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Abstract. Pre-/postconditions have been extensively used in program specification, 
e.g. Z [Spi89], VDM [Jon86], and proof, e.g. Hoare logic, Dijkstra's guarded 
commands [DiF88]. In [SCP86, SPB90] the authors introduced neutral and central 
relations to formalise the concept of "the rest stays the same". In this paper we 
abstract away from the specific definition of neutral relation given in [SPB90], 
through the mechanism of relational boolean algebras. This leads to the definition 
of implicitly central relations which are easier for the user in practical examples and 
facilitate the use of pre-/postcondition reasoning about truly concurrent 
behaviour. 

1. Introduction 

Model- or state-based styles of specification describe a system in terms of the state 
of the system and the effects of events on that state. The most popular Z [Spi89] and 
VDM [Jon86], follow this approach using pre- and postconditions to describe the 
relationship between the state before an event and that afterwards. This paper 
addresses a similar style first presented in [SPB90] but aims to extend previous work 
to include an interpretation of concurrent behaviour. 

The intent in [SPB90] was that the specifier should be able to specify the effect 
of an event on just that part of the state in which he was interested and that, in the 
absence of other constraints, the rest of the state should remain unchanged. This 
permits the user to "underspecify" events, giving simpler more focused specifica- 
tions. 
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Sciences, University of Surrey, Guildford GU8 4UG, UK. 



472 D. Pitt and P. Byers 

More importantly, context-sensitive interpretation of these "weak"  post- 
conditions gives a framework for building complex specifications by combining 
simpler components - each of which only constrains those parts of the state that it 
is genuinely interested in. Such compositionality is precluded by postconditions 
that are too "s t rong" .  

Neutral and central relations were defined to enable the specifier to make 
inferences about the whole state after an event, not just that part directly involved 
in the specification. Sections 2 and 3 of this paper introduce relational boolean 
algebras; these simple algebraic structures are then used in Section 4 to give the 
basic definitions of " the  rest stays the same" for an event. The abstraction to 
relational boolean algebras facilitates the definition of implicitly central relations, 
which are in general very straightforward to construct for any specific event, and 
some very simple examples are given. Implicitly central relations embody that part 
of the state that the event is not concerned with, and thus give us the basis of a 
calculus for reasoning about overlapping occurrences of events. This view of 
concurrency is discussed in Section 6 using a simple result, on combining events, 
proved in Section 5. Sections 7 to 9 then consider the role of an invariant within the 
framework of relational boolean algebras. 

2. Relational Boolean Algebras 

Pre-/postcondition specifications are usually viewed as defining relations over sets 
of states, two states being related if the first satisfies the precondition and together 
they satisfy the postcondition. Thus if the state has a component S which is declared 
to be a set of natural numbers, the specification (true, S' = S U {1}) in which S' 
denotes the value of S after the event, would normally be satisfied by any pair of 
states provided 1 e S in the second and that S was otherwise unchanged. Part of this 
relation is illustrated in Fig. 1. In the figure states are shown as models of set theory. 
A state in which S = {4, 5, 6} is related under (true, S' = S U {1}) to a state in which 
S = {1,4, 5, 6}. Whereas if we were to consider the relation specified by (true, 1 e S') 
then the first state, whatever it was, would be related to any states in which 1 was 
an element of  S. 

3 .~S 

/ I 
S' = Su{1} l e S '  

Fig. 1 
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The set S,'~{1} may  ehan~e. 
In the picture it is {1 } in the upper  (pre)state 

and the empty set, 9 ,  in the lower (post)state. 

In [SCP86,90] neutral relations were introduced, these had no precondition and 
simply required that some component of state remained unchanged, for example 
(true, X'  = X), two states would be related if the second could be obtained from the 
first leaving X unchanged, or (true, S'\{1} = S~{1}) in this case the presence or 
otherwise of elements other than 1 in S is required to remain unchanged�9 Figure 2 
illustrates this in two ways that will be used throughout the paper�9 In both cases the 
horizontal layers represent possible states that may be related by the relation 
described on the vertical arrow. In the left-hand case components or parts of the 
state are schematically represented by sections of a horizontal line. On the fight- 
hand side the state is intended to represent a world of sets; every component of the 
state will be represented by a set in that world�9 It is worth noting that we may use 
expressions in set theory to subdivide such components�9 Thus we may be interested 
in the set of elements of S which satisfy the predicate x ~a 1. The relation 
(true, 1 ~ S'), which would normally be satisfied by any pair of states provided 1 ~ S 
in the second, could then be augmented by (true, S'\{1} = S\{1}) ensuring that the 
rest of S remains unchanged�9 A pair of states would satisfy t he"  augmented" speci- 
fication just in case it satisfies both 1 e S '  and S'\{1} = S\{1}, that is S '  = S U {1}. 

If  we view a neutral relation, n, as keeping fixed some component of state, com, 
then two states stl  and st2 will be related by n if st2 may be obtained from stl by 
changing other components of state but leaving corn fixed. Then stl  could be 
obtained from st2 in a similar manner and thus st2 and stl would be related by n. 
This reversibility assumption about neutrals would lead to the conclusion that 
neutral relations should be symmetric'. 

If  the neutral relations n I and n2 kept fixed corn 1 and corn2 respectively (see Fig. 
3) and if stl  and st2 are related by nl then st2 may be obtained from stl  leaving 
coml fixed. Likewise i fs t l  and st2 are related by n2 then they agree on com2. Thus 
i fs t l  and st2 are related by both nl and n2 then they must agree on both coml and 
corn2. That is nl 0 n2 keeps both components, eoml U corn2, fixed. Likewise, if any 
part of the state other tham coml could change in the transition from stl  and st2 
and anything other than eom2 could differ from st2 to st3, then the only components 
of state where we could be sure stl and st3 agree are those in the overlap of coml 
and com2. Thus the relational composition 1 n 2 n l  keeps only the overlap, 
corn 1 0 com2, fixed. 

I W e  use n2 n l  to denote  the  re la t ion " d o  n l  then  do n 2 "  i.e. (stl,st3)~(n2 nl) ,  precisely when  there is 
an  st2 such  t ha t  (stl, st2)~ n 1 an d  (st2, st3)~ n2. 
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Components of state are represented schematically as sections 
of horizontal lines. Each horizontal line representin 8 a state. 
The vertical axis may be viewed as the duration of the event. 
State components in unshaded areas may be changing. 

Conjunction n l  nn2 

Since both nl and n2 
hold between states 
ST1 and St2, any 
components fixed by 
either one of them 
will remain unchanged. 

,I c~ St1 

nl n2 

1 
St2" 

I corn2 I 

Components held fixed during nl 
may change here 
unless they are also fixed by n2 

Composition n2 nl 

corn1 

St3 
corn2 

Fig. 3 

Components held fixed during n2 
may change here 
unless they are also fixed by nl 

2 

From these observations we could conclude that if we had a complementation 
operation such that n c kept fixed precisely those parts of  the state which n permitted 
to change, then we would have a boolean algebra of symmetric relations, under 
relational composition, intersection of relations and the given complementation. 
(Note that this complementation will not be the complement of n within state x state 
i.e. (state x state)\n.) 

A r e l a t i o n a l  B o o l e a n  a l g e b r a  is a triple (W, N, C) where W is a (non-empty) set, 
N is a set of symmetric relations on W, and C is a function C: N - , N  (we write n c 
for C ( n )  the complement of n)), such that N forms a boolean algebra under C, 
intersection and composition with the relation W x W and the identity relat ion,/ ,  
as the respective identities. (Note that C is necessarily unique.) 

The following properties of such an algebra will be used explicitly and are thus 
listed here. Properties R1, R2, R5, R6, R7, R8 and R9 are trivial and R3 follows 
from the symmetry of the relations involved. R4 may be seen as follows: 

n = n I =  n ( m  c N m )  = n m  c N n m  c_ n m  

Let (W, N, C) be a relational boolean algebra, then: 

R1 : N is closed under intersection and (relational) composition 
R2: For  all n ~ N, n c N n = I the identity relation on W 
R3: For  a l l n e N ,  n - i n  ~ = Wx Wand (nC)-l n = W x W 

R4: For  all n, m ~ N ,  n ~_ n m  and n c_ m n  
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R5 : For all n E N ,  nn = n 
R6: For all n, m ~ N ,  (nm)  e = n C N m c 

R7: For any two elements n, m ~ N ,  n m =  m n  

R8 : For any three elements n, m,  r ~ N ,  n ( m  N r) = n m  N nr 

R9 : For  any three elements n, m, r ~ N, (m N r) n = mn N rn 

It follows from R2 and R5 above and the symmetry of the relations in N that the 
elements of a relational boolean algebra will always be equivalence relations. 

E x a m p l e  2.1. Let W be the set of all subsets of { 1, 2, 3}, for each subset A _ { 1,2, 3} 
we define an equivalence relation nA on W by Xn  A Y =- de fX  N A = Y N A .  Notice 
that n A n a = n~ n B and n A N na = nA u B" Thus if we define (hA) c - - - -  defn{1 2 3}\A, and let 
Nbe  the set of all the nAs, then (W, N, C) is a relational boolean algebr~i Denote the 
above algebra by NN({1,2, 3}). 

If  we considered the elements of W to be the values of a component of state, S, 
declared to be a subset of {1,2, 3}, then n~ would correspond to the state to state 
relation keeping the intersection of S with A fixed; 

i.e. S '  N A = S N A or {xs S ' I x ~ A }  : { x ~  S[ x e A } .  

E x a m p l e  2.2. Given a relational model for pre-/postcondition set theoretic 
specifications, then let W be the set of "s ta tes"  and let N be the set of 
relations corresponding to conjunctions of postconditions of the form 
Pq),x'---def{X~X'[dP(x)} = { x ~ X I ~ ( X ) } ,  where X is a state variable and ~(x) 
is a formula from the underlying language of set theory together with the so-called 
given set names but not involving the state variable names. Then, if we define 
(P~ x) -= aefP-~ x, (W, N, C) is a relational boolean algebra. (Note that the composi- 
tioi~ of the relations corresponding to P. ,x and Po, x is the relation corresponding to 
P~ ̂ e,x and that corresponding to their intersection is P~, v o, x.) Figure 4 shows 
P , , x  N Po, r. It keeps fixed the set of elements in X that satisfy ~ and those 
of Y that satisfy 19; the presence or otherwise of elements in X and Y not 
satisfying these predicates may change. 

It is worth observing that the fact that n c is the complement of n within the 
boolean algebra (i.e. nn c = W x  W )  means that for any pair of elements of W 
(states), w0, Wa, there is another w e W such that Wo nw and wnCwa. However since n 
and n c are both symmetric and idempotent, we have nn -1 = n and (nO -1 n c = n c and 
so consideration of the following figure shows that if w' were another possible 

Elements of X Elements of Y 

I 
Pr n P~ 

Fig. 4 
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W ~  

o\/o o- 
W 1 

Fig. 5 

intermediate state then w(n ~ fl n) w'. But n c N n = I thus the intermediate state is 
unique (Figure 5). It is the state which agrees with w 0 " o n  that part of the state" 
fixed by n and with w 1 on the rest. 

3. Representation Results for Relational Boolean Algebras 

Our principle concern is with relational boolean algebras of the form described in 
Examples 2.1 and 2.2 above. In this section we investigate briefly how typical these 
examples are. 

Proposition 3.1. Every boolean algebra is isomorphic to the underlying boolean 
algebra of a relational boolean algebra. 

Proof Let (B, A, V, ', 1,0) be a boolean algebra, and let S be a set and A a set of 
subsets of S such that (A, n,  U, c, S, ~ )  forms a boolean algebra isomorphic to (B, 
A, v , ' ,  1,0) the existence of S and A is guaranteed by Stone's theorem, see for 

example [DaP90]. Form a relational boolean algebra as follows (W, N, C), let W = 
A and let N =  {r b ~ Wx W: b~A} where r b = {(bl,b2)~ Wx W: bl n b = b2 n b} 
then the underlying boolean algebra of (W, N, C) is isomorphic to (A, N, U, c, S), 
under the function, r b ~+ b, and thus to (B, A, V, ', 1,0). [] 

A weak NN-representation of a relational boolean algebra, (W, N, C), is a set A 
together with two one-one functions, 

repw: W ~  ~(A)  and repN: N-+ ~(A)  

such that 

(Wl nw2)~=~ (repw(Wl) N rep~n) = repw(W2) N repu(n)) 

Proposition 3.2. Every relational boolean algebra, (W,N,  C), has a weak NN- 
representation. 

Proof For each element n e N let A n denote the set of equivalence classes of n. Let 
A be the disjoint union (][neNAN)][ W. We define repu(n ) - - A  n and rePw(W ) = 
{[w]neAln~N} U {w} where [w]n is the equivalence class of w under n. Then 
repw(W) N repu(n) = {[w]n}. The required result follows. [] 

It should be noted that the representation function defined in the above proof will 
not determine a boolean algebra homomorphism from the underlying boolean 
algebra of (W, N, C) to that of NN(A). 
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A strong ~-represen ta t ion  of  a relational boolean algebra, (W, N, C) is a weak 
~ - r e p r e s e n t a t i o n  in which repu: N - + ~ ( A )  yields a boolean algebra homo- 
morphism. 

We are not able to prove that all relational boolean algebras have a strong ~ -  
representation. However, we do have the following theorem; a similar result has 
been proved for an equivalent model in [Shi91a]. 

Proposition 3.3. Every relational boolean algebra, (W, N, C), in which N is closed 
under arbitrary intersections, has a strong ~ - r e p r e s e n t a t i o n .  

Proof. Let A be a set and rep: N-~ ~ (A)  be a boolean algebra monomorphism such 
that  

rep(n I gt2) = rep(nl) n rep(n2) and rep(n I (? n2) = rep(nO U rep(n 2) 

Let repN: N-+ ~ ( A  • W) be defined by repu(n) = rep(n) • W; note repN is also a 
boolean algebra monomorphism,  and let repw: W - + ~ ( A  x W) be defined by 

repw(w ) = {(a, w')~ A x W[ 3n ~ N . a ~  rep(n) A (wnw')} 

Then 

repw(w) ~ repN(n) = repN(n) • [w]n 

and so for n :~ W • W we have rePN(n) ~ ~ and thus; 

repw(w ) (I repu(n ) = repw(w') N repu(n) 
~:~ repu(n) x [w], = repu(n) x [w'], (note rePN is one-one) 
~ ,  [w] .  = [w']~ 

WITW r 

and repu ( W  x W) = ~ ,  whence 

repw(w) ~ repN(n) = repw(w') ~ repN(n).*~ wnw' 

Thus if repw is one-one we have a strong representation. 
Notice rep(I) = A and so A • {w} ___ repw(w ), thus if  repw(w) = repw(w'), then 

we have 

A x {w'} c repw(w) 

so for each a e A we have n a e N such that a ~ rep(na) and wn a w'. 
By monotonici ty of  rep we have 

rep(na) ~_ rep( ~-] ha) 
a~A  

and thus 

A = U rep(na) ~- rep( ~'] na) 
a~A  a a A  

whence 

rep( N na) = A = rep(I) 
a e A  

and since rep is one-one, 

I x  N n a  
a~A  

but wn a w' for each n a, thus w = w'. So repw is one-one. []  
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4. Relational/Neutral Systems and Central Relations 

A relational~neutral system is a quadruple ( W , E , N , C )  where ( W , N , C )  is a 
relational boolean algebra and E is a set of  relations on W. The elements of  E are 
called events and those of N are termed neutral events or simply neutrals. 

The intent is to use neutral relations to augment underspecified events to define 
a sound concept of  " the  rest stays unchanged".  Suppose for example we have two 
state components,  (x,y), and we wish to define the event x becomes equal to 1. I f  we 
write x '  = 1, then for any pre-state the relation defined yields too many poststates, 
as illustrated in Fig. 6. We wish to restrict those states by demanding that  as much 
as possible of  the state should remain unchanged, while sustaining at least one 
possible poststate. 

A neutral event n is said to be consistent with an event e precisely if the domain 
of e n n is equal to the domain of  e. 

We also require that all such "res t  stays unchanged"  assumptions are mutually 
consistent. That  is, if  we take two of  them together with the event in question we do 
not lose the possibility of  a poststate. 

A neutral event m is said to be central to an event e precisely if m is consistent 
with e N n for any neutral n which is consistent with e. Thus if we view e N m as an 
implementation then for every possible prestate and any other implementation 
there will be at least one poststate shared by both implementations. 

The set of  neutral relations that are consistent with, central to an event e will be 
denoted by consistent(e) and central(e) respectively. Notice that central(e) is closed 
under intersections whereas consistent(e) may not be. Both are closed under 
composition. 

Example 4.1 (2.1 revisited). Let W be the set of  all subsets of  { 1,2, 3}, with N and C 
as before and let E b e  the set of  all relations on W. The relations in E m a y  be thought 
of  as non-deterministic events and any subset X _ {1,2, 3} may be considered as the 
value of a set-valued variable. The sets Y such that Y(e Y may then be viewed as 
possible values of  the variable after an occurrence of the event e from an initial 
value X. Then the neutral event n A may be thought of  as an event which simply 
insists that the presence or otherwise of  the various elements of  A in the variable is 
the same after an occurrence as it was before, but that  elements not in A may be 
added or removed. 

Consider the relation given by Xel Y--def 1 ~ Y. This insists that 1 is in the set 
afterwards but does not care about  any other elements. Then 

consisten t(e 1) = {n~, n{2}, n{3 }, n{2 ' 3}} 

since we can always sustain the presence or otherwise of  various elements of  the set 
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other than 1 and still insist that 1 is in afterwards. These consistent relations are all 
mutually consistent with el thus 

cen t ra l (e l )  = cons i s t en t (e l )  

If  we consider the relation given by X e 2  Y - def 1 e Y V 2 ~ Y. Then 

consis tent(e2)  = {nN, n{1}, n{2}, n{3}, n{1,3}, n{2, 3}} 

so, for example, you can always force 1 or 2 to be in afterwards, keeping the 
presence or otherwise of 1 the same and likewise with the presence of  2, but not both 
together. Thus 

central(e2)  = {n~, n{3}} 

E x a m p l e  4.2 (2.2 revisited).  If  we allow our set of  events, E, to range over all 
(precondition, postcondition) pairs in a suitable language, then a neutral is 
consistent with the event precisely if whenever from some initial state a suitable 
poststate exists for the event then it is possible to move from the initial state to a 
poststate without changing the components of  state that the neutral keeps fixed. 

Central relations are intended to keep fixed those parts of the state that the 
specifier was not primarily concerned with. These could be defined as those whose 
contamination during the event would not violate the postcondition of  the event. 
We could define that part of  the state which was " o f  interest" as that which if held 
unchanged on conclusion of  the event would preserve the postcondition, as 
illustrated in Fig. 7. 

One could argue that the rest, " the  complement of  that which the specifier is 
interested in",  should remain untouched by the event. This combination of  
preservation and complementation will yield a simple means of extracting central 
relations for events. A relation r preserves  a relation e if re ~_ e (Fig. 8). Since 

(r 0 p ) e  ~_ re n p e  

and 

(re ~_ e A p e  c_ e) ~ (rpe ~_ re ~_ e) 

we have the following. 

Pre State - -  y =? " - ~ x = ?  ~ . .  

x '= l  . . . . . . . .  

Post~State 2 ~ x = l  . _ . ,  .9 . . . . .  

Fig. 7 

Specifier wants event to "use" 
these components 

and is not interested in these. 

Thus if he is satisfied here 

and after "satisfaction" 
these are still allowed 
to change, then 

provided these are kept fixed 

he should be satisfied here. 
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r preserves e if 
w h e n e v e r  s t a te2  is re la ted  to state1 b y  e, 
i.e. state2 is a possible post state for the event e, 

and  s ta te3 is re la ted to  s ta te2  b y  r, 
i.e. may be obtained from state2 without 
changing that which r keeps fixed; 

t hen  s ta te3  is re la ted  to state1 b y  e, 
i.e. is a possible post state for the event e 

Fig .  8 

Proposition 4.1. If  r and p preserve e then so do r n p and rp. 

If  n is a neutral relation such that n c preserves e then n is termed implicitly-central 
to e (Fig. 9). In Example 4.1 above, n{1 } and  n{1 2} preserve el and e2 respectively. 
Thus (n{1}) c = /'/{2 3} and (n{1 2}) e =/ / / {3  } are implicitly central to e 1 and e2 respectively. 

As a consequence of  Proposition 4.1 we have the following. 

Proposition 4.2. If  n and m are implicitly central to e then so are n N m and nm. 

We are now in a position to prove the main result of  this section justifying the 
introduction of the above definition. 

Proposition 4.3. If  n is implicitly-central to e then n is central to e. 

Proof. Let n be implicitly equal to e and let m be consistent with el Let 

ct ~ dom(e f) m) = dora(e) (since m is consistent with e) 

then we have fl such that ~efl and ~mfl. But 

(nO) - i n =  W •  (R3) 

thus we have & such that flnCO and ~n& (Fig. 10). 

I 
X'=I 

I 
X'=X 

y=? 

~i~!~:i ~ / : :i~ 

Fig .  9 

Keeping this fixed will 
preserve the event  

Thus 

Keeping this fixed is 
implicitly central to the event. 
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ri rl 

\ / 
5 

Fig. 10 

So, since n c preserves e, ~e6 by R4: 

/~(n ~) ~ yields p(n~m) ~ and ~(m)/? yields o~(n~m)~ 

and thus by R5: 

o~(nCm) (~ 

and by R4: since c~n6 we have ~(nm) c~. Thus 

o~(n~m N nm) 

But we have 

m =  Im 
= (n c N n ) m  (R2) 
= nCm N nm 

and so c~mO. Thus 

o~ e dom(e n m N n) 

and so m N n is consistent with e. [] 

In general it is more straightforward to show that a neutral is implicitly central to 
a relation than to show that it is actually central. This is illustrated by the following 
example. 

Example  4.2 (continued). 
The relation {x ~ X '  [ x = 1 v x = 2} = (x s X l x -- 1 v x = 2} preserves 
e = ( t r u e ,  {1 ,2)_~x ' ) .  Thus { x ~ X ' I x ~ l A x ~ 2 ) = { x ~ X I x ~ l A x r  or 
X'\{1,2} = X~{1,2}, is implicitly central to e and thus central to e. 

5. Relat ions Implicitly Central  to Combined Events 

Section 6 will consider the possibility of  two or more events occurring concurrently. 
In that  context it will be necessary to consider neutrals which are central to the 
resulting combinations of  events. This is considered in Proposition 5.2 below. 

Lemma 5.1. I f  n and m preserve e andf respec t ive ly  then n N m preserves e Nf. 

P r o o f  Assume ~(e n f ) f l  and fl(n n m)6. Then we have o~efl and flnc~ and since n 
preserves e we have o~e6, and we have 0~ffl and flm~ and since m prese rves fwe  have 
~f~. Whence ~(e N f )  6 (see Fig. 11). So n n m preserves e Nf. [] 

Recall that  N satisfies, R6, i.e. for all n , m ~ N ,  (nm) c = nCN m ~. Thus we have the 
following. 
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. . . . . .  e - - - . - i ~  

- -  e ~  ~ - n . 4 ~  

O~ 
- -  f , - ~ , . .  P - - m . - ~ , , -  

f - - - , . ID,. .  

Fig. 11 

5 

P r o p o s i t i o n  5.2. I f  n 1 and n 2 are implicitly central to e 1 and e 2 respectively, then 
n 1 n 2 is implicitly central to e 1 0 e 2. 

Proof. Let n 1 and n 2 be implicitly central to e] and e 2 respectively. Then n~ preserves 
e 1 and n~ preserves e 2. Thus by the lemma n~ N n~ preserves e 1 f) e 2. But 

(n I n2) c = n~ N n~ (R6) 

and thus n] n 2 is implicitly central to e 1 N e2. [] 

6. Reasoning About Concurrent Behaviour 

Thus far we have considered relations as events linking states before an occurrence 
to those reachable afterwards. This view has tended to treat events as atomic, in that 
there is no notion of  possible states between the start of  an event and its completion. 
In such a view of  the world the only form of  concurrency that we can address is 
synchronisation/handshaking, where events occur at the same time, and /o r  
interleaving events in arbitrary orderings. This was the view taken in [SPB90] and 
is also consistent with the approach in most  process algebras, such as CSP, CCS, 
LOTOS [Hoa85, Mi189, EVO89]. Here the approach is closer to that in [Shi91b] 
which gives " t rue  concurrency" operational semantics to a related model. 

The concept of  implicitly central relations enables us to consider possible 
intermediate states, between the start and finish of an event. This will then enable 
us to consider the possibility of  reasoning about  overlapping events as illustrated in 
Fig. 12. 

We adopt  the view that the event is only concerned with those components  of  
state which are kept fixed by all relations that  preserve that event and so it will not 
interfere with any that are kept fixed by the complement of  any such relation. 
Consider the example given in Fig. 6. 

Add(i) [s~venby ( true, ieS') 

S Add(l) ~ " " 

~ " ' ' ~  Add(2) S 

Fig. 12 
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- - S t 1  y, z 

It St2, throUghout" 

~ S t 3  

may 
- change - 

I 
x ' = l  

1 
Fig. 13 

If we keep x fixed after completion 
of the event x'=l then x will 
continue to equal 1. Thus the event 
is preserved by the relation x'=x, 
and we assume that it is only 
concerned with the variable, x. 
Thus we assume that the variable y 
is unchanged at any intermediate 
state, but x may have changed. 

We may conclude that if Stl is a start state for an event then St2 is a possible 
intermediate state just in case Stl and St2 are related by every relation which is 
implicitly central to that event, as shown in Fig. 13. Notice that since all neutrals 
contain the identity relation Stl  itself is always a candidate. This may be viewed as 
being similar to the guarantee conditions of  Jones [Jon83, WoD88], in that the first 
event guarantees not to disturb those components of  state fixed by implicitly central 
relations. 

Returning to the context of  Example 4.2, we consider the event, Add(l), 
inserting 1 into the set S; then 1 will continue to be an element of S provided we 
keep S N {1} fixed. We have, S '  N {1} = S N {1} preserves Add(l) and thus S'\{1} = 
S\{1} is implicitly central. So at any intermediate state, St2, we may infer any 
property of  Stl  preserved by S'\{1} = S~{1}. On completion of  the event, at St3, we 
may infer all such properties and anything implied by the postcondition. The 
consistency of such conclusions is guaranteed by Proposition 4.3. Some examples 
are shown in Fig. 14. 

If  on the other hand we were to consider an event put(l) with postcondition 
put(l) - S '  N {1,2, 3} = (S N {1,2, 3}) U {1}. Then n{2 3} ~ St N {2, 3} = (S N {2, 3}) is 
central to the event, in fact put(l) ~ n{2,3}, or thinking of  the associated relations 
between states we have put(l) ~_ n{2,3 }. The event explicitly requires S N {2, 3} to 
remain unchanged. 

In the case of a general relational neutral system a neutral, n, is said to be 
explicitly central to an event, e, just in case e _ n. Thus if view then the component  
of state corresponding to n in v is unchanged by e. The following proposition 

St1 ~ Add( l )  St2 ~ St3 

i \ i k "  
S---0 
whence 
S\{1} = 0 

S={1,2,3} 
whence 
S\{1} ={2,3} 

s\{  1 } = e 

8\{1}  = {2,3} 

S\{1} = E) 
^ l ~ S  
S= {1} 

S\{1} = {2,3} 
^ 1ES 

S = {1,2,3} 

Fig. 14 
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guarantees that implicitly and explicitly central relations are concerned with 
disjoint components  of  state. 

Proposition 6.1. When n~ and n 2 are relations which are respectively implicitly and 
explicitly central to a non-empty event e then n 1 n 2 = W x  W. 

Proof. Let r = n~. Then r preserves e and so re ~_ e ~_ n 2. Thus n 1 re c_ n 1 n2. But 

n 1 r = nln~ = W x  W a n d  ( W x  W ) e  = dorn(e)x  W 

and so dora(e)x W ~  nln2. But nln2 is symmetric and transitive, so since 
dom(e) ~ ~ we have W x We_  nl n2. 

We take the view that we should not assume that pu t ( l )  does not interfere with 
S 0 {2, 3}, in fact if someone else does during the course of  an occurrence o f  pu t ( l )  
then it will have to re-establish the initial value of S N {2, 3} on termination in order 
to satisfy its postcondition. Thus we may consider components  of  state fixed by 
explicitly central relations as having been "copied and rewrit ten" and those fixed 
by implicitly central relations as having been "un touched" .  

We may now consider overlapping events; we will not propose a specific model 
for concurrency, rather we suggest how implicitly central relations may be used to 
reason about  the state when events occur independently. In a relational neutral 
system, (W, E, N, C), let el and e2 be events and let nl and n2 be any two neutrals 
implicitly central to e 1 and e2 respectively. I f  we assume that the state, i.e. a member  
of  W, is changing over time and that el and e2 start and finish as indicated in Fig. 
15. What  can we infer about  the various states indicated? 

S t l  is in the domain of el.  

" e l  can start." 

St2 is related to S t l  by nl.  

"The  components of  state fixed by nl remains unchanged. . . "  

St3 is in the domain of  e2 and is related to S t l  by nl.  

" . . . a n d  e2 can start .... " 

St4 is related to St3 by n2nl  = nln2.  

" . . .  Only those components  of  state that both el and e2 
guarantee to leave unchanged may be assumed to stay the 
same, (Recall that n2nl keeps fixed the intersection of  
those components fixed by nl and n2) . . . "  

St5 is related to St3 by (n2nl) and St5 is related to S t l  by el .  

" . . .  and the postcondition of el holds." 

el "1 

I I 
St1 St2 St3 

e2 

I I 
St4 St5 

I 
St6 St7 

Fig. 15 
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Initial Condition 

Initial Condition and 
precondition of AO0(1) 

Earlier properties preserved 
by implicit centre ofAdd(1 ) 

As before, plus the 
precondition of Add(2) 

Earlier properties preserved 
by both implicit centres of 
Add(1 ) and Add(2) 

As before, plus the 
post condition of Add(1 ) 

A 

Fig. 16 

We assume that initially 
S=O 
(Thus S\(l} =O) 
Precondition of Add(l) is true. 

s ' \ { ] }  = s \ { ] }  
is implicitly central to Add(l) 
So we have 
s\{~} =o. 

Precondition of Add(2) is true. 
(Thus S\{1,2} =O) 

s ' \ {2}  = s\{21 
is implidfly central to Add(2). 
The composite of the two centrals 
is S'\ {1,2} = 5\{1,2} 
So we have 
S\{1,2} =1~. 

1 e S ^ S\ {1,2} = 0 ,  or equivalently 
S\12} =11} 

s ' \ {2 }  = s \ {2 }  
is implidfly central to Add(2) 
So we have 
s\{2} =0 }.  

2~ S ^ S\ {2} ={1}, or equivalently 
S ={1,2} 

St6 is related to St5 by n2. 
St7 is related to St5 by n2 and St7 is related to St3 by e2. 

Example 6.2 (4.2 continued). We now consider the example where el,  e2, nl and n2 
are add(l) =- (true, l e S ' ) ,  add(2) - (true, 2~S ' ) ,  (true, S'\{1} = S\{1}), and 
(true, S ' \{2}=S\{2})  respectively, and the composite relation nln2 is 
(true, S'\{1,2} = S\{1,2}) (Figure 16). Within this framework we can then reason 
about the state after events occur concurrently. We give just two examples. 

In (W, E, N, C) two events, el and e2, may be termed independent if whenever 
they overlap or occur concurrently, in the absence of  any other interference, then 
the state reached after they have both finished is related to the states at which they 
respectively started by the relations el and e2. Thus in Fig. 17 we require that St3 
is related to Stl by el and St3 is related to St2 by e2 in all cases. 

If  we assume the inference rules, for intermediate states, stated above we have 
the following. 

Proposition 6.2. When n I and n 2 are relations which are implicitly central to el and 
e2 respectively, and preserve e2 and el respectively, then e 1 and e2 are independent. 

Proof. In every case St3 is related to St1 by either el or n2el but since n2 preserves 
el they are related by el in both cases. A similar argument shows that ST3 is related 
to St2 by e2 in all cases. [] 

In Example 6.2, S'\{2} = S\{2} preserves 1 e S '  and S'\{1} = S~{1} preserves 2 e S ~. 
Thus Add(l) and Add(2) are independent. 
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el e2 
St3 

btl~'el b ~ t ~  e2 " ~  
St3 - 

St1r els~tf~ e2"~SSt3 ~ 

e2 
~ e l ~ - - - - ~  e2 

St2 St3 
St1 St1 St3 

e2 St2 
/ i ~ e l ~ - " ~  ~ 

St2 St1 St3 
e2 /Sel:h. 

St2 St1 St3- 

t' ~ e2,.,y,,..- el ~ 
St2 St1 St3 
e2(,,,~el ~ ..._ 

St2 St1 St3 - 
el 

St1 St3- 
St2 

el 
/ / ~ e 2 ~ , ~  ~ 

St1 St2 St3 

St1 St2 St3 ~ 

Fig. 17 

For  our second example we consider a stronger form of  independence. In (W, 
E, N, C) two events, el and e2, may be termed strongly independent if whenever they 
overlap or occur concurrently, in the absence of any other interference, then the 
state reached after they have both finished is related to the state at which they 
first started by the relations el and e2. 

I f  we say that a neutral n strongly preserves relation e if n preserves e and 
en ~_ e, then we have the following. 

Proposition 6.3. When n 1 and n 2 are relations which are implicitly central to el and 
e2 respectively, and strongly preserve e2 and el respectively, then el and e2 are 
strongly independent. 

Proof In every case St3 is related to StO, where StO is the leftmost state in the 
diagram, by either el ,  n2el, eln2 or n2eln2 but since n2 strongly preserves el they 
are related by et in all cases. A similar argument shows that St3 is related to St2 by 
e2 in all cases. [] 

In Example 6.2, S'\{1} = S\{1} strongly preserves l eS" and S'\{2} = S\{2} 
strongly preserves 2 e S ' .  Thus Add(l) and Add(2) are strongly independent. 

( S = S l u  (1,2} .) 

Fig. 18 
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Since the composite of  the two centrals is S'\{1,2} = S\{1,2} we have, in the 
absence of  any other interference, if the two events occur in any order then the state 
before the occurrences and that after are related by 1 e S 'A  2 e S ' / x  S'\{1,2} = 
S~{1,2} i.e. S '  = SU {1,2} as shown in Fig. 18. 

7. Systems with Invariant 

In the style of  specification discussed in [SPB90], the state is subject to an invariant 
and the definition of  an event is automatically augmented to re-establish the 
invariant. For  example we may have a component of  state, f :  A-+ A which is 
declared to be a function from A to A. Then an eventf ' (a)  = b may be defined with 
the intention of  establishing the value off(a)  to be b while still requiring t h a t f f  is 
a function. Thus the explicit postcondition is intended to be (if(a) = b) A (f" e A 
A). To preserve this postcondition it would be necessary to keep the whole o f f  fixed, 
s incef is  only a set of  pairs and we would need to preserve its functionality. Thus 
we get no useful implicitly central relation, even though it is in fact possible to prove 
that 

{(x, y) e f ' l  x ~ a) = {(x, y) e f [  x ~ a} 

i.e. gx  r a . i f (x )  = f(x) ,  is central to (if(a) = b)/x ( f f  e A -+ A). The specifier of the 
event was really only interested in the value of f (a )  after the event, expecting the 
invariant to be sustained. We wish to use the fact that 

R -def{(x, y ) e f ' l x  = a} = {(x,y)e f [  x = a} preservesf ' (a)  = b 

to conclude that 

R c - {(x, y) e f t [  x # a} = {(x, y) ef[  x :~ a} is central to 
( f  e A ~ A) A (if(a) = b) A (f" e A -+ A) 

It transpires that this will work because R respects the invariant in the sense that if 
we restrict attention to states which satisfy the invariant, i.e. in whichfis  a function, 
then R becomes i f ( a ) = f ( a )  and R c becomes Yx :~ a . f ' ( x ) = f ( x ) .  These keep 
disjoint components of  state fixed. The first places no restriction on the wayf (x)  
may be changed when x r a, and these values off (x)  are precisely those which are 
kept fixed by the second. The second places no restriction on the wayf(a)  may be 
changed and this value is precisely that which is kept fixed by the first. So R and R ~ 
remain complementary when restricted to states in w h ich f i s  a function. 

Essentially, it is possible to split the invariant over the state into a part over the 
components of  state fixed by R, requiring tha t f res t r ic ted  to {a} is a function, and 
a part over the components of state fixed by R ~, requiring that f res t r ic ted  to A\{a} 
is a function, such that if both parts are satisfied then the whole invariant is also 
satisfied. 

The relation P = - - - d e f { ( x , y ) c f ' l x  --= y} = { (x ,y )e f [  x = y} (Fig. 19) does not 
respect the invariant in this way. P would preserve the event f ' (a)  = a. However its 
complement is not even consistent with ( f e  A -+ A) Af t (a)  = a/x (f" e A -~ A), since 
it is possible that in the previous statef(a) ~ a. 

A relational/neutral system with invariant is a quintuple (W, E, N, C, inv) where 
the first four components are as before and inv is simply a subset of  W (or a unary 
relation on W). Consistent/Central neutrals may now be defined as before but with 
respect to e N (inv x inv), the latter being the intended basic event since events are to 
be required to preserve the invariant. 
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pC 

{(x,y)ef' I x=y} --- {(x,y)e f [ x=y} 

{(x,y)ef' I x~:y} = {(x,y)E f I x~y} 

Restricted to States m :.wliicli :::,::..:,. 
�9 f is a function:.. i::.:.~::iii:i;ii:::i::ii!iiii::i::ii::;. 

] : 

Fig. 19 

The restriction permits 
f(x) to change provided 
f(x)#x and the change is 
restricted so that f(x~)c 

I f  f (x)  = x 
then, apparent ly ,  f(x) 
may change but not into 
a state where 

f(x)r x. 
Thus in fact this 
restriction keeps the 
whole of f fixed. 

For any relation r ___ Wx  W we define r i =defr N (inv x inv) ~ inv x inv. Note 
r i n qi = (r n q)i, but in general riq f r (rq) i. 

In the above examples the invariant i s f e  A -+ A, so we are restricting to states in 
wh ich f i s  a function, then 2 

R i - f ' ( a )  =f(a) ,  (Re) i =- V x  ~ a . f ' ( x )  = f i x )  
pi  _ V x .  ( ( f ( x )  =- x v f ' ( x )  -- x ) ~ f ' ( x )  = f i x )  and (PO i - f '  = f 

If  we recall that relational composition of  neutrals corresponded to the intersection 
of the components of state they kept fixed, then the requirement that n i and (ne) i 
keep disjoint parts of the restricted state fixed is expressed in the following 
definition. 

A neutral n respec t s  inv if ni(nO i = inv x inv 

The fact that nn c = W x  W means that it is possible to get from any state in the 
invariant to any other through some intermediate state, possibly one which does 
not satisfy the invariant. Making n respect the invariant is to insist that the 
intermediate state is in the invariant. For  example, given any two functions from A 
to A we could find a relation such that we could get from the first function to the 
relation under R (or P) and then from the relation to the second function under R c 
(or U). But in the case of  R we could always choose the intermediate relation to 
be a function, this is not in general possible for P. 

In the composite Ri(RC) i, (RC) i -= V x  =/= a . f ' ( x )  - - f ix)  permitsf(a) to change and 
then R i =- f ' ( a )  = f ( a )  permits f ( x )  to change if x r a. Thus whatever the original 
value of f ,  f l  say, it is possible under the composite to obtain any other functional 
value, J2 say, afterwards. We simply take an intermediate function which agrees 
wi th f l  at all points other than a and agrees with f2 on a. 

Whereas if f3 were any intermediate function in a transition from f l  to f2  under 
P U  and i f f l  (c) = c for some c then since U keeps {(x, y) ef l  x r y} fixed we could 
not have ( c , d ) e f 3 ,  where c ~ d, thus f 3 ( c ) =  c and then, since P keeps 
{ ( x , y ) e f l  x = y} fixed, we must have J2(c) = c. Thus if for some c , f l ( c )  = c and 
J2(c) r c then ( f l , f2)  r U(P)"  and so in general p i ( p ) i  ~ inv x inv. 

2 These identities suppose  that  the no ta t ionf (a )  on  the r ight-hand side imposes the condit ion f :  A ~ A 
etc. 
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The following result guarantees that the set of all neutrals in a relational 
boolean algebra which respect a specific invariant will itself form a relational 
boolean algebra, a "sub relational boolean algebra" of  the original one. 

Proposition 7.1. If  n and m respect inv then so do n c, nm and n nm. 

Proof .  If  n respects inv then rli(l'lc) i = inv x inv so if c~ and/? are two elements of  inv 
there is a third element, 7, of  inv such that en 7 and 7nCfl, but n and n ~ are both 
symmetric thus we have tinCT and 7n~ and thus fl(ni(n~) i) o~. Thus (n~) i n i = inv x inv so 
n e respects inv. 

L e t  n and m respect inv, thus we have 

ni(n~) i = inv x inv and mi(mO i = inv x inv 

Then 

(nmi) i ((nm)~) i = (nm) i (n ~ O m~) i 
= ( r i m )  i ( (nC)  i 0 ( m e )  i) 

= (((nm) i (nC) i) N ((nm) i (me)i)) 
((ni(nC) i) N (mi(mc)i)) 

= ((inv x inv) n (inv x inv)) 
= it'll) X it'tV 

But 

(by R4) 

(nm)i((nm)e)  i ~ inv X inv 

Thus nm respects inv. 
If  n and m respect inv, then n and m c respect inv, by the first part. Thus by the 

second part so does nCm ~. One more application of  the first part yields, (n~mC) ~ = 
n N m respects inv. [] 

We now prove the result that if a neutral, for example R above, preserves the speci- 
fied postcondition, f ' ( a )  = b in the example, and respects the invariant, f e A - ~  A 
in the example, then R C is central to the augmented event, f ~ A - + A  A f ' ( a ) =  
b A f '  cA  -+ A, which insists on re-establishing the invariant. 

Proposition 7.2. If  n ~ preserves an event e and n (or equivalently n c) respects inv then 
n is central to e ~. 

Proof.  As for Proposition 4.3. Let n be such that n C preserves an event e and n 
respects inv and let m be consistent with e. 

As shown in Figure 20, we take ~ in dom(e  i) = dom(e  i n m)  and thus obtain/~ in 
inv such that o~eifl and o~mfl. Since ni(nc) i = inv x inv we have a fi in inv such that 
flnCO and ~n0. 

Then since n c preserves e and e, fl are both in inv, we have o~eic~. The result follows 
using m = n~m n nm as in Proposition 4.3. []  

We are able now to redefine implicitly central in  the case where we have an invariant, 
i. I f  n c preserves an event e and n ~ respects inv then n is termed implicitly central to 
e i . 

In this section we have considered specifications with an invariant. An invariant 
is specified, which all states are required to satisfy. An event is then specified with 
the implicit assumption that the invariant will hold before and afterwards. Thus we 
specifyf'(a) = b in the presence of the invariantf~ A -~ A instead o f f~  A -+ A Af ' (a)  
= b A f '  e A -+ A. We wish to augment the event by neutral relations. To show that 
a neutral relation R is central to the combined event it is sufficient to show that it 
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( and~ 
f rom def in i t ion  of e 

s �9 

o �9 

- ,~ - -  m 

/ 
n n 

\ / 
. • 8  m a y  be  chosen  to be  in 
L i n v  since n respec ts  inv  

Fig. 20 

feA--.~A 1 
,',, {(x,y)ef' I x=t--a} = {(x,y)ef I x~a} 
A f'e A-.->A 

feA--->A 1 
^ {(x,y)ef' I x=a} = {(x,y)ef I x=a} 
A f'e A--->A 

Fig. 21 

(RC) i 

i 
R 

fO 

f l  
fl (a) = ? 
fl (x) = fO(x) if x~=a 

f2 
f2(a) = fl (a) = ? 
f2(x) = ? if x=c=a 

preserves  if(a) = b and  respects  f e  A -+ A. Cons ide r  Fig.  21. F o r  any  funct ions  J0, 
f2 :  A -+ A we have JO(Ri(Rc)i)f2. Thus  

R -- f ix,  y ) e f ' l x  = a} = {(x, y ) ~ f ]  x = a} respects  the invar iant ,  f e  A - ,  A 

and  

R = {(x, y ) e f ' l x  = a} = { (x ,y )~ f ]  x = a} preserves f ' ( a )  = b 

Whence  R c -- {(x, y ) e f ' l x  ~ a} = fix,  y ) e f l  x ~ a} is centra l  to f e  A - ~  A Af t ( a )  = 
b A f '  e A -+ A and  the augmen ted  specif icat ion is 

f ~A-+  A A f ' ( a )  = b A f '  eA-+ A A { (x ,y )~ f ' l x  ~ a} = {(x ,y)e f]x  ~ a} 

This co r re sponds  to a " f u n c t i o n a l  ove r -wr i t ing"  s ta tement  in Z .  H o w  much  easier  
s imply to s t a t e f ' ( a )  = b. 

W e  are  still on ly  augmen t ing  our  events by  neut ra l s  which are  centra l  to them. 
W e  now have two simple ways  o f  ob ta in ing  such cent ra l  re la t ions.  
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8. Relations Implicitly Central to Combined Events (in the 
Presence of an Invariant) 

Since by Proposition 7.1 the set of  neutrals which respect the invariant is closed 
under the boolean algebra operations, we have the analogues of  Lemma 5.1 and 
Proposit ion 5.2. 

Lemma 8.1. I f  n and m respect inv and preserve e and f respectively then n N m 
respects inv and preserves e ~f.  

Proposition 8.2. In the presence of  an invariant, inv, if n I and n 2 are implicitly central 
to e 1 and e 2 respectively, then n~ n 2 is implicitly central to e 1 N e2. 

Given Proposition 7.1 both proofs follow those of the previous results and are 
consequently omitted. 

9. Reasoning About Concurrent Behaviour 

As before we wish to consider events with duration and what we may infer about  
the state before, during and after the event. We again suggest that if S t l  is the state 
at the start of  an event, e, then S t2  is a possible intermediate state just in case S t l  
and S t2  are related by every relation which is implicitly central to that  event. The 
state on termination of  the event, St3,  is any possible intermediate state which is 
also related to S t l  by e N (inv x inv). 

For  example suppose we have a component  of  state f :  A ~ A which is declared 
to be a function from A to A, and the event place (a, b) specified b y f ' ( a )  = b. The 
explicit postcondition is intended to be ( f ' ( a )  = b) A ( ( f e  A -+ A )  A ( f "  ~ A - ,  A)) .  
The neutral n a - { ( x , y ) ~ f ' [ x  r a} = {(x,y)ef[  x ~ a} is implicitly central to this 
event (Fig. 22). 

St1 St2 St3 

f~ A-,A 

f a ~ c ~  
C ~ e /  

frestricted to A\{a} is a function 
from A\{a} to A and agrees at each 
point with the original function. 
Note f(a) may have changed, and 
f itself may not  e v e n  be  a func t ion .  

f restricted ~, C ~ C ]  
to {b,c} 

f~ A-->A 
A 

f(a)=b 

t a ~ 0 ~  
f = b'-'c~ 

C ~.eC i 

Fig. 22 
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Earlier properties 
plus pre-conditon 
of e, 

b y  i m p l i c i t  c e n t r e  o f  
e~ 

Earlier properties and Earlier properties and 
precondition of e2 postconditon of e, together with 
and the invariant those parts of the invariant 
~I~ preserved by implicit centre of e2 

k / Postcondtion of ~ - - ~  e l ~ /  J e  = and invariant 

Properties preserved Properties preserved Properties preserved 
by both implicit centres by implicit centre of 
of e ,  a n d  e~. e 2 

Fig. 23 

Initial condition 
including invariant. 

Earlier properties 
preserved by implicit centre 
of place(a,b).  

As above plus precondition 
of place(c,d) and the 
invariant. 

EarLier properties preserved 
by both implicit centres. 

As before plus postcondition 
of place(a,b) and any 
invariant 
preserved by implicit centre 
of place(c,d) .  

n 

-o_ 
c) 

 j'll 
0 

~x 
v 

We assume in i t ia l l y  that  f(x)=x fo r  al l  x~ A. 

f restricted to A\{a} is a function and 
f(x) = x foraU x~a. 

f is a function and f(x) = x for all x~a. 

f restricted to A\{a,c} is a function and 
f(x) = x fo r  al l  (x ,a )  ^ (x~=c). 

f restr icted to A\{c} is a func t ion  and 

f(x) = x fo r  all (x=a) ^ (x~c) and 
f (a )=b .  

f restr icted to A\{c} is a func t ion  and 
f(x) = x for all (x~a) ^ (x=b) and 
ar 

f is a function and 
f(x) = x for aU (x~a) ^ (x~b) and 
f (a)=b and f(c)---d. 

Fig. 24 
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Notice we do not infer that the intermediate states satisfy the invariant, except 
insofar as it is preserved by the implicit centrals. Thus if on the termination of  one 
event others are still active we may not be able to guarantee that the whole invariant 
holds, only that part of it which is not being interfered with by the active events. 
These conventions are illustrated in Fig. 23. In stating that S t2  satisfies those pares 
of the invariant preserved by the implicit centre of  e 2 in Fig. 23 we mean tht S t  1 will 
be related to S t2  by (inv x inv) n for every neutral n which is implicitly central to e 2. 

If  events e2, e3,... , e, were still active on the termination of  e 1 then S t l  will be 
related to St2  by (inv x inv )n2n  3 nr for every composition n 2 n 3 n r of relations n~, 
each of  which is implicitly central to the orresponding era. 

As an example consider the case where el is place(a,  b) - ( f ' ( a )  = b) and e2 is 
place(c ,  d)  =- ( f ' ( c )  = d)  with inv -- f E A -+ A (Figure 24). Then 

n a -= {(x, y) 6 f '  [ x r a) = {(x, y) e f [  x r a} 

and 

n b -- { ( x , y ) e f ' [ x  ~ c} = { ( x , y ) e f l x  r c} 

are implicitly central to e 1 and e 2 respectively. Then 

(inv x/nv) n b -= ( f6  A + A) A ({x, y )  e f ' [  x v ~ a} e A \ { a }  -+ A) )  

is satisfied by two states precisely if the first satisfies the invariant andfrestr ic ted to 
A \ { a }  is a function to A in the second. 

I0. Further Work and Conclusion 

Finally, one more example is considered involving a state with components A, B, C 
declared to be a sets of  natural numbers, with invariant A N B = C. Define an event 
by e - 1 ~ A'. Then 

n - (A\{1} = A'\{1}) A (B\{1} = B'\{1}) A (C~{1} = C'\{1}) 

is implicitly central to e by the rules given in Section 7. (Notice that n and n c respect 
the invariant.) Note that we are unable to infer whether or not 1 is an element of 
either B or C after the event, only that if it is in one of them then it is in the other. 
It may be that the specifier had intended C to be secondary to A and B in some way 
and that they should be changed, or left alone, first and then C should be modified 
accordingly. With such a convention the above event would be completely 
determined and we would b e  able to make the additional inferences that 
(B' = B)/~ (C' = C tJ ({ 1} n B)). The idea of introducing a priority ordering over the 
neutral relations and the consequences of such orderings is the subject of  ongoing 
research. It should be noted that the introduction of an invariant corresponded to 
a class of sub-relational boolean algebras, and the proofs of the principal results in 
Sections 7 to 9 were simplified by this observation. It will transpire that the 
introduction of  priorities will correspond to the construction of  a class of quotient 
algebras. 

The relationship between the relational boolean algebra model and other 
models of  concurrency has been studied by Shields [Shi91 a, 91b] and is the subject 
of further research with reference to the use of  more explicitly behavioural 
specifications, incorporating time, with the object oriented style of  [SPB90]. 

The abstraction of  relational boolean algebras has been used to simplify the use, 
in practical examples, of  "rest  stays unchanged" event specifications. The main 
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advantage of such specifications is not only that they make the specifier's job 
simpler in that he or she has less to write, or that the reader of such a specification 
is presented with an easier specification to understand, but lies in the possibility of 
a context sensitive interpretation of event specifications. The rest need only stay the 
same unless another event is interfering with it. This was exploited in Sections 6 and 
9 and has been used in specifying a signalling protocol for British Railways and 
reasoning about the behaviour of the system specified [ByW92]. 
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