
Formal Aspects of Computing (1996) 8:565-584
@ 1996 BCS Formal Aspects

of Computing

Richer Types for Z

Michael Spivey
Oxford University Computing Laboratory, Oxford, UK

Keywords: Type system; Specification language Z

Abstract. The formal specification language Z is strongly typed, but has a rather
inexpressive type system in which essentially the only type constructors are power
set and Cartesian product. This paper explores the possibility of using a richer
type system for extracting information about a Z specification, so that properties
like being a function or a sequence become part of the type of an expression.
This richer type system adds further type constructors to the sparse set contained
in the language definition, and uses properties of Z's library functions to infer
information about complex expressions from information about their simpler
parts.

1. Introduction

The Z language [Spi88, Spi92a, Nic95] is strongly typed, in the sense that the
rules of the language assign a type to each expression in a Z specification, and
specifications are not considered meaningful unless a consistent assignment of
types to expressions is possible. The type system of Z is rather weak, however,
and properties like being a mathematical function or being a sequence are not
reflected in the type of a binary relation.

In a well-formed Z specification, each expression has a type that is formed
from the basic types of the specification by applying three type constructions:
the power set construction (P), n-fold Cartesian products (--- x --. x .--), and
a 'schema product' construction that builds record types associated with certain
operations on schemas. This small collection of type constructors is sufficient to
assign a type to every object that occurs in the traditional development of discrete
mathematics based on set theory, and the coarse nature of the type system allows

Correspondence and offprint requests to: Dr J. M. Spivey, Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford OX1 3QD, UK.

566 M. Spivey

familiar mathematical concepts to be defined in the traditional way. However, it
means that the type of an expression as computed by a type checking algorithm
contains less information than the 'type' that is ascribed to the expression in
informal discourse about a specification.

For example, in Z the set of all (partial) functions from X to Y, written
X -++ Y, is actually equal to the set of relations between X and Y that map each
element of the domain to exactly one element of the range:

X - + + Y = { f : X +--+ Y I
(V x : X ; yl, y2 : Y - (x , y ~) E f A (x , y 2) E f ~ y l = y 2) }

The type of each side of this equation is P(P(X x Y)), that is, the type of a set of
relations between X and Y. An individual function or relation would have type
P(X x Y): in Z, as in conventional mathematics, a function is simply a set of
ordered pairs. As another example, a sequence over a set X is modelled in Z as a
function from some interval 1 .. n to X, and the set s e q X of all such sequences
is defined as follows:

s e q X = { f :N-++X 1(3n : N - d o m f = l . . n) }

Each sequence has type P(Z x X), and the set of all sequences over X therefore
has type P(P(Z x X)).

Whilst such examples demonstrate that a type system based on P and x
is sufficient to allow the construction of the standard models of mathematical
concepts, they also illustrate the conceptual gap between the types assigned to
expressions by the Z type system and the informal way human readers and
writers think of the same expressions. Fluent readers of Z specifications know
that sequences are a special kind of function, and that they can be treated as
functions where necessary: for example, the second element of a sequence s can be
extracted by writing s(2), applying the sequence as a function to the argument 2.
But they do not think exclusively in these terms: for example, it is much easier to
identify the concatenation operator on sequences (written - in Z) as belonging
to the set

seq X x seq X ---+ seq X

than to recognize that its type is

P((P(Z x X) x P(Z x X)) x P(Z x X))

Software tools that process specifications and report the types of expressions (as
type checkers do) are much easier to use if they report the 'type' of concatenation
in something close to the first of these forms rather than in the second form,
even if the second form is (strictly speaking) the correct type. The subject of
this paper is a method for systematically deriving 'enriched types' of this kind,
with a certain guarantee of accuracy. This method is implemented in the author's
f u z z type checker, allowing it to report the types of expressions in a form that is
easier for its users to understand. The method actually constitutes an alternative
type system for Z specifications, richer than the 'official' type system based on P
and x.

A type checking program must report as errors only those situations where the
actual types of expressions fail to match, even if the enriched types are different.
It is not an error to treat a sequence as if it were a function, because sequences
actually are functions in Z, and part of the power of the notation comes from the
facility to use functional operations on sequences. Thus a type checking program

Richer Types for Z 567

that uses the enriched type system for calculating the types of expressions must
have a way of expanding type abbreviations, in order to derive the official type of
each expression. It is when these official types fail to match that an error should
be reported, even if the error message explains the error in terms of enriched
types.

2. Typing Rules

The rules for assigning types to expressions in Z can be expressed as inference
rules for deriving typing assertions of the form E :: t, where E is a Z expression,
and t is a type. As examples, we give here the rules for ordered pairs (Eb . . . ,En),
for Cartesian products Ea x . . . • En, for set displays "{El En }, and for function
application EffE2). The typing rules depend on an env i ronmen t that gives the types
of the variables that may appear in the expression, but we omit the details here,
since they are not relevant to the subject of this paper.

An n-tuple (El En) may have components E1 En of any types, and
the tuple itself has a Cartesian product type constructed from the types of the
components. This is expressed in the following typing rule:

E1 :: t l . . . En :: tn

(El E~) :: tl • "'" • tn

Like an inference rule in logic, this rule allows a conclusion to be derived
from certain premisses. Here both the conclusion and each premiss assert that a
certain expression has a certain type. Rules like this allow the type of a complex
expression (in this case, an ordered n-tuple) to be deduced from the types of
simpler sub-expressions.

The arguments El, . . . , En of a Cartesian product E1 x ..- x En are required
to have power set types P q, . . . , P tn ; if the arguments have such types, then the
whole expression has a type constructed from the types tl tn :

E1 :: P tl ... En :: P tn

E1 • "'" • En :: P(tl • "'" • tn)

The value of a Cartesian product is a set of tuples: for example, the value of
even x even is the set of all pairs of numbers that are both even; its type, P(Z • Z)
is the type that contains all sets of pairs of numbers.

In a set display {E1,...,En}, all the expressions Ei must have the same type;
the type of the whole expression is that of a set of objects of this type:

E1 :: t . . . En :: t

{El ,E,} :: P t

As a final example, function application EffE2) has a typing rule that requires
E1 to have a type P(h • t2), since this is the type of a function from tl to t2.
The type of the expression E2 is required to match the type tl expected by the
function El, and the type of the whole expression is the result type t2 :

E1 :: P(tl x t2) E2 :: tl

El(E2) :: t2

568 M. Spivey

Typing rules such as those given here can be implemented using an algorithm
that makes a single bottom-up pass over an expression treO. Given a complex
expression, the algorithm first computes the types of its sub-expressions; then
it applies the unique typing rule associated with the form of the expression,
checking that the types computed for sub-expressions have the appropriate form,
and generating the type of the whole expression by filling in the pattern given
in the rule. If, at any point, the types calculated for sub-expressions do not have
the form required for application of the relevant rule, then the expression is not
properly formed according to the typing rules. This happens, for example, if one
of the arguments of a Cartesian product E1 x �9 �9 �9 x En does not have a power-set
type, or if the type of the argument E2 in an application Ea(E2) does not match
the type expected by the function Ea. Each construct that forms an expression in
Z is associated with exactly one typing rule, so the type derived by this algorithm
is the only type ascribed to an expression by the rules.

3. Generic Constants

Z has a standard library of mathematical concepts that are used in most specifica-
tions, and a strength of the language is that these concepts are built up by making
definitions in the language, not by including the concepts as built-in language
features. This means that the mathematical library is open-ended, and can be
extended with general concepts that are of special use in some application area.
Many of the definitions in the standard library are generic, in the sense that they
can be used to build sets, relations, sequences, and so on, with elements drawn
from any set. The Z language provides notational facilities for making generic
definitions, and includes notation for taking a name that is defined generically
and applying an instance of it in a particular context. The generic parameters
may be provided either explicitly by expressions or implicitly from the context.

For example, here is a definition of the function first that extracts the first
element of an ordered pair:

= I X , Y]:
first : X • Y --+ X

(Vx : X ; y : Y * f i r s t (x , y) = x)

The formal parameters [X, Y] that appear at the top of the box indicate that
a function first [X, Y] is being defined here for each pair of sets X and Y. The
axiom given below the horizontal line states that, whatever sets X and Y are
involved, first is the function that maps each pair (x, y) to its first element x.

After a generic constant such as first has been defined, it can be used in
expressions such as first [Z, Z](3,-4), where the actual parameters corresponding
to X and Y are given explicitly. We can extend our system of type rules to cover
this case by adding the following rule, which ascribes a type to expressions of
the form x [El , . . . , En], where x is a generic constant and E1 En are explicit

1 There are a few expressions, such as the empty set display { }, that cannot be handled by a simple
bottom-up algorithm, but they can be handled by the techniques discussed later for inferring implicit
generic parameters.

Richer Types for Z 569

generic parameters:

E1 :: P u l . . . En :: P t n
[p (x) = [Z l , . . . ,Zn] �9 t]

x [E 1 E ,] :: t{ul,...,Un/Zl,...,z,}
In this rule, we assume that the generic type [zl z,] �9 t is assigned to x
by the environment p; this type records the generic parameters zl, . . . , z, of
the definition of x and a type t that depends on those parameters. The actual
parameters must be sets, and thus have power-set types ? ui. The type of the
whole expression, t{ul un/za ,z~}, is obtained by substituting the types ui
for the formal parameters zi in the type t.

We can apply this rule to the example first [N, Z](3,-4). The generic definition
shown above results in first being added to the environment with type

[X,Y] �9 P((X x Y) x X)

This is the type of a generic function from X x Y to X. The actual parameters that
are supplied are N and Z, and both of these expressions have the type P Z; thus
the requirement that the actual parameters have power-set types is satisfied, and
the types we should substitute for X and Y are Z and g. This gives P((Z x Z) x Z)
as the type of the applied occurrence first IN, Z]. This function is applied to the
argument (3 , -4) , which has type Z x Z. (In Z, functions of several arguments
are identified with functions whose single argument is a tuple.) According to the
typing rule for function application, this application is well-typed, and gives a
result of type Z.

In addition to explicit instances of generic constants, Z also allows the actual
parameters to be implicit: thus the expression first [Z, Z](3 , -4) could be abbrevi-
ated as f i r s t (3 , -4) , and the actual parameters are then types that are determined
by the context: in the example, we can determine that these types are Z and
Z, otherwise the type of first would not match the type of its argument (3,-4) .
Note that implicit parameters are always chosen to be types, rather than arbitrary
set-valued expressions; this means that they are usually determined uniquely by
the context in which a generic constant is used. Implicit parameters are indis-
pensable for readable specifications: without them, even so simple a formula as
dora password co_ users would have to be written as something like

dora [NAME, PASSWORD] password _C[NAME] users

and for more complex formulas the weight of formal clutter would quickly become
intolerable.

The rule for ascribing types to generic constants with implicit parameters is
as follows:

[p (x) = [zl z ,] �9 t]
X :: t { u I U n / Z b . . . , Z n }

This rule states that, when the generic parameters are left implicit, the type of
a generic constant x may be obtained by substituting any types u~ , un for
the formal generic parameters of x. This rule ascribes many different types to
an applied occurrence of a generic constant, so it spoils the property of the
typing system that every expression has a unique type. For example, the reference
first has every type of the form P((ul x U2) X Ul). Nevertheless, in the expression
f i r s t (3 , -4) , there is only one choice of ul and u2 that allows a type to be assigned
to the whole expression, and that choice is Ul -- u2 -- Z.

570 M. Spivey

The fact that generic constants can be ascribed many different types means
that it is no longer sufficient to compute types in an expression in one bottom-up
pass that ascribes a single type to each sub-expression. Instead, we can borrow the
techniques that are used in compilers for polymorphic functional languages like
ML [Mi178]. So-called type variables are used as markers for types that are as yet
unknown, and wherever types must match, unification is used to solve constraints
on the type variables and substitute known types for the unknowns. The chief
difference (as far as type inference is concerned) between Z specifications and
ML programs is that the generic constants of Z are families of monomorphic
values, rather than single polymorphic values. This means that, to avoid semantic
ambiguity, each type variable must be assigned a single known type by the
context. It is easy to test this in a type checker based on unification, simply by
verifying that no unassigned type variables remain after the checking of a formula
is finished.

Although type variables are a vital ingredient in effective type checkers for
Z, they play no part in the language itself, and a specification in Z is well-
typed exactly if there is a unique type t for each expression E contained in
the specification, and a unique derivation of the typing assertion E :: t, so that
any implicit parameters are uniquely determined. The correctness of a typing
algorithm based on type variables with respect to this definition of the type
system is proved in [SpS90]. In this paper, we shall continue to discuss type
systems for Z in terms of typing rules that do not involve type variables, pausing
from time to time to discuss the implementation of these rules by algorithms that
use type variables.

Generic definitions are used in the Z library both to introduce operations like
first, dora, and - , and to introduce sets like X -++ Y and s e q X . In fact, the
partial function symbol -++ is introduced by a definition of the form

x - ~ r = = { f : X +--+ Y l . . . }

This can be regarded as an abbreviation for the definition

= [X , Y]
-++ : P(X +--+ Y)

(_--++_) = { f :X +--+ Y I . . .}

The symbol -++ is an infix generic symbol in Z, so the expression X -++ Y is short
for (_ -++ _)[X, Y], that is, the instance of the generic constant (_ -++ _) where
the actual generic parameters are X and Y. Similarly, seq is a generic prefix
symbol, and the expression s e q X stands for the instance (seq_)[X] where the
actual parameter is X. The enriched type system proposed in this paper elevates
generic constants like -++ and seq to the status of type constructors, and allows
extra information about generic functions like first, clom and - to be recorded
and used in deducing the types of expressions.

4. Abbreviated Types

The discussion so far has concentrated on the 'official' type system of Z, as
described in the language reference manual and adopted in the new draft standard.
We now turn to the richer type system that is the true subject of this paper. In this
alternative type system, certain generic set-valued constants from a Z specification

Richer Typesfor Z 571

are identified as type abbreviations. For example, in a specification that includes
the standard Z library, the partial function symbol -++ might be named as a t y p e
abbreviation, so that after a declaration

f :X-++ Y

the type of f is given as X -++ Y and not as P(X • Y). As a special case,
non-generic constant sets like ~ can also be named as type abbreviations.

For the enriched type system to work correctly, generic constants that are
named as type abbreviations must have the properties of strictness and mono-
tonicity. By strictness, we mean the condition that if a is a type abbreviation
defined with the type p(a) --- [zl z,] �9 P t, then t should contain at least one
occurrence of each parameter zi. We also disallow a type abbreviation a with
p(a) = [X] �9 P X . These restrictions are necessary to avoid certain pathological
cases: for example, if a type abbreviation foo were defined by

f oo[X , Y] = = X

then the two types foo [Z, Z] and foo [Z, P Z] are superficially different but have
the same expansion. This complicates both the theory of the type system and the
implementation of type checking programs, without adding anything useful to
the power of the type system.

By monotonicity, we mean that when applied to arguments that are larger
as sets, a type abbreviation should deliver a result that is larger as a set. This
property holds for the partial function symbol, because if X ~ X r and Y ~ yr
then (X -++ Y) _~ (X r -++ Yr). It does not hold for the total function symbol
--+, because if X _ X ' it is not generally true that (X --+ Y) _ (X ~ --+ Y).
Monotonicity of type constructors is necessary for the type system to be sound.
For example, suppose we name seq as a type abbreviation, and consider the
expression seq even. This expression denotes a set of sequences of numbers, so
we would like to ascribe to it the type ?(seq Z), in which seq has been used
as a type abbreviation; this type abbreviates the official type P(?(Z x Z)). A
basic requirement for any sound type system is that the value of an expression
(whenever it is defined - but that is a different issue) should be a member of its
type: in this case, that seq even c P(seq Z). This is indeed true, and it is true in
consequence of the monotonicity of seq: because even ~_ Z, we can deduce that
seq even c__ seq Z, in other words, that seq even E P(seq Z).

The desire for monotonicity is what led to the definition of the set of bags
over X in the standard Z library as the set of partial functions from X to the set
N1 of strictly positive integers, rather than as the set of total functions from X to
the natural numbers N:

bagX = = X - ~ Na

Even apart from the enriched type system, the alternative definition of bag X
as X --+ N has the disturbing property that the empty bag of even numbers
(2x : even �9 0) is different from the empty bag of numbers (2x : Z �9 0): in
particular, as functions they have different domains.

The requirement of monotonicity also means that --+ itself cannot be a type
abbreviation in our enriched type system; our type system will be able to record
the information that a relation is a partial function (because we can make -++
into a type abbreviation), but it cannot record the information that a function
is total. In addition to partial functions (-++), other generic set-valued constants
in the standard Z library that satisfy the monotonicity requirement, and can

572 M. Spivey

thus be named as type abbreviations, include finite sets (F), finite functions (-+~),
sequences (seq), and bags (bag).

5. Type Inference with A b b r e v i a t i o n s

Motivated by the examples given in the preceding section, we now present
a type system for Z that uses type abbreviations. The type system depends
on a specification that defines a number of generic constants marked as type
abbreviations. With respect to a set of type abbreviations a, the set of enriched
types is defined inductively as follows:

�9 I f X is a basic type name of the specification, then X is a type.

�9 I f t is a type, then P t is a type.

�9 I f tl, . . . , tn are types, then tl x . . . x tn is a type.

�9 I f a is a type abbreviation a n d u l un are types, then a[ul Un]
is a type.

Full Z also has the schema product constructor mentioned earlier; we omit it
here as adding nothing to the present discussion. Each type abbreviation a is
associated with a generic type p(a) = [zb.. . ,Zn] * P t. In a well-formed type,
the number of arguments of each application of a matches the number n of
formal generic parameters of the type p(a). The type t may contain further type
abbreviations, but we assume that abbreviations are defined in a non-circular
way: it must be possible to associate a level with each type abbreviation a in
such a way that p(a) contains only abbreviations of a lower level than a. In
what follows, we abbreviate the list ul u~ by fi, and so on, so that a typical
abbreviated type is written a [fi], where a has a generic type [3] �9 P t. We define
an official type to be one that contains no type abbreviations.

The relationship between a type abbreviation and the type it abbreviates is
defined by a relation r- of containment that is defined by a set of inference rules,
independent of those we shall later use to define the typing relation '" For clarity,
we emphasize that the relation E holds between the syntactic expressions that are
types t; it is related to the subset relation _c on the sets It[of elements of a type
t, in that t r-- t ' implies]tl _ [t'l, but the two relations are different, just as the
typing relation :: between syntactic expressions is different from the membership
relation 6 between mathematical objects.

The first inference rule says that each type abbreviation is contained in the
type that it abbreviates, so that (for example) seq t v- N -++ t for each type t:

[p(a) = [~] �9 Pt]
a[fi] E t{fi/3}

Second, the relation _E is reflexive and transitive, as reflected in the following
rules:

t E t

q E t2 t2 E t3

tl c_ t3

Richer Types for Z 573

e(z • z)

P(Z x N) Z -+--> Z P(N x g)

><><
g --++ N P(N • N) N-++Z

N -++ N seq Z

I /
seq N

Fig. 1. Containment relation.

Third, since each type abbreviation a is monotonic with respect to inclusion, it
respects the relation _E:

u i E u [(l _ < i _ < n)

a [~] _ a [~']

As an example of this rule, since N E_ Z, we can conclude that seq N E seq Z.
Analogous rules of monotonicity apply to the basic type constructors P and x:

t E _ t '

P t E p t r

! !
t l ~ t 1 . . . tn E t n

! !
t l • • tn ~ t I X " " • t n

These rules defining the containment relation __ can give rise to elaborate networks
of relationships among types. For example, given the three abbreviations

N___Z, X - + + Y E _ P (X • s e q X _ E N - ~ X

the enriched type seq N has the network of containing types shown in Fig. 1.
The rest of this section is organized as follows: we first explain how the

system of typing rules from Section 2 can be modified to assign enriched types to
expressions. This modified system has the property that an expression E may be
assigned many different types that differ in the extent to which type abbreviations
have been expanded. We then state a number of results about the containment
relation __ that allow us to prove that each expression has a least type, if it has

574 M. Sp ivey

any type at all. This proof is presented in the form of a new set of typing rules
that assigns to each well-typed expression its unique least type.

We begin, therefore, by changing our system of typing rules so that it assigns
enriched types in place of the previous official types. The first change is that the
environment p now assigns enriched types to the variables of a specification, and
not simply official types. The second change is that we add a new inference rule
of weakening that allows type abbreviations to be expanded at any point in a
derivation:

E "" t

[t _Et']
E '" t I

Because of this rule, we can say that if an expression E is assigned type t by
the rules, then it is also assigned all types t' such that t _ t'. Part of the rule's
importance is that it allows types to be expanded where this is necessary for
subsequent rules to be applicable.

The third change is that a special rule may be used to assign types to generic
constants that have been named as type abbreviations. If a is a type abbreviation
with n parameters, then the following rule may be used"

Ei :: Pui (1 <_ i <_ n)

a[~] "" P (a [q)

This rule is especially important when it is applied to the right hand side of a
declaration x : a[E], because it then allows the identifier x to be added to the
environment with the abbreviated type a[fi], and later to be assigned that type
when it is used in expressions.

The rest of the typing rules require no change, but if some of the generic
constants from the Z library have been marked as type abbreviations, then some
of the rules can be tightened up to give more accurate types. The existing rule
for a sequence display (E1,. . . ,En) gives it the type P(Z x t) in the official type
system, where t is the type shared by all of E1 E,,. In the extended type
system, if seq is a type abbreviation, then we can use a rule for sequence displays
that gives the abbreviated type seq t:

E1 : : t . . . En "" t

(E1,. . . ,En) "" seq t

A similar improvement is possible in the rule for bag displays.
We now state three basic results about the relation E. The proof of these

results is given in an appendix.

1. For each type t there is a unique official type ~ such that t _E ~.

2. If tl = t2 then tl and t2 have a least upper bound tl u t2. Standard results of
abstract algebra guarantee that the operation u is idempotent, commutative
and associative, because _E is a partial order. 2

3. If ~ = tl x. �9 - x & then there are least types u~ u, such that t _ ul x. �9 - x u,.
Similarly, if t = P tl then there is a least type ul such that t _E ? ul.

2 N o t e t h a t the type t 1 s t 2 is no t necessar i ly equa l as a set to tl U t 2. F o r example , wi th N r- Z we
have (N x Z) U (Z x N) = Z x Z.

Richer Types for Z 575

The first result immediately allows us to show that an expression is well-typed
according to the modified rules exactly if it is well-typed according to the original
rules given in Section 2. Let us write ::0 for the relation between expressions
and official types defined by the original rules, and "" for the relation between
expressions and enriched types defined by the modified rules. The two typing
relations are linked by the following properties:

�9 p F- E '" t implies ~ ~- E ::0 5.

�9 ~ F- E ::0 t implies p t- E "" t.

We use the notation p F- E '" t to denote the fact that the typing E "" t is derivable
with respect to the environment p, and we write ~ for the official environment
such that for all x, if p (x) = t then ~(x) = 5.

Any derivation of E "" t can be converted into a derivation of E ::0 t by
replacing every type u that appears in the derivation by the official type fi and
deleting any weakening steps, which become trivial. Conversely, every derivation
of E ":0 t for an official type t can be converted to a derivation of E "" t by
inserting a weakening step just after each leaf of the derivation tree, using the
fact that u __U fi to expand all type abbreviations immediately.

The second and third results allow us to show that each well-typed expression
has a unique least type 3. We shall do so by giving a third set of inference rules
that define a relation ::' between expressions and enriched types. This relation
has the following properties:

�9 For each expression E, there is at most one type t such that E ::' t.

�9 I f E ::~t t h e n E " t .

�9 I f E "" t then there exists a type t r such that E : / t I and t ~ _E t.

Again, many of the typing rules from the official type system can be used un-
changed: for example, the existing rule for ordered pairs (EbE2) allows arbitrary
types for E1 and E2, and the type of the whole expression is assembled from the
types of its elements. This means that the least type of (Eb E2) can similarly be
assembled from the least types of E1 and E2:

E l ::r tl . . . En ::l tn

(E l E,) ":' t l X ' " X tn

Some existing rules require sub-expressions to have types with a certain form.
The third result allows us to translate these rules systematically, by matching
the least types of the sub-expressions with 'patterns' that describe the required
form. We shall use the informal notation t ~ , ul x u 2 to denote the fact that t
has the form tl x t2, and Ul and u2 are the least types such that t _E u 1 x u 2.
Repeated applications of the result allow us to use nested patterns, as in the
notation t ~-, P(ul x u2).

Using this notation, here is the rule for Cartesian product:

E1 ::~ tl . . . En ::t tn
[tl ~ Pul , . . . , tn ~ Pu~]

E1 x --- x En ::' P(ul x --- x un)

3 Here we again ignore the empty set display and similar expressions.

576 M. Spivey

In this rule, the types ui are obtained by matching the types t~ ascribed to Ei
against the pattern P ui, expanding type abbreviations only as far as necessary to
make the pattern match.

Other existing rules require the types of several sub-expressions to be the
same. An example is the rule for set displays, which requires all the element
expressions to have the same type. In translating these rules into rules for the
least typing relation ::', we must change them to allow for expansion. Here is the
translated rule for set displays:

E1 ::t tl . . . En ::t tn
[~1 =~2 1.3

{E1,...,En} ::' P(tl I I-- . Lltn)

For the expression (El , . . . , En} to be well-typed, all the expressions Ei must have
the same official type, but they need not have the same enriched type. Even if
this condition fails, enriched types can still be used by a type checking program
in reporting the error, since two enriched types with different expansions are
necessarily disjoint. The type of the whole expression is formed from the union
of the types of the elements.

As a final example, we translate the typing rule for application.

E1 ::I tl E2 ::I t2
[h ~ P(ul x u2); ~1 = t2]

E l (E 2) ::I u2

This rule combines features of the rules for Cartesian products and set displays;
the type of E1 must expand to give a type of the form P(Ul x u2), and the official
expansion of Ul must be the same as the official expansion of the type t2 ascribed
to E2. Whenever the expression is defined, it has a value that lies in the type u2,
so that is the type ascribed to the whole expression.

We have now introduced three sets of typing rules for expressions, and have
established relationships between the first and second sets and between the second
and third sets. The first set of rules expresses the official type system, and the
third set is the one we intend to implement in a type-checker. It is therefore
worthwhile to summarize the relationship we have established between the first
and third sets of rules. Both rules have the property that they assign unique types
to expressions, and the following correspondence principle holds:

For each expression E and environment p, an official type to satisfies
t- E ::0 to if and only if there is an enriched type t such that p F- E ::' t

and to = t.

This principle guarantees that an expression is recognized as wellCtyped using the
new rules exactly if it is well-typed according to the official rules, and the type
assigned to it by the new rules is consistent with that assigned to it by the official
rules.

Like the official typing rules, the rules defining ::' can be extended to allow
generic constants with implicit parameters. The typing rule is as follows:

[D(x) = [2] �9 t ; Ul,...,Un official]
x ::' t{C~/~}

This rule allows any official types to be substituted for the formal parameters of a
generic constant, in accordance with the language rule that implicit parameters are
always (official) types. As before, we say that an expression is well-typed if there is

Richer Types for Z 577

a unique way of deriving its type using this rule for implicit parameters. A bottom-
up type checker can be implemented using type variables as place-markers for
unknown types, and using a unification algorithm that binds unknown variables
to official types, fully expanding any type abbreviations first. We explore in the
next section the consequences of this rule, and the extent to which it can be relaxed
in particular cases, allowing some type abbreviations to be left unexpanded.

6. Tame Functions

Consider the expression rev((1 , 2, 3)), in which the generic function rev is used to
reverse a sequence of natural numbers. With N and seq X as type abbreviations,
our typing algorithm has no difficulty in assigning to the argument (1, 2, 3) the
type seq N in place of the official type P(Z x Z). What about the whole expression?
The symbol rev is generic, and it is used here with implicit parameters, so our type
checking algorithm invents a type variable c~ to stand for its generic parameter:

r e v :: s e q ~ - ~ s e q c~

What should be substituted for the type variable ~ ? It is tempting to suppose that
the answer is N, but that is not correct, because of the language rule that implicit
parameters are chosen as the types that can be deduced from the context, and the
official type here is Z, not N. Thus we deduce the value Z for the type variable ~.
This instance of rev therefore has type seq Z -++ seq Z, and after expansion, the
type of the actual argument (1, 2, 3) matches the domain type seq Z. The type of
the whole expression is therefore deduced as seq 7.

Although this type is correct, it is a little disappointing because we know that
the actual value of the expression, (3,2, 1), is a sequence over N, and no harm
would have been done if we had taken the value of e to be N instead of Z. But this
observation is based on a special property of rev that does not hold in general.
In this example, the difference in information content between the types seq N
and seq Z may seem small, but what is at stake here is the principle that all type
abbreviations must be expanded when an implicit parameter is filled in from the
context, and an unbounded amount of information may be thrown away in that
expansion.

To avoid complete expansion, it is necessary to formalize the property of
rev that guarantees that the result is in seq N rather than seq Z. We call this
property tameness , and give a formal definition later; in a sense, it expresses the
property that the behaviour of a generic function does not depend on its generic
parameter, but only the value of its argument. It is simplest to explain the concept
of tameness first in the case of a total function like rev that has a single generic
parameter, before giving the full definition. The tameness of rev is equivalent to
the following:

I f X I _cX and s ~ s e q X I, then r e v [X '] (s) = r e v [X] (s)

Most of the generic functions defined in the standard Z library are tame, but a
few are not. One of the latter is the generalized intersection operator

Cl[X] : p (P x) - ~ p x

This fails to be tame because of the way it treats the empty set, which depends on
the parameter X : [')[X] | = X. Another function in the standard library that is
not tame is the reflexive transitive closure operator (_*). It is not tame because,

578 M. Spivey

for any relation R, the reflexive-transitive closure R* = (_*)[X](R) contains the
identity relation id X, and so the value of this expression depends on the generic
parameter X.

In general, a generic function f with type

[Xl,...,Xn] �9 tl[Xt Xn] ~ t2[Xl,...,Xn]

is said to be tame if the following property holds:

If X[---Xi for 1 < i < n, then tl[X'] <if[Jr] = f [X ']

In this definition, the notation S <lf is used for the restriction of a func t ionf to
the set S. I f f : X -++ Y, then

S <~ f={x : X ; y :Y Ix ES A(x~---~y) E f . x ~ - - ~ y }

This definition also covers functions with multiple arguments, because of the Z
convention that identifies them with functions whose single argument is a tuple.

Functions that are known to be tame can be treated specially when inferring
types, by using the following rule:

E ::' tl{;~/~}
[p0 c) ~ [z] " P(tl • t2) ; f tame]

f(E) ::' t2{aH}

The expressionf(E) could also be treated by using the rules for generic constants
and function application, but these would result in the extra condition that the
types ul, . . . , un should be official. The new rule avoids this condition, and thus
can be applied without expanding abbreviations.

In a type checking program, the rule for tame functions can be implemented
by marking the type variables introduced for the generic parameters of f as
belonging to a tame function. During unification, such variables can be bound to
enriched types without expanding them first.

7. Applications and Conclusion

The author's type checking program fuzz [Spi92b] allows generic constants to be
marked either as type abbreviations or as tame functions. The standard library
that the type checker loads before analysing the user's specification is already
annotated in this way, and users are free to add their own annotations for
extensions that they add to the standard library.

For the type checker to work properly, it is necessary that the generic constants
that are marked as type abbreviations have a power-set type and are monotonic,
and that those marked as tame functions have a function type and are genuinely
tame. In each case, the first of the two stated requirements is a matter of typing,
and the fuzz program can check that it is satisfied; but verifying the second
requirement is more difficult, and the responsibility is left with the designer of
the library. Errors here can affect the accuracy of the enriched types that the
fuzz program displays for expressions, but not whether it reports errors in a
specification, because although the types computed by the program are expressed
in the enriched type system proposed in this paper, types are checked for equality
essentially by expanding them into the official types first.

The strategy of displaying abbreviated types wherever possible is highly
effective in improving the quality of error messages. For example, if s has been

Richer Typesfor Z 579

declared as a sequence, then the predicate s = {0} is ill-typed, and fuzz displays
the following error message:

"example.tex", line 4: Types do not agree in equation
> Predicate: s = {0}
> LHS type: seq NN
> RHS type: P NN

Without type abbreviations, the types would have been displayed as P(Z x Z) and
P Z, making the error message slightly less clear. In more complex examples, the
increase in clarity is more dramatic. The expression (_ - _) o (_ - _) composes the
concatenation operator ~ with itself. It is ill-typed because the operator expects
a pair of sequences, but it returns a single sequence. Fuzz displays the following
error message:

"example.tex", line 8: Right argument of operator \circ has wrong type
> Expression: (_ \cat _) \circ (_ \cat _)
> Arg type: seq ? x seq ? -+> seq ?
> Expected: ? <-> seq ? x seq ?

This message clearly shows that the expression (_ - _) is a function from pairs of
sequences to sequences; the type of the elements has not so far been determined,
and is displayed as a question mark. The composition operator o expects relations
as its arguments, and it expects the target type of the right-hand argument to
match the source type of the left-hand argument, which plainly does not happen
in the example. Without type abbreviations, the types in this example would be
displayed as P((P(Zx 2) x P(Zx?)) x P(Zx?)) and P(? x (P(Zx?) x P(Zx?))). The
complexity of these expressions speaks for itself.

The type system proposed in this paper does not replace the 'official' type
system based on P and x; specifications are still well-typed exactly when the
official type system succeeds in ascribing a unique type to every expression.
Instead, the richer type system proposed here is to be used in addition to the official
type system, as a way of extracting further information from a specification in an
organized way. As we have seen, this extra information can be used to produce
more helpful error messages in a type checking program.

Other possible applications of the richer type system are to generate indexes
of the specification that give more helpful typing information for identifiers, and
to support interactive browsing of a specification or machine-assisted proof of
theorems about it. In machine-assisted proof, whether it is carried out fully au-
tomatically, or with the machine performing the house-keeping tasks of checking
a human-directed proof, one of the most persistent problems is dealing with all
the trivial conditions that must be checked. In reasoning about Z specifications,
many of these conditions are assertions that values belong to particular sets, when
their membership of these sets is 'obvious' from the 'types' of the expressions in-
volved. The author hopes that, by formalizing and automating the calculation of
these types, the work reported in this paper will contribute to making automated
reasoning more effective.

The theorem prover implemented by Boyer and Moore [BoM79] makes similar
use of heuristically-derived types, although their type system is limited to a finite
number of disjoint classes of objects, and they do not have type constructors that
lead to complex types with a nested structure. They report, however, that even
their very simple type system contributes significantly to the efficiency of their
theorem prover in dealing with 'obvious' conjectures.

580 M. Spivey

The idea of a type system that supports inclusion relations among types has
been exploited by Cardelli [Car85] and others in the study of type systems for
object-oriented programming languages, and by Mitchell [Mitg0] in the study
of second-order lambda calculus. The purpose and formulation of the type
system proposed here differs significantly from these sources, however. More
closely related is the 'order-sorted' algebra used in the specification language OBJ
[GoM92]. Unlike OBJ, the type system proposed here includes type constructors,
and allows for generic objects in addition to generic theories.

Acknowledgements

The author is grateful to Stephen King for his perceptive comments on con-
tent and presentation, and to an anonymous reviewer for many suggestions for
improvement.

The f u z z type checker described in the paper may be obtained from The
Spivey Partnership, 10 Warneford Road, Oxford OX4 1LU, UK.

References

[BoM79]
[Car85]

[Der82]

[GoM92]

[Mit90]

[Nic95]
[Mi178]

[Spi88]

[Spi92a]

[Spi92b]
[SpS90]

Boyer, R. and Moore, J. S.: A computational logic. Academic Press, 1979.
Cardelli, L.: 'A Semantics of Multiple Inheritance', in Semantics of Data Types, (G. Kahn,
D. B. MacQueen and G. Plotkin, eds.), LNCS 173, Springer-Verlag, 1985
Dershowitz, N. : 'Orderings for term-rewriting systems', Theoretical Computer Science,
March 1982.
Goguen, J. A. and Meseguer, J. : 'Order-sorted algebra (I): Equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations', Theoretical Computer
Science, 105, 2 (1992), pp. 217-73.
Mitchell, J. C.: 'Polymorphic type inference and containment', in Logical foundations of
functional programming (G. Huet, ed.), Addison-Wesley, 1990.
Nicholls, J. E. (ed.): Draft Z standard, Oxford University Computing Laboratory, 1995.
Milner, A. J. R. G.: 'A theory of type polymorphism in programming languages', Journal
of Computer and System Science, t7 (1978), pp. 348 57.
Spivey, J. M.: Understanding Z: a specil~cation language and its formal semantics,
Cambridge University Press, March 1988.
Spivey, J. M. : The Z notation: a reference manual, Prentice-Hall International, Novem-
ber 1989. Second edition, March 1992.
Spivey, J. M.: The fuzz manual, The Spivey Partnership, 1992.
Spivey, J. M. and Sufrin, B. A.: 'Type inference in Z', in VDM and Z - Formal
methods in software development, (D. Bjorner, C. A. R. Hoare and H. Langmaack,
eds.), LNCS 428, Springer-Verlag, April 1990.

Appendix: Proof of Results

In this appendix, we give the proofs of a number of results about the containment
relation r-- between types, and principally the three results stated in Section 5. The
author has verified these results using the Boyer-Moore theorem prover [BoM79]
for the special case where every type abbreviation has two arguments.

We begin by proving termination of the process of expanding type abbrevia-
tions. This is equivalent to proving termination of a system of rewrite rules that
contains one rule a [~] > t for each type abbreviation a with p(a) = [~] �9 P t. A
step of rewriting with this rule amounts to replacing an an occurrence a [fi] of the
type abbreviation a with the instance t { f i / ~ } of the right hand side. We have said

Richer Types for Z 581

that it must be possible to assign to each type abbreviation a a natural number
level(a) such that the expansion of each a contains only abbreviations of a lower
level than a. This makes termination of the expansion process obvious, since it
amounts to no more than non-recursive macro expansion. Nevertheless, we go to
the trouble of giving a termination ordering, because later proofs will use induc-
tion on this ordering. One termination ordering that works is the recursive path
ordering (see [Der82]) induced by the assignment of levels to type abbreviations.
The reference cited includes proofs that this partial order is well-founded and
respects the type constructors.

Alternatively, an explicit termination measure may be constructed as follows.
I f t is a type and X is a given set name, we define a measure deg(t, X). Informally,
deg(t ,X) is the number of occurrences of X in ~ - but since we have not yet
proved the existence of ~, we must not use this as the formal definition. Instead,
we use the following recursive definition:

d e g (X , X) = 1

d e g (Y , X) = O (Y C X)

deg(P t , X) = deg(t ,X)

deg(q x ... x t , , X) = deg(t l ,X) + . ' . +deg(tn ,X)

deg(a[fi],X) = ~ i deg(t,zi) * deg(ui,X) where p(a) = [5] �9 P t

This is a good definition because the measure (level(t),size(t)) goes down lexico-
graphically in each recursive call, where by extension level(t) for a type t is the
maximum level of any type abbreviation occurring in t, and size(t) is simply the
number of symbols in t. We may assume because of the strictness of each type
abbreviation a that deg(t, zi) > 0 for each i, where p(a) = [2] �9 P t.

Next, we define a measure rank(t), again by recursion on (level(t),size(t)):

rank iX) = 0

rank(? t) = rank(t)

rank(tl x .. . x tn) = rank(q) + . . . + rank(tn)

rank(a[fi]) = 1 + rank(t) + ~ i deg(t,zi) * rank(ui)

where p(a) = [5] * P t

The measure rank(t) provides a termination ordering for expansion of type
abbreviations. Informally, rank(t) is the maximum number of steps of type
expansion that t can undergo before it becomes official. It is easy to show by
structural induction on t that

rank(t {fi/~ }) = rank(t) + ~ i deg(t,zi) * rank(ui)

The only difficult case in this proof arises when t = a [~] and the types vi satisfy
the equation. In this case, if p(a) = [2] �9 P w, then

rank(a [~1 {fi/5 })

= rank (a [fi {fi/5 }])

= 1 + rank(w) + ~ j deg(w,xj) * rank(vj{fi/2})

= 1 + rank(w) + ~ j deg(w,xj) * (rank(vj) + ~-~i deg(vj,zi) * rank(ui))

582 M. Spivey

t I

/

a [ill]

a[fil

Fig. 2. Expansion lemma.

= 1 + rank(w) + ~ j deg(w,xj) * rank@j)

+ E i (~ j deg(w,xj)* deg(vj,zi)) * rank(ui)

= rank(a[~]) + ~-}i deg(a[~],zi) * rank(ui)

Thus if a is any type abbreviat ion, then rank(a[fi]) = rank(t{fi/~}) + 1 where
p(a) = [~] * P t, and the rank goes down by one when a type abbrevia t ion is ex-
panded directly. Because of strictness, each type constructor is strictly monoton ic
with respect to the rank measure, so this measure decreases when a type abbre-
viat ion is expanded anywhere inside a type, and expansion of type abbreviat ions
therefore terminates after a finite n u m b e r of steps. We shall often use induction
on the c o m p o u n d measure (rank(t), size(t)) under the lexicographic ordering; we
call this type induction.

We now prove the following expansion lemma, which means that every expan-
sion of a [fi] can be obtained either simply by expanding types f rom fi, or by
expanding the abbrevia t ion a as the very first step, then expanding fur ther the
type that results f rom that step:

Proposition 1. I f a is a type abbreviat ion, p(a) = [~] �9 P t, and a[fi] _E t ' then
either t ' = a[fi'] for some types fi' with fi _U fi', or t{fi/~} ___ t ' .

Proof Suppose that a[fi] _ t I and t I is not o f the form a[fi I] with fi _ ill.
According to the rules defining E, there is then a chain of types

a[fi] __. a[fi (1)] E ... v- a[fi(k)] [-- t{fi(k)/~} V- t(1) V- ... E t (m) = t'

in which each step arises f rom the expansion of a single occurrence of a type
abbreviat ion, and fi F fi(~) G .. . E u (k). Taking fi, = fi(k), we have

a[fi] E_ a[fi'] E t{fi ' /~} _ t I

with fi _ fil (see Fig. 2). I f t{fi/fi.} r t{fi'/~}, then the proposi t ion follows; and
this last formula is easily proved by type induction on t. []

Richer Types for Z 583

We next turn to the three results s ta ted in Section 5. We begin with the first o f
them:

Proposi t ion 2. Fo r each type t there is a unique official type t such tha t t _Z ~.

Proof Type induc t ion on t. I f t is a basic type X , then t is a l r eady official, and
we m a y take ~ = t ; this choice is p la in ly the only one possible. I f t is a power set
type P u, where there is a unique official type fi with u _Z fi, then we take ~ = P ~.
Pla in ly t __ ~; for its uniqueness, observe that i f t I is such tha t t = P u __ t r, then
t ' = P u I for some u t with u __ u'. I f t ~ and hence u I is official, it follows that
u ' = fi, and so t r = ~. The case tha t t is a Car tes ian p roduc t type ul x . . . x un is
similar.

Final ly, if t is an abbrev ia ted type a [fi] where p(a) = [~] �9 P w, then t ___ t ' ,
where t ~ = w{fi/~}, and t ' has smal ler r ank than t. We m a y assume the existence

A!
of a unique official type ~' such tha t t ' _ t , and immedia t e ly t E t ' E ~", so we
take t = t ' . I t remains to show that t ' is the only official type t" wi th t E_ t" ;
for this we use the expans ion lemma. Suppose t E t I' and t" is official. Since
a[fi] = t r- t", e i ther t = a[fi '] for some fi', or t ' - - w { f i / ~ } _E t". Because t 'I is

official the first o f these is impossible , so t ' E_ t" and by uniqueness o f f ' we have
~ = ~' = t". []

Before proving the second result f rom Section 5, we state and prove a l emma tha t
is der ived f rom strictness.

Proposi t ion 3. I f a is a type abbrevia t ion , and two types t = a[fi] and t t = a[fi ']
~ ^r for each i. satisfy ~ = t , then hi = u i

Proof We shall prove the fol lowing by type induct ion on w : if v = w{fi/~} and
v' = w{fi ' /~} satisfy ~ = ~', and w conta ins an occurrence o f zi for some i, then
ui ^ = u i.^t The desired result follows on tak ing w = a [~].

I f w is a given set, then in fact w = Z i and fii ---- ~ = U = ui.̂ '
I f w is a power set type P y, then y conta ins an occurrence of zi, and we m a y

assume tha t the result holds when w is replaced by y. Also, if r = y{f i /~} and
r' = y{ f i l /~} then P ? = ~ = ~' = PU, so ? = 7i. So the induc t ion hypothes is
gives tha t ~i -- fi[as required.

I f w is a Car tes ian p roduc t type yl x . . - x yn, then at least one o f the yj
conta ins an occurrence o f zi. The a rgument proceeds as for the case w = P y.

Finally, suppose w is a type abbrev ia t ion a[~], where p(a) = [2] �9 r, and
suppose that the result holds i f w is replaced by any type tha t is smal ler in
our ordering. Then v = a[/5] where pj = yj{fi /5} for each j . So v _E s, where
s = r { } / 2 } . Similarly, v' r- s', where s ' and pj are defined ana logous ly to s
and pj. Thus ~ ~ ~i ~ = = -- s , and r is a type with smal ler rank than w, since
rank(w) = 1 + rank(r) + ~ j deg(r, xj) * rank(yj). Also, one o f the yj conta ins

an occurrence o f zi; and because a is strict, r also conta ins an occurrence o f
this yj. We therefore deduce (by replac ing w by r in the induc t ion hypothesis)
that /3j = /3j.' for this value o f j . Next, observe tha t yj has smal ler size and
no greater r ank than w, so m a y deduce (replacing w by yj in the induc t ion
hypothesis) tha t ~i = u~ as required. []

We next prove the result i tself:

Proposition 4. I f t = t~ then t and t ~ have a least uppe r b o u n d t u t ' .

Proo f Simul taneous type induc t ion on t and t'. I f ne i ther t nor t ~ is a type

584 M. Spivey

abbrevia t ion , then the a rgument is s t ra ightforward. We consider explici t ly the
fol lowing cases:

(a) t = a [fi] and t ~ = a [fi'] are instances o f the same type abbrevia t ion .

(b) t = a [fi] and t ' = b [fi'] wi th a @ b.

(c) t = a [fi], bu t t ' is not a type abbrevia t ion .

(d) t ' = b[fi'], bu t t is no t a type abbrevia t ion .

In each case, we m a y assume that the result holds i f ei ther t or t ' is replaced by
a type o f smal ler rank.

= ^~ ^~ for each i. Also, each For case (a), since f t , our l emma tells us tha t zii = u i
ui has smal ler r ank than t, and each u; has smal ler r ank than t I, so the induc t ion
hypothes is gives a least uppe r b o u n d si = ui uu; for each i. We claim tha t r = a [3]
is a least uppe r b o u n d o f tl and t2. Pla inly t _ r and t ~ E r ; now suppose r ~ is any
uppe r b o u n d o f t and t (By the expans ion l emma (twice), e i ther r I = a [3'] with
fi E_ 3' and fi' _ ~', or w{fi /5} __ r ' and w{fi ' /5} U__ r ' , where p(a) = [5] * Pw. In
the first case, leastness o f si gives si E s; for each i, and so r _ rL In the second
case, we claim that w{g/~} r- r'; then r = a[~] _ w{~/5} E_ r' as required. This
last c la im is easily proved by ano the r type induct ion on w.

Fo r case (b), suppose the level o f a is greater than or equal to tha t o f b ; the
o ther case is symmetric . A n y c o m m o n expans ion r of t and t ' is not o f the form
a[~], so by the expans ion l emma tl = w{fi /5} _ r, where p(a) = [~] �9 Pw. The
type ta has smal ler r ank than t, so we m a y deduce f rom the induct ion hypothes is
that tl and t ' have a least uppe r b o u n d tl u t ' , which is also a least upper b o u n d
for t and t ' . Cases (c) and (d) are similar, and again we expand either t or t ~ as
necessary before appea l ing to the induct ion hypothesis . []

We finally prove the th i rd result f rom Section 5:

Propos i t ion 5. I f t = tl x . - . x tn then there are least types Ul, . . . , /A n such tha t
t E U l x ' " XUn.

Proof The p r o o f is aga in by type induct ion on t. Since ~ is a Car tes ian p roduc t
tl x �9 . . • tn, it is plain that t i tself canno t be a given set or power-set type, and if
t is a Car tes ian p roduc t ul x . . . x uk, then k = n and ul, . . . , un are the required
least types.

The remain ing case is when t is a type abbrev ia t ion a [~] with p(a) = [5] * P w.
We m a y assume tha t the result holds of t' = w{f:/5}, which has smaller r ank

than t and satisfies 5' -- t = tl x - - . x tn. So let ul u~ be least types such tha t
t ' _E ul x . . . x u~ = v, say. These ui are the required least types for t, because

! !
the expans ion l emma guarantees tha t if t E_ u 1 x - . . x u~ = v', say, then ei ther
v' = a[F] for some r (which is impossible) , or t ' r v' , in which case fi r- fi' as
required. The p r o o f o f the ana logous result for power-set types is similar. []

Received August 1995
Accepted in revised form March 1996 by D. J. Cooke

