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Abstract. Object-oriented languages have traditionally been described by method- 
lookup-semantics. Their denotational semantics have appeared and matured only 
recently. Cook's wrapper semantics without state shows the essence of inheritance 
much clearer than method-lookup-semantics. 

In this article, we show how wrapper semantics can describe an object-oriented 
language with state while keeping its original clear structure. We then extend our 
object-oriented language by so called explicit wrappers. Wrappers that are used for 
the description of the semantics of an "ordinary" object-oriented language emerge 
from the semantics level and are included into the language itself. This unusual 
step is being justified by a greater reusability of code. With explicit wrappers and 
single inheritance, one variety of multiple inheritance can be expressed. 

1. Introduction 

One of the main advantages of object-oriented programming is an increased 
reusability of code. This is the reason for its relatively early spreading into indus- 
trial contexts, while the foundational research is still very active. Class-inheritance 
contributes to structured code reuse. The terminology of object-oriented program- 
ming suggests that classes are types, subclasses are subtypes, and so forth. This has 
lead to confusion in the past. However, class-inheritance is not subtyping [CHC90] 
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but an intricate mechanism, featuring dynamic binding together with some clever 
naming conventions (the pseudo-variables of SMALLTALK [GoR89]). Inheritance 
is a mechanism for incremental modification. In our framework, it is possible to 
redefine methods in such a way that their semantics in the subclass has nothing to 
do with their semantics in the superclass. As long as certain minimal requirements 
on type compatibility are guaranteed [Coo89], no errors will occur. However, for 
a disciplined programming style, we require more, and advocate a (disciplined) 
version of inheritance allowing certain compatibility assumptions on subclasses. 
Otherwise, methods will be inherited just because they happen to fit into the 
current scheme and many dependencies between classes will hinder modifications 
in implementations. The following classification of incremental modifications is 
adapted from [WeZ88]: 

�9 Behaviour-compatible modification: The entries to be modified are specified 
(e.g. by many sorted algebras [EhM85]). Syntax is specified by signatures and 
semantics by axioms. Modifications are behaviour-compatible subalgebras. 

�9 Signature-compatible modification: Like above but without semantics specifi- 
cations. Subsignatures are in general not behaviour-compatible. 

�9 Name-compatible modification: Modifications have a superset of the labels. 
�9 Inheritance with cancellation:: Traditional inheritance focuses on subtypes de- 

fined by increasing the severity of constraints. Cancellation relaxes constraints 
(e.g., in a subclass, a method can be dropped). 

Cancellation may occur at the level of behaviour, signatures, or names. By con- 
struction, O'SMALL is at the level of name-compatible modification but cancella- 
tion should be avoided by the programmer at the signature level and "somewhere 
below" the behaviour level. Here, "below" means that we want compatibility 
(substitutability [WeZ88]). The issue of behavioural compatibility has been ap- 
proached pragmatically in Eiffel [Mey88], with Hoare-logic restrictions being 
checked at run time, but a solution to the whole problem is still a subject of 
research [ESS89, Grin90]. Excluding cancellation at the signature level can be 
achieved by static type checking [Hen93]. 

This article's main concern is language design. A closer look at the inheritance 
mechanism with denotational semantics using wrappers [Coo89] has lead us to 
the idea of explicit wrappers] A wrapper is at first an element of the semantics 
describing the incremental modification of a subclass definition. Making wrappers 
explicit means adding a new feature to the language. The programmer can use 
his modifications more flexibly, and thus the reusability of code is even higher 
than in "ordinary" object-oriented programming languages. 

We show examples of increased code reusability thanks to explicit wrappers. 
Furthermore, explicit wrappers allow us to see multiple inheritance from a new 
angle: with explicit wrappers and single inheritance we are able to model certain 
cases of multiple inheritance. 

1.1. Overview 

Section 2 describes the semantic domains needed for object-oriented languages 
and class inheritance in a purely functional framework. The internal state of ob- 

1 First appeared in [Hen90] and developed independently in [BrC90]. 
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jects has been abstracted. The definitions of classes and wrappers can thus be kept 
simple. To make this article self-contained, section 3 gives the the denotational 
semantics of an object-oriented language with state called O'SMALL [Hen91]. 
Readers who just want an intuitive understanding may skip section 3. Section 4 
is the main section of this article. The semantic construct that leads to a clear 
description of  class inheritance in sections 2 and 3 is now being used in the lan- 
guage itself. One of the consequences is that multiple inheritance may become less 
necessary because one of its varieties can now be modeled by single inheritance. 
O'SMALL, the language in the examples, appears in several "dialects": 

�9 functional O'SMALL (section 2) 

�9 (classical) O'SMALL (section 3) 

�9 O'SMALL with explicit wrappers (section 4) 

Functional O'SMALL is introduced informally and differs considerably from the 
other dialects. Classical O'SMALL is a full object-oriented language with a denota- 
tional semantics. O'SMALL with explicit wrappers is a slight extension of classical 
O'SMALL. The differences are presented in section B. 

2. Domain Theory and Object-Oriented Languages 

The semantics of O'SMALL itself will be contained in section 3. This section 
describes the semantic domains we use for an object-oriented language. To 
simplify things, we consider functional O'SMALL, i.e. we abstract from state. 
Programs of functional O'SMALL contain no assignments. In functional O'SMALL 
classes have parameters, as opposed to classical O'SMALL. This approach is based 
on the work of Cook [Coo89]. We will make a few remarks on fixed point 
semantics and its appearance in the description of object-oriented languages, 
followed by some basic definitions on records. Records model objects. These 
basic definitions will also be used in later sections. After these preliminaries, 
the ground will be prepared for the definition of the semantic domains and the 
inheritance mechanism in functional O'SMALL. 

Self-reference and application of functions to themselves pose mathematical 
problems. Yet, recursive procedures or functions are common in programming, 
and we will also need them in the remainder of this article. Scott [Sco76] provided 
a basis for mathematical structures, called complete partial orders or cpo's for 
short, that are suited for the description of recursive programs. For an overview 
refer to [Bar81, HIS86]. Let us give an informal example of a recursive definition 
in an O'SMALL like notation: 

meth fac(n) if n=O then i else n * fac(n-1) 

This definition is recursive or self-referential. In SMALLTALK and O'SMALL, self- 
reference is standardized syntactically by the pseudo-variable s e l f .  Instead of just 
applying a function to an argument, object-oriented languages send a message to 
an object. Message sending is record selection. For the above example, we thus 
obtain the O'SMALL program fragment: 

meth fact(n) if n=O then I else n * self.fact(n-l) 

This is a method definition that may appear in a class. In order to access this 
method, we have to send a message with selector f a c t  to an object of  this class, 
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but, because the definition is self-referential, one does still not know what it 
denotes. We transform the above definition into non-recursive form by explicitly 
abstracting the self-reference. A 2-calculus-like meta language is used for semantic 
considerations. 

Fact = 2s.[fact ~ 2n. if n = 0 then 1 else n * s fact(n - 1)] 

Fact maps records to records. Its definition is not recursive. The abstracted 
variable s plays the role of  s e l f .  The fixed-point theorem [Tar55] guarantees the 
existence of  a least fixed-point for all continuous functions from a cpo to itself. 2 
All functions considered here are continuous. Let F be such a function. Then 
we write FIx(F) for the least fixed-point of  F. I f  f = F~x(F) then F(f)  = f .  The 
function fac,  we intended to define in the first place, is now the fact-component 
of  Fact's fixed-point: 

fac  = FIx(Fact)fact  

2.1. Records 

The following basic definitions will be used in this section as well as in the 
semantics definition of O'SMALL (section 3). Records are needed for the modeling 
of objects. 

Definition 2.1. A record is a finite mapping from a set of  labels to a set of  values. 
Xl ~ /31 

A record is denoted by : with labels xi and values vi. All labels 

X n  F--). l) n 

which are not in the list are mapped to • The empty record, where all labels 
are mapped to • is denoted by [ ]. Selection of a component  x in record r is 
denoted by r.x. 

Definition 2.2. Let dora(r) = {x I r(x) :/:• The left-preferential concatenation o f  
records is defined by 

{ rs((X) i f x E d ~  
(r | s)(x) = x) if x C dora(s) - dom(r), 

otherwise. 

The idea of _ @ _ is the composition of  two records where the left one wins in 
case of  conflicts. The following function defines modification of records using 
left-preferential concatenation of records, 

Definition 2.3. _ ~> _ : (Record --~ Record) --~ Record ~ Record 
takes a function on records and a record, and yields a record. It is defined by 

~(f)(b) = f (b)  @ b. 

The idea of _ ~_ is that a function uses and then overwrites a record. The 
following definition will be explained later. Here we restrict ourselves to saying 
that together with a wrapper (see below), the modification function for records 

2 The original theorem is formulated for complete lattices. 
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can be t ransformed to a modification function for classes (see below): 

( [-~ w) : Class ~ Class 

Note  that we freely mix one-place or  two-place writing o f  functions (currying) 
and prefix or infix notation.  When  written as an infix operator,  _ [-~ _ is right- 
associative. 

Definition 2.4. We define a higher-order function _ [ ]  _ : (~ ~ fl ~ ~:) ~ (6 ---> 
~) ~ (6 ---> fi) ~ 6 ---> 7 that makes o f  a binary operator  _ * _ : a ---> fi ---> 7 its 
self-distributing version denoted by _ [ -~_  �9 (6 --~ ~) ~ (6 -* fl) ~ 6 ~ ~ and 

defined by a [-:-] b = 2s.(a s) * (b s). 

2.2. Inheritance 

Inheri tance is a way o f  class modification. For its description we will present the 
notions o f  object, class, wrapper,  and an inheritance function. For  the reader's 
convenience Fig. 1 summarizes domains  and functions. 

Class = Object ~ Object meta  variable c 
Wrapper  = Object --+ Class meta variable w 

_ @_ : Object ~ Class 
_ ~,_ : Class ~ Class 

[~][-~w �9 Wrapper  ~ (Class ~ Class) inheritance function 
( ) �9 Class --* Class class modification 

Fig. 1. Domains and functions. 

The object-oriented parad igm consists o f  objects that  communica te  by message 
passing. When  an object receives a message it "decides" itself what  to do, that  is 
it chooses the method  that  corresponds to the message selector o f  the received 
message. The abstract  domain  o f  objects can be represented by a domain  o f  
records. Message selection amounts  to the selection o f  a record component .  
One may  want  several objects with the same set o f  methods,  and therefore one 
introduces classes. Classes generate objects. In the general case a class generates 
similar objects. In this section, for technical reasons, a class generates identical 
objects. Objects may  also send messages to themselves and, thus, classes must  
provide a means o f  self-reference. We will see that  a class generates an object by 
a fixed-point operation. 

When  a new class (subclass) is defined one wants to refer to an existing 
class (superclass) and say things like: "objects o f  this class are like objects 
o f  the superclass, but  this and this are different". In subclass definitions, new 
methods may  be added and existing methods may  be redefined. In the redefinition 
o f  existing methods,  there is a way of  referring to the overwritten definition. 
Together  with the inheritance function, wrappers will be able to modify classes. 
The inheritance function is defined such that  the self-references are distributed 
appropriately. Fact is an example o f  a class with only one method. Let us look at 
another  example o f  a class. Fig. 2 shows a program in functional O'SMALL whose 
semantics will be discussed now. We focus on the first class-definition. 
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class Point(a,b) inheritsFrom Base 

meth x() a 
meth y() b 

meth distFromOrg() sqrt(sqr(self.x) + sqr(self.y) ) 
meth closerToOrg(point) self.distFromOrg < point.distFromOrg 

class Circle(a,b,c) inheritsFrom Point(a,b) 

meth r() c 
meth distFromOrg() max(O, super.distFromOrg - self.r) 

let var p = new Point(2,2) 
var c = new Circle(3,3,2) 

in . . ni 

Fig. 2. Program in functional O'SMALL. 

Point = 2a.2b.2s. 
x 

Y 
distFromOrg 
closer ToOrg 

a 
b 
v/(s.x)2 + (s.y) 2 
2p. s.distFromOrg < p.distFromOrg 

Point is the class of  points in two dimensional space 3. An object p of class Point 
is created by: 

p = Fix(Point 2 2) = 

x ~ 2 
y ~-~ 2 
distFromOrg ~ ~/8 
closerToOrg ~ 2p. v ~  < p.distFromOrg 

On the semantic level, classes are functions of  the form 2s.B where s is the 
standardized variable representing self-reference. Inheritance is the construction 
of a new class (the subclass) using an existing class (the supercIass). The formal 
parameters for self-reference of the superclass and of the subclass "are the 
same". The additional definitions or modifications in the subclass are modeled 
by wrappers. A wrapper is a function taking two objects as input and returning 
a new object. The first input object is the parameter  for self-reference, like the 
parameter  for self reference of classes. The second input object is the parameter  
for "super-reference". Wrappers have this special form here, because the language 
we describe has the pseudo-variables s e l f  and super.  In a hypothetical language, 
if there were further pseudo-variables, wrappers would have more parameters. 

Let us now take a look at the second class definition of Fig. 2. Circles are 
defined as a subclass of  the already defined class of points. The wrapper CIRCLE 4 
contains the differences between points and circles. The variable p is used like the 
pseudo-variable supe r  in SMALLTALK or O'SMALL. 

3 To  be precise: (Point aN a2) is a class. 
4 To be precise: (CIRCLE aN a2 a3) is a wrapper. 
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C I R C L E  = 2a.2b.2c.2s.2p. [r ] 
distFromOrg ~ max(O,p.distFromOrg- s.r) 

The Circle-class is created by: 

Circle = )ba.2b.2c.(ClRCLE a b c) [~] (Point a b) 

An object c of class Circle is created by" 

C Fix(Circle 3 3 2) 

x 

Y 
r 

distFromOrg 
closerToOrg 

3 
3 

w-~ 2 
v ~ - 2  
2p. v/l-8 - 2 < p.distFromOrg 

187 

JO 
class 

w r a p p e r  

inher i tance  

Fig. 3. Iceberg-diagrams. 

In order to illustrate the inheritance function, we introduce iceberg-diagrams, 
an intuitive description of classes and wrappers (Fig. 3). A class is depicted by a 
triangle, where the visible part (methods) is above the surface and the invisible 
part (instance variables) below. There is an arrow for self-reference. A wrapper 
is depicted by an angular shape. Inheritance is a wrapper applied to a class. The 



188 A, V. Hense 

common line of wrappers and classes in the diagram represents the references to 
s e l f ,  super, and the methods that are not redefined, Note that the self-reference 
of the wrapper and the class now point to the whole. 

3. An Object-Oriented Language with State 

In this section, we show how to extend the semantics of inheritance without 
state of section 2 to a semantics of an object-oriented programming language, 
i.e. we add the state that was abstracted from in section 2. The language being 
described in this section is the so called classical O'SMALL, which has no explicit 
wrappers, The semantics of O'SMALL (section 3.2) was formulated around the 
semantics of the imperative language SMALL [Gor79] but in direct style (without 
continuations). The aim was to clarify the differences between object-oriented 
and imperative programming languages. The semantic clauses use some auxiliary 
functions (section A). 

The semantic functions defined in the following are all continuous because 
they are built by standard constructions (function composition) from continuous 
functions. Therefore their smallest fixed points exist in cpo's. However, domain 
theory was not the focus of our attention. 

3.1. Syntax  of  O'SMALL 

The syntactic domains are in Fig. 4. Meta variables ranging over domains are 
listed on the right-hand side. Ide, Bas, and BinOp are primitive, the others com- 
pound. Method declarations are distinguished from variable and class declarations 
because methods are declared in classes only, In lieu of commands [Gor79] we 
have compound expressions. Their syntactic appearance is similar to commands 
but compound expressions return a value. The syntactic clauses are in Fig. 5. 
Class, variable, and method declarations may be empty. 

Ide the domain of identifiers I 

Bas the domain of  basic constants B 

BinOp the domain of binary operators O 

Pro the domain of programs P 

Exp the domain of expressions E 

CExp the domain of compound expressions C 

Var the domain of variable declarations V 

Cla the domain of class declarations K 

Meth the domain of method declarations M 

Fig. 4. Syntactic domains. 
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P : :=  K C  

K ::= class I1 inheritsFrom I2 def V in M I K1 K2 [ e 

C ::= E I I := E I output E I if E then C1 else C2 

I while E do C [ def V in C [ C1 ; C2 

E ::= B [ true I false ]read ] I [ E.I(E1 ..... E~) I new E 

V ::= vat I := E I Vl V2 I e 

M ::= meth I(I1,...,In) C ] M1 M2 I e 

[ E l  O E 2  

Fig. 5. Syntactic clauses. 

Un i t  o n e - p o i n t - d o m a i n  u 

Bool  booleans  b 

Loc loca t ions  1 

Bv basic  values 

Record~,/~ = ~ , [fl + {_1_}] records  

Env = Recordide,Dv envi ronments  r 

Objec t  = Record1&,ov objects  o 

Dv = Loc + Rv  + M e t h o d ,  + Class deno tab le  values d 

Sv = File + Rv storable  values v 

Rv  = Uni t  + Bool + Bv + Object  R-values  e 

File = Rv* files i 

Store = RecordLoc,Sv stores s 

M e t h o d ,  = Dv" , Store , [DvxStore]  me thod  values m 

Class = Al loc  , Al loc  class values c 

Al loc  = Store ~ [Object x Store] a l loca tor  values x 

W r a p p e r  = Al loc  , Class w ra ppe r  values w 

Ans  = F i l e x  {error, stop} p r o g r a m  answers  a 

Fig. 6. Semantic domains. 

3.2. S e m a n t i c s  o f  O'SMALL 

The semant ic  doma ins  are in Fig. 6. The first four  domains  are primitive.  Unit 
is the d o m a i n  needed for the result  o f  c o m p o u n d  expressions that  do not  re turn  
a useful value (whi le -express ion) .  Loca t ions  are addresses  o f  cells in the store. 
Denotable values can be b o u n d  to identifiers in the environment .  In  O'SMALL, the 
set o f  values tha t  can be the result  o f  expressions (expressible values) is the same as 
the set o f  deno tab le  values. Storable values can be put  into cells ( locations) o f  the 
store. Note  tha t  one cell can conta in  a whole file ( input and  output) .  R-values are 
the results  o f  eva lua t ing  the r igh t -hand  sides of  assignments.  D o m a i n s  Method~ 
are needed  for each n c No. Al loca to r s  can create objects but  are not  sui ted for 
inheri tance.  They  are the results o f  fixed po in t  opera t ions  appl ied  to classes. 
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B : Bas--~ Bv 

O :BinOp >Rv ~Rv 

P :Pro  > File ~Ans 

R,E "Exp ~Env ,S to re  

C :CExp  , Env > Store 

V :Var  ~Env , Store 

K :Cla  ~ Env .~Store 

M : Meth----~ Env----~ Env 

Store > [DvxStore] 

, [Dv x Store] 

, [Dr x Store] 

[Envx Store] 

[EnvxStore] 

Fig. 7. Semantic functions. 

3.2.I. Semantic Clauses 

The types of the semantic functions are in Fig. 7. B takes syntactic basic constants 
and returns semantic basic values. O takes a syntactic binary operator (e.g. -4-), 
two R-values, and a store; it returns the result of  the binary operation and leaves 
the store unchanged. B and O are primitive. The remaining semantic functions 
will be defined by clauses. 

We use record notation for environments and stores. Alternatives are denoted 
in braces. Note that in the following clause err, inp, and out are locations, not 
identifiers. For the definition of auxiliary functions in the following clauses refer 
to section A. 

P IlK C]] i = extractans S final 

where 

extractans = 2s.(s out, ~ error, if (s err) 

L stop,  otherwise 

(rclass,-) = K[[K]I r ini t ia  I Sinitial 

(.Slinal) = C[[C]I rdass s~,,i~i~l 

rinitia,= [ Base ~ 2o.2s.result[] ] 

) 

Sinitia I : 

err ~ false ] 

inp ~ i 

o u t  ~-~ 6 

An answer from a program is gained by running it with an input. The store is 
initialized with the error flag set to false, the input, and an empty output. The 
initial environment contains the "empty" class Base. It is enriched by the declared 
classes. Then the compound expression is evaluated. In addition to the output, 
the error flag shows if the program has come to a normal end (stop) or if it 
stopped with an error (error). 

Let us look at the example of  Fig. 8. In contrast to Fig. 2, objects have an 
internal state. The move-method, for instance, just changes the internal state of 
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class Point inheritsFrom Base 
def var xComp := O; var yComp := 0 
in meth x() xComp 

meth y() yComp 
meth move(X,Y) xComp := X+self.x; yComp := Y+self.y 
meth distFromOrg() sqrt(sqr(self.x) + sqr(self.y) ) 
meth closerToOrg(point) self.distFromOrg < point.distFromOrg 

ni 

class Circle inheritsFrom Point 
def vat radius := 0 
in meth r() radius 

meth setR(r) radius := r 
meth distFromOrg() max(O, super.distFromOrg - self.r) 

ni 

def var p := new Point; 
var c := new Circle 

in p.move(2,2); c.move(3,3); c.setR(2); 
output p.closerToOrg(c); 
p.move(O,-2); c.move(O,-2); 
output p.closerToOrg(c) 

ni 

{results in FALSE} 

{results in FALSE} 

Fig. 8. Example program in O'SMALL. 

a poin t .  The  m a i n - p r o g r a m  " k n o w s "  the  class def in i t ions  b u t  the store has  n o t  
b e e n  c h a n g e d  by  them.  

R[[E]] r = E[[E]] r * de re f  * R v ?  

E[[Bll r = result(B[[B]]) 

E[[true]] r = resul t  t rue  

E[[false]] r = resul t  false 

E[[read]] r = con t  i n p  * 

seterr  s , i f i  = e 

2i.2s. (hal i, [inp ~ tl i] ~ s), o therwise  ) 

E[[I]] r = resul t  (r I) * D r ?  

E[[E.I(Eb.. . ,En)]I r = N[[Ell r * Object? * 

2o.(resul t (o  I) * M e t h o d ?  * 

2m. R[[Ell] r * 2dl  . . . .  R[[En]] r * )~d, . 

m ( d l  . . . . .  dn)) 

The  s eman t i c  f u n c t i o n  R p roduces  R-va lues .  The  read-c lause  takes  a n  e l emen t  
f rom the user  i n p u t  a n d  re tu rns  it as a result .  The  last  c lause  is for message  
sending ,  which  is record  field se lect ion (hence the no t a t i on ) .  The  first express ion  
is eva lua t ed  as a n  R-va lue .  The  resul t  o f  this e v a l u a t i o n  m u s t  be  a n  object.  The  



192 A.V. Hense 

resulting record o is applied to the message selector I. This should result in a 
method that is then applied to the parameters. 

The textually first message sending in Fig. 8 is s e l f .  x. 5 The  pseudo variable 
s e l f  evaluates to an object. This object is bound to o and with (o 1) we get the 
method. The identifier I is x here. The method is bound to m. m applied to all 
necessary arguments, in this case zero, is the result of  this clause. 

3.2.2. The New Semantic Domains 

Semantic domains for the constructions not appearing in imperative languages 
must be added. Objects, classes, and wrappers were introduced in section 2. Their 
domains were: 

Class = Object , Object 

Wrapper  -- Object , (Object ~ Object) 

What  are the new semantic domains in the semantics of  O'SMALL corresponding 
to the semantics of  inheritance? The domains of  classes and wrappers determine 
each other. The appropriate domain of classes is simpler and will be discussed 
here. 

To understand the semantic domain of  classes, we take a closer look at class 
declaration and object creation. When a class is declared, the current environment 
is enriched by the class name. The class name is bound to the result of  a wrapper 
application. In this wrapper application, the wrapper of  the current class is. 
applied to an existing class. Existing classes are either the empty class Base or a 
class resulting from the application of a wrapper to an existing class. The store 
remains unchanged because instance variables are not allocated at the time of 
class or wrapper declaration. An object is created by application of the fixed 
point operator to the class. For the fixed point operator to be applied to it, the 
domain of the class must be e ~ e where ~ is any domain (the domain of 
classes was Object ~ Object in section 2). The environment for methods is 
recursive whereas the environment for instance variables is not. We allocate the 
instance variables after applying the fixed point operator. A function is needed 
for the allocation of  all instance variables 6 of  the new object. This function has 
to "know" the current store and return it with the instance variables allocated; 
the store must thus appear  in the domain and the codomain of the function. 
In addition, this function has to return an object. Therefore the result of  the 
application of  the fixed point operator to the class is: 

Store ~ [Object x Store] 

This is our ~. Thus the domain of  classes is: 

(Store ~ [Object x Store]) , (Store , [Object x Store]) 

3.2.3. Semantic Clauses Continued 

With the domain of classes, we are able to define object creation, one of the 
central clauses of  this semantics: 

5 Note that for messages without arguments the empty parentheses can be omitted while for the 
method definitions they cannot. 
6 Including the instance variables declared in superclasses. 
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El[new Ell r = E[[E]I r * Class? * 2c.2s.(FIx c)s 
After evaluating E, we get a class. The fixed point  operator  FIx is applied to this 
class. The result o f  the application o f  Fix is applied to the current store s. 7 Fig. 8 
contains object creations at the definition o f  p and c. 

E [[EI O E2]] r = R[]Etll r * )~ebR[[E2ll r * ~e2.OllO]] (el, e2) 
The textually first binary operat ion in Fig. 8 is X + s e l f .  x. 

C[[Ell r = E[[Ell r 

O[[I :=  Ell r = E[[I1] r * Loc? * )J. R[[E]] r * (update 1) 

C[[output Ell r = R[[Ell r * 

2e.2s.(u, [out ~ append(s out,e)] @ s) 

G [ [ i f E t h e n C l e l s e C 2 l l  r = R[[Ell r * Boo l?  * 

cond(C[[C1]] r, G[[C2ll r) 
Gllwhile E do Cll r = R[[Ell r * Bool? * 

cond(C[[C[[ r * 

2e.G[[while E do C]] r, result u) 

G[[def V in Cll r = V[[V]] r * 2r'.G[[Cll (r '~r)  

G[[C1; C2ll r = C[[Clll r * 2e.G[[Czll r 

The result o f  an assignment-, an output-,  or a while-expression is unit. In a 
sequence o f  expressions the transmitted values o f  all but  the last expression are 
discarded. This practice has been adopted  from M L  [Mi184]. 

K[[elass I1 inheri tsFrom 12 def  V in Mll r 

= E[[I2ll r * Class? * 2c.result[It ~ w ~ ]  c] 

where 

W = ~X self .J.X super .,~Screate. 

self F-, 
(M[[Mll ( super 

where 

(rsuper, Ssuper) = Xsuper Screate 

(rlocat, Snew) = V[[Vll r Ss,eer 

(rself,-) = Xself Screate 

] 
rself 

] �9 rlocal (~ r ) ,  Snew) 
rsuper ] 

The result o f  evaluating a class declaration is the binding of  a class to the class 
name. The store remains unchanged when a class is declared. The wrapper  w 
takes an allocator for self-reference, an al locator for reference to the superclass, 
and a store as parameters.  The store parameter  is fed at object creation time, X,elf 
is fed at the fixed point  operation,  and Xs,per is fed at the wrapper  application. The 
wrapper  evaluates the method  definitions in an environment  being determined at 
declaration time - except that  the locations for the instance variables have to be 
determined at object creation time. The local environment  is only visible in the 
class itself, not  in any subclass. Thus we have encapsulated instance variables. 

7 By applying the q-rule [Bar81, page 32] twice, 2c.2s.(FIx c)s could be replaced by l~x. 
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create 

I 
ins tance  var iab les  

l 

super 
T 

new 

Fig. 9. The store during object creation. 

Let us consider what happens at object creation time during the evaluation of 
the inner where-clause above. Fig. 9 shows the store with arrows pointing at the 
first free cell of  the store with the respective index. Xsupe r is applied to the store at 
object creation time. This results in the method environment of  the superclass; 
but also the part  of  the instance variables defined in the superclass are allocated 
and the first free cell of  the store is indicated by super in the figure. The new 
instance variables for the current class are declared in V. V has to be evaluated 
in Ssupe r to put the new instance variables "behind" the inherited ones. Of  course, 
it could have been done the other way round. All instance variables are allocated 
now and the resulting store (Snew) is passed on to the remaining program. There 
is however a third line where Xself is applied to Screare. Xself iS the recursive part  
and rself is the resulting recursive environment. Xsely has to be applied to Screare 
because its instance variables are the ones that have just been allocated. 

The careful reader may have noticed already that the resulting store of  the 
a l l o c a t o r  Xself is not needed. This is indicated by an underscore. The reason for 
this is that the instance variables of  the current class have been allocated already. 
The method environment is recursive, the instance variable environment is not. 

Fig. 10 shows the effect on the store of  the declaration v a t  c := new c i r c l e  
(Fig. 8). We can see that the object c is allocated after its own instance variables. 

K[[K1 K2]] r = KI[K1]] r * 2r'. (K[[K2~ (r'@r))@r' 

K [[e]] r = result [] 

In Fig. 8, the second class definition knows the first but the first ignores the 
second. Nevertheless, it is possible, in principle, that an object of  the first class 
sends messages to an object of  the second class. 

x C o m p  

T 
before 

y C o m p  radius  

a~er  

Fig. 10. The store after an object creation. 
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V[[var  I : =  El] r = 

V[[V 1 V2"[] r = 

VIM] r = 

M / [ m e t h  I ( I 1 , . . . , I ~ )  C]I r = 

M[[M1 M2]]  r = 

M [[e]] r = 

RI[E]] r * 2d. new * 21.2s. ([I ~-+ 1], [1 ~-+ d]@s) 

VllVd] r * 2r'. (V[[V2]I (r'@r))@r' 

result [] 

[ I ~---~ )Ldl . . . .  )~dn.d ] 

w h e r e  

I1 ~ dl 

d = C[[C]]( 

In ~ d~ 

(M[[M2ll r) @ (MI[Mlll r) 

[1 

@ r) 

The variable-declaration clause gets a new location in the store and puts the 
value of the right-hand side there. Method definitions are not recursive. Re- 
cursion and the calling of other methods is possible by sending messages to 
s e l f .  

3.3. Previous Work  

The first semantics of Smalltalk [GoR89], which often serves as an archetype 
of object-oriented programming languages, was described operationally. The first 
denotational semantics of Smalltalk is due to Wolczko [Wo187]. His semantics 
still has some operational elements: inheritance is described by method lookup. A 
denotational SmaUtalk-semantics in continuation style is from Kamin [Kam88]. 
Reddy [Red88] presents more readable semantics because he focuses on central 
issues of object-oriented programming; he uses fixed points for modeling self. 
Cook [Coo89, COP89] gives a wrapper-semantics of inheritance without state. 

4. Wrappers as a Language Construct 

In object-oriented programming languages like Smalltalk o r  O'SMALL, a class 
declaration is a modification of an existing class. This existing class becomes 
the superelass of a new class. In some cases, the modification is interesting 
in its own right: it is advantageous to apply the modification to more than 
one superclass. Suppose we have already defined points and intend to add 
colour to them. In Smalltalk or classical O'SMALL, we would define a class of 
coloured points as a subclass of points. But now we also want coloured circles. 
Black-and-white circles are at our disposal. In Smalltalk or classical O'SMALL, 
we would define coloured circles as a subclass of circles. The colour-part (the 
colour-modification) must be defined twice. Therefore, we should be able to 
make the colour-modification explicit in the programming language. We call such 
modifications wrappers according to the semantic construct (sections 2 and 3). 

Let us explain the difference between class declarations with and without 
explicit wrappers in the syntax of O'SMALL. In classical O'SMALL, a class A was 
defined as a subclass of another class B. The modification is contained in the 
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new instance variables V and the new methods M. In the following O'SMALL 
fragments, V represents a sequence of variable declarations and M represents a 
sequence of method declarations. 

class A subclassOf B def V in M ni 

Now, with explicit wrappers, a wrapper W is defined in much the same way as 
a class before, except that it does not name a superclass. The class definition 
defines A as the subclass of  B that results from the modification by W. 

wrapper W def V in M ni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  class A = W B 

The syntax and semantics of  the modification, i.e. V and M, are as before. The 
class A is defined as the wrapper W applied to the superclass B. The two O'SMaLL 
expressions separated by a dotted line define essentially the same as the previous 
class definition in classical O'SMALL. Now that wrappers are denotable, i.e. they 
can be bound to variables, they can be applied to several classes. For example: 

class D = W C 

Greater flexibility is thus gained. 

4.1. Multiple Application of a Wrapper 

4.1.1. Universal Wrappers 

A wrapper having method names different from all method names in existing 
classes, whose method bodies refer to its own methods only using s e l f ,  and with 
no occurrence of super,  is called a universal wrapper. 

Definition 4.1. For a wrapper definition W we define outLabels(W) as the set of  
method labels defined in W, superLabels(W) as the set of  message-labels sent to 
the pseudo-variable super  in W, and selfLabels(W) as the set of  message-labels 
sent to the pseudo-variable s e l f  in W. 

inLabels (W) = superLabels (W) U (selfLabels (W) - outLabels (W)) 

Now, we are able to define universality more precisely: a wrapper (definition) W 
is universal if and only if inLabels(W) = 0 and outLabels(W) is disjoint from all 
labels in other wrapper (definitions) in the program. A universal wrapper can be 
applied to any existing class. An example for a universal wrapper is the wrapper 
COLOUR in the O'SMALL program of Fig. 11. 8 We achieve an effect similar to 
hierarchy inheritance [Coo89], but we still have to apply the wrapper to each 
member  of  the hierarchy "by hand". The wrapper for the colour is applied to the 
class Point yielding the class ColPoint. The resulting class hierarchy can be seen 
in Fig. 12. Point is a superclass of  Circle. The derived hierarchy is CoIPoint and 
ColCircle. In the example, ColCircle is a subclass of  Circle, but it could also be 
a subclass of  ColPoint, as the dashed line suggests. That is to say, had we applied 
CIRCLE to CoIPoint this would have resulted in the same ColCircle. 9 We state 
the following without proof: 

S In our O'SMALL examples wrapper identifiers are written in upper case and class identifiers begin 
with uppercase letters. 
9 In a "real language'" it should be possible to identify any universal wrapper with the class that 
results from its application to the empty class. This would economize on writing. 
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wrapper POINT 
def var xComp := O; var yComp := 0 

in meth x() xComp 

meth y( )  yComp 
meth move(X,Y) xComp := X+self.x; yComp := Y+self.y 
meth distFromOrg() sqrt(sqr(self.x) + sqr(self.y)) 
meth closerToUrg(point) self.distFromGrg < point.distFromOrg 

ni 

wrapper CIRCLE 
def var radius := 0 
in meth r() radius 

meth setR(d) radius := d 
meth distFromOrg() max(O, super.distFromOrg - self.r) 

ni 

wrapper COLOUR 
def vat c := 1 
in meth setColour(t) e := t 

meth colour() e 

ni 

class Point = POINT Base 
class Circle = CIRCLE Point 
class ColPoint = COLOUK Point 
class ColCircle = COLOUR Circle 

{ Base is the empty class } 

Fig. 11. Universal wrapper. 

Proposition 4.2. Commutativity of wrapper application: 
If  

0 = outLabels(Wl) C3 outLabels(Wj 

= inLabels(W1) A outLabels(WJ 

= inLabels(Wj f3 outLabels(Wj 

then [[W~ [ ]  [W2~ [ ~  Base = ~W2]I ~ [Wi~ [ ~  Base. 

Corollary 4.3. The application of universal wrappers is commutative. 

4.1.2. Special Wrappers 

A wrapper is called special if it is not universal. A special wrapper refers, 
somehow, to methods defined in its superclass. If  it were applied to a class that 
does not define the methods in the expected way, errors might result. We will 
show an example of a special wrapper that can, nevertheless, be applied to more 
than one class. 

Definition 4.4. Let M be a set. A subset H c M x M defines a preorder (we often 
write a _< b for (a, b) C H), if Va, b, c ~ M : 

a<<_a, a<_b A b < _ c ~ a < c  
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I 

I 

r 

I 

Fig. 12. Hierarchy inheritance. 

If, in addition, a < b A b < a ~ a = b holds, (M,. _< .) is called a (partial) order. 

Let _< be a relation defined on N x N as: (x, y) < (x', yl) ~ x + y _< x' + y'. 
Let < b e a r e l a t i o n d e f i n e d o n Z a s : z _ < z '  <=~ 3 x c Z : z * x = z '  
One easily verifies that (N x N,. < .) and (Z,. _< .) are preorders. It is possible 
to obtain an order from every preorder by using equivalence classes, where two 
elements a and b of  a preorder are equivalent (a ~ b) if a _< b A b _< a. An order 
is obtained by regarding ~ as the equality. 

The O'SMALL program of  Fig. 13 shows the two previous preorders and a wrap- 
per that uses equivalence classes and, thus, makes an order from every preorder. 
In the definition of the wrapper PRE{3RDER2{3RDER, we have chosen eq for the 
equality and l e q  for the relation. Obviously, the wrapper PREORDER20Pd3ER only 
makes sense with classes where this naming convention (signature) is respected. 

4.2. Multiple Inheritance 

One speaks of  multiple inheritance when a class directly inherits the properties of  
at least two classes. This implies, according to our view, that objects of  the new 
class may be substituted for objects of  both parent classes. There is a problem 
when there are name conflicts [Knu88] between the inherited classes. 

Let A and B in Fig. 14 each define a method m, and let m not be redefined in 
C. Let us denote by mA the definition in A and by mB the definition in B. I f  mA 
and mB are incompatible at the signature level, mA may, for example, require two 
parameters and mB three, cancellation at the signature level is the consequence 
because either mA or mB has to be chosen when a message with the selector m 
is sent to an object of  class C. One can try to overcome the name conflict by 
renaming [Mey88] but this is no remedy for cancellation. Cancellation at the 
signature level is not desirable because it may be a cause of errors if one assumes 
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wrapper PAIR 
def var xComp := 0 var yComp := 0 
in meth set(a,b) xComp := a; yComp := b 

meth x() xComp 
meth y( )  yComp 
meth leq(p) (self.x+self.y) <= (p.x+p.y) 
meth eq(p) self.x=p.x and self.y=p.y 

ni 

wrapper DIV 
def var z := 1 {should not be 0 because of 'mod'} 
in meth set(v) z:=v 

meth value() z 
meth leq(n) (n.value mod [self.value[) = 0 

meth eq(n) self.value = n.value 

ni 

wrapper PREORDER2ORDER 
meth eq(e) self.leq(e) and e.leq(self) 

class Pair = PAIR Base {Base is the empty class} 

class Div = DIV Base 
class OrderedPair = PREURDER2ORDER Pair 
class OrderedDiv = PREORDER20RDER Div 

Fig. 13. A special wrapper. 

that objects of a superclass may be substituted by objects of a subclass. If rnA 
and mB are compatible at the behavioural level (this implies compatibility at the 
signature level) there is no cancellation. Still, either rnA or mB has to be chosen. 

In every case described so far, the inheritance graph in Fig. 14 is either 
impossible, because the resulting C cannot be signature-compatible with both A 
and B, or it is misleading, because the graph suggests symmetry where there is 
none. Fig. 14 is acceptable only if every method for a message selector that is 
understood by A and B is defined in a common superclass of A and B. That is 
to say, we regard Fig. 14 just as a graphical way to express that C inherits the 
properties of A and B (with single inheritance), but it does not matter in which 
order. A sufficient condition for commutativity has been given in proposition 4.2. 

All cases of disciplined multiple inheritance, where the symmetry of Fig. 14 
is justified, can now be defined with single inheritance and explicit wrappers. For 
every class, there is a defining sequence of wrappers starting from the predefined 
class Base (see section 3). Therefore, we can represent A and B as 

A = W ? [ ~ ' . . W l A [ ~ B a s e ,  

B = W ~ [ ] ' " W l B [ ~ ] B a s e .  

Wrappers are now explicitly denotable values, so we can reuse them and define 
C as 

C = w C [ ~ w [ ~ [ - ~ ] ' ' ' w A ~ ] w ~ [ ~ ' ' ' w B [ ~ B a s e .  

Fig. 15 shows a special case of Fig. 14 with iceberg diagrams. A is derived from 
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Fig. 14. Multiple inheritance. 

Base with two wrappers (1 = 2), B with three (m = 3), and C by multiple 
inheritance without further definitions. 

If A and B in Fig. 14 have a common superclass other than Base their 
wrappers are not disjoint: there exists a k such that, for all 1 < i < k, Wi A = W~. 
There may be problems with the internal state: let us assume that, in these 
common wrappers, we have defined a counter. The resulting class C contains 
two counters, one open and one hidden. We call the counter defined by the W A 
"open" because it is the one that is accessed in the above definition of  C. The 
counter defined by the Wi B is called "hidden" because it is "overwritten" by the 
Wi A. In most cases, the open counter will be used all the time and its associated 
instance variables will contain its state. There is, however, one way to use the 
hidden counter: in a method of  B that is not defined in A a counter method, say 
f ,  is called with super ,  f. Usually, super ,  f is only used if we have overwritten f 
and still want to refer to the old definition. As pointed out above, this should not 
be the case for multiple inheritance: we should not have overwritten f in A or B 
because of  cancellation. This example shows that multiple inheritance modeled 
with single inheritance and explicit wrappers is not a simple automatic procedure. 
In the general case, one has to be careful and take consequences like this into 
consideration. 

The denotational semantics of section 3 can easily be extended by explicit 
wrappers. The details are explained in section B. 

4.3. Related Work 

Snyder [Sny86] categorizes different strategies in multiple inheritance into graph 
oriented solutions as in TRELLIS/OwL [SCB86], linear solutions as in FLAVORS 
[Moo86] or COMMONLOOPS [BKK86], and tree solutions as in Common Objects 
[Sny85]. In graph-oriented solutions, the inheritance graph is searched directly 
(in terms of method-lookup-semantics) by a depth-first-traversal for example. 
Instance variables of  ancestors that can be reached by more than one inheritance 
path are not duplicated. Graph-oriented solutions are flexible yet complicated, 
and they make inheritance become part of the external interface [Sny86]. In 
linear solutions, the inheritance graph is transformed into a chain. The problem 
here is that one class may have a new parent which the designer was not aware 
of. In tree solutions the graph is transformed into a tree by duplicating nodes. 
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A B 

C 

Fig. 15. Multiple inheritance. 

This implies duplication of the instance variables. For each inheritance path to 
a superclass, a new set of  instance variables for that superclass is created. Our 
solution may be seen as a linear solution. In O'SMALL there are no name-conflicts 
with instance variables because they are encapsulated. 

The mixing of flavors in the programming language FLAVORS [Moo86] resem- 
bles our explanation of  multiple inheritance most. Flavors can be regarded as 
analogous to classes that can be used like wrappers. This comes from another 
context and there are some differences. FLAVORS has intricate method combina- 
tion, and instance variables are not encapsulated. Duplicate flavors in multiple 
inheritance are eliminated. This would correspond to the elimination of duplicates 
of  identical wrappers W A = W, ~ in the definition of C. In our context this is 
impossible in general because o~f the pseudo-variable super.  Whereas FLAVORS 
uses a standard mechanism for multiple inheritance, O'SMALL enables the sim- 
ulation of multiple inheritance "by hand". In O'SMALL, it is the programmer 's  
responsibility to solve name conflicts. 

Cook [Coo89] treats multiple inheritance with so called n-wrappers, n- 
wrappers generalize wrappers by taking a tuple of  superclasses instead of just 
one. The one elaborated construction with n-wrappers is strict multiple record 
inheritance: parents are combined so that conflicting methods are removed. Con- 
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flicting methods should be redefined. The new class definition has direct access to 
all parent-class-methods. Other constructions are possible, n-wrappers are more 
general than our approach. 

There is a relationship between explicit wrappers and abstract parameterized 
data types and modules [EhM85, EhM90]. The issue of inheritance from the 
point of view of algebraic specification is addressed by [ESS89]. Modules, on a 
programming language level, are most advanced in ML [Mac85]. In ML modules 
are called structures. Functors in ML generate new structures by modifying 
existing structures. Classes correspond to ML-structures and wrappers correspond 
to ML-functors. In contrast to wrappers, functors can have more than one 
argument and arguments must be qualified; this is similar to n-wrappers. The 
main difference is the absence of late binding in M L  If we depict functors and 
structures in the same way as wrappers and classes, with iceberg diagrams, the 
difference between ML and O'SMALL can be seen in Fig. 16. ML has no pseudo- 
variable s e l f ,  but it has recursion. Thus, the arrows in the diagram stand for 
recursion in the functions of  the structure. A function of the old (lower) structure 
will always recursively refer to functions of  the old structure, even if functions of 
the same name have been defined in the functor (static binding). 

O'SMALL M L  

Fig. 16. Late binding/static binding. 

Explicit wrappers have been invented independently by Bracha and Cook 
[BrC90]. There, they are called mixins. Their language is an extension of Modula- 
3 [CDG89]. Modula-3 has been chosen because it supports single inheritance and 
is strongly typed. We agree that explicit wrappers necessitate strong typing even 
more than ordinary inheritance. We have investigated static type inference for 
O'SMAI~L [Hen93]. Further examples that show the usefulness of explicit wrappers 
are contained in [BrC90]. 

Wrappers have nothing in common with continuations. However, the pro- 
cess of  lifting semantic constructs to the programming language level has been 
performed in SCHEME [ASS85] and recently in ML with explicit continuations. 
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5. Conclusion 

We have proposed explicit wrappers as a new language feature for object oriented- 
programming. To make this article self-contained, we have included the seman- 
tics of classical O'SMALL. This semantics shows one way of extending wrapper- 
semantics [Coo89] by state. Thus, the vehicle of our examples has a concise 
formal definition, including the extension of O'SMALL by explicit wrappers. We 
have shown three uses of explicit wrappers, namely 

�9 hierarchy inheritance, where the wrappers have to be applied one by one to 
classes of the original hierarchy, 

�9 functor-like application for transformation of mathematical structures, and 
�9 (a variety of) multiple inheritance. 

Notions like disciplined inheritance and properties of explicit wrappers have 
remained informal. A theory of explicit wrappers is a prerequisite for their 
future use. With single inheritance and explicit wrappers, we are not able to 
model all existing varieties of multiple inheritance but we are able to model 
disciplined multiple inheritance. If disciplined multiple inheritance is a strong 
enough mechanism in practice, is an open question. A disciplined programming 
style, assisted by ameliorated static analysis, seems to be appropriate and at the 
same time a direction of future research. 
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Appendices 

A. Auxiliary Functions 

We need a generic function * for the composi t ion o f  commands  and declarations. 
This function stops the execution o f  the program when an error occurs. Let there 
be two functions f and g with the types 

I St~ ) [D2xStore], f " D1 ~ Store 
g : D2 ---+ Store ~ [D 3 • Store]. 

The lines inside the angular  delimiters represent alternatives. The alternatives 
in the following text are not  free but depend on the choices of  the alternatives 
above:  if in the above delimiters one chooses the upper  alternative, one must  
choose the upper  alternative below (and vice versa). The composi t ion o f  f and g 
has type 

I St~ ) f * g : D1 >Store 
and is defined by 

f *  g -= 

> [D3 • Store] 

I ZSl ) { (• err 
2d>2sl ' g d2 s2, otherwise 

where (d2's2)=l fsl ) fd l s l  

The infix operator  * is left associative. The definition of  ~, in section 2 is 
based on the left-preferential combinat ion o f  records (denoted by (9). This symbol 
is also overloaded in the semantic equations:  if the arguments  o f  (b are o f  the 
domain  Fixed then @ stands for, 

Xl (~ X2 : ~s . ( r l  (~Ipr r2, s') 
where 

(r l ,  s ')  = x l s ,  

( r2 , - )  : X2S. 

The infix operator  | stands for the operat ion on records that  is defined in 
definition 2.2. This is the only change of  the inheritance function (definition 1). 
Here are further auxiliary functions. Let D be any semantic domain :  

cond : [D x D] , Bool > D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Alternative 
cond(dl,  d2) = 2b.b , dl, d2 

cnt : Loc ~ Store ~ [[Sv + { l} ]  x Store] . . . . . . . . . . . . .  Contents  o f  a location 
cnt = 21.2s.(s 1, s) 

cont  : Dv > Store ~ [Sv x Store] . . . . . . .  Contents  o f  a location with domain  
checking 
cont--= Loc?  * cnt * Sv? 

D?  : D'---+ Store ~ [D' x Store], with D _c D '  . . . . . . . . . . . . . .  Doma in  checking 

D ? = 2 d .  e [ resu l td ,  i f i s D d  
seterr , otherwise 
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deref  : Dv ~ Store ~ [Dv • Store] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Dereferencing 
cont  d , i f i s L o c  d 

deref  = 2d. result d, otherwise 

new : Store ~ [Loc x Store] . . . . . . . . . . . . . . . .  Ge t t ing  a new loca t ion  in the store 
new s = (1,s) or  = (_1, [err ~ true] @ s) 

I f  new s = (1,s) then s 1 = _1_ is guaranteed.  

result  : D > Store ~ [D • Store] . . . . . . . . . . . . . . . . . . .  Side effect free eva lua t ion  
result  d = 2s.(d, s) 

seterr : Store ~ [D x Store] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Set t ing the error  flag 
seterr  = 2s.(A_, [err ~ true] | s) 

upda te  : Loc ~ Dv  ~ Store , [DvxStore]  . . . . . . . . . . .  U p d a t i n g  o f  a loca t ion  
upda te  1 = Sv? * 2d.2s.(unit, [1 ~ d] @ s) 

B. From Classical O'SMALL to O'SMALL with Explicit  Wrappers 

The rep lacement  pure ly  technical.  Replace  the c o m p o u n d  syntact ical  d o m a i n  Cla 
by 

WrC1 the d o m a i n  o f  wrappe r  and  class dec la ra t ions  W 

In the syntact ic  clauses replace P and K by 

P : : = W C  
W : :=wrapperIde fVinM Ic lassI l=I213  IW1W2 Je 

A d d  wrappe r  values to the denotab le  values in the d o m a i n  equa t ions :  

Dv = Loc + Rv + Method~ + Class + W r a p p e r  deno tab le  values d 

Replace  the semant ic  funct ion K at  all its occurrences  by 

W : WrC1 , Env ~ Store----~ [Env•  

Replace  the clauses for class defini t ions by the fol lowing two clauses:  

W [wrapper  I def  V in M]] r = result [I ~-~ w] 
where w = ~Xsel f .,~Xsuper.~Screate . 

[ self ~---~ rself ] @rlocal @r),Snew ) 
(M[[M]]( super  ~ rsuper 

(rsuper~ Ssuper) ~ Xsupe r Screate 
(rlocal, Snew) = VI[V~ r Ssuper 
(rself,-) = Xself Screa~e 

and 

W [[class Is = I2 I3]] r = 
E~I3]] r * Class? * 2c. EI[I2~ r * W r a p p e r ?  * 2w. result[  Is F-~ w [-~ c ] 
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12 denotes a wrapper and 13 denotes a class. The identifiers are looked up in the 
environment, and the result of  the wrapper application is bound to I1. The result 
of  the evaluation of a class declaration is the binding of a class to the class name. 

W[[W1 W2]] r = WI[W1]I r * 2r'. (W[[W2]] (r'Or))@r' 
W[[e~ r = result H 

The class definition of classical O'SMALL has been removed and can now be 
reintroduced as syntactic sugar. 
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