM ≥ 0. With the definition of M andusingthe
fact thatD = T[0] and ~VT =

�
⋅ C (equation(3.3)), theuniform strict positivity of I − D ∗D − C∗MC follows directly

from lemma4.4. Therecursiverelationfor M is obtainedby anapplicationof Schur’s inversionformula(lemma
4.3) to equation(4.1), which gives

�
I − ~K(−1)∗

T
~K(−1)

T � −1
=

�
0

(I − ~K∗
T

~KT)−1 � +

�
I

(I− ~K∗
T

~KT)−1 ~K∗
T

~VT � Φ−2 � I ~V∗
T

~KT(I− ~K∗
T

~KT)−1 � (4.4)

with
Φ2 = I − T∗

[0]T[0] − ~V∗
T

~VT − ~V∗
T

~KT(I − ~K∗
T

~KT)−1 ~K∗
T

~VT

= I − D∗D − C∗MC.

The invertibility of Φ2 wasalreadyshown. Insertingthis expressioninto the definitionof M (−1), andusingthe
expressionfor

� (−1) in (3.4), M(−1) is obtainedas

M(−1) =
� (−1)∗

�
I − ~K(−1)

T
~K(−1)∗

T � −1 � (−1) =

=
� (−1)∗

�
I + ~K(−1)

T I − ~K(−1)∗
T

~K(−1)
T

−1 ~K(−1)∗
T � � (−1)

= � B∗ A∗ � ∗ �
�

B
�

A � + � B∗ A∗ � ∗ �
�

T[0] 0
~VT

~KT � ⋅

⋅
�

0 0
0 (I − ~K∗

T
~KT)−1 � +

�
I

(I− ~K∗
T

~KT)−1 ~K∗
T

~VT � Φ−2 � I ~V∗
T

~KT(I− ~K∗
T

~KT)−1 � ⋅
�

T[0] 0
~VT

~KT � ∗ �
B
�
A �

= B∗B + A∗ � ∗ � A + A∗ � ∗ ~KT (I− ~K∗
T

~KT)−1 ~K∗
T
�

A +

+ � B∗D + A∗ � ∗ � I + ~KT (I− ~K∗
T

~KT)−1 ~K∗
T � � C� ⋅ Φ−2 ⋅ � D∗B + C∗ � ∗ � I + ~K∗

T (I− ~K∗
T

~KT)−1 ~KT � � A�
= B∗B + A∗MA + (A∗MC+ B∗D) Φ−2 (D∗B + C∗MA) .

�
The equation(4.3) for M is actuallya recursiveequation,which becomesapparentif we write M = diag[Mi]
andtakethe i-th entryof everydiagonalin theequation:this producesthe Riccati recursion(1.3). Theorem4.5
claims that for a strictly contractivesystem,the Riccati recursionhasa positivesolutionM, which is given in
explicit form. This M playsa crucial role in the constructionof a losslessembedding,later in section6. It also
furnishespart of the proof of the BoundedRealLemma.

5. CONTRACTIVE SYSTEMS: THE BOUNDARY CASE

We will now derivean equivalentof theorem4.5 for thecasewhereT is contractivebut not necessarilystrictly
contractive:I − TT∗ ≥ 0. While the mathematicalderivationis morecomplicatednow, the resultingtheoremis
only slightly altered.It will turn out thatK T is not strictly contractive,andthat, insteadof (I − ~KT

~K∗
T)−1, we will

haveto usethepseudo-inverseof (I − ~K∗
T

~KT). Mathematicalcomplicationsarisebecausethe rangeof (I − ~K∗
T

~KT)
is not necessarilyclosed,so that its pseudo-inversecanbe unbounded.

5.1. Schur inversion formulas for positive semi-definite operators

Let begivensomeoperatorA ona Hilbert space� . Therangeof A is (A) = � Ax : x ∈ � � , its closureis (A),
and its nullspaceis denotedby

�
(A) = � x : Ax = 0 � , which is a closedsubspace.An orthogonalcomplement

is denotedby ⊥. The operatorpseudo-inverseof A is definedas follows (following BeutlerandRoot [BR ]).
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Definition 5.1. Let � be a Hilbert space,and A be a boundedlinear operator definedon � . The linear
operatorA� : � → � is a pseudo-inverseof A if and only if it is definedon (A) ⊕ (A) ⊥ (which is densein� ) and satisfiesthe following conditions:

(1)
�

(A� ) = (A)⊥

(2) (A� ) =
�

(A)⊥ ( = (A∗) )
(3) AA� x = x for all x ∈ (A).

It is provenin [BR] that (A � ) � = A, (A� )∗ = (A∗) � , (A∗A) � = A� A∗ � , andthat A� is boundedif andonly if (A)
is closed.We will alsoapply a resultof Douglas[D3] on majorizationof operatorson Hilbert spaces:

Theorem 5.2. Let A and B be boundedoperatorson a Hilbert space� . Thefollowing are equivalent:

(1) AA∗ ≤ λ2 BB∗ (someλ > 0) ,
(2) (A) ⊂ (B) ,
(3) A = BC for someboundedoperatorC on � .

If (1)-(3) are valid, thena uniqueoperatorC existssuchthat

(a) � C � = inf � µ : AA∗ ≤ µ BB∗ � ,
(b)

�
(A) =

�
(C) ,

(c) (C) ⊂ (B∗) .

The ‘uniqueoperatorC’ in this theoremis in fact C = B � A, sincealsoB� is uniquelydefinedandB � A qualifies
for C. Consequently, if AA∗ ≤ BB∗, thenthis C satisfies� C � < 1.

Using pseudo-inverses,the Schur inversionformula (lemma4.3) can be extendedto the casewhereX is not
uniformly positive.

Lemma 5.3. With � 1 and � 2 Hilbert spaces,let A : � 1 → � 2, B : � 1 → � 2, C : � 2 → � 2 be bounded
operators,and let A and C be self-adjoint. Then

X :=

�
A B∗

B C � ≥ 0 ⇔

	
 � (1) C ≥ 0 ,
(2) (B) ⊂ (C1/2) ; i.e., B1 = C� /2B is bounded,
(3) A − B∗

1B1 ≥ 0 .

Lemma 5.4. Let A,B,C,X be as in lemma5.3. Let X ≥ 0 and write B1 = C� /2B. Definethe operatorW
�
:

W
�

=

�
(A − B∗

1B1) � /2

I � �
I −B∗

1

I � �
I

C� /2 � .

ThenW
�

is well-definedand boundedon (X1/2). If v is someboundedoperatorwith rangein (X1/2), and if

v1 = X� /2v, v2 = W
�
v

thenv1 and v2 are bounded,and v∗
1v1 = v∗

2v2.

The proof of bothlemmasappearsasan appendix.Note thatW
�
/=X� /2, but ratherW

�
= UX� /2 on (X1/2), where

U is someHilbert spaceisometrysuch that U∗U = I. The point is that W
�

is specifiedin termsof A,B,C,
whereasit is hardto do so for X � /2.
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5.2. Contractivity in terms of a state spacerealization

We arenow readyto derivea solutionto theembeddingproblemalongthe linesof section4 for thecasewhere
T is contractive,but not necessarilystrictly contractive.Recall the definitionof H T andKT of section3.

Lemma 5.5. Let T be an input-output operatorin
�

. If T is contractive,then

I − KTK∗
T ≥ HTH∗

T ≥ 0 , (5.1)

and henceKT and ~KT are contractive.

PROOF Let u ∈ � 2Z−1, andput y = uT = uKT + uHT. The contractivityof T implies

P0( uu∗ ) − P0( yy∗ ) ≥ 0
⇔ P0 � u[I − TT∗]u∗ � ≥ 0
⇔ P0 � u[I − KTK∗

T − HTH∗
T]u∗ � ≥ 0

⇔ P0 � u[I − KTK∗
T]u∗ � ≥ P0 � uHTH∗

Tu∗ � ≥ 0 .

HenceI − KTK∗
T ≥ 0 on � 2Z−1. ~KT is isometricallyisomorphicto KT andis alsocontractive. �

Corollary 5.6. If T is a uniformlyobservablerealization of T, then ( ~K∗
T

�
) ⊂ (I − ~K∗

T
~KT)1/2 andhence

�
1

definedby
�

1 = (I − ~K∗
T

~KT) � /2 ~K∗
T
�

(5.2)

is bounded.

PROOF Apply theorem5.2 to (5.1). From I − KTK∗
T ≥ HTH∗

T it follows that HT = (I − KTK∗
T)1/2N, for some

operatorN with � N � ≤ 1. Taking diagonalexpansions,we havethat ~HT = (I − ~KT
~K∗

T)1/2 ~N, and with ~HT =
� �

suchthat
��� ∗ � 0, we obtain

~K∗
T
�

= ~K∗
T
� ��� ∗(

� � ∗)−1

= ~K∗
T

~HT
� ∗(

� � ∗)−1

= ~K∗
T(I − ~KT

~K∗
T)1/2 ~N

� ∗(
� � ∗)−1

= (I − ~K∗
T

~KT)1/2 �
1

where
�

1 = ~K∗
T

~N ⋅
� ∗(

� � ∗)−1 is bounded. �
For

�
1 definedin (5.2), definethe operatorM ∈ � by

M =
� ∗ � +

� ∗
1
�

1 . (5.3)

M is bounded,and M � 0 if
� ∗ � � 0, i.e., if the realizationis uniformly controllable. This definition of M

is compatiblewith the definition of M in (4.2) if T is strictly contractive,viz. M =
� ∗(I − ~KT

~K∗
T)−1 � , because

then
� ∗

1
�

1 =
� ∗ ~KT(I − ~K∗

T
~KT)−1 ~K∗

T

�
, and I + ~KT(I − ~K∗

T
~KT)−1 ~K∗

T = (I − ~KT
~K∗

T)−1. The latter relationis howevernot
necessarilyvalid if a pseudo-inverseis used.

The following theoremsubsumestheorem4.5.

Theorem 5.7. Let T ∈
�

bean input-outputoperatorwith a strictly stablestatespacerealization � A,B,C,D � .
If T is contractiveand the realizationis uniformly observable,then M definedby (5.2) and (5.3) is bounded,
M ≥ 0, and

M(−1) = A∗MA + B∗B + � [A∗MC + B∗D]Φ � � ⋅ � Φ � [D∗B + C∗MA] � (5.4)

with Φ = (I − D∗D − C∗MC)1/2 andI − D∗D − C∗MC ≥ 0. If, in addition,thestatespacerealizationis [uniformly]
controllable thenM > 0 [M � 0].
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PROOF The proof usesthe expressionsfor ~VT, ~KT and
�

as given by equations(3.3) and (3.4). To find an
expressionfor M(−1), put

X = (I − ~K∗
T

~KT)(−1) =

�
I − T∗

[0]T[0] − ~V∗
T

~VT − ~V∗
T

~KT

− ~K∗
T

~VT I − ~K∗
T

~KT � .

According to lemma 5.5, X ≥ 0. Lemma 5.3 then implies that ( ~K∗
T

~VT) ⊂ (I − ~K∗
T

~KT)1/2 so that (I −
~K∗

T
~KT) � /2 ~K∗

T
~VT =

�
1C is bounded. (This result would also follow from corollary 5.6 because ( ~K∗

T
~VT) =

( ~K∗
T

�
C) ⊂ ( ~K∗

T

�
).) Let

Φ = � I − T∗
[0]T[0] − ~V∗

T
~VT − C∗ � ∗

1
�

1C� 1/2

= � I − D∗D − C∗(
� ∗ � +

� ∗
1

�
1)C� 1/2

= (I − D∗D − C∗MC)1/2 .

The third item of lemma5.3 implies that I − D∗D − C∗MC ≥ 0. Put

W
�

=

�
Φ �

I � �
I C∗ � ∗

1

I � �
I

(I − ~K∗
T

~KT) � /2 �
v = � ~K∗

T

� � (−1)
= ~K∗(−1)

T

�
B
�
A � =

�
D∗B + C∗ � ∗ � A

~K∗
T

�
A � .

Then lemma5.4 yields that the operatorv1 = X� /2v =
� (−1)

1 is bounded,andv2 = W
�
v is suchthat v∗

1v1 = v∗
2v2.

Evaluationof v2 gives

v2 = W
�
v =

�
Φ �

I � �
I C∗ � ∗

1

I � �
I

(I − ~K∗
T

~KT) � /2 � �
D∗B + C∗ � ∗ � A

~K∗
T

�
A �

=

�
Φ �

I � �
I C∗ � ∗

1

I � �
D∗B + C∗ � ∗ � A

�
1A �

=

�
Φ � (D∗B + C∗MA)

�
1A � .

Hence
� � ∗

1
�

1 � (−1)
= v∗

1v1 = v∗
2v2

= A∗ � ∗
1

�
1A + � [B∗D + A∗MC]Φ � � ⋅ � Φ � [D∗B + C∗MA] �

andwith
� (−1) = � B

�
A � we finally obtain

M(−1) = � � ∗ � � (−1)
+ � � ∗

1
�

1 � (−1)

= B∗B + A∗ � ∗ � A + A∗ � ∗
1

�
1A + � [B∗D + A∗MC]Φ � � ⋅ � Φ � [D∗B + C∗MA] �

= A∗MA + B∗B + � [B∗D + A∗MC]Φ � � ⋅ � Φ � [D∗B + C∗MA] � .

�
The resultof this sectionis thusa relativelysimpleextensionof theorem4.5, althoughwe needthe given real-
ization to be uniformly observable.This conditionis too strong:we only need“observabilityat the boundary”,
but this is hardto express.The recursionfor M is very closeto (andencompasses)the expressionthatwe have
obtainedbeforein the strictly contractivecase. The abovetheoremwill allow the embeddingtheoremsin the
next sectionto includecontractivesystemsthat neednot be strictly contractive.It alsogivespart of the proof
of the BoundedRealLemma.
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6. LOSSLESS EMBEDDING

In this section,we will solve the losslessembeddingproblemas definedin the introduction. We startwith an
intermediateresult.

Theorem 6.1. (Isometric embedding) LetT ∈
�

( � ,
�

) bea locally finite input-outputoperatorwithstrictly
stablestaterealizationT = � A,B,C,D � . If I − T∗T � 0, or I − T∗T ≥ 0 and T is uniformly observable,thenT
hasan extensionΣa ∈

�
( � ×

�
,

�
),

Σa =

�
T

Σ21 �
suchthat Σ∗

aΣa = I and AΣa = A. A realizationfor Σ21 is

ΣΣΣ21 =

�
A C
B2 D21 � =

�
A C

−Φ � (D∗B + C∗MA) Φ � (6.1)

where Φ = (I − D∗D − C∗MC)1/2 and M is as definedin (5.3).

PROOF Let ΣΣΣa be of the form

ΣΣΣa =

�� A C
B D
B2 D21

�
 (6.2)

in which B2 andD21 are to be determinedsuchthat Σ∗
aΣa = I. Using lemma2.1, this is the caseif thereis an

M ≥ 0 suchthat 	
 � A∗MA + B∗B + B∗
2B2 = M(−1)

A∗MC + B∗D + B∗
2D21 = 0

C∗MC + D∗D + D∗
21D21 = I

(6.3)

We will showthatM givenby equation(5.3) is a positivesemidefinitesolutionto theseequations.Indeed,under
theconditionsimposedon T, theorem4.5 [theorem5.7] ensuresthatthis M satisfiesM ≥ 0, I −D ∗D−C∗MC � 0
[I − D∗D − C∗MC ≥ 0], and

M(−1) = A∗MA + B∗B + � [A∗MC+ B∗D]Φ � � ⋅ � Φ � [D∗B + C∗MA] � , (6.4)

whereΦ = (I − D∗D − C∗MC)1/2. With B2 andD21 as in (6.1), it immediatedlyfollows that equations(6.3) are
satisfied. �
In the abovetheorem,M canbe interpretedasthe controllability Gramianof Σ, andsinceM =

� ∗ � +
� ∗

1
�

1 with
�

1 as in (5.2), it is seenthat
� ∗

1
�

1 is the controllability Gramianof Σ 21. (A moredetailedanalysisshowsthat
−
�

1 is its controllability operator.)

Supposethat � T � < 1 so that I − T∗T is invertible. A resultof Arveson[A], which is applicablein the present
context,claims that thereis a factor Σ21 of I − T∗T which is outer, i.e., suchthat Σ−1

21 ∈
�

. We will showthat
our choice for Σ21, as definedby the realizationΣΣΣ21 in (6.1), is in fact outer. To this end, we will look at a
possiblerealizationfor Σ−1

21, viz. (2.5),

ΣΣΣ×
21 =

�
A× C×

B× D× � =

�
A − CD−1

21B2 −CD−1
21

D−1
21B2 D−1

21 � (6.5)

andwill showthat this realizationis strictly stable:
�

A× < 1. In that case,we canconcludethat Σ−1
21 ∈

�
.

Proposition 6.2. Suppose� T � < 1. DefineΣΣΣ×
21 as in (6.5) and theorem6.1. Then

�
A× < 1, and Σ21 is outer.
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PROOF We first assertthat thecontrollability operatorof ΣΣΣ×
21 is givenby

� × = −(I − ~K∗
T

~KT)−1 ~K∗
T
�

. It is sufficient

to show that the given formula of
� × satisfiesthe recursion

� ×(−1) =

�
B×
� ×A× � . Indeed,with equations(3.3),

(3.4), (4.4),
� ×(−1) = −(I − ~K∗

T
~KT)−(−1) ~K∗(−1)

T

� (−1) =

= −
�
0

(I − ~K∗
T

~KT)−1 � +

�
I

(I− ~K∗
T

~KT)−1 ~K∗
T

~VT � Φ−2 � I ~V∗
T

~KT(I− ~K∗
T

~KT)−1 �
�
D∗ ~V∗

T

0 ~K∗
T � �

B
�
A �

= −
�

0
(I − ~K∗

T
~KT)−1 ~K∗

T

�
A � −

�
I

(I − ~K∗
T

~KT)−1 ~K∗
T

�
C � Φ−2(D∗B + C∗MA)

=

�
−Φ−2(D∗B + C∗MA)

−(I − ~K∗
T

~KT)−1 ~K∗
T

�
[A + CΦ−2(D∗B + C∗MA)] �

=

�
D−1

21B2
� ×(A − CD−1

21B2) � .

The controllabili ty Gramianof ΣΣΣ×
21 is Λ× =

� ∗ ~KT(I − ~K∗
T

~KT)−2 ~K∗
T

�
, which is boundedbecausethe inverseis

boundedand
� ∗ � is bounded.Accordingto a resultof AndersonandMoore [AM , thm. 4.3] (seealso [N]), if

Λ× is boundedand
�

A < 1,2 then
�

A× < 1. It follows that Σ−1
21 ∈

�
, so that Σ21 is outer. �

Using theorem6.1, it is straightforwardto solvethe losslessembeddingproblem.

Theorem 6.3. (Orthogonal embedding) Let T ∈
�

( � 1,
�

1) be a locally finite input-output operator with
strictly stablestaterealizationT = � A,B,C,D � . If I − T∗T � 0, or I − T∗T ≥ 0 and T is uniformly observable,
and if the realization T is uniformly controllable, then the losslessembeddingproblemhas a solution Σ ∈�

( � 1 ×
�

1,
�

1 ×
�

2) suchthat Σ is inner, Σ11 = T, Σ21 is outer, and Σ hasa unitary realization ΣΣΣ where AΣ is
stateequivalentto A. If A ∈ � ( � , � (−1)), then

�
2 is specifiedby #(

�
2) = #(� ) − #(� (−1)) + #(� 1).

PROOF The proof is by construction.Let ΣΣΣ be of the form

[ΣΣΣa ΣΣΣb] =

�� A C C2

B D D12

B2 D21 D22

�

ΣΣΣ =

�� R
I

I

�
 [ΣΣΣa ΣΣΣb]

�� [R(−1)]−1

I
I

�
 = [ΣΣΣ ′
a ΣΣΣ ′

b] ,

(6.6)

in which R ∈ � ( � , � ) is a boundedlyinvertible statetransformation.R, B2, D12, D21, D22 areto be determined
suchthat ΣΣΣ is unitary, in which caseΣ is inner (lemma2.1).

First, determineM, B2, D12 andhenceΣΣΣa as in theorem6.1. BecauseT is uniformly controllable,M � 0. If
we definethe statetransformationR by M = R∗R, thenR is invertible, and ΣΣΣ ′

a is an isometry(ΣΣΣ ′∗
a ΣΣΣ ′

a = I). The
extensionof a rectangularisometricmatrix to a squareunitary matrix by addingcolumnsis a standardlinear
algebraprocedurethat alwayshasa solution.The sameholdsfor diagonalsof matrices.Hence,we canextend
ΣΣΣ ′

a to a unitarymatrix ΣΣΣ, which is the realizationof an inner systemΣ. The resultingdimensionsequenceof ΣΣΣ
is given by [#( � ) + #(� 1) + #(

�
1)], and the numberof columnsof eachdiagonalentry of ΣΣΣ ′

a is the sequence
[#( � (−1)) + #(

�
1)], hencethe numberof columnsto be addedis equalto #(

�
2) = #(� ) − #(� (−1)) + #(� 1). This

numberis non-negativebecausethe columnsof ΣΣΣ ′
a are linearly independent. �

One differencewith the time-invariantsituationis that the solutionof the embeddingproblemgives rise to a
time-varyingnumberof addedextraoutputsif the numberof statesof T is time-varying( � /= � (−1)), evenif the

2Theactualconditionin [AM ] is that (A − CD−1
21B2 , D−1

21 B2) is uniformly stabilizable, but it is alsoshownthat this is thecaseif andonly
if (A, D−1

21B2) is uniformly stabilizable.For this, it is sufficient that � A < 1.
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numberof inputsand outputsof T is fixed. Anotherdifferenceis that, for the boundarycase,we needboth
uniform controllability anduniform observabilityin orderto constructanembedding.It is knownthatnot every
time-varyingsystemadmitssucha realization,not evenif it hasa finite statedimension;the conditionis that
the rangeof HT mustbe closed.See[VD1, V2].

The constructionusedin the proof of the theoremis computational:it canbe usedto recursivelycomputethe
realizationof a losslessembeddingfrom a realizationof T. The recursionrunsforward in time: from M k and
the realizationof T at time instantk, we cancomputeboth Mk+1 (usingrecursion(1.3)) and ΣΣΣk, the realization
of Σ at instantk. An exactinitial point for the recursioncanbe obtainedfor the specialcaseswhereT haszero
statesbeforea certainpoint n in time (takeMn to be a 0 × 0 matrix), or whenT is time-invariantor periodic
beforepoint n in time, in which caseMn is the solutionof the resultingalgebraicRiccati equation. In other,
more generalcases,we can take Mn = 0 as an approximateinitial value. It can be shownthat the Riccati
recursionwith this initial valuedoesnot breakdown (becauseit is the exactinitial value of a relatedsystem,
which haszerostatesbeforetime instantn andis the sameasthe original systemafter time n), andconverges
to the exactsolutionif the systemis strictly stable[V2 ]. A proof of this is omittedfor brevity.

A reformulationof theorem6.1 andproposition6.2 leadsto the BoundedRealLemmawhich appearsin system
andcontrol theory.

Theorem 6.4. (Bounded Real Lemma) Let T ∈
�

( � ,
�

) be a boundedcausal locally finite input-output
operator, with strictly stablestaterealization T = � A,B,C,D � , and A ∈ � ( � , � (−1)).

• � T � < 1 if and only if there existsM ∈ � ( � , � ), B2 ∈ � (
�

, � (−1)), D21 ∈ � (
�

,
�

) solving	
 � A∗MA + B∗B + B∗
2B2 = M(−1)

C∗MC + D∗D + D∗
21D21 = I

A∗MC + B∗D + B∗
2D21 = 0

(6.7)

with M ≥ 0, I − D∗D − C∗MC � 0 and
�

A−CD−1
21 B2

< 1.

• If T is uniformlyobservable,then � T � ≤ 1 if andonly if (6.7) hasa solutionM, B 2, D21 suchthat M ≥ 0.

PROOF The ‘only if ’ part is directly derivedfrom theorem6.1andproposition6.2. The ‘if ’ part is a corollaryof
theorem6.1: givensuchM, it follows thatthereexistsanisometricembeddingΣ a suchthatΣ∗

aΣa = T∗T+Σ∗
21Σ21 =

I, so that Σ∗
21Σ21 = I − T∗T ≥ 0. If in additionD21 is invertibleand

�
A−CD−1

21 B2
< 1, thenby proposition6.2 we can

concludethat Σ21 is invertible,so that I − T∗T � 0, i.e., � T � < 1. �

7. CONCLUDING REMARKS

Many controlapplicationsgive rise to theRiccatiequation(1.3). Usually, theexistenceof a stabilizingsolution
is of importance.In the contextof our embeddingproblem,this would be a solutionfor which A − CD −1

21B2 is
strictly stable,or Σ21 is outer. The uniquenessof sucha solutionis a standardresultwhich is straightforwardto
prove.

While this paperwasin review, morehasbecomeknownon time-varyingRiccatiequations.We mentionin par-
ticular thepapers[N], in whichdetailedattentionis paidto theconvergenceof therecursionto maximal/minimal
solutions,and [HI ], wherethe solutionof a Kalman-Szeg̈o-Popov-Yakubovich (KSPY) systemof equationsis
presented.The equations(6.7) canbe viewedasa particularinstanceof theseequations.Although[HI ] gives
solutionsto a more generalclassof problems,the boundarycaseis not considered.A major differencewith
[HI] is in the proofsof the results:whereas[HI ] reliesheavily on insightsgainedin optimalcontrol theory, the
approachtakenin this paperis morebasedon first principles: I − T∗T = Σ∗

21Σ21 ⇔ I − ~K∗
T

~KT = ~K∗
Σ21

~KΣ21 . The
analysisof the latter equationdirectly leadsto a recursionin which the given expressionsfor M, D 21, B2 turn
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up, alongwith an explicit expressionfor the controllability operatorof the realizationfor Σ 21. Similar analysis
of ~KΣ−1

21
= ( ~KΣ21 )

−1 leadsto the realizationof the inverse,the given expressionfor the controllabili ty operator,
andthe fact that our choicefor Σ21 is outer.

A. APPENDIX: DERIVATION OF LEMMAS 5.3 AND 5.4

The contentsof lemmas5.3 and5.4 is well knownfor finite matrices(seee.g.,[CHM, BCHM]) for generalized
inverseformulasinvolvingSchurcomplements).Thematrixcaseis readilyextendedto operatorsif theoperators
areassumedto haveclosedrange.Without this condition,complicationsarisebecausethe pseudo-inversesthat
are involvedareunboundedoperators.

We will repeatedlyusetheorem5.2 in the following form. Let X ≥ 0 be a boundedoperatoron a Hilbert space� . If v is a boundedoperatorwhoserangeis in (X), thenv = Xv1, for someboundedv1 ∈ (X∗) for which
we can takev1 = X� v. A secondfact that is usedin the proof of lemma5.4 is that X � X = PX∗ : the orthogonal
projectoronto (X∗), with domain � [BR].

A.1. Proof of lemma 5.3

Supposefirst that X ≥ 0; we show that (1), (2), (3) hold. It is immediatethat A ≥ 0, C ≥ 0. The fact that
(B) ⊂ (C1/2) is provenby showingthat thereexistsλ suchthat BB∗ ≤ λC; Douglas’ theoremthenimplies

the result. The proof is by contradiction. Supposethat there is not sucha λ. Then thereexistsa sequence� xn : n ∈ |N � suchthat
(BB∗xn, xn) ≥ n (Cxn, xn) > 0 . (A.1)

In particular, � B∗xn � > 0 (all n). For any un, X ≥ 0 implies

(

�
A B∗

B C � �
un

xn � ,

�
un

xn � ) ≥ 0 ,

i.e., (Aun, un) + (B∗xn, un) + (Bun, xn) + (Cxn, xn) ≥ 0. Chooseun = − 1
n
B∗xn. Using (A.1), we obtain

(B
A
n

− 2
n

+
I
n

B∗xn, xn) ≥ 0 .

But if n > � I+A � 2, thetermin bracesis smallerthan−1/ n, whichgivesacontradiction.Hence (B) ⊂ (C1/2).

Define L = C1/2 (althoughL = L∗, we will not usethis), and let B1 = L � B. Then B1 is bounded,andB = LB1

with (B1) ⊂ (L∗), which implies �
(B∗

1) ⊃
�

(L) . (A.2)

To proveA − B∗
1B1 ≥ 0, we will showthat

X =

�
A B∗

1L∗

LB1 LL∗ � ≥ 0 ⇒
�

A B∗
1

B1 I � ≥ 0 , (A.3)

from which A − B∗
1B1 ≥ 0 follows directly by applyingvectorsof the form

�
I

−B1 � a. Thusfor x ∈ � 1 ⊕ � 2, take

x of the form

x =

�
u

x1 + x2 � ∈
� � 1�

(L) ⊕ (L∗) �
wherex1 ∈

�
(L) and x2 ∈ (L∗). Note that

�
(L) ⊕ (L∗) is densein � 2. Then

�
(B∗

1) ⊃
�

(L) implies
B∗

1x1 = 0, while x2 ∈ (L∗) implies that x2 = L∗x′
2, for someboundedx′

2. Using theseobservations,it follows
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that

(

�
A B∗

1

B1 I � �
u

x1 + x2 � ,

�
u

x1 + x2 � )

= (Au,u) + (B∗
1x1, u) + (B1u,x1) + (x1, x1) + (B∗

2x2, u) + (B1u,x2) + (x2, x2)
≥ (Au,u) + (B∗

1x2, u) + (B1u,x2) + (x2, x2)
= (Au,u) + (B∗x′

2, u) + (B1u,x′
2) + (x′

2, x′
2)

= (X

�
u
x′

2 � ,

�
u
x′

2 � ) ≥ 0 .

Hencerelation(A.3) holdson a densesubsetof � 1 ⊕ � 2. By continuity, it holdseverywhere,andconsequently
A − B∗

1B1 ≥ 0.

It remainsto prove the reverseimplication: X ≥ 0 if the three conditions are satisfied. BecauseC ≥ 0 a
decompositionof C asC = LL∗ is defined.Using this decompositionandB = LB1,

X =

�
A B∗

1L∗

LB1 LL∗ � =

�
I B∗

1

L � �
A − B∗

1B1

I � �
I

B1 L∗ � .

Under the statedconditions,the operator

W =

�
I

L � �
I B∗

1

I � �
(A − B∗

1B1)1/2

I � (A.4)

is well defined,andis a factor of X suchthat X = WW∗. HenceX ≥ 0. �

A.2. Proof of lemma 5.4

Let X ≥ 0 havea factorizationX = WW∗, then (X1/2) = (W) (by theorem5.2). It canbe inferredfrom Beutler
andRoot [BR] that X� = W∗ � W� = X� /2X� /2 , henceif (v) ⊂ (X1/2) = (W), thenv1 andv2 definedby

v1 = X� /2v, (v1) ⊂ (X1/2)
v2 = W� v, (v2) ⊂ (W∗)

arebounded,and3 v∗
1v1 = v∗

2v2.

Let L = C1/2, B1 = L � B andput W as in (A.4), so that X = WW∗. Definethe operatorW
�

by

W
�

=

�
(A − B∗

1B1) � /2

I � �
I −B∗

1

I � �
I

L � � .

We will prove that W
�

= W� on (W). The resultwill be, for a boundedoperatorv with (v) ⊂ (X1/2) =
(W), that W� v = W

�
v, so that v1 := X� /2v and v2 := W

�
v are boundedand satisfy v∗

1v1 = v∗
2v2. Indeed,for

any v with range in (W) we have that the operatorv1 = W� v is boundedand such that v = Wv1. Hence
W

�
v = W

�
Wv1 = W� Wv1 = W� v, so that W

�
= W� on (W) if andonly if

W
�
W = W� W on (W∗) .

To analyzeW
�
W, we first provethat B∗

1 − B∗
1L � L = 0. Indeed,if x ∈

�
(L) thenx ∈

�
(B∗

1) (by equation(A.2)),
andhencebothB∗

1x = 0 andLx = 0. If, on the otherhand,x ∈
�

(L)⊥, thenL � Lx = x sinceL � L is the projector
onto

�
(L)⊥, andhenceB∗

1L � Lx = B∗
1x.

3We arecarefulherenot to write X
�

v. Although (X) = (X1/2), we only havethat (X) ⊂ (X1/2), andhenceX
�

v canbeunbounded
with (v) ∈ (X1/2).
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With the definitionof W
�

andthe aboveresult,

W
�
W =

�
(A − B∗

1B1) � /2

I � �
I −B∗

1

I � �
I

L � � ⋅
�

I
L � �

I B∗
1

I � �
(A − B∗

1B1)1/2

I �
=

�
(A − B∗

1B1) � /2

I � �
I B∗

1 − B∗
1L � L

L � L � �
(A − B∗

1B1)1/2

I �
=

�
(A − B∗

1B1) � /2(A − B∗
1B1)1/2

L � L � =:

�
P1

P2 � .

P1 andP2 areprojectorsonto (A − B∗
1B1)1/2 and (L∗), respectively. Now, using

W∗ =

�
(A − B∗

1B1)1/2

I � ⋅
�

I
B1 L∗ �

and (B1) ⊂ (L∗), we havethat

(W∗) ⊂
�

(A − B∗
1B1)1/2

L∗ � .

SinceW� W is the projectoronto (W∗), andW
�
W is the projectoronto the rangeat the right handsideof the

expression,this provesthat W
�
W = W� W on (W∗), asrequired.HenceW

�
= W� on (W), which alsoimplies

that W
�

is well-definedon (W). �
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