
Formal Aspects of Computing (1993) 5:181-207
@ 1993 BCS Formal Aspects

of Computing

Denotational Semantics of an Object-Oriented
Programming Language with Explicit Wrappers
A n d r e a s V. Hense

Lehrstuhl ffir Programmiersprachen und Llbersetzerbau, Universit~it des Saarlandes,
Saarbriicken, Germany

Keywords: Class inheritance; Denotational semantics; Hierarchy inheritance; Mul-
tiple inheritance; Wrapper

Abstract. Object-oriented languages have traditionally been described by method-
lookup-semantics. Their denotational semantics have appeared and matured only
recently. Cook's wrapper semantics without state shows the essence of inheritance
much clearer than method-lookup-semantics.

In this article, we show how wrapper semantics can describe an object-oriented
language with state while keeping its original clear structure. We then extend our
object-oriented language by so called explicit wrappers. Wrappers that are used for
the description of the semantics of an "ordinary" object-oriented language emerge
from the semantics level and are included into the language itself. This unusual
step is being justified by a greater reusability of code. With explicit wrappers and
single inheritance, one variety of multiple inheritance can be expressed.

1. Introduction

One of the main advantages of object-oriented programming is an increased
reusability of code. This is the reason for its relatively early spreading into indus-
trial contexts, while the foundational research is still very active. Class-inheritance
contributes to structured code reuse. The terminology of object-oriented program-
ming suggests that classes are types, subclasses are subtypes, and so forth. This has
lead to confusion in the past. However, class-inheritance is not subtyping [CHC90]

Correspondence and offprint requests to: Andreas V. Hense, Lehrstuhl fiir Programmiersprachen und
Obersetzerbau, FB-14 Informatik, Universitiit des Saarlandes, 6600 Saarbriicken 11, Germany, e-mail:
hense@cs.uni-sb.de

182 A.V. Hense

but an intricate mechanism, featuring dynamic binding together with some clever
naming conventions (the pseudo-variables of SMALLTALK [GoR89]). Inheritance
is a mechanism for incremental modification. In our framework, it is possible to
redefine methods in such a way that their semantics in the subclass has nothing to
do with their semantics in the superclass. As long as certain minimal requirements
on type compatibility are guaranteed [Coo89], no errors will occur. However, for
a disciplined programming style, we require more, and advocate a (disciplined)
version of inheritance allowing certain compatibility assumptions on subclasses.
Otherwise, methods will be inherited just because they happen to fit into the
current scheme and many dependencies between classes will hinder modifications
in implementations. The following classification of incremental modifications is
adapted from [WeZ88]:

�9 Behaviour-compatible modification: The entries to be modified are specified
(e.g. by many sorted algebras [EhM85]). Syntax is specified by signatures and
semantics by axioms. Modifications are behaviour-compatible subalgebras.

�9 Signature-compatible modification: Like above but without semantics specifi-
cations. Subsignatures are in general not behaviour-compatible.

�9 Name-compatible modification: Modifications have a superset of the labels.
�9 Inheritance with cancellation:: Traditional inheritance focuses on subtypes de-

fined by increasing the severity of constraints. Cancellation relaxes constraints
(e.g., in a subclass, a method can be dropped).

Cancellation may occur at the level of behaviour, signatures, or names. By con-
struction, O'SMALL is at the level of name-compatible modification but cancella-
tion should be avoided by the programmer at the signature level and "somewhere
below" the behaviour level. Here, "below" means that we want compatibility
(substitutability [WeZ88]). The issue of behavioural compatibility has been ap-
proached pragmatically in Eiffel [Mey88], with Hoare-logic restrictions being
checked at run time, but a solution to the whole problem is still a subject of
research [ESS89, Grin90]. Excluding cancellation at the signature level can be
achieved by static type checking [Hen93].

This article's main concern is language design. A closer look at the inheritance
mechanism with denotational semantics using wrappers [Coo89] has lead us to
the idea of explicit wrappers] A wrapper is at first an element of the semantics
describing the incremental modification of a subclass definition. Making wrappers
explicit means adding a new feature to the language. The programmer can use
his modifications more flexibly, and thus the reusability of code is even higher
than in "ordinary" object-oriented programming languages.

We show examples of increased code reusability thanks to explicit wrappers.
Furthermore, explicit wrappers allow us to see multiple inheritance from a new
angle: with explicit wrappers and single inheritance we are able to model certain
cases of multiple inheritance.

1.1. Overview

Section 2 describes the semantic domains needed for object-oriented languages
and class inheritance in a purely functional framework. The internal state of ob-

1 First appeared in [Hen90] and developed independently in [BrC90].

Explicit Wrappers 183

jects has been abstracted. The definitions of classes and wrappers can thus be kept
simple. To make this article self-contained, section 3 gives the the denotational
semantics of an object-oriented language with state called O'SMALL [Hen91].
Readers who just want an intuitive understanding may skip section 3. Section 4
is the main section of this article. The semantic construct that leads to a clear
description of class inheritance in sections 2 and 3 is now being used in the lan-
guage itself. One of the consequences is that multiple inheritance may become less
necessary because one of its varieties can now be modeled by single inheritance.
O'SMALL, the language in the examples, appears in several "dialects":

�9 functional O'SMALL (section 2)

�9 (classical) O'SMALL (section 3)

�9 O'SMALL with explicit wrappers (section 4)

Functional O'SMALL is introduced informally and differs considerably from the
other dialects. Classical O'SMALL is a full object-oriented language with a denota-
tional semantics. O'SMALL with explicit wrappers is a slight extension of classical
O'SMALL. The differences are presented in section B.

2. Domain Theory and Object-Oriented Languages

The semantics of O'SMALL itself will be contained in section 3. This section
describes the semantic domains we use for an object-oriented language. To
simplify things, we consider functional O'SMALL, i.e. we abstract from state.
Programs of functional O'SMALL contain no assignments. In functional O'SMALL
classes have parameters, as opposed to classical O'SMALL. This approach is based
on the work of Cook [Coo89]. We will make a few remarks on fixed point
semantics and its appearance in the description of object-oriented languages,
followed by some basic definitions on records. Records model objects. These
basic definitions will also be used in later sections. After these preliminaries,
the ground will be prepared for the definition of the semantic domains and the
inheritance mechanism in functional O'SMALL.

Self-reference and application of functions to themselves pose mathematical
problems. Yet, recursive procedures or functions are common in programming,
and we will also need them in the remainder of this article. Scott [Sco76] provided
a basis for mathematical structures, called complete partial orders or cpo's for
short, that are suited for the description of recursive programs. For an overview
refer to [Bar81, HIS86]. Let us give an informal example of a recursive definition
in an O'SMALL like notation:

meth fac(n) if n=O then i else n * fac(n-1)

This definition is recursive or self-referential. In SMALLTALK and O'SMALL, self-
reference is standardized syntactically by the pseudo-variable s e l f . Instead of just
applying a function to an argument, object-oriented languages send a message to
an object. Message sending is record selection. For the above example, we thus
obtain the O'SMALL program fragment:

meth fact(n) if n=O then I else n * self.fact(n-l)

This is a method definition that may appear in a class. In order to access this
method, we have to send a message with selector f a c t to an object of this class,

184 A.V. Hense

but, because the definition is self-referential, one does still not know what it
denotes. We transform the above definition into non-recursive form by explicitly
abstracting the self-reference. A 2-calculus-like meta language is used for semantic
considerations.

Fact = 2s.[fact ~ 2n. if n = 0 then 1 else n * s fact(n - 1)]

Fact maps records to records. Its definition is not recursive. The abstracted
variable s plays the role of s e l f . The fixed-point theorem [Tar55] guarantees the
existence of a least fixed-point for all continuous functions from a cpo to itself. 2
All functions considered here are continuous. Let F be such a function. Then
we write FIx(F) for the least fixed-point of F. I f f = F~x(F) then F(f) = f . The
function fac, we intended to define in the first place, is now the fact-component
of Fact's fixed-point:

fac = FIx(Fact)fact

2.1. Records

The following basic definitions will be used in this section as well as in the
semantics definition of O'SMALL (section 3). Records are needed for the modeling
of objects.

Definition 2.1. A record is a finite mapping from a set of labels to a set of values.
Xl ~ /31

A record is denoted by : with labels xi and values vi. All labels

X n F--). l) n

which are not in the list are mapped to • The empty record, where all labels
are mapped to • is denoted by []. Selection of a component x in record r is
denoted by r.x.

Definition 2.2. Let dora(r) = {x I r(x) :/:• The left-preferential concatenation o f
records is defined by

{ rs((X) i f x E d ~
(r | s)(x) = x) if x C dora(s) - dom(r),

otherwise.

The idea of _ @ _ is the composition of two records where the left one wins in
case of conflicts. The following function defines modification of records using
left-preferential concatenation of records,

Definition 2.3. _ ~> _ : (Record --~ Record) --~ Record ~ Record
takes a function on records and a record, and yields a record. It is defined by

~(f)(b) = f (b) @ b.

The idea of _ ~_ is that a function uses and then overwrites a record. The
following definition will be explained later. Here we restrict ourselves to saying
that together with a wrapper (see below), the modification function for records

2 The original theorem is formulated for complete lattices.

Explicit Wrappers 185

can be t ransformed to a modification function for classes (see below):

([-~ w) : Class ~ Class

Note that we freely mix one-place or two-place writing o f functions (currying)
and prefix or infix notation. When written as an infix operator, _ [-~ _ is right-
associative.

Definition 2.4. We define a higher-order function _ [] _ : (~ ~ fl ~ ~:) ~ (6 --->
~) ~ (6 ---> fi) ~ 6 ---> 7 that makes o f a binary operator _ * _ : a ---> fi ---> 7 its
self-distributing version denoted by _ [-~_ �9 (6 --~ ~) ~ (6 -* fl) ~ 6 ~ ~ and

defined by a [-:-] b = 2s.(a s) * (b s).

2.2. Inheritance

Inheri tance is a way o f class modification. For its description we will present the
notions o f object, class, wrapper, and an inheritance function. For the reader's
convenience Fig. 1 summarizes domains and functions.

Class = Object ~ Object meta variable c
Wrapper = Object --+ Class meta variable w

_ @_ : Object ~ Class
_ ~,_ : Class ~ Class

[~][-~w �9 Wrapper ~ (Class ~ Class) inheritance function
() �9 Class --* Class class modification

Fig. 1. Domains and functions.

The object-oriented parad igm consists o f objects that communica te by message
passing. When an object receives a message it "decides" itself what to do, that is
it chooses the method that corresponds to the message selector o f the received
message. The abstract domain o f objects can be represented by a domain o f
records. Message selection amounts to the selection o f a record component .
One may want several objects with the same set o f methods, and therefore one
introduces classes. Classes generate objects. In the general case a class generates
similar objects. In this section, for technical reasons, a class generates identical
objects. Objects may also send messages to themselves and, thus, classes must
provide a means o f self-reference. We will see that a class generates an object by
a fixed-point operation.

When a new class (subclass) is defined one wants to refer to an existing
class (superclass) and say things like: "objects o f this class are like objects
o f the superclass, but this and this are different". In subclass definitions, new
methods may be added and existing methods may be redefined. In the redefinition
o f existing methods, there is a way of referring to the overwritten definition.
Together with the inheritance function, wrappers will be able to modify classes.
The inheritance function is defined such that the self-references are distributed
appropriately. Fact is an example o f a class with only one method. Let us look at
another example o f a class. Fig. 2 shows a program in functional O'SMALL whose
semantics will be discussed now. We focus on the first class-definition.

186 A.V. Hense

class Point(a,b) inheritsFrom Base

meth x() a
meth y() b

meth distFromOrg() sqrt(sqr(self.x) + sqr(self.y))
meth closerToOrg(point) self.distFromOrg < point.distFromOrg

class Circle(a,b,c) inheritsFrom Point(a,b)

meth r() c
meth distFromOrg() max(O, super.distFromOrg - self.r)

let var p = new Point(2,2)
var c = new Circle(3,3,2)

in . . ni

Fig. 2. Program in functional O'SMALL.

Point = 2a.2b.2s.
x

Y
distFromOrg
closer ToOrg

a
b
v/(s.x)2 + (s.y) 2
2p. s.distFromOrg < p.distFromOrg

Point is the class of points in two dimensional space 3. An object p of class Point
is created by:

p = Fix(Point 2 2) =

x ~ 2
y ~-~ 2
distFromOrg ~ ~/8
closerToOrg ~ 2p. v ~ < p.distFromOrg

On the semantic level, classes are functions of the form 2s.B where s is the
standardized variable representing self-reference. Inheritance is the construction
of a new class (the subclass) using an existing class (the supercIass). The formal
parameters for self-reference of the superclass and of the subclass "are the
same". The additional definitions or modifications in the subclass are modeled
by wrappers. A wrapper is a function taking two objects as input and returning
a new object. The first input object is the parameter for self-reference, like the
parameter for self reference of classes. The second input object is the parameter
for "super-reference". Wrappers have this special form here, because the language
we describe has the pseudo-variables s e l f and super. In a hypothetical language,
if there were further pseudo-variables, wrappers would have more parameters.

Let us now take a look at the second class definition of Fig. 2. Circles are
defined as a subclass of the already defined class of points. The wrapper CIRCLE 4
contains the differences between points and circles. The variable p is used like the
pseudo-variable supe r in SMALLTALK or O'SMALL.

3 To be precise: (Point aN a2) is a class.
4 To be precise: (CIRCLE aN a2 a3) is a wrapper.

Explicit Wrappers

C I R C L E = 2a.2b.2c.2s.2p. [r]
distFromOrg ~ max(O,p.distFromOrg- s.r)

The Circle-class is created by:

Circle =)ba.2b.2c.(ClRCLE a b c) [~] (Point a b)

An object c of class Circle is created by"

C Fix(Circle 3 3 2)

x

Y
r

distFromOrg
closerToOrg

3
3

w-~ 2
v ~ - 2
2p. v/l-8 - 2 < p.distFromOrg

187

JO
class

w r a p p e r

inher i tance

Fig. 3. Iceberg-diagrams.

In order to illustrate the inheritance function, we introduce iceberg-diagrams,
an intuitive description of classes and wrappers (Fig. 3). A class is depicted by a
triangle, where the visible part (methods) is above the surface and the invisible
part (instance variables) below. There is an arrow for self-reference. A wrapper
is depicted by an angular shape. Inheritance is a wrapper applied to a class. The

188 A, V. Hense

common line of wrappers and classes in the diagram represents the references to
s e l f , super, and the methods that are not redefined, Note that the self-reference
of the wrapper and the class now point to the whole.

3. An Object-Oriented Language with State

In this section, we show how to extend the semantics of inheritance without
state of section 2 to a semantics of an object-oriented programming language,
i.e. we add the state that was abstracted from in section 2. The language being
described in this section is the so called classical O'SMALL, which has no explicit
wrappers, The semantics of O'SMALL (section 3.2) was formulated around the
semantics of the imperative language SMALL [Gor79] but in direct style (without
continuations). The aim was to clarify the differences between object-oriented
and imperative programming languages. The semantic clauses use some auxiliary
functions (section A).

The semantic functions defined in the following are all continuous because
they are built by standard constructions (function composition) from continuous
functions. Therefore their smallest fixed points exist in cpo's. However, domain
theory was not the focus of our attention.

3.1. Syntax of O'SMALL

The syntactic domains are in Fig. 4. Meta variables ranging over domains are
listed on the right-hand side. Ide, Bas, and BinOp are primitive, the others com-
pound. Method declarations are distinguished from variable and class declarations
because methods are declared in classes only, In lieu of commands [Gor79] we
have compound expressions. Their syntactic appearance is similar to commands
but compound expressions return a value. The syntactic clauses are in Fig. 5.
Class, variable, and method declarations may be empty.

Ide the domain of identifiers I

Bas the domain of basic constants B

BinOp the domain of binary operators O

Pro the domain of programs P

Exp the domain of expressions E

CExp the domain of compound expressions C

Var the domain of variable declarations V

Cla the domain of class declarations K

Meth the domain of method declarations M

Fig. 4. Syntactic domains.

Explicit Wrappers 189

P : := K C

K ::= class I1 inheritsFrom I2 def V in M I K1 K2 [e

C ::= E I I := E I output E I if E then C1 else C2

I while E do C [def V in C [C1 ; C2

E ::= B [true I false]read] I [E.I(E1 E~) I new E

V ::= vat I := E I Vl V2 I e

M ::= meth I(I1,...,In) C] M1 M2 I e

[E l O E 2

Fig. 5. Syntactic clauses.

Un i t o n e - p o i n t - d o m a i n u

Bool booleans b

Loc loca t ions 1

Bv basic values

Record~,/~ = ~ , [fl + {_1_}] records

Env = Recordide,Dv envi ronments r

Objec t = Record1&,ov objects o

Dv = Loc + Rv + M e t h o d , + Class deno tab le values d

Sv = File + Rv storable values v

Rv = Uni t + Bool + Bv + Object R-values e

File = Rv* files i

Store = RecordLoc,Sv stores s

M e t h o d , = Dv" , Store , [DvxStore] me thod values m

Class = Al loc , Al loc class values c

Al loc = Store ~ [Object x Store] a l loca tor values x

W r a p p e r = Al loc , Class w ra ppe r values w

Ans = F i l e x {error, stop} p r o g r a m answers a

Fig. 6. Semantic domains.

3.2. S e m a n t i c s o f O'SMALL

The semant ic doma ins are in Fig. 6. The first four domains are primitive. Unit
is the d o m a i n needed for the result o f c o m p o u n d expressions that do not re turn
a useful value (whi le -express ion) . Loca t ions are addresses o f cells in the store.
Denotable values can be b o u n d to identifiers in the environment . In O'SMALL, the
set o f values tha t can be the result o f expressions (expressible values) is the same as
the set o f deno tab le values. Storable values can be put into cells (locations) o f the
store. Note tha t one cell can conta in a whole file (input and output) . R-values are
the results o f eva lua t ing the r igh t -hand sides of assignments. D o m a i n s Method~
are needed for each n c No. Al loca to r s can create objects but are not sui ted for
inheri tance. They are the results o f fixed po in t opera t ions appl ied to classes.

190 A, V. Hense

B : Bas--~ Bv

O :BinOp >Rv ~Rv

P :Pro > File ~Ans

R,E "Exp ~Env ,S to re

C :CExp , Env > Store

V :Var ~Env , Store

K :Cla ~ Env .~Store

M : Meth----~ Env----~ Env

Store > [DvxStore]

, [Dv x Store]

, [Dr x Store]

[Envx Store]

[EnvxStore]

Fig. 7. Semantic functions.

3.2.I. Semantic Clauses

The types of the semantic functions are in Fig. 7. B takes syntactic basic constants
and returns semantic basic values. O takes a syntactic binary operator (e.g. -4-),
two R-values, and a store; it returns the result of the binary operation and leaves
the store unchanged. B and O are primitive. The remaining semantic functions
will be defined by clauses.

We use record notation for environments and stores. Alternatives are denoted
in braces. Note that in the following clause err, inp, and out are locations, not
identifiers. For the definition of auxiliary functions in the following clauses refer
to section A.

P IlK C]] i = extractans S final

where

extractans = 2s.(s out, ~ error, if (s err)

L stop, otherwise

(rclass,-) = K[[K]I r ini t ia I Sinitial

(.Slinal) = C[[C]I rdass s~,,i~i~l

rinitia,= [Base ~ 2o.2s.result[]]

)

Sinitia I :

err ~ false]

inp ~ i

o u t ~-~ 6

An answer from a program is gained by running it with an input. The store is
initialized with the error flag set to false, the input, and an empty output. The
initial environment contains the "empty" class Base. It is enriched by the declared
classes. Then the compound expression is evaluated. In addition to the output,
the error flag shows if the program has come to a normal end (stop) or if it
stopped with an error (error).

Let us look at the example of Fig. 8. In contrast to Fig. 2, objects have an
internal state. The move-method, for instance, just changes the internal state of

Explicit Wrappers 191

class Point inheritsFrom Base
def var xComp := O; var yComp := 0
in meth x() xComp

meth y() yComp
meth move(X,Y) xComp := X+self.x; yComp := Y+self.y
meth distFromOrg() sqrt(sqr(self.x) + sqr(self.y))
meth closerToOrg(point) self.distFromOrg < point.distFromOrg

ni

class Circle inheritsFrom Point
def vat radius := 0
in meth r() radius

meth setR(r) radius := r
meth distFromOrg() max(O, super.distFromOrg - self.r)

ni

def var p := new Point;
var c := new Circle

in p.move(2,2); c.move(3,3); c.setR(2);
output p.closerToOrg(c);
p.move(O,-2); c.move(O,-2);
output p.closerToOrg(c)

ni

{results in FALSE}

{results in FALSE}

Fig. 8. Example program in O'SMALL.

a poin t . The m a i n - p r o g r a m " k n o w s " the class def in i t ions b u t the store has n o t
b e e n c h a n g e d by them.

R[[E]] r = E[[E]] r * de re f * R v ?

E[[Bll r = result(B[[B]])

E[[true]] r = resul t t rue

E[[false]] r = resul t false

E[[read]] r = con t i n p *

seterr s , i f i = e

2i.2s. (hal i, [inp ~ tl i] ~ s), o therwise)

E[[I]] r = resul t (r I) * D r ?

E[[E.I(Eb.. . ,En)]I r = N[[Ell r * Object? *

2o.(resul t (o I) * M e t h o d ? *

2m. R[[Ell] r * 2dl R[[En]] r *)~d, .

m (d l dn))

The s eman t i c f u n c t i o n R p roduces R-va lues . The read-c lause takes a n e l emen t
f rom the user i n p u t a n d re tu rns it as a result . The last c lause is for message
sending , which is record field se lect ion (hence the no t a t i on) . The first express ion
is eva lua t ed as a n R-va lue . The resul t o f this e v a l u a t i o n m u s t be a n object. The

192 A.V. Hense

resulting record o is applied to the message selector I. This should result in a
method that is then applied to the parameters.

The textually first message sending in Fig. 8 is s e l f . x. 5 The pseudo variable
s e l f evaluates to an object. This object is bound to o and with (o 1) we get the
method. The identifier I is x here. The method is bound to m. m applied to all
necessary arguments, in this case zero, is the result of this clause.

3.2.2. The New Semantic Domains

Semantic domains for the constructions not appearing in imperative languages
must be added. Objects, classes, and wrappers were introduced in section 2. Their
domains were:

Class = Object , Object

Wrapper -- Object , (Object ~ Object)

What are the new semantic domains in the semantics of O'SMALL corresponding
to the semantics of inheritance? The domains of classes and wrappers determine
each other. The appropriate domain of classes is simpler and will be discussed
here.

To understand the semantic domain of classes, we take a closer look at class
declaration and object creation. When a class is declared, the current environment
is enriched by the class name. The class name is bound to the result of a wrapper
application. In this wrapper application, the wrapper of the current class is.
applied to an existing class. Existing classes are either the empty class Base or a
class resulting from the application of a wrapper to an existing class. The store
remains unchanged because instance variables are not allocated at the time of
class or wrapper declaration. An object is created by application of the fixed
point operator to the class. For the fixed point operator to be applied to it, the
domain of the class must be e ~ e where ~ is any domain (the domain of
classes was Object ~ Object in section 2). The environment for methods is
recursive whereas the environment for instance variables is not. We allocate the
instance variables after applying the fixed point operator. A function is needed
for the allocation of all instance variables 6 of the new object. This function has
to "know" the current store and return it with the instance variables allocated;
the store must thus appear in the domain and the codomain of the function.
In addition, this function has to return an object. Therefore the result of the
application of the fixed point operator to the class is:

Store ~ [Object x Store]

This is our ~. Thus the domain of classes is:

(Store ~ [Object x Store]) , (Store , [Object x Store])

3.2.3. Semantic Clauses Continued

With the domain of classes, we are able to define object creation, one of the
central clauses of this semantics:

5 Note that for messages without arguments the empty parentheses can be omitted while for the
method definitions they cannot.
6 Including the instance variables declared in superclasses.

Explicit Wrappers 193

El[new Ell r = E[[E]I r * Class? * 2c.2s.(FIx c)s
After evaluating E, we get a class. The fixed point operator FIx is applied to this
class. The result o f the application o f Fix is applied to the current store s. 7 Fig. 8
contains object creations at the definition o f p and c.

E [[EI O E2]] r = R[]Etll r *)~ebR[[E2ll r * ~e2.OllO]] (el, e2)
The textually first binary operat ion in Fig. 8 is X + s e l f . x.

C[[Ell r = E[[Ell r

O[[I := Ell r = E[[I1] r * Loc? *)J. R[[E]] r * (update 1)

C[[output Ell r = R[[Ell r *

2e.2s.(u, [out ~ append(s out,e)] @ s)

G [[i f E t h e n C l e l s e C 2 l l r = R[[Ell r * Boo l? *

cond(C[[C1]] r, G[[C2ll r)
Gllwhile E do Cll r = R[[Ell r * Bool? *

cond(C[[C[[r *

2e.G[[while E do C]] r, result u)

G[[def V in Cll r = V[[V]] r * 2r'.G[[Cll (r '~r)

G[[C1; C2ll r = C[[Clll r * 2e.G[[Czll r

The result o f an assignment-, an output-, or a while-expression is unit. In a
sequence o f expressions the transmitted values o f all but the last expression are
discarded. This practice has been adopted from M L [Mi184].

K[[elass I1 inheri tsFrom 12 def V in Mll r

= E[[I2ll r * Class? * 2c.result[It ~ w ~] c]

where

W = ~X self .J.X super .,~Screate.

self F-,
(M[[Mll (super

where

(rsuper, Ssuper) = Xsuper Screate

(rlocat, Snew) = V[[Vll r Ss,eer

(rself,-) = Xself Screate

]
rself

] �9 rlocal (~ r) , Snew)
rsuper]

The result o f evaluating a class declaration is the binding of a class to the class
name. The store remains unchanged when a class is declared. The wrapper w
takes an allocator for self-reference, an al locator for reference to the superclass,
and a store as parameters. The store parameter is fed at object creation time, X,elf
is fed at the fixed point operation, and Xs,per is fed at the wrapper application. The
wrapper evaluates the method definitions in an environment being determined at
declaration time - except that the locations for the instance variables have to be
determined at object creation time. The local environment is only visible in the
class itself, not in any subclass. Thus we have encapsulated instance variables.

7 By applying the q-rule [Bar81, page 32] twice, 2c.2s.(FIx c)s could be replaced by l~x.

194 A.V. Hense

create

I
ins tance var iab les

l

super
T

new

Fig. 9. The store during object creation.

Let us consider what happens at object creation time during the evaluation of
the inner where-clause above. Fig. 9 shows the store with arrows pointing at the
first free cell of the store with the respective index. Xsupe r is applied to the store at
object creation time. This results in the method environment of the superclass;
but also the part of the instance variables defined in the superclass are allocated
and the first free cell of the store is indicated by super in the figure. The new
instance variables for the current class are declared in V. V has to be evaluated
in Ssupe r to put the new instance variables "behind" the inherited ones. Of course,
it could have been done the other way round. All instance variables are allocated
now and the resulting store (Snew) is passed on to the remaining program. There
is however a third line where Xself is applied to Screare. Xself iS the recursive part
and rself is the resulting recursive environment. Xsely has to be applied to Screare
because its instance variables are the ones that have just been allocated.

The careful reader may have noticed already that the resulting store of the
a l l o c a t o r Xself is not needed. This is indicated by an underscore. The reason for
this is that the instance variables of the current class have been allocated already.
The method environment is recursive, the instance variable environment is not.

Fig. 10 shows the effect on the store of the declaration v a t c := new c i r c l e
(Fig. 8). We can see that the object c is allocated after its own instance variables.

K[[K1 K2]] r = KI[K1]] r * 2r'. (K[[K2~ (r'@r))@r'

K [[e]] r = result []

In Fig. 8, the second class definition knows the first but the first ignores the
second. Nevertheless, it is possible, in principle, that an object of the first class
sends messages to an object of the second class.

x C o m p

T
before

y C o m p radius

a~er

Fig. 10. The store after an object creation.

Explicit Wrappers 195

V[[var I : = El] r =

V[[V 1 V2"[] r =

VIM] r =

M / [m e t h I (I 1 , . . . , I ~) C]I r =

M[[M1 M2]] r =

M [[e]] r =

RI[E]] r * 2d. new * 21.2s. ([I ~-+ 1], [1 ~-+ d]@s)

VllVd] r * 2r'. (V[[V2]I (r'@r))@r'

result []

[I ~---~)Ldl)~dn.d]

w h e r e

I1 ~ dl

d = C[[C]](

In ~ d~

(M[[M2ll r) @ (MI[Mlll r)

[1

@ r)

The variable-declaration clause gets a new location in the store and puts the
value of the right-hand side there. Method definitions are not recursive. Re-
cursion and the calling of other methods is possible by sending messages to
s e l f .

3.3. Previous Work

The first semantics of Smalltalk [GoR89], which often serves as an archetype
of object-oriented programming languages, was described operationally. The first
denotational semantics of Smalltalk is due to Wolczko [Wo187]. His semantics
still has some operational elements: inheritance is described by method lookup. A
denotational SmaUtalk-semantics in continuation style is from Kamin [Kam88].
Reddy [Red88] presents more readable semantics because he focuses on central
issues of object-oriented programming; he uses fixed points for modeling self.
Cook [Coo89, COP89] gives a wrapper-semantics of inheritance without state.

4. Wrappers as a Language Construct

In object-oriented programming languages like Smalltalk o r O'SMALL, a class
declaration is a modification of an existing class. This existing class becomes
the superelass of a new class. In some cases, the modification is interesting
in its own right: it is advantageous to apply the modification to more than
one superclass. Suppose we have already defined points and intend to add
colour to them. In Smalltalk or classical O'SMALL, we would define a class of
coloured points as a subclass of points. But now we also want coloured circles.
Black-and-white circles are at our disposal. In Smalltalk or classical O'SMALL,
we would define coloured circles as a subclass of circles. The colour-part (the
colour-modification) must be defined twice. Therefore, we should be able to
make the colour-modification explicit in the programming language. We call such
modifications wrappers according to the semantic construct (sections 2 and 3).

Let us explain the difference between class declarations with and without
explicit wrappers in the syntax of O'SMALL. In classical O'SMALL, a class A was
defined as a subclass of another class B. The modification is contained in the

196 A.V. Hense

new instance variables V and the new methods M. In the following O'SMALL
fragments, V represents a sequence of variable declarations and M represents a
sequence of method declarations.

class A subclassOf B def V in M ni

Now, with explicit wrappers, a wrapper W is defined in much the same way as
a class before, except that it does not name a superclass. The class definition
defines A as the subclass of B that results from the modification by W.

wrapper W def V in M ni . class A = W B

The syntax and semantics of the modification, i.e. V and M, are as before. The
class A is defined as the wrapper W applied to the superclass B. The two O'SMaLL
expressions separated by a dotted line define essentially the same as the previous
class definition in classical O'SMALL. Now that wrappers are denotable, i.e. they
can be bound to variables, they can be applied to several classes. For example:

class D = W C

Greater flexibility is thus gained.

4.1. Multiple Application of a Wrapper

4.1.1. Universal Wrappers

A wrapper having method names different from all method names in existing
classes, whose method bodies refer to its own methods only using s e l f , and with
no occurrence of super, is called a universal wrapper.

Definition 4.1. For a wrapper definition W we define outLabels(W) as the set of
method labels defined in W, superLabels(W) as the set of message-labels sent to
the pseudo-variable super in W, and selfLabels(W) as the set of message-labels
sent to the pseudo-variable s e l f in W.

inLabels (W) = superLabels (W) U (selfLabels (W) - outLabels (W))

Now, we are able to define universality more precisely: a wrapper (definition) W
is universal if and only if inLabels(W) = 0 and outLabels(W) is disjoint from all
labels in other wrapper (definitions) in the program. A universal wrapper can be
applied to any existing class. An example for a universal wrapper is the wrapper
COLOUR in the O'SMALL program of Fig. 11. 8 We achieve an effect similar to
hierarchy inheritance [Coo89], but we still have to apply the wrapper to each
member of the hierarchy "by hand". The wrapper for the colour is applied to the
class Point yielding the class ColPoint. The resulting class hierarchy can be seen
in Fig. 12. Point is a superclass of Circle. The derived hierarchy is CoIPoint and
ColCircle. In the example, ColCircle is a subclass of Circle, but it could also be
a subclass of ColPoint, as the dashed line suggests. That is to say, had we applied
CIRCLE to CoIPoint this would have resulted in the same ColCircle. 9 We state
the following without proof:

S In our O'SMALL examples wrapper identifiers are written in upper case and class identifiers begin
with uppercase letters.
9 In a "real language'" it should be possible to identify any universal wrapper with the class that
results from its application to the empty class. This would economize on writing.

Explicit Wrappers 197

wrapper POINT
def var xComp := O; var yComp := 0

in meth x() xComp

meth y() yComp
meth move(X,Y) xComp := X+self.x; yComp := Y+self.y
meth distFromOrg() sqrt(sqr(self.x) + sqr(self.y))
meth closerToUrg(point) self.distFromGrg < point.distFromOrg

ni

wrapper CIRCLE
def var radius := 0
in meth r() radius

meth setR(d) radius := d
meth distFromOrg() max(O, super.distFromOrg - self.r)

ni

wrapper COLOUR
def vat c := 1
in meth setColour(t) e := t

meth colour() e

ni

class Point = POINT Base
class Circle = CIRCLE Point
class ColPoint = COLOUK Point
class ColCircle = COLOUR Circle

{ Base is the empty class }

Fig. 11. Universal wrapper.

Proposition 4.2. Commutativity of wrapper application:
If

0 = outLabels(Wl) C3 outLabels(Wj

= inLabels(W1) A outLabels(WJ

= inLabels(Wj f3 outLabels(Wj

then [[W~ [] [W2~ [~ Base = ~W2]I ~ [Wi~ [~ Base.

Corollary 4.3. The application of universal wrappers is commutative.

4.1.2. Special Wrappers

A wrapper is called special if it is not universal. A special wrapper refers,
somehow, to methods defined in its superclass. If it were applied to a class that
does not define the methods in the expected way, errors might result. We will
show an example of a special wrapper that can, nevertheless, be applied to more
than one class.

Definition 4.4. Let M be a set. A subset H c M x M defines a preorder (we often
write a _< b for (a, b) C H), if Va, b, c ~ M :

a<<_a, a<_b A b < _ c ~ a < c

198 A.V. Hense

I

I

r

I

Fig. 12. Hierarchy inheritance.

If, in addition, a < b A b < a ~ a = b holds, (M,. _< .) is called a (partial) order.

Let _< be a relation defined on N x N as: (x, y) < (x', yl) ~ x + y _< x' + y'.
Let < b e a r e l a t i o n d e f i n e d o n Z a s : z _ < z ' <=~ 3 x c Z : z * x = z '
One easily verifies that (N x N,. < .) and (Z,. _< .) are preorders. It is possible
to obtain an order from every preorder by using equivalence classes, where two
elements a and b of a preorder are equivalent (a ~ b) if a _< b A b _< a. An order
is obtained by regarding ~ as the equality.

The O'SMALL program of Fig. 13 shows the two previous preorders and a wrap-
per that uses equivalence classes and, thus, makes an order from every preorder.
In the definition of the wrapper PRE{3RDER2{3RDER, we have chosen eq for the
equality and l e q for the relation. Obviously, the wrapper PREORDER20Pd3ER only
makes sense with classes where this naming convention (signature) is respected.

4.2. Multiple Inheritance

One speaks of multiple inheritance when a class directly inherits the properties of
at least two classes. This implies, according to our view, that objects of the new
class may be substituted for objects of both parent classes. There is a problem
when there are name conflicts [Knu88] between the inherited classes.

Let A and B in Fig. 14 each define a method m, and let m not be redefined in
C. Let us denote by mA the definition in A and by mB the definition in B. I f mA
and mB are incompatible at the signature level, mA may, for example, require two
parameters and mB three, cancellation at the signature level is the consequence
because either mA or mB has to be chosen when a message with the selector m
is sent to an object of class C. One can try to overcome the name conflict by
renaming [Mey88] but this is no remedy for cancellation. Cancellation at the
signature level is not desirable because it may be a cause of errors if one assumes

Explicit Wrappers 199

wrapper PAIR
def var xComp := 0 var yComp := 0
in meth set(a,b) xComp := a; yComp := b

meth x() xComp
meth y() yComp
meth leq(p) (self.x+self.y) <= (p.x+p.y)
meth eq(p) self.x=p.x and self.y=p.y

ni

wrapper DIV
def var z := 1 {should not be 0 because of 'mod'}
in meth set(v) z:=v

meth value() z
meth leq(n) (n.value mod [self.value[) = 0

meth eq(n) self.value = n.value

ni

wrapper PREORDER2ORDER
meth eq(e) self.leq(e) and e.leq(self)

class Pair = PAIR Base {Base is the empty class}

class Div = DIV Base
class OrderedPair = PREURDER2ORDER Pair
class OrderedDiv = PREORDER20RDER Div

Fig. 13. A special wrapper.

that objects of a superclass may be substituted by objects of a subclass. If rnA
and mB are compatible at the behavioural level (this implies compatibility at the
signature level) there is no cancellation. Still, either rnA or mB has to be chosen.

In every case described so far, the inheritance graph in Fig. 14 is either
impossible, because the resulting C cannot be signature-compatible with both A
and B, or it is misleading, because the graph suggests symmetry where there is
none. Fig. 14 is acceptable only if every method for a message selector that is
understood by A and B is defined in a common superclass of A and B. That is
to say, we regard Fig. 14 just as a graphical way to express that C inherits the
properties of A and B (with single inheritance), but it does not matter in which
order. A sufficient condition for commutativity has been given in proposition 4.2.

All cases of disciplined multiple inheritance, where the symmetry of Fig. 14
is justified, can now be defined with single inheritance and explicit wrappers. For
every class, there is a defining sequence of wrappers starting from the predefined
class Base (see section 3). Therefore, we can represent A and B as

A = W ? [~ ' . . W l A [~ B a s e ,

B = W ~ [] ' " W l B [~] B a s e .

Wrappers are now explicitly denotable values, so we can reuse them and define
C as

C = w C [~ w [~ [- ~] ' ' ' w A ~] w ~ [~ ' ' ' w B [~ B a s e .

Fig. 15 shows a special case of Fig. 14 with iceberg diagrams. A is derived from

200 A.V. Hense

Fig. 14. Multiple inheritance.

Base with two wrappers (1 = 2), B with three (m = 3), and C by multiple
inheritance without further definitions.

If A and B in Fig. 14 have a common superclass other than Base their
wrappers are not disjoint: there exists a k such that, for all 1 < i < k, Wi A = W~.
There may be problems with the internal state: let us assume that, in these
common wrappers, we have defined a counter. The resulting class C contains
two counters, one open and one hidden. We call the counter defined by the W A
"open" because it is the one that is accessed in the above definition of C. The
counter defined by the Wi B is called "hidden" because it is "overwritten" by the
Wi A. In most cases, the open counter will be used all the time and its associated
instance variables will contain its state. There is, however, one way to use the
hidden counter: in a method of B that is not defined in A a counter method, say
f , is called with super , f. Usually, super , f is only used if we have overwritten f
and still want to refer to the old definition. As pointed out above, this should not
be the case for multiple inheritance: we should not have overwritten f in A or B
because of cancellation. This example shows that multiple inheritance modeled
with single inheritance and explicit wrappers is not a simple automatic procedure.
In the general case, one has to be careful and take consequences like this into
consideration.

The denotational semantics of section 3 can easily be extended by explicit
wrappers. The details are explained in section B.

4.3. Related Work

Snyder [Sny86] categorizes different strategies in multiple inheritance into graph
oriented solutions as in TRELLIS/OwL [SCB86], linear solutions as in FLAVORS
[Moo86] or COMMONLOOPS [BKK86], and tree solutions as in Common Objects
[Sny85]. In graph-oriented solutions, the inheritance graph is searched directly
(in terms of method-lookup-semantics) by a depth-first-traversal for example.
Instance variables of ancestors that can be reached by more than one inheritance
path are not duplicated. Graph-oriented solutions are flexible yet complicated,
and they make inheritance become part of the external interface [Sny86]. In
linear solutions, the inheritance graph is transformed into a chain. The problem
here is that one class may have a new parent which the designer was not aware
of. In tree solutions the graph is transformed into a tree by duplicating nodes.

Explicit Wrappers 201

A B

C

Fig. 15. Multiple inheritance.

This implies duplication of the instance variables. For each inheritance path to
a superclass, a new set of instance variables for that superclass is created. Our
solution may be seen as a linear solution. In O'SMALL there are no name-conflicts
with instance variables because they are encapsulated.

The mixing of flavors in the programming language FLAVORS [Moo86] resem-
bles our explanation of multiple inheritance most. Flavors can be regarded as
analogous to classes that can be used like wrappers. This comes from another
context and there are some differences. FLAVORS has intricate method combina-
tion, and instance variables are not encapsulated. Duplicate flavors in multiple
inheritance are eliminated. This would correspond to the elimination of duplicates
of identical wrappers W A = W, ~ in the definition of C. In our context this is
impossible in general because o~f the pseudo-variable super. Whereas FLAVORS
uses a standard mechanism for multiple inheritance, O'SMALL enables the sim-
ulation of multiple inheritance "by hand". In O'SMALL, it is the programmer 's
responsibility to solve name conflicts.

Cook [Coo89] treats multiple inheritance with so called n-wrappers, n-
wrappers generalize wrappers by taking a tuple of superclasses instead of just
one. The one elaborated construction with n-wrappers is strict multiple record
inheritance: parents are combined so that conflicting methods are removed. Con-

202 A.V. Hense

flicting methods should be redefined. The new class definition has direct access to
all parent-class-methods. Other constructions are possible, n-wrappers are more
general than our approach.

There is a relationship between explicit wrappers and abstract parameterized
data types and modules [EhM85, EhM90]. The issue of inheritance from the
point of view of algebraic specification is addressed by [ESS89]. Modules, on a
programming language level, are most advanced in ML [Mac85]. In ML modules
are called structures. Functors in ML generate new structures by modifying
existing structures. Classes correspond to ML-structures and wrappers correspond
to ML-functors. In contrast to wrappers, functors can have more than one
argument and arguments must be qualified; this is similar to n-wrappers. The
main difference is the absence of late binding in M L If we depict functors and
structures in the same way as wrappers and classes, with iceberg diagrams, the
difference between ML and O'SMALL can be seen in Fig. 16. ML has no pseudo-
variable s e l f , but it has recursion. Thus, the arrows in the diagram stand for
recursion in the functions of the structure. A function of the old (lower) structure
will always recursively refer to functions of the old structure, even if functions of
the same name have been defined in the functor (static binding).

O'SMALL M L

Fig. 16. Late binding/static binding.

Explicit wrappers have been invented independently by Bracha and Cook
[BrC90]. There, they are called mixins. Their language is an extension of Modula-
3 [CDG89]. Modula-3 has been chosen because it supports single inheritance and
is strongly typed. We agree that explicit wrappers necessitate strong typing even
more than ordinary inheritance. We have investigated static type inference for
O'SMAI~L [Hen93]. Further examples that show the usefulness of explicit wrappers
are contained in [BrC90].

Wrappers have nothing in common with continuations. However, the pro-
cess of lifting semantic constructs to the programming language level has been
performed in SCHEME [ASS85] and recently in ML with explicit continuations.

Explicit Wrappers 203

5. Conclusion

We have proposed explicit wrappers as a new language feature for object oriented-
programming. To make this article self-contained, we have included the seman-
tics of classical O'SMALL. This semantics shows one way of extending wrapper-
semantics [Coo89] by state. Thus, the vehicle of our examples has a concise
formal definition, including the extension of O'SMALL by explicit wrappers. We
have shown three uses of explicit wrappers, namely

�9 hierarchy inheritance, where the wrappers have to be applied one by one to
classes of the original hierarchy,

�9 functor-like application for transformation of mathematical structures, and
�9 (a variety of) multiple inheritance.

Notions like disciplined inheritance and properties of explicit wrappers have
remained informal. A theory of explicit wrappers is a prerequisite for their
future use. With single inheritance and explicit wrappers, we are not able to
model all existing varieties of multiple inheritance but we are able to model
disciplined multiple inheritance. If disciplined multiple inheritance is a strong
enough mechanism in practice, is an open question. A disciplined programming
style, assisted by ameliorated static analysis, seems to be appropriate and at the
same time a direction of future research.

Acknowledgements

Thanks to Christian Fecht, Andreas Giindel, Reinhold Heckmann, Joachim
Philippi, Reinhard Wilhelm, and Mario Wolczko for instructive discussions and
valuable comments on earlier drafts.

References

[ASS85]

[Bar81]

[BrC90]

[BKK86]

[CDG89]

[CHC90]

[Coo89]

[COP89]

Abelson, H., Sussman, G.J. and Sussman J.: Structure and Interpretation of Computer
Programs. MIT Press, 1985.
Barendregt H.R: The Lambda Calculus Its Syntax and Semantics, volume 103 of
Studies in Logic and The Foundations of Mathematics. North-Holland, revised 1984
edition, 1981.
Bracha G. and Cook W.: Mixin-based inheritance. In Object-Oriented Programming
Systems, Languages and Applications, pages 303-311. ACM, October 1990. European
Conference on Object-Oriented Programming.
Bobrow, D., Kahn, K., Kiczales, G., Masinter, L., Stefik, M., Zdybel, E and Xerox Pare.:
CommonLoops: Merging lisp and object-oriented programming. In Object-Oriented
Programming Systems, Languages and Applications, pages 17-29. ACM, September 1986.
Cardelli, L., Donahue, J., Glassman, L., Jordan, M., Kalsow, B. and Nelson, G.: Modula-
3 report (revised). Technical Report 52, Systems Research Center, 130 Lytton Avenue,
Palo Alto, California 94301, November 1989.
Cook, W., Hill, W. and Canning, R: Inheritance is not subtyping. In Symposium on
Principles of Programming Languages, pages 125-135, San Francisco, January 1990.
ACM.
Cook W.R.: A denotation al semantics of inheritance. Technical Report CS-89-33, Brown
University, Dept. of Computer Science, Providence, Rhode Island 02912, May 1989.
Cook, W. and Palsberg, J.: A denotational semantics of inheritance and its correctness.
In Object-Oriented Programming Systems, Languages and Applications, pages 433-444.
ACM, October 1989.

2O4

[EhM85]

[EhM90]

[ESS89]

[Gor79]

[GoR89]
[GiJn90]

[Hen90]

[Hen91]

[Hen93]

[HIS86]

[Kam88]

[Knu88]

[Mac85]

[Mey88]

[Mi184]

[Moo86]

[Red88]

[SCB86]

[Sco76]
[Sny85]

[Sny86]

[Tar55]

[Wo187]

[WeZ881

A. V. Hense

Ehrig, H. and Mahr, B.: Fundamentals of Algebraic Specification, volume 1: Equations
and Initial Semantics of EATCS Monographs on Theoretical Computer Science. Springer,
1985.

Ehrig, H. and Mahr, B.: Fundamentals of Algebraic Specification, volume 2: Module
Specifications and Constraints of EATCS Monographs on Theoretical Computer Science.
Springer, 1990.

Ehrich, H.D., Sernadas, A. and Sernadas, C.: From data types to object types. Braun-
schweig, 1989.
Gordon, M.J.C.: The Denotational Description of Programming Languages: An Introduc-
tion. Springer-Verlag, New York/Heidelberg/Berlin, 1979.

Goldberg, A. and Robson, D.: Smalltalk-80: the Language. Addison-Wesley, 1989.
Gfindel, A. : Compatibility conditions on subclasses. Unpublished notes, Universit~it
Dortmund, 1990.

Hense, A.V. : Denotational semantics of an object-oriented programming language with
explicit wrappers. Technical Report A 11/90, Universifiit des Saarlandes, Fachbereich
14, June 1990.
Hense, A.V.: Wrapper semantics of an object-oriented programming language with state.
In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software, volume
526 of Lecture Notes in Computer Science, pages 548-568. Springer-Verlag, September
1991.
Hense, A.V.: Polymorphic type inference for object-oriented programming languages. PhD
thesis, Universit/it des Saarlandes, Fachbereich 14, D-6600 Saarbrficken, 1993. forth-
coming.
Hindley, J.R. and Seldin, J.R: Introduction to Combinators and 2-Calculus, volume 1 of
London Mathematical Society Student Texts. Cambridge University Press, 1986.

Kamin, S.: Inheritance in Smalltalk-80. In Symposium on Principles of Programming
Languages, pages 8~87. ACM, January 1988.

Knudsen, J.L.: Name collision in multiple classification hierarchies. Lecture Notes in
Computer Science, 322:93-109, 1988. European Conference on Object-Oriented Pro-
gramming.

MacQueen, D. : Modules for standard ML. In Polymorphism The ML/LCF/Hope
Newsletter, 1985. Vol. II, No.2.

Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, 1988.

Milner, R. : A proposal for standard ML. In Symposium on Lisp and Functional
Programming, pages 184-197, Austin Texas, 1984. ACM.

Moon, D.A.: Object-oriented programming with Flavors. In Object-Oriented Program-
ming Systems, Languages and Applications, pages 1-8. ACM, September 1986.

Reddy, U.S.: Objects as closures: Abstract semantics of object-oriented languages. In
Symposium on Lisp and Functional Programming, pages 289-297. ACM, 1988.
Schaffert, C., Cooper, T., Bullis, B., Kilian, M. and Wilpolt, C.: An introduction
to Trellis/Owl. In Object-Oriented Programming Systems, Languages and Applications,
Portland, Oregon, 1986. ACM.
Scott, D.S.: Data types as lattices. SIAM Journal on Computing, 5:522 587, 1976.
Snyder, A.: Object-oriented programming for Common Lisp. Technical Report ATC-
85-1, Software Technology Laboratory, Hewlett-Packard Laboratories, Palo Alto, Cali-
fornia, 1985.
Snyder, A.: Encapsulation and inheritance in object-oriented programming languages. In
Object-Oriented Programming Systems, Languages and Applications, pages 38-45. ACM,
September 1986.
Tarski, A.: A lattice-theoretical fixed point theorem and its applications. Pacific Journal
of Mathematics, 5:285-309, 1955.
Wolczko, M.: Semantics of Smalltalk-80. Lecture Notes in Computer Science, 276:108
120, 1987. European Conference on Object-Oriented Programming.
Wegner, R and Zdonik, S.: Inheritance as an incremental modification mechanism or
what like is and isn't like. Lecture Notes in Computer Science, 322:55-77, August 1988.
European Conference on Object-Oriented Programming.

Explicit Wrappers 205

Appendices

A. Auxiliary Functions

We need a generic function * for the composi t ion o f commands and declarations.
This function stops the execution o f the program when an error occurs. Let there
be two functions f and g with the types

I St~) [D2xStore], f " D1 ~ Store
g : D2 ---+ Store ~ [D 3 • Store].

The lines inside the angular delimiters represent alternatives. The alternatives
in the following text are not free but depend on the choices of the alternatives
above: if in the above delimiters one chooses the upper alternative, one must
choose the upper alternative below (and vice versa). The composi t ion o f f and g
has type

I St~) f * g : D1 >Store
and is defined by

f * g -=

> [D3 • Store]

I ZSl) { (• err
2d>2sl ' g d2 s2, otherwise

where (d2's2)=l fsl) fd l s l

The infix operator * is left associative. The definition of ~, in section 2 is
based on the left-preferential combinat ion o f records (denoted by (9). This symbol
is also overloaded in the semantic equations: if the arguments o f (b are o f the
domain Fixed then @ stands for,

Xl (~ X2 : ~s . (r l (~Ipr r2, s')
where

(r l , s ') = x l s ,

(r2 , -) : X2S.

The infix operator | stands for the operat ion on records that is defined in
definition 2.2. This is the only change of the inheritance function (definition 1).
Here are further auxiliary functions. Let D be any semantic domain :

cond : [D x D] , Bool > D . Alternative
cond(dl, d2) = 2b.b , dl, d2

cnt : Loc ~ Store ~ [[Sv + { l}] x Store] Contents o f a location
cnt = 21.2s.(s 1, s)

cont : Dv > Store ~ [Sv x Store] Contents o f a location with domain
checking
cont--= Loc? * cnt * Sv?

D? : D'---+ Store ~ [D' x Store], with D _c D ' Doma in checking

D ? = 2 d . e [resu l td , i f i s D d
seterr , otherwise

206 A.V. Hense

deref : Dv ~ Store ~ [Dv • Store] . Dereferencing
cont d , i f i s L o c d

deref = 2d. result d, otherwise

new : Store ~ [Loc x Store] Ge t t ing a new loca t ion in the store
new s = (1,s) or = (_1, [err ~ true] @ s)

I f new s = (1,s) then s 1 = _1_ is guaranteed.

result : D > Store ~ [D • Store] Side effect free eva lua t ion
result d = 2s.(d, s)

seterr : Store ~ [D x Store] . Set t ing the error flag
seterr = 2s.(A_, [err ~ true] | s)

upda te : Loc ~ Dv ~ Store , [DvxStore] U p d a t i n g o f a loca t ion
upda te 1 = Sv? * 2d.2s.(unit, [1 ~ d] @ s)

B. From Classical O'SMALL to O'SMALL with Explicit Wrappers

The rep lacement pure ly technical. Replace the c o m p o u n d syntact ical d o m a i n Cla
by

WrC1 the d o m a i n o f wrappe r and class dec la ra t ions W

In the syntact ic clauses replace P and K by

P : : = W C
W : :=wrapperIde fVinM Ic lassI l=I213 IW1W2 Je

A d d wrappe r values to the denotab le values in the d o m a i n equa t ions :

Dv = Loc + Rv + Method~ + Class + W r a p p e r deno tab le values d

Replace the semant ic funct ion K at all its occurrences by

W : WrC1 , Env ~ Store----~ [Env•

Replace the clauses for class defini t ions by the fol lowing two clauses:

W [wrapper I def V in M]] r = result [I ~-~ w]
where w = ~Xsel f .,~Xsuper.~Screate .

[self ~---~ rself] @rlocal @r),Snew)
(M[[M]](super ~ rsuper

(rsuper~ Ssuper) ~ Xsupe r Screate
(rlocal, Snew) = VI[V~ r Ssuper
(rself,-) = Xself Screa~e

and

W [[class Is = I2 I3]] r =
E~I3]] r * Class? * 2c. EI[I2~ r * W r a p p e r ? * 2w. result[Is F-~ w [-~ c]

Explicit Wrappers 207

12 denotes a wrapper and 13 denotes a class. The identifiers are looked up in the
environment, and the result of the wrapper application is bound to I1. The result
of the evaluation of a class declaration is the binding of a class to the class name.

W[[W1 W2]] r = WI[W1]I r * 2r'. (W[[W2]] (r'Or))@r'
W[[e~ r = result H

The class definition of classical O'SMALL has been removed and can now be
reintroduced as syntactic sugar.

Received May 1991
Accepted in revised form September 1992 by T.S.E. Maibaum

