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Abstract: In this paper we present a novel technique to 
analyze stereo images generated from a SEM. The two 
main features of this technique are that it uses a binary 
linear programming approach to set up and solve the cor- 
respondence problem and that it uses constraints based 
on the physics of SEM image formation. Binary linear 
programming is a powerful tool with which to tackle con- 
strained optimization problems, especially in cases that 
involve matching between one data set and another. We 
have also analyzed the process of SEM image formation, 
and present constraints that are useful in solving the 
stereo correspondence problem. 

This technique has been tested on many images. 
Results for a few wafers are included here. 

Key Terms: stereo, applications of computer vision 

1 Introduction 

In the semiconductor IC manufacturing facilities of 
the future, individual fabrication processes will be 
controlled by intelligent systems. Automatic in- 
spection systems will allow control of process pa- 
rameters for quality control and yield improvement. 
Such systems will eliminate human inspectors and 
interface with expert systems to provide them with 
appropriate information for decision making. 

Figure 1 illustrates a typical problem faced by the 
process engineer in a semiconductor plant. Figure 
la shows the desired profile for a surface that is to 
be obtained after etching. Figures lb, c, and d show 
profiles that could result from malfunctions in the 
photolithography process. Such profiles may arise 
due to the formation of " fee t"  at the bottom of the 
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lines, or due to the presence of photoresist " scum" 
that may be left behind as a residue. Furthermore, 
the slope of the sidewall is a critical factor in the 
lithography of submicron devices. 

Thus, there are several parameters of the actual 
surface that are crucial to controlling the lithogra- 
phy process, such as height of the step, slope of the 
sidewall, and presence of undesired material. How 
does one measure these parameters? There are sev- 
eral methods available to do this, such as profilome- 
try, analysis of the cross section of the sample after 
cleaving, stereo using optical microscopes, and 
SEM stereo. However, there are restrictions for the 
problem of semiconductor wafer inspection, which 
narrow the range of options. These are mainly that 
the method must be nondestructive and have a high 
(submicron) resolution. In the light of these restric- 
tions, SEM stereo seems to be particularly attrac- 
tive because of its nondestructive nature and the 
high resolution it offers. 

Binocular stereo vision is the major mechanism 
used by humans for obtaining three-dimensional 
depth information over close distances. It is based 
on obtaining three-dimensional surface information 
from two images of a scene taken at two different 
viewing angles. On the SEM the stereo image pair 
can be obtained by tilting the specimen and taking 
its images at two different tilt angles. 

Given the needs of automated semiconductor 
wafer manufacturing, the development of an auto- 
mated SEM stereo algorithm is very crucial to fulfill 
these needs. However, SEM stereo algorithms that 
are used currently are not fully automated, in that 
the operator has to perform manually the corre- 
spondence between features in the two stereo im- 
ages. The major computational effort in a stereo 
algorithm is solving the correspondence problem. 
Once correspondence is established, three-dimen- 
sional depth (height) information can easily be ob- 
tained using a set of three-dimensional reconstruc- 
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(c) (d) 

Figure 1. (a) Desired profile for a step. (b) Profile that 
results from the formation of feet. (c) Profile that results due 
to the deposit of "scum." (d) Profile resulting from under 
etching. Note that the side wall slope is not so steep as 
desired. 

tion equations, derived using the geometry of image 
formation and the specific camera setup used in get- 
ting the stereo image pair. 

We address the problem of automating SEM 
stereo in this paper. Although stereo techniques 
have been widely researched in computer vision, 
they have been used mainly on optical images, and 
none of them has been applied to SEM images. A 
novel aspect of our approach to the correspondence 
problem is that we view it as an optimization prob- 
lem, based on binary linear integer programming. 
This puts the problem on a sound mathematical 
footing, as several methods are available to solve 
such optimization problems. Furthermore, princi- 
ples from the physics of SEM image formation have 
been used in order to solve the stereo problem. This 
combination of SEM imaging constraints, together 
with an optimization approach, results in a powerful 
technique for solving the SEM stereo problem. Our 
results show that the SEM stereo algorithm that we 
have developed works very well on real images. An 
outcome of our research is the view that not only 
stereo but other matching problems, such as image- 
to-model matching, can be cast in the framework of 
an optimization problem. What is important is the 
transformation of problem constraints to the form 
of a linear programming problem. The details of 
such a transformation are clearly developed in this 
paper. 

2 Background 

In this section we briefly consider methods for ex- 
tracting surface topography information. Surface 
microtopography information has been used in the 
quality control of surfaces in metal finishing, optical 
polishing (Larrabee 1977) and in monitoring some 

semiconductor processes by analyzing the wafer 
surface (Kato et al. 1977). Larrabee (1977) reviews 
various techniques that are used for extracting sur- 
face microtopography, their limitations and charac- 
teristics. 

Based on the physical principle behind their op- 
eration, these techniques can be classified into me- 
chanical techniques, optical techniques, and elec- 
tron-beam techniques. We will consider the pros 
and cons of each technique within the context of the 
problem in hand, that is, the nondestructive extrac- 
tion of surface topography from semiconductor wa- 
fers with submicron patterns. 

The mechanical technique is based on measuring 
the vertical displacement of a stylus tip as it is 
scanned across the specimen surface. The principal 
limitations of this technique (Vorburger and Teague 
1981) are the slowness of the device for on-line ap- 
plications, the possibility of surface damage due to 
the sharp stylus, the fragility of the transducer and 
stylus tips, and the fact that the best horizontal res- 
olution is only 0.1 /~m. 

A comprehensive overview of optical techniques 
may be found in Vorburger (1981). The main short- 
coming of optical techniques is the horizontal reso- 
lution, which is limited by the wavelength of light 
used. The horizontal resolution reported is typically 
in the 0.4 to 0.5/xm range (Singer 1983). This value 
is unacceptable for making accurate measurements 
on submicron features. Conventional optical micro- 
scopes have poor vertical resolution due to their 
relatively large depth of focus of around 1.0 /.tm 
(Larrabee 1977). Thus, instruments with higher res- 
olution will be needed. 

Currently, low-voltage scanning electron micro- 
scopes (SEMs) are the most commonly available, 
general purpose high-resolution inspection instru- 
ments that can be used (Rose 1982; Singer 1983). 
The horizontal resolution of a SEM for typical com- 
mercial equipment is in the 20 to 25 nm range 
(Nanometrics 1984). Another advantage of SEMs 
over some optical devices is its much larger depth 
of focus. 

Viable nondestructive techniques for extracting 
specimen surface microtopography using the SEM 
can be grouped into the following: 

. The stereo technique. A SEM stereo pair is 
commonly obtained by tilting the sample. Sev- 
eral researchers have investigated SE image for- 
mation in the SEM and the use of stereo tech- 
niques [see Lane (1969), Hilliard (1972); Piazzesi 
(1973); Boyde (1974a, b); and Kato (1977)]. 

Currently, the extraction of three-dimensional 
data using SEM stereo techniques is mostly car- 
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ried out semiautomatically, ~ in that the corre- 
spondence problem is performed manually by 
positioning markers on the CRT screen. The 
rest, namely, obtaining the disparity and making 
the necessary calculations, are performed auto- 
matically. The reason for this is the difficulty of 
solving the stereo correspondence problem. Our 
aim in this work was to find a systematic solution 
to the correspondence problem, thereby fully au- 
tomating the SEM stereo-based surface microto- 
pography extraction process. 

2. The multiple detector technique. The analogue 
of this technique in computer vision is the photo- 
metric stereo technique (Woodham 1979; Horn 
1986). This technique is based on relating the 
orientation of a local surface patch on the speci- 
men defined by the electron beam spot to the 
signal detected by the SEM secondary electron 
and backscattered electron (BSE) detectors. De- 
tails of the system using such a technique may be 
found in Lebiedzik and White 1975). 

3 Theory 

The novelty of the technique presented in this paper 
is in setting up the stereo-matching problem as a 
binary linear integer programming problem. Al- 
though linear programming problems have been 
well researched and understood (Hillier and Lieber- 
man 1980), there has been no application of these 
ideas to stereo vision thus far. Ullmann (1979) used 
a linear programming technique to solve the corre- 
spondence problem in motion analysis. 

There are several advantages to using a linear 
programming framework for analyzing problems in 
computer vision. 

1. These techniques have been well studied in the 
operations research discipline (Hillier and 
Lieberman 1980; Murty 1983). Given certain 
constraints on the problem, such as the nonne- 
gativity of the cost vector one is guaranteed to 
find an optimal solution to the problem. 

2. Mathematically sound algorithms for solving 
various types of optimization problems are 
widely available (Hillier and Lieberman 1980; 
Murty 1983). This enables one to concentrate on 
formalizing the specifications of a physical prob- 
lem rather than getting involved in the imple- 
mentation details of an algorithm to solve the 
problem. 

See Breton et al. (1987) for recent  work on automat ing  this 
process.  More on this is d i scussed  later under  shape from stereo 
using area matching.  

Figure 2. Two sets of two-dimensional image contours. 

. 

. 

The linear programming framework provides a 
systematic and unified scheme to handle differ- 
ent constraints that may exist in a given domain. 
Modifying the specifications of a physical prob- 
lem typically amount to adding or deleting some 
of the constraints in the equivalent optimization 
problem, without necessitating a change in the 
way the problem is solved. 
The same linear programming technique can be 
used in a variety of domains, such as stereo 
matching and image-to-model matching. In fact, 
the biggest hurdle in the use of this technique is 
to transform physical constraints into the format 
of a linear programming problem. One of the 
goals of this paper is to analyze SEM-based 
stereo, and to demonstrate how the various con- 
straints can be cast in the mold of a linear pro- 
gramming problem. 

In this section we discuss how the stereo-match- 
ing problem can be formulated as a general contour 
matching that can be easily transformed into an 
equivalent binary linear programming problem. 

3.1 The Contour-Matching Problem in 
Computer Vision 

Given two sets of two-dimensional contours, the 
contour-matching problem tries to find the overall 
best match between pairs of contours, with one 
member of each pair being an element of one set and 
the other, an element of the other set. Figure 2 
shows two sets of two-dimensional contours. We 
seek to associate each contour in the left image of 
Figure 2 with some contour in the right image with 
the aim of determining a set of associations that will 
best meet the requirements of our specific problem. 

Using the contour sets shown in Figure 2, a sim- 
ple example will be the problem of finding the asso- 
ciation that results in the smallest difference in the 
lengths of matching contours while ensuring that 
each left and right image contour has only one 
match. The solution of this problem would be A 
matching 1, B matching 2, and C matching 3. 

Several problems in computer vision can be for- 
mulated as contour-matching problems. Examples 
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include object recognition, shape-from-stereo and 
model-based shape inspection problems. The re- 
quirements of each matching problem are different, 
however. 

3.2 Contour-Matching Problems Posed as Binary 
Programming Problems 

The solution of a contour-matching problem has to 
meet the following criteria: 

�9 Satisfy all the requirements of the problem. 
�9 It is the best solution among all others that satisfy 

the problem requirements. 

In the example problem presented previously we 
required that each contour have only one match, 
and we defined the best match as the one resulting 
in the minimum difference in the lengths of match- 
ing contours. 

It turns out that problems with the preceding 
characteristics can be directly modeled as optimiza- 
tion problems. The requirements of the problem 
correspond to constraints in an optimization prob- 
lem, and a candidate solution (referred to as a feasi- 
ble solution (Murty 1983) is evaluated based on the 
value of an objective function. 

Now let X represent a vector of variables where 
each variable denotes the match of a left image con- 
tour with a right image contour. This variable has 
two values, 0 or 1; 0 representing the rejection of 
that match and 1 representing its acceptance. Let us 
assume that the variables x j, x2, and x3 represent the 
match of contour A in the left image with contours 
1, 2, and 3 in the right image (see Figure 2). The 
requirement of A having only one match can now be 
represented as xj + x2 + x3 = 1. Ifx~ is 1, then its 
contribution to the objective function would be the 
difference in the lengths of contours 1 and A; in 
general, the contribution of match i will be xi. IlL~i~ - 
lR(~)l, where L(i) and R(i) are matching left and right 
image contours, respectively. Hence, the equiva- 
lent optimization problem will be: 

min E X i .  IlL(i) - -  IR(i) ] 
over all binary vectors x = (xj, x2, �9 . .) 

subject to xl + x2 + x3 - 1 
(1) 

where the binary variable xi represents the match of 
left and right image contours L(i) and R(i). 

Such problems where all the variables have a 0 or 
1 value are referred to as binary programming prob- 
lems (Hillier and Lieberman 1980). Furthermore, if 
both the objective function and the constraints are 
linear functions, then the problem becomes a binary 
linear programming problem. 

The contour-matching problems that are dis- 
cussed in this paper are posed as binary linear pro- 
gramming problems that have the special form: 

max p.x t over all binary vectors x (2) 
subject to C.x t -< b t 

where p is the objective function coefficient vector, 
x is the vector o f  variables with binary elements, C 
is the constraint coefficient matrix with binary ele- 
ments and b is the constraint right-hand side vector. 

3.3 Solving Binary Programming Problems 
The most popular techniques for solving reasonable 
size binary programming problems are based on im- 
plicit enumuration via branch and bound tech- 
niques. A branch and bound algorithm for solving 
binary programming problems was first proposed by 
Balas (1965). Since then many variations of such 
algorithms have been developed. In our work an 
algorithm of this type presented in Hillier and 
Lieberman (1980) was used. 

4 Methods 

In this section we examine the problem of SEM 
stereo in more detail. This section is divided into 
two parts. The first part deals with SEM imaging 
geometry and presents the stereo reconstruction 
equations used in our experiments. The second part 
investigates the constraint that we use in stereo 
matching and shows how these constraints can be 
expressed in the form of a binary linar integer pro- 
gramming problem. 

4.1 SEM Stereo Reconstruction Equations 
Image formation in the SEM can be modeled as the 
perspective projection of specimen surface points 
onto an image plane. The image plane is perpendic- 
ular to the optical axis, with the perspective center 
placed at the final aperture in the objective lens of 
the SEM (see Figure 3a). To simplify the algebra 
that follows, three right-handed Cartesian coordi- 
nate frames are introduced. They are defined as fol- 
lows (see Figure 3): 

�9 Coordinate frame CA is positioned at the point 
where the optical axis of the SEM crosses the 
stub plane, which is called the principal point (see 
Figure 3a). Its Z-axis is aligned with the optical 
axis and points toward the perspective center. Its 
Y-axis is parallel to the tilt axis of the stage and 
will point in such a direction as to cause the tilt 
made, in getting the stereo pair, to be equivalent 
to a rotation in the + Y-axis, using the right-hand 
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is expressed using lowercase x, y, z with no sub- 
scripts [i.e., as (x, y, z)]. Note  that the coordinates 
of  a sample point with respect  to this frame will 
not change as the sample is tilted, 
Coordinate frame Cc is positioned at the intersec- 
tion of the optical axis with the image plane (see 
Figure 3a). It is oriented such that its X- and Y- 
axes lie on the image plane and are aligned with 
the X - -  and Y-axes of  the other  two coordinate 
frames, respectively. Coordinates of  a point on 
the image plane with respect to this frame is de- 
noted by uppercase x, y 's  with a subscript [i.e., 
(X;, Y;)] to indicate the two tilt positions of the 
stage. Also note that only the x and y coordinates 
of this frame are used. 

(a) 

Xi 

t-- 
x 

Making use of these coordinate frames, the over- 
all transformation relating image points to three-di- 
mensional scene points (and vice versa) can be de- 
composed into two simpler transformations,  each of 
which can be obtained by simple algebra and geom- 
etry, as follows: 

the optical axis 

x a sample point 

plane 

CB 

(b) 
Figure 3. SEM stereo imaging geometry. (a) Sample of the 
stub plane at stage tilt position i, and illustration of the 
coordinate frames CB and Cc. (b) Illustration of the image 
plane and the coordinate frames CA and Cc. 

rule convention.  Coordinates of  points expressed 
with respect to this frame are printed using lower- 
case x, y, z 's  with a subscript [e.g., (xi, y~, zi)] 
where the subscript indicates the two tilt positions 
of  the stage. 

~ Coordinate frame CB will also be positioned at the 
principal point, but it is at tached to the stub plane 
(see Figure 3b). Its orientation is such that at 0 ~ 
tilt it becomes identical to coordinate frame CA. 
Coordinates of  a point with respect  to this frame 

�9 Using the illustrating in Figure 3b, it can be shown 
that the transformation T~, which transforms the 
coordinates of surface points expressed with re- 
spect to (78, that is, (x, y, z), into those expressed 
with respect to CA, that is, (xi, Yi, z3, can be given 
implicitly through the following relations: 

z - xz(sin y + cos y/tan c0 - x](cos y/sin a) (3) 

x = x2(cos y + sin y/tan a) + xi(sin y/sin a) (4) 

y = yJ = y2 (5) 

where y is the tilt angle of the stage after being 
tilted and ~ is the amount  of stage tilt. Note  also 
that the coordinates (x~, yl,  z0 of a specimen sur- 
face point at position ! of  the stage becomes (x2, 
Y2, z2) upon tilting the stage by an angle c~, as 
follows: 

yl = y2 (6) 

x2 = x~ cos c~ - zl sin a (7) 

z2 = xi sin c~ + z] cos c~ (8) 

�9 Similarly, using the illustration in Figure 3a, it can 
be shown that the transformation T~, that trans- 
forms the coordinates of  specimen surface points 
expressed with respect to CA [i.e., (x;, Yi, Zi)] into 
their corresponding image coordinates expressed 
with respect to Cc, that is, (Xi, Y3, can be given 
implicitly through the following relations: 
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X I = (SLIM.,:)(1 - z J D )  

yt  = ( Y I / M v ) ( I  - z l / D )  

x2 - (X2/Mx)( I  - z2/D) 

Y2 = (Y2/Mv)( 1 - z2/D) 

(9) 
SE exit depth ] 

(10) V 

(11) t~ 

(12) i, 

where, D is the working distance (i.e., the dis- 
tance from the perspective center  to the principal 
point) and M/ i s  the magnification from the stub 
plane at 0 ~ tilt to the image plane, along axis-j. 

At high magnifications, that is, above - 5 0 0  to 
1000x depending on the working distance, the 
imaging geometry can be modeled as the ortho- 
graphic projection of  specimen surface points onto 
the image plane with negligible error (Howell 
1978b). In this case the transformation T~ simplifies 
to the following: 

I 

(a) 

c d 

•1• e 'beam 

(b) , ~ ~  
/ i 

f I 

(d) a 
b 

Figure 4. Illustration of contrast due to the edge effect. (a) 
Surface profile, with the SE exit area crosshatched. (b) 
Model of the primary electron scatter area within the sam- 
ple. (c) Computing the SE emission across the surface pro- 
file using the model in (b). (d) Illustration of the SE inten- 
sity corresponding to (c). 

x~ = X / M ~  for i = l, 2 (13) 

Yi = Yi/M,. for i = 1, 2 (14) 

where Mr and My are the magnifications along the 
X- and Y-axes of  the CA and C c  coordinate frames. 

Due to the orthographic projection assumption, 
at a constant tilt angle, spatial dimensions on the 
projected image will be invariant to stage X- Y trans- 
lation. This is important because,  unless the region 
of interest on the sample is positioned right on the 
tilt axis, upon tilting the specimen the stage will 
need to be translated in a direction perpendicular to 
the tilt axis so as to put the same region of  the 
sample back into the field of view. 

In summary, the relative three-dimensional posi- 
tion of one surface point with respect to another  can 
be obtained using Eqs. (3) to (5) and (13) to (14), 
with the following modifications made in Eqs. (13) 
and (14): 

Xi  ~ -  aX+, Yi ~ a Y i  (15) 

where AXi is the difference in the X coordinates and 
A I1, is the difference in the Y coordinates (with re- 
spect to C c )  of  the pair of points whose three-di- 
mensional separation we are after. 

Once the image coordinate differences, that is, 
~Xi and ~ Yi, are measured on the image, these 
values together with stage parameters,  that is, o~, 7, 
and M, can be substituted into the preceding equa- 
tions to get relative three-dimensional spatial infor- 
mation between pairs of points on the sample. 
Thus, the problem now becomes one of locating 
projections of  the same three-dimensional point in 

the two images, which is commonly known in com- 
puter vision as the c o r r e s p o n d e n c e  p r o b l e m .  

4.2 Image Formation in the SEM 
We now present a brief description of the process of 
image formation in the SEM. It is important to con- 
sider this process because constraints to solve the 
stereo-matching problem can be generated from the 
knowledge of image formation. In fact, in section 
4.3 we develop constraints for stereo matching on 
the SEM based on the knowledge of image forma- 
tion. 

On specimen rich in topographic detail, that is, 
one that has many high surface curvature points, 
the diffusion contrast  (or the edge effect) is the pri- 
mary contrast  mechanism. Figure 4a shows a verti- 
cal cross section of a specimen, with the area over  
which secondary electrons can escape cross- 
hatched. This exit area corresponds to the so-called 
S E  e x i t  d e p t h ,  which is on the order  of 0.5 to 1.5 nm 
for metals and 10 to 20 nm for insulators (Reimer 
1985). Figure 4b shows a triangular approximation 
to the primary electron scatter area, similar to the 
model presented in Goldstein et al. (1981, p. 71). 
This model is based on analyzing the paths of  pri- 
mary beam electrons within the sample using Monte 
Carlo simulation. The apex angle of this triangle is 
equal to twice the average scattering angle/3. We 
assume that the sidewall of the specimen surface 
(i.e., the slope of the sidewall profile in Figure 4a) is 
steep enough so that 0 is less than/3. The height of  
this triangle is the maximum electron range that is 
on the order of  0.3/xm for aluminum at an accelerat- 
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ing voltage of 5 keV and reaches to >0.8 ~m at 10 
keV. 

Using this simple model, we can now estimate 
the shape of the SE intensity profile that would be 
obtained from the surface profile shown in Figure 
4a. The relative magnitude of SE emission, when 
the primary beam hits a point on the surface, can be 
computed as the area of the crosshatched region 
that falls within the triangle of Figure 4b when the 
apex of the triangle is positioned at that surface 
point. This is illustrated in Figure 4c at several im- 
portant points along the profile, and the correspond- 
ing intensity profile is illustrated in Figure 4d. As 
can be seen, high surface curvature points result in 
high curvature points in the corresponding image 
intensity profile. Furthermore, considering the sur- 
face and image intensity profiles as one-dimensional 
functions, locally convex high curvature regions on 
the corresponding image intensity profile, and simi- 
larly, locally concave high curvature regions of the 
surface profile result in locally concave high curva- 
ture regions in the image intensity profile. 

4.3 The SEM Stereo Correspondence Problem 
Solving the stereo correspondence problem re- 
quires two steps--the detection of predefined fea- 
tures in each image, followed by the matching of 
these features. The predefined features are termed 
matching primitives. In order to match the detected 
features, several constraints can be employed, and 
these are discussed in detail in the following sec- 
tion. 

4.3.1 Choice of matching primitives. To re- 
construct accurately the actual three-dimensional 
shape of an object, one needs to be careful in select- 
ing matching primitives since shape from stereo al- 
gorithms can return the depths of only those three- 
dimensional object points that correspond to 
feature points in the image. Some of the factors 
affecting the choice of features include: 

�9 Feature points corresponding to high surface cur- 
vature points on the sample should be used. The 
idea here is that the surface interpolation/approxi- 
mation step that follows feature-based stereo 
matching will use these sparse sets of three-di- 
mensional points as control points to fit smooth, 
low-order polynomial surface patches, and such 
surface patches that fit in between high surface 
curvature points will result in a very good approx- 
imation of the actual three-dimensional surface of 
the object. It was this factor that led Mayhew and 
Frisby (1981) to suggest that, for certain images, 

zero-crossings alone were not able to predict the 
preceived shape by humans. 

�9 The likelihood of the presence of the match of a 
feature point in the other image should be high. 

�9 It should be possible to locate spatially corre- 
sponding feature points in the images accurately. 

As primitives we use points where the curvature 
of the image intensity function i(x, y) achieves a 
local maximum with a sufficiently large magnitude, 2 
along with intensity edges. Considering the physics 
of SEM secondary electron image formation, we 
will show the importance of locating high image cur- 
vature points based on the criteria given earlier. 
Incidentally, high image curvature points are nearly 
identical to the peaks of the V2G convolved image 
that were suggested by Mayhew and Frisby (1981) 
as being used by humans as features. This is due to 
the fact that the curvature of a function is propor- 
tional to its second (partial) derivatives. 

4.4 Constraints for the Matching Problem 
The features that we proposed for detection in the 
previous section now have to be matched, based on 
certain constraints. In a general situation these con- 
straints are derived from the imaging geometry, the 
physics of image formation, and the geometry of the 
three-dimensional scene being viewed. 

The stereo-matching constraints that we have in- 
vestigated are discussed as follows. 

4.4.1 The Epipolar Constraint. The epipolar 
constraint states that the match of an image point on 
one epipolar line must lie somewhere along the cor- 
responding epipolar line in the other image. 

It is shown in Kayaalp (1988) that when a per- 
spective projection imaging geometry is assumed, 
the match (X2, I12) of a point (X1, Y0 in the first 
image, will lie in the other image on the line whose 
equation is given by 

Y2 = ( YI((1 - co s  o~)/M~ 1 
D . s i n  a ( l  - co s  c0X~ .X2 \ / mx 

- co s  c~)X1 (16) 
.sin a Mx 

where a is the amount of tilt, D is the SEM working 
distance, and Mx is the SEM magnification along the 
X-axis. 

2 Hereafter  we will refer to these points as high image curva- 
ture points. 
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right img contour 

~ ' ) l e f t  img contour 

right img contour 

xl + x2 ~; 1 

eD~polar axis 

Figure 5. Implementation of the uniqueness of a left image 
contour's match constraint. 

Note that, unlike the optical epipolar geometry 
where epipolar lines in one image correspond to 
epipolar lines in the other image, for SEM stereo 
pictures obtained by tilting the sample, the match of 
each image point is to be found on a different line in 
the other image. 

As discussed earlier, since we are operating at 
high magnification, we can make a parallel projec- 
tion imaging geometry assumption with very little 
error. In this case the match of a point (X~, Y0 will 
lie on a line obtained by using Eq. (16) with D --~ ~, 
which gives 

YJ = Y2 (17) 

This is precisely the optical epipolar line con- 
straint. Hence, imaging geometry dictates that for a 
tilt axis parallel to the X-axis the match of a point 
lying on the line YI is constant must lie on the line 
I12 = Y~ in the image obtained by tilting the SEM 
stage by any angle. 

down v i ~  

Left imgs ~llRight ,rag Left ImgB~ ~leRight 
(a) (t=) 

~mg 

Figure 6. Illustration of the feature point-ordering con- 
straint. (a) Preservation of feature point-ordering between 
left and right images. Projections of point P is to the right of 
those of point P' in both images. (b) The order of the left 
and right image components of overlapping contour 
matches Xl and x2 are reversed in the two images, hence 
violating the feature point-ordering constraint. This viola- 
tion is expressed in terms of the optimization problem con- 
straint shown above. 

The constraint that is generated for the optimization 
problem states that at most one of these two 
matches can be accepted. 

4.4.3 The ordering constraint. The preserva- 
tion of feature point ordering constraint states that 
the ordering of feature points along an epipolar line 
in one image should be the same as the ordering of 
the corresponding match points along the epipolar 
line in the other image. That is, if an image point is 
to the right of another image point along an epipolar 
line in the left image, then its match should also be 
to the right of the match of the other point on the 
corresponding epipolar line in the right image. This 
is illustrated in Figure 6. 

4.4.2 The uniqueness constraint. The unique- 
ness constraint states that for each feature point in 
one image there can be at most one matching fea- 
ture point in the other image. This constraint was 
originally suggested by Marr and Poggio (1979) in 
the form of the uniqueness of the three-dimensional 
position of a surface point at any one time. 

In our algorithm we enforce the uniqueness con- 
straint in two ways--the uniqueness of the match of 
a left image contour and the uniqueness of the 
match of a right image contour. We say that there is 
a possible match between two contours if and only 
if there exists at least one point on one contour that 
can possibly match a point in the other when we 
search for its match along the epipolar line direc- 
tion. Figure 5 illustrates how the uniqueness of a 
left image contour's match constraint is enforced 
and shows the resulting optimization problem con- 
straint. This illustration shows a left image contour 
that can match two right image contours where each 
match is represented by binary variables xl and x2. 

4.4.4 The feature point similarity constraint. 
The feature point similarity constraint states that 
the image characteristics should be similar in the 
vicinity of a matching pair of points in the two im- 
ages. This constraint arises from the assumption 
that the difference between the viewing angles of 
the two cameras (for the SEM, the tilt angle differ- 
ence) is small, and hence illumination conditions 
are nearly the same when the two images are ob- 
tained. 

As mentioned earlier, we use two types of image 
features--high curvature points and edge points. It 
was shown that, based on the diffusion contrast 
mechanism, the brightness and contrast levels in 
the two images might be different, yet it is highly 
likely that intensity profiles along corresponding 
epipolar lines will have the same structure. Hence, 
it is highly likely to see corresponding high curva- 
ture points in the two images have the same type 
(sign) of curvature. That is, a locally convex high 
curvature section of the intensity profile will stay 



Kayaalp et al.: Scanning Electron Microscope-Based Stereo Analysis 239 

(a) 

left img DOG profile right image DOG profile 

+ 

,• (b) 

, , /~.  + 

Figure 7. Implementation of the feature point similarity 
constraint. (a) Feature point similarity for high curvature 
points: the type of curvature preserved. This is imple- 
mented by requiring matching feature points to have the 
same peak sign in the DOG filtered profiles. (b) Feature 
point similarity for edge points: the sign of the slope of the 
edge preserved. This is implemented by requiring matching 
zero-crossings to have the same slope sign in the DOG fil- 
tered image profiles. 

locally convex in the corresponding intensity profile 
in the other image, and similarly for a locally con- 
cave section. This is illustrated in Figure 7a. 

Similarly, based on the expectation that the 
structure of intensity profiles along corresponding 
epipolar lines will be the same, around correspond- 
ing edge points it is highly likely that the left and 
right irnage intensity profiles will have the same 
slope sign (see Figure 7b). 

To summarize, if fL(x) and fR(x) are continuous 
functions approximating image intensity profiles 
along corresponding left and right epipolar lines, 
and x e and x" (Xh and x;,) are corresponding edge 
(high curvature) points along these profiles, then we 
require that 

4.4.5 The depth~height boundedness con- 
straint. The depth~height boundedness constraint 
states that computed depth/height (or disparity) val- 
ues should be bounded. This constraint is based on 
the assumption that objects in the scene have finite 
depth. In cases where zero-crossings of VZG filtered 
images are used in multiresolution stereo matching, 
after an initial coarse disparity map is used to align 
corresponding points in the two images, the size of 
the central excitatory region of the filter (w) deter- 
mines the disparity range over which matches will 
be sought. In our algorithm this constraint is en- 
forced by limiting the search for the match of a 
point in the other image to only a section of the 
corresponding epipolar line. 

4.4.6 The surface smoothness and figural conti- 
nuity constraints. The surface smoothness con- 
straint states that the computed three-dimensional 
surface points should not depict a surface that has 
abrupt jumps. This constraint comes from the ob- 
servation that most physical objects have smooth 
surfaces when viewed at the proper resolution. In 
analyzing the surface of an integrated circuit pattern 
at very high magnifications, we do not expect to see 
a jump in the height values of two surface points 
that correspond to two neighboring pixel positions 
in the images. This constraint is violated at occlu- 
sion boundaries, but for the type of images we are 
dealing with we do not expect to run into this situa- 
tion very often. This constraint was originally sug- 
gested by Marr and Poggio (1979). 

The figural continuity constraint enforces 
smoothness of disparity along feature contours in 
the image (Mayhew and Frisby 1981). The assump- 
tion made here is that feature contours in the image 
are projections of a collection of points that are all 
on one smooth surface of an object; hence, dispar- 
ity (or depth) should vary smoothly along the image 
contour. 

In our algorithm the figural continuity and 
smoothness constraints were enforced as follows: 

d A  (xe) �9 dfR ~-x (x~) > 0 (18) 

d R  d~-(xh) " - - ( x ~ )  > 0 (19) ~2 ~2  

Note that unlike some other stereo algorithms 
(Baker and Binford 1981; Ohta and Kanade 1985), 
we are not using fL and fR, that is, image intensity 
values, directly in the feature point similarity crite- 
rion since there can be differences in brightness and 
contrast in the left and right stereo images. 

Figural continuity. Our algorithm matches con- 
tours in one image to those in the other. Within 
the overlapping region of two matched contours 
the disparity will vary smoothly as we move along 
any of these two contours. Hence, due to the con- 
cept of contour matching that is employed, within 
such a region the figural continuity constraint is 
implicitly enforced. To be more specific, since 
neighboring points on our contours are eight-con- 
nected, two neighboring points on a left image 
contour that have been matched to two neighbor- 
ing points on a right image contour cannot have 
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, • • 2 " 2  pixel neighborhood in left image 

d p i x y + 2  pixels 

'2 pixel neighborhood in right image 

Figure 8. The disparity function will vary smoothly along 
two matched contours in the region where they overlap. 

more than a 2 pixel difference in their disparities 
(see Figure 8), 

�9 L o c a l  s m o o t h n e s s .  Each left image contour 's  
match is compared for "smoothness  of dispari ty" 
violations against matches of other left image con- 
tours that are located within a box positioned im- 
mediately to the right of this left image contour  
and has dimensions equal to the disparity search 
range and the width of a slit (see Figure 9). Local 
smoothness violations are detected by checking if 
the disparity gradient between matches of  the two 
left image contours exceeds a value of 2. In mak- 
ing this check, the two contour  matches are repre- 
sented by their end disparity vectors that face 
each other (i.e., that are closest to each other). In 
Figure 9, to determine if contour matches x~ and 
x2 violate the local smoothness constraint, the dis- 
parity vectors d~ and d~ (shown as arrows posi- 
tioned at the proper  left image contour  point) are 
checked for a disparity gradient limit violation. 

The major objective of  the local smoothness 
constraint is to avoid situations where along a 
contour  there is a sudden jump in disparity value 
due to two spatially well-separated contours along 
the epipolar line direction matching this contour 
over  points that are very close to each other (see 
Figure 10). Note that aside from this check for 
local smoothness violations, no other (stricter) 
smoothness constraint was implemented. It is 
precisely due to strong smoothness assumptions 
that some of the other stereo algorithms have 
trouble around points where there is a disparity 
step such as occlusion boundaries. 

5 Description of Algorithm 

Assuming that the two stereo images are aligned in 
a direction orthogonal to the epipolar axis and are 
taken at the same magnification, our algorithm 
takes image profiles along each epipolar line in the 
left image and attempts to match its feature points 
to those found along the corresponding epipolar line 
in the right image. Note  that each feature point de- 
tected along an epipolar line represents a single 

L epipo[ar axis 
slit width 

xl 
i x T ml : m2=~.,~ 2 disparity range 

~ ' ~  ~on ly  matches of feature contours 
' :slit slit -.-in this box are used in checking 

local smoothness violations 
against match ml 

left image (after identified possible matches) 

Figure 9. Implementation of the local smoothness con- 
straint. The two images are broken up into slits that extend 
along the epipolar line direction. Local smoothness is en- 
forced by checking for disparity smoothness violations be- 
tween each contour match Xl (with left image component 
ram) and contour matches with left image components falling 
within the box shown above. 

l i  ~ left img contour 

iright img contour 

right mg contour 

Figure 10. Illustration of the need for the local smoothness 
constraint. A case where a long contour in the left image 
matches two contours in the right image that are spatially 
well separated from each other along the epipolar axis, over 
a close lateral distance. 

point on an image feature contour.  Figure i I shows 
the block diagram of the stereo-matching algorithm. 
Our approach makes it possible to integrate con- 
straint generators that extract  scene information us- 
ing other visual cues (such as shading, texture,  etc.) 
into the system. These constraint generators can 
identify incompatible contour  matches based on the 
physical principles that they are based on and gen- 
erate appropriate optimization problem constraints. 
The constraint generators that are due to SEM 
imaging geometry,  physics of SEM image forma- 
tion, and the shape of the objects that are viewed 
have already been discussed in the previous sec- 
tion. In this section we discuss how the stereo- 
matching problem defined by these specifications 
can be transformed into an equivalent binary pro- 
gramming problem that can then be solved. 

Each possible match of  compatible left and right 
image contours is represented by a binary variable. 
The acceptance of a match is represented by having 
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Figure 11. Block diagram of the SEMstereo system. 

the binary variable corresponding to that match 
take on a value of  one, whereas its rejection is rep- 
resented by the variable taking on a value of zero. 
In considering the match of  a left image contour  to a 
right image contour,  the number of points that are 
matched is used as the cost associated with that 
match. Figure 12 illustrates this idea. The objective 
function that is maximized is ~ pi.  x i ,  where pi is the 
cost associated with accepting the contour  match 
represented by xi. This constraint is based on the 
expectat ion that, in general, a contour  present in 
one image will also be present in the other  will simi- 
lar length, although it may have been fragmented, 
translated, and slightly rotated in going from one 
image to the other.  Note that this condition will not 
be valid when a section of  the scene appears in one 
image but not in the other  due to occlusion. How- 
ever,  in the types of  images that are encountered in 
our application we expect  to see very few, if any, 
cases of  occlusion. Since we view the stereo-match- 
ing problem as a global problem, the objective func- 
tion used in our algorithm will be able to solve 
matching problems correct ly in which local match 
ambiguities exist. Figure 13 illustrates such a case. 

The constraint generators discussed previously 
result in a set of  constraints that are in the form of 

feature cQntour left img ~ l  

right img feature contour el 
epipolar axis _ _ J  

Figure 12. Cost associated with a contour match li - rj. In 
this example if we were to accept this match 4 points on 
contour, li would be matched. Hence, the cost associated 
with this match is 4. 

N pixels ~ ~ matched pix,,2N * matched pix,,3N 

I 
(a) (b) (e) 

Figure 13. Illustration of how the objective function used 
resolves local match ambiguities. (a) Possible matches are 
displayed using arrows, where bold, solid lines denote left 
image contours and broken lines denote right image con- 
tours. Note each line is N pixels long. (b) One possible 
match, with an overall cost of 2N. (c) The correct match 
picked by our algorithm with an overall cost of 3N. 

inequalities where the variables have a coefficient 
of  1 and the right-hand side is a 1 or 2 (i.e., they look 
l i k e x i + x j +  �9 " . - <  l o r 2 ) .  

We now present the steps of  the algorithm: 

�9 F e a t u r e  de t ec t ion .  Each epipolar line in each im- 
age is convolved with one-dimensional Gaussian 
filters having o- = 4.0 and 6.4. The difference of  
Gaussian (DOG) profiles are obtained. High cur- 
vature points (HC features) and/or  zero-crossing 
points (ZC features) are detected on each DOG 
profile in both images. 

�9 C o n t o u r  de t ec t ion .  A connected components  al- 
gorithm is used to get HC and ZC feature con- 
tours. 

�9 Var iab le  a n d  c o s t  o f  var iab le  iden t i f i ca t ion .  

Based on the "similarity of feature points"  and 
the "boundedness  of  dispari ty" constraints, pos- 
sible matches between feature contours and their 
associated costs are identified. A binary variable 
is assigned to each such contour  match. 

�9 C o n s t r a i n t  g e n e r a t i o n .  Each of  the constraint 
generators independently generates constraints 
between matches as discussed previously. 
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�9 Solving the optimization problem. The resulting 
binary linear programming problem is solved by 
decomposing it into subproblems (if possible) and 
solving each using a branch-and-bound algorithm 
presented in Hillier and Lieberman (1980). 

�9 Disparity to depth conversion. Using Eqs. (3) to 
(5) and (13) to (15), the stereo-matching results are 
used to create a sparse depth map. 

6 Experimental Results 

In this section we present the results of running our 
algorithm on real data. These results are for two 
representative images. Several other test cases are 
presented in Kayaalp (1988). 

The following experimental setup was used. Im- 
ages were taken of silicon wafers provided by 
Hewlett Packard. The images were obtained 
through a JEOL-JSM-840 SEM. Typical settings 
used were an accelerating voltage of 10 kV, and a 
magnification of 10,000. Hard copies of the images 
were then digitized using a CCD camera into 480 x 
480 pixels. All the stereo experiments were carried 
out on the digitized images. 

Figure 14a shows an image of a contact hole, 
obtained at a magnification of 10,000. The bar to the 
lower left, marked 1/~m indicates that the bar mea- 
sures one micron in length. Figures 14a and b show 
the images obtained by tilting the sample about a 
horizontal axis passing through the plane of the pa- 
per. The tilt angles used were 15 ~ and 30 ~ with re- 
spect to the original image. These will be termed the 
left and right stereo image pairs. Note that the ap- 
parent width of the edges changes as the tilt angle is 
increased. Figure 14c shows the result of running 
the stereo algorithm up to the stage of detecting 
matching contours. Both the left and right stereo 
images have been compressed laterally in order to 
fit into one image, as displayed. This explains the 
foreshortening seen along the horizontal axis, and 
has been done purely for display purposes. The ver- 
tical red bar indicates the disparity range within 
which searches for matches was constrained. High 
curvature and zero-crossing contours have been 
overlayed on the original image from which they 
were obtained. The epipolar axis is vertically ori- 
ented. Seven scan lines were used to generate the 
contours. The important point to note is that high 
curvature and zero-crossing contours in the left and 
right stereo images have been color coded. The 
color red is used to mark contours for which no 
match in the other image was found. Contours that 
were indeed matched are coded with the same 
color. Thus, a green contour in the left image is 
considered to be matched with a green contour in 

the right image, provided both the contours lie 
within the disparity range indicated by the solid red 
bar. 

Since edge-based features are inherently fine, we 
have redisplayed them for the sake of clarity. Fig- 
ure 14d shows only those contours in the left image 
that have been matched to contours in the right im- 
age. Figure 14e shows the color-coded contours 
separately, without overlaying them on the original 
image. 

A close examination of these figures indicates 
that several features were matched between the two 
images, and these matches agree with our intuition. 
This verifies that the stereo algorithm does indeed 
pick out the correct matches. 

Now the next stage is to look at the recon- 
structed depth values. The algorithm is able to com- 
pute the depth values only along the contours that 
were matched. This results in a sparse depth map 
and is shown in Figure 14f. This is the final output 
obtained by the algorithm. In order to reconstruct 
the actual surface from these depth values, one 
needs to employ techniques from surface interpola- 
tion or surface approximation. However, this con- 
stitutes another different research topic altogether, 
which we have yet to address. Nevertheless, as a 
quick aid to view the reconstructed surface, one can 
simply perform a linear interpolation between the 
depth values actually determined by the algorithm. 
Of course, this is not entirely correct but is being 
done as an aid to visualization, and as a means of 
looking at the surface qualitatively. Figures 14g and 
h show the result of performing a linear interpola- 
tion between depth values along each scan line and 
the three-dimensional surface that results. 

Figure 15a shows an image of a step, obtained at 
a magnification of 20,000. Figures 15a and b show 
the images obtained by tilting the sample about a 
horizontal axis passing through the plane of the pa- 
per. The tilt angles used were 15 ~ and 30 ~ with re- 
spect to the original image. Figure 15c shows the 
result of running the stereo algorithm up to the stage 
of detecting matching contours. The epipolar axis is 
vertically oriented. Thirty-two scan lines were used 
to generate the contours. Figure 15d shows only 
those contours in the left image that have been 
matched to contours in the right image. Figure 15e 
shows the color-coded contours separately, without 
overlaying them on the original image. 

Again, a subjective examination of these figures 
indicates that several features were matched be- 
tween the two images, and these matches agree 
with our intuition. This verifies that the stereo algo- 
rithm does indeed pick out the correct matches. The 
resulting sparse depth map is shown in Figure 15f. 



Figure 14. (a) Contact hole viewed at a tilt angle of 15 ~ (b) Contact hole viewed at a tilt angle of 30 ~ The tilt axis is 
horizontal. (c) Result of the SEM stereo algorithm, up to the matching stage. (d) Contours in the left image that match 
contours in the right image. (e) Color-coded contours from both the left and right image. Contours coded in red indicate 
those contours for which no match was found. (f) Sparse depth map generated using the disparity values generated from the 
matched contours. (The scan lines are along the x-axis) (g) Three-dimensional relief map of the contact hole, obtained from a 
linear interpolation of the depth values along the scan lines (parallel to the X-axis). (h) The same reconstructed surface 
observed from a different viewing direction. 
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Figure 15. (a) The step viewed at a tilt angle of 15 ~ (b) The step viewed at a tilt angle of 30 ~ (c) Result of the SEM stereo 
algorithm, up to the matching stage. (d) Contours in the left image that match contours in the right image. (e) Color-coded 
contours from both the left and right image. Contours coded in red indicate those contours for which no match was found. (f) 
Sparse depth map generated using the disparity values generated from the matched contours. (g) Three-dimensional relief 
map of the step, obtained from a linear interpolation of the depth values along the scan lines. (h) The same reconstructed 
surface observed from a different viewing direction. 

This is the final output  obta ined by the algori thm. 
Figures  15g and h show the result  o f  per forming a 
linear interpolat ion be tween  depth  values along 
each scan line and the three-dimensional  surface 
that  results.  

7 Conclusions 

In this paper  we presen ted  a novel  t echnique  to 
ana lyze  s tereo images genera ted  f rom a SEM.  The  
two main features  o f  this t echnique  are that  it uses  a 
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Figure 15. Continued. 

binary linear programming approach to set up and 
solve the correspondence problem and that it uses 
constraints based on the physics of SEM image for- 
mation. Both these features are new in the field of 
computer  vision. 

We have applied the technique to a variety of 
images, some of  which have been presented in this 
paper. The algorithm performs very well at detect- 
ing features,  and also in finding matches for these 
features.  The way we envision the use of such an 
algorithm is that it will act as a first step in the 
reconstruction of  the actual physical surface under 
observation.  The main limitation of the algorithm is 
that it generates only a sparse depth map. Addi- 
tional points can be generated by making use of the 
knowledge of the types of  surfaces that one is in- 
specting or by incorporating shape from shading 
techniques with these initial depth values as starting 
points. These are research directions that we will be 
pursuing in the future. 

To sum up, we have investigated the feasibility of 
using SEM stereo in order  to perform inspection of 
wafers for process control. We have determined 
that edge-based features are useful in the extraction 
of  a sparse depth map in the case of  SEM images. 
However ,  this data alone is not enough to obtain a 
complete description of the three-dimensional sur- 
face being inspected. 
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