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Abstract. The formal specification language Z is strongly typed, but has a rather 
inexpressive type system in which essentially the only type constructors are power 
set and Cartesian product. This paper explores the possibility of using a richer 
type system for extracting information about a Z specification, so that properties 
like being a function or a sequence become part of the type of an expression. 
This richer type system adds further type constructors to the sparse set contained 
in the language definition, and uses properties of Z's library functions to infer 
information about complex expressions from information about their simpler 
parts. 

1. Introduction 

The Z language [Spi88, Spi92a, Nic95] is strongly typed, in the sense that the 
rules of the language assign a type to each expression in a Z specification, and 
specifications are not considered meaningful unless a consistent assignment of 
types to expressions is possible. The type system of Z is rather weak, however, 
and properties like being a mathematical function or being a sequence are not 
reflected in the type of a binary relation. 

In a well-formed Z specification, each expression has a type that is formed 
from the basic types of the specification by applying three type constructions: 
the power set construction (P), n-fold Cartesian products (--- x --. x .--), and 
a 'schema product' construction that builds record types associated with certain 
operations on schemas. This small collection of type constructors is sufficient to 
assign a type to every object that occurs in the traditional development of discrete 
mathematics based on set theory, and the coarse nature of the type system allows 
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familiar mathematical concepts to be defined in the traditional way. However, it 
means that the type of an expression as computed by a type checking algorithm 
contains less information than the 'type' that is ascribed to the expression in 
informal discourse about a specification. 

For example, in Z the set of all (partial) functions from X to Y, written 
X -++ Y, is actually equal to the set of relations between X and Y that map each 
element of the domain to exactly one element of the range: 

X - + +  Y =  { f : X +--+ Y I 
(V x : X ; yl,  y2 : Y - ( x , y ~ ) E f A ( x , y 2 ) E f ~ y l = y 2 ) }  

The type of each side of this equation is P(P(X x Y)), that is, the type of a set of 
relations between X and Y. An individual function or relation would have type 
P(X x Y): in Z, as in conventional mathematics, a function is simply a set of 
ordered pairs. As another example, a sequence over a set X is modelled in Z as a 
function from some interval 1 .. n to X,  and the set s e q X  of all such sequences 
is defined as follows: 

s e q X  = { f  :N-++X 1(3n : N - d o m f = l . . n ) }  

Each sequence has type P(Z x X), and the set of all sequences over X therefore 
has type P(P(Z x X)). 

Whilst such examples demonstrate that a type system based on P and x 
is sufficient to allow the construction of the standard models of mathematical 
concepts, they also illustrate the conceptual gap between the types assigned to 
expressions by the Z type system and the informal way human readers and 
writers think of  the same expressions. Fluent readers of Z specifications know 
that sequences are a special kind of  function, and that they can be treated as 
functions where necessary: for example, the second element of a sequence s can be 
extracted by writing s(2), applying the sequence as a function to the argument 2. 
But they do not think exclusively in these terms: for example, it is much easier to 
identify the concatenation operator on sequences (written - in Z) as belonging 
to the set 

seq X x seq X ---+ seq X 

than to recognize that its type is 

P((P(Z x X)  x P(Z x X))  x P(Z x X)) 

Software tools that process specifications and report the types of expressions (as 
type checkers do) are much easier to use if they report the 'type' of concatenation 
in something close to the first of these forms rather than in the second form, 
even if the second form is (strictly speaking) the correct type. The subject of 
this paper is a method for systematically deriving 'enriched types' of  this kind, 
with a certain guarantee of accuracy. This method is implemented in the author's 
f u z z  type checker, allowing it to report the types of expressions in a form that is 
easier for its users to understand. The method actually constitutes an alternative 
type system for Z specifications, richer than the 'official' type system based on P 
and x. 

A type checking program must report as errors only those situations where the 
actual types of expressions fail to match, even if the enriched types are different. 
It is not an error to treat a sequence as if it were a function, because sequences 
actually are functions in Z, and part of the power of the notation comes from the 
facility to use functional operations on sequences. Thus a type checking program 
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that uses the enriched type system for calculating the types of expressions must 
have a way of expanding type abbreviations, in order to derive the official type of 
each expression. It is when these official types fail to match that an error should 
be reported, even if the error message explains the error in terms of enriched 
types. 

2. Typing Rules 

The rules for assigning types to expressions in Z can be expressed as inference 
rules for deriving typing assertions of the form E :: t, where E is a Z expression, 
and t is a type. As examples, we give here the rules for ordered pairs (Eb . . .  ,En), 
for Cartesian products Ea x . . .  • En, for set displays "{El . . . . .  En }, and for function 
application EffE2). The typing rules depend on an env i ronmen t  that gives the types 
of the variables that may appear in the expression, but we omit the details here, 
since they are not relevant to the subject of this paper. 

An n-tuple (El . . . . .  En) may have components E1 . . . . .  En of any types, and 
the tuple itself has a Cartesian product type constructed from the types of the 
components. This is expressed in the following typing rule: 

E1 :: t l  . . .  En :: tn 

(El . . . . .  E~) :: tl • "'" • tn 

Like an inference rule in logic, this rule allows a conclusion to be derived 
from certain premisses. Here both the conclusion and each premiss assert that a 
certain expression has a certain type. Rules like this allow the type of a complex 
expression (in this case, an ordered n-tuple) to be deduced from the types of 
simpler sub-expressions. 

The arguments El, . . . ,  En of a Cartesian product E1 x ..- x En are required 
to have power set types P q, . . . ,  P tn ; if the arguments have such types, then the 
whole expression has a type constructed from the types tl . . . . .  tn : 

E1 :: P tl ... En :: P tn 

E1 • "'" • En :: P(tl • "'" • tn) 

The value of a Cartesian product is a set of tuples: for example, the value of 
even  x even is the set of all pairs of numbers that are both even; its type, P(Z • Z) 
is the type that contains all sets of pairs of numbers. 

In a set display {E1,...,En}, all the expressions Ei must have the same  type; 
the type of the whole expression is that of a set of objects of this type: 

E1 :: t . . .  En :: t 

{El . . . .  ,E,} :: P t  

As a final example, function application EffE2) has a typing rule that requires 
E1 to have a type P(h • t2), since this is the type of a function from tl to t2. 
The type of the expression E2 is required to match the type tl expected by the 
function El, and the type of the whole expression is the result type t2 : 

E1 :: P(tl x t2) E2 :: tl 

El(E2) :: t2 
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Typing rules such as those given here can be implemented using an algorithm 
that makes a single bottom-up pass over an expression treO. Given a complex 
expression, the algorithm first computes the types of its sub-expressions; then 
it applies the unique typing rule associated with the form of the expression, 
checking that the types computed for sub-expressions have the appropriate form, 
and generating the type of the whole expression by filling in the pattern given 
in the rule. If, at any point, the types calculated for sub-expressions do not have 
the form required for application of the relevant rule, then the expression is not 
properly formed according to the typing rules. This happens, for example, if one 
of the arguments of a Cartesian product E1 x �9 �9 �9 x En does not have a power-set 
type, or if the type of the argument E2 in an application Ea(E2) does not match 
the type expected by the function Ea. Each construct that forms an expression in 
Z is associated with exactly one typing rule, so the type derived by this algorithm 
is the only type ascribed to an expression by the rules. 

3. Generic Constants 

Z has a standard library of mathematical concepts that are used in most specifica- 
tions, and a strength of the language is that these concepts are built up by making 
definitions in the language, not by including the concepts as built-in language 
features. This means that the mathematical library is open-ended, and can be 
extended with general concepts that are of special use in some application area. 
Many of the definitions in the standard library are generic, in the sense that they 
can be used to build sets, relations, sequences, and so on, with elements drawn 
from any set. The Z language provides notational facilities for making generic 
definitions, and includes notation for taking a name that is defined generically 
and applying an instance of it in a particular context. The generic parameters 
may be provided either explicitly by expressions or implicitly from the context. 

For example, here is a definition of the function first that extracts the first 
element of an ordered pair: 

= I X ,  Y]: 
first : X • Y --+ X 

(Vx : X  ; y : Y * f i r s t ( x , y ) =  x)  

The formal parameters [X, Y] that appear at the top of the box indicate that 
a function first [X, Y] is being defined here for each pair of sets X and Y. The 
axiom given below the horizontal line states that, whatever sets X and Y are 
involved, first is the function that maps each pair (x, y) to its first element x. 

After a generic constant such as first has been defined, it can be used in 
expressions such as first [Z, Z](3,-4), where the actual parameters corresponding 
to X and Y are given explicitly. We can extend our system of type rules to cover 
this case by adding the following rule, which ascribes a type to expressions of 
the form x [El , . . . ,  En], where x is a generic constant and E1 . . . . .  En are explicit 

1 There are a few expressions, such as the empty set display { }, that cannot be handled by a simple 
bottom-up algorithm, but they can be handled by the techniques discussed later for inferring implicit 
generic parameters. 
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generic parameters: 

E1 :: P u l  . . .  En :: P t n  
[ p ( x )  = [Z l , . . . ,Zn ]  �9 t ] 

x [ E 1  . . . . .  E , ]  :: t{ul,...,Un/Zl,...,z,} 
In this rule, we assume that the generic type [zl . . . . .  z,] �9 t is assigned to x 
by the environment p; this type records the generic parameters zl, . . . ,  z, of  
the definition of x and a type t that depends on those parameters. The actual 
parameters must be sets, and thus have power-set types ? ui. The type of the 
whole expression, t{ul . . . . .  un/za . . . .  ,z~}, is obtained by substituting the types ui 
for the formal parameters zi in the type t. 

We can apply this rule to the example first [N, Z](3,-4).  The generic definition 
shown above results in first being added to the environment with type 

[X,Y] �9 P((X x Y) x X)  

This is the type of a generic function from X x Y to X. The actual parameters that 
are supplied are N and Z, and both of these expressions have the type P Z; thus 
the requirement that the actual parameters have power-set types is satisfied, and 
the types we should substitute for X and Y are Z and g. This gives P((Z x Z) x Z) 
as the type of the applied occurrence first IN, Z]. This function is applied to the 
argument (3 , -4) ,  which has type Z x Z. (In Z, functions of several arguments 
are identified with functions whose single argument is a tuple.) According to the 
typing rule for function application, this application is well-typed, and gives a 
result of type Z. 

In addition to explicit instances of generic constants, Z also allows the actual 
parameters to be implicit: thus the expression first [Z, Z](3 , -4)  could be abbrevi- 
ated as f i r s t (3 , -4 ) ,  and the actual parameters are then types that are determined 
by the context: in the example, we can determine that these types are Z and 
Z, otherwise the type of first would not match the type of its argument (3,-4) .  
Note that implicit parameters are always chosen to be types, rather than arbitrary 
set-valued expressions; this means that they are usually determined uniquely by 
the context in which a generic constant is used. Implicit parameters are indis- 
pensable for readable specifications: without them, even so simple a formula as 
dora password co_ users would have to be written as something like 

dora [NAME, PASSWORD] password _C[NAME] users 

and for more complex formulas the weight of formal clutter would quickly become 
intolerable. 

The rule for ascribing types to generic constants with implicit parameters is 
as follows: 

[ p ( x )  = [zl  . . . . .  z , ]  �9 t ] 
X :: t { u  I . . . . .  U n / Z b . . . , Z n }  

This rule states that, when the generic parameters are left implicit, the type of 
a generic constant x may be obtained by substituting any types u~ . . . .  , un for 
the formal generic parameters of x. This rule ascribes many different types to 
an applied occurrence of a generic constant, so it spoils the property of the 
typing system that every expression has a unique type. For example, the reference 
first has every type of the form P((ul x U2) X Ul). Nevertheless, in the expression 
f i r s t (3 , -4 ) ,  there is only one choice of ul and u2 that allows a type to be assigned 
to the whole expression, and that choice is Ul -- u2 -- Z. 
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The fact that generic constants can be ascribed many different types means 
that it is no longer sufficient to compute types in an expression in one bottom-up 
pass that ascribes a single type to each sub-expression. Instead, we can borrow the 
techniques that are used in compilers for polymorphic functional languages like 
ML [Mi178]. So-called type variables are used as markers for types that are as yet 
unknown, and wherever types must match, unification is used to solve constraints 
on the type variables and substitute known types for the unknowns. The chief 
difference (as far as type inference is concerned) between Z specifications and 
ML programs is that the generic constants of Z are families of monomorphic 
values, rather than single polymorphic values. This means that, to avoid semantic 
ambiguity, each type variable must be assigned a single known type by the 
context. It is easy to test this in a type checker based on unification, simply by 
verifying that no unassigned type variables remain after the checking of a formula 
is finished. 

Although type variables are a vital ingredient in effective type checkers for 
Z, they play no part in the language itself, and a specification in Z is well- 
typed exactly if there is a unique type t for each expression E contained in 
the specification, and a unique derivation of the typing assertion E :: t, so that 
any implicit parameters are uniquely determined. The correctness of a typing 
algorithm based on type variables with respect to this definition of the type 
system is proved in [SpS90]. In this paper, we shall continue to discuss type 
systems for Z in terms of typing rules that do not involve type variables, pausing 
from time to time to discuss the implementation of these rules by algorithms that 
use type variables. 

Generic definitions are used in the Z library both to introduce operations like 
first, dora, and - ,  and to introduce sets like X -++ Y and s e q X .  In fact, the 
partial function symbol -++ is introduced by a definition of the form 

x - ~  r = =  { f  : X  +--+ Y l . . . }  

This can be regarded as an abbreviation for the definition 

= [ X ,  Y] 
_-++_ : P(X +--+ Y) 

(_--++_) = { f  :X  +--+ Y I . . .}  

The symbol -++ is an infix generic symbol in Z, so the expression X -++ Y is short 
for (_ -++ _)[X, Y], that is, the instance of the generic constant (_ -++ _) where 
the actual generic parameters are X and Y. Similarly, seq is a generic prefix 
symbol, and the expression s e q X  stands for the instance (seq_)[X] where the 
actual parameter is X.  The enriched type system proposed in this paper elevates 
generic constants like -++ and seq to the status of type constructors, and allows 
extra information about generic functions like first, clom and - to be recorded 
and used in deducing the types of expressions. 

4. Abbreviated Types 

The discussion so far has concentrated on the 'official' type system of Z, as 
described in the language reference manual and adopted in the new draft standard. 
We now turn to the richer type system that is the true subject of this paper. In this 
alternative type system, certain generic set-valued constants from a Z specification 
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are identified as type abbreviations. For example, in a specification that includes 
the standard Z library, the partial function symbol -++ might be named as a t y p e  
abbreviation, so that after a declaration 

f :X-++ Y 

the type of f is given as X -++ Y and not as P(X • Y). As a special case, 
non-generic constant sets like ~ can also be named as type abbreviations. 

For the enriched type system to work correctly, generic constants that are 
named as type abbreviations must have the properties of  strictness and mono- 
tonicity. By strictness, we mean the condition that if a is a type abbreviation 
defined with the type p(a) --- [zl . . . . .  z,] �9 P t, then t should contain at least one 
occurrence of each parameter  zi. We also disallow a type abbreviation a with 
p(a) = [X] �9 P X .  These restrictions are necessary to avoid certain pathological 
cases: for example, if a type abbreviation foo were defined by 

f oo[X ,  Y] = = X  

then the two types foo [Z, Z] and foo [Z, P Z] are superficially different but have 
the same expansion. This complicates both the theory of the type system and the 
implementation of type checking programs, without adding anything useful to 
the power of  the type system. 

By monotonicity, we mean that when applied to arguments that are larger 
as sets, a type abbreviation should deliver a result that is larger as a set. This 
property holds for the partial function symbol, because if X ~ X r and Y ~ yr  
then (X -++ Y) _~ (X r -++ Yr). It does not hold for the total function symbol 
--+, because if X _ X '  it is not generally true that (X --+ Y) _ (X ~ --+ Y). 
Monotonicity of  type constructors is necessary for the type system to be sound. 
For example, suppose we name seq as a type abbreviation, and consider the 
expression seq even. This expression denotes a set of sequences of  numbers, so 
we would like to ascribe to it the type ?(seq  Z), in which seq has been used 
as a type abbreviation; this type abbreviates the official type P(?(Z x Z)). A 
basic requirement for any sound type system is that the value of an expression 
(whenever it is defined - but that is a different issue) should be a member  of its 
type: in this case, that seq even c P(seq Z). This is indeed true, and it is true in 
consequence of the monotonicity of  seq:  because even ~_ Z, we can deduce that 
seq even c__ seq  Z, in other words, that seq even E P(seq Z). 

The desire for monotonicity is what led to the definition of the set of  bags 
over X in the standard Z library as the set of  partial functions from X to the set 
N1 of strictly positive integers, rather than as the set of  total functions from X to 
the natural numbers N: 

bagX = = X  - ~  Na 

Even apart  from the enriched type system, the alternative definition of bag X 
as X --+ N has the disturbing property that the empty bag of even numbers 
(2x : even �9 0) is different from the empty bag of numbers (2x : Z �9 0): in 
particular, as functions they have different domains. 

The requirement of  monotonicity also means that --+ itself cannot be a type 
abbreviation in our enriched type system; our type system will be able to record 
the information that a relation is a partial function (because we can make -++ 
into a type abbreviation), but it cannot record the information that a function 
is total. In addition to partial functions (-++), other generic set-valued constants 
in the standard Z library that satisfy the monotonicity requirement, and can 
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thus be named as type abbreviations, include finite sets (F), finite functions (-+~), 
sequences (seq), and bags (bag). 

5. Type  Inference  with  A b b r e v i a t i o n s  

Motivated by the examples given in the preceding section, we now present 
a type system for Z that uses type abbreviations. The type system depends 
on a specification that defines a number  of  generic constants marked as type 
abbreviations. With respect to a set of  type abbreviations a, the set of  enriched 
types is defined inductively as follows: 

�9 I f  X is a basic type name of the specification, then X is a type. 

�9 I f  t is a type, then P t is a type. 

�9 I f  tl, . . . ,  tn are types, then tl x . . .  x tn is a type. 

�9 I f  a is a type abbreviation a n d u l  . . . . .  un are types, then a[ul . . . . .  Un] 
is a type. 

Full Z also has the schema product constructor mentioned earlier; we omit it 
here as adding nothing to the present discussion. Each type abbreviation a is 
associated with a generic type p(a) = [zb.. . ,Zn] * P t. In a well-formed type, 
the number  of  arguments of  each application of a matches the number  n of  
formal generic parameters of  the type p(a). The type t may contain further type 
abbreviations, but we assume that abbreviations are defined in a non-circular 
way: it must be possible to associate a level with each type abbreviation a in 
such a way that p(a) contains only abbreviations of  a lower level than a. In 
what follows, we abbreviate the list ul . . . . .  u~ by fi, and so on, so that a typical 
abbreviated type is written a [fi], where a has a generic type [3] �9 P t. We define 
an official type to be one that contains no type abbreviations. 

The relationship between a type abbreviation and the type it abbreviates is 
defined by a relation r- of containment that is defined by a set of  inference rules, 
independent of those we shall later use to define the typing relation '" For clarity, 
we emphasize that the relation E holds between the syntactic expressions that are 
types t;  it is related to the subset relation _c on the sets It[ of elements of  a type 
t, in that t r-- t '  implies ]tl _ [t'l, but the two relations are different, just as the 
typing relation :: between syntactic expressions is different from the membership 
relation 6 between mathematical objects. 

The first inference rule says that each type abbreviation is contained in the 
type that it abbreviates, so that (for example) seq t v- N -++ t for each type t: 

[p(a) = [~] �9 Pt  ] 
a[fi] E t{fi/3} 

Second, the relation _E is reflexive and transitive, as reflected in the following 
rules: 

t E t  

q E t2 t2 E t3 

tl c_ t3 
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e(z • z) 

P(Z x N) Z -+--> Z P(N x g) 

><>< 
g --++ N P(N • N) N-++Z 

N -++ N seq Z 

I /  
seq N 

Fig. 1. Containment relation. 

Third, since each type abbreviation a is monotonic with respect to inclusion, it 
respects the relation _E: 

u i E u [  ( l _ < i _ < n )  

a [~] _ a [~'] 

As an example of  this rule, since N E_ Z, we can conclude that seq N E seq Z. 
Analogous rules of monotonicity apply to the basic type constructors P and x:  

t E _ t '  

P t  E p t  r 

! ! 
t l  ~ t 1 . . .  tn E t n 

! ! 
t l  •  • tn ~ t I X " "  • t n 

These rules defining the containment relation __ can give rise to elaborate networks 
of relationships among types. For example, given the three abbreviations 

N___Z, X - + + Y E _ P ( X •  s e q X _ E N - ~ X  

the enriched type seq N has the network of containing types shown in Fig. 1. 
The rest of this section is organized as follows: we first explain how the 

system of typing rules from Section 2 can be modified to assign enriched types to 
expressions. This modified system has the property that an expression E may be 
assigned many different types that differ in the extent to which type abbreviations 
have been expanded. We then state a number of results about the containment 
relation __ that allow us to prove that each expression has a least type, if it has 
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any type at all. This proof is presented in the form of a new set of typing rules 
that assigns to each well-typed expression its unique least type. 

We begin, therefore, by changing our system of typing rules so that it assigns 
enriched types in place of the previous official types. The first change is that the 
environment p now assigns enriched types to the variables of a specification, and 
not simply official types. The second change is that we add a new inference rule 
of weakening that allows type abbreviations to be expanded at any point in a 
derivation: 

E "" t 

[t _Et'] 
E '" t I 

Because of this rule, we can say that if an expression E is assigned type t by 
the rules, then it is also assigned all types t' such that t _ t'. Part of the rule's 
importance is that it allows types to be expanded where this is necessary for 
subsequent rules to be applicable. 

The third change is that a special rule may be used to assign types to generic 
constants that have been named as type abbreviations. If a is a type abbreviation 
with n parameters, then the following rule may be used" 

Ei :: Pui  (1 <_ i <_ n) 

a[~]  "" P ( a [ q )  

This rule is especially important when it is applied to the right hand side of a 
declaration x : a[E], because it then allows the identifier x to be added to the 
environment with the abbreviated type a[fi], and later to be assigned that type 
when it is used in expressions. 

The rest of the typing rules require no change, but if some of the generic 
constants from the Z library have been marked as type abbreviations, then some 
of the rules can be tightened up to give more accurate types. The existing rule 
for a sequence display (E1,. . . ,En) gives it the type P(Z x t) in the official type 
system, where t is the type shared by all of E1 . . . . .  E,,. In the extended type 
system, if seq is a type abbreviation, then we can use a rule for sequence displays 
that gives the abbreviated type seq t: 

E1 : : t  . . .  En "" t 

(E1,. . . ,En) "" seq t 

A similar improvement is possible in the rule for bag displays. 
We now state three basic results about the relation E. The proof of these 

results is given in an appendix. 

1. For each type t there is a unique official type ~ such that t _E ~. 

2. If tl = t2 then tl and t2 have a least upper bound tl u t2. Standard results of 
abstract algebra guarantee that the operation u is idempotent, commutative 
and associative, because _E is a partial order. 2 

3. If  ~ = tl x.  �9 - x & then there are least types u~ . . . . .  u, such that t _ ul x.  �9 - x u,. 
Similarly, if t = P tl then there is a least type ul such that t _E ? ul. 

2 N o t e  t h a t  the  type  t 1 s t 2 is no t  necessar i ly  equa l  as a set to tl U t 2. F o r  example ,  wi th  N r- Z we 
have (N x Z) U (Z x N) = Z x Z. 
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The first result immediately allows us to show that an expression is well-typed 
according to the modified rules exactly if it is well-typed according to the original 
rules given in Section 2. Let us write ::0 for the relation between expressions 
and official types defined by the original rules, and "" for the relation between 
expressions and enriched types defined by the modified rules. The two typing 
relations are linked by the following properties: 

�9 p F- E '" t implies ~ ~- E ::0 5. 

�9 ~ F- E ::0 t implies p t- E "" t. 

We use the notation p F- E '" t to denote the fact that the typing E "" t is derivable 
with respect to the environment p, and we write ~ for the official environment 
such that for all x, if p ( x )  = t then ~(x) = 5. 

Any derivation of E "" t can be converted into a derivation of E ::0 t by 
replacing every type u that appears in the derivation by the official type fi and 
deleting any weakening steps, which become trivial. Conversely, every derivation 
of E ":0 t for an official type t can be converted to a derivation of E "" t by 
inserting a weakening step just after each leaf of  the derivation tree, using the 
fact that u __U fi to expand all type abbreviations immediately. 

The second and third results allow us to show that each well-typed expression 
has a unique least type 3. We shall do so by giving a third set of  inference rules 
that define a relation ::' between expressions and enriched types. This relation 
has the following properties: 

�9 For each expression E, there is at most one type t such that E ::' t. 

�9 I f E  ::~t t h e n E  " t .  

�9 I f E  "" t then there exists a type t r such that E : / t  I and t ~ _E t. 

Again, many of the typing rules from the official type system can be used un- 
changed: for example, the existing rule for ordered pairs (EbE2) allows arbitrary 
types for E1 and E2, and the type of the whole expression is assembled from the 
types of  its elements. This means that the least type of (Eb E2) can similarly be 
assembled from the least types of  E1 and E2: 

E l  ::r tl  . . .  En ::l tn 

( E l  . . . . .  E,)  ":' t l  X ' "  X tn 

Some existing rules require sub-expressions to have types with a certain form. 
The third result allows us to translate these rules systematically, by matching 
the least types of  the sub-expressions with 'patterns'  that describe the required 
form. We shall use the informal notation t ~ ,  ul x u 2 to denote the fact that t 
has the form tl x t2, and Ul and u2 are the least types such that t _E u 1 x u 2. 
Repeated applications of  the result allow us to use nested patterns, as in the 
notation t ~-, P(ul x u2). 

Using this notation, here is the rule for Cartesian product: 

E1 ::~ tl . . .  En ::t tn 
[ tl ~ Pul ,  . . . ,  tn ~ Pu~ ] 

E1 x --- x En ::' P(ul x --- x un) 

3 Here we again ignore the empty set display and similar expressions. 
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In this rule, the types ui are obtained by matching the types t~ ascribed to Ei 
against the pattern P ui, expanding type abbreviations only as far as necessary to 
make the pattern match. 

Other existing rules require the types of several sub-expressions to be the 
same. An example is the rule for set displays, which requires all the element 
expressions to have the same type. In translating these rules into rules for the 
least typing relation ::', we must change them to allow for expansion. Here is the 
translated rule for set displays: 

E1 ::t tl . . .  En ::t tn 
[~1 =~2  . . . . .  1.3 

{E1,...,En} ::' P(tl I I-- .  Lltn) 

For the expression (El , . . . ,  En} to be well-typed, all the expressions Ei must have 
the same official type, but they need not have the same enriched type. Even if 
this condition fails, enriched types can still be used by a type checking program 
in reporting the error, since two enriched types with different expansions are 
necessarily disjoint. The type of the whole expression is formed from the union 
of the types of the elements. 

As a final example, we translate the typing rule for application. 

E1 ::I tl E2 ::I t2 
[ h ~ P(ul x u2); ~1 = t2 ] 

E l ( E 2 )  ::I u2 

This rule combines features of the rules for Cartesian products and set displays; 
the type of E1 must expand to give a type of the form P(Ul x u2), and the official 
expansion of Ul must be the same as the official expansion of the type t2 ascribed 
to E2. Whenever the expression is defined, it has a value that lies in the type u2, 
so that is the type ascribed to the whole expression. 

We have now introduced three sets of typing rules for expressions, and have 
established relationships between the first and second sets and between the second 
and third sets. The first set of  rules expresses the official type system, and the 
third set is the one we intend to implement in a type-checker. It is therefore 
worthwhile to summarize the relationship we have established between the first 
and third sets of rules. Both rules have the property that they assign unique types 
to expressions, and the following correspondence principle holds: 

For each expression E and environment p, an official type to satisfies 
t- E ::0 to if and only if there is an enriched type t such that p F- E ::' t 

and to = t. 

This principle guarantees that an expression is recognized as wellCtyped using the 
new rules exactly if it is well-typed according to the official rules, and the type 
assigned to it by the new rules is consistent with that assigned to it by the official 
rules. 

Like the official typing rules, the rules defining ::' can be extended to allow 
generic constants with implicit parameters. The typing rule is as follows: 

[ D(x)  = [2] �9 t ;  Ul,...,Un official] 
x ::' t{C~/~} 

This rule allows any official types to be substituted for the formal parameters of a 
generic constant, in accordance with the language rule that implicit parameters are 
always (official) types. As before, we say that an expression is well-typed if there is 
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a unique way of deriving its type using this rule for implicit parameters. A bottom- 
up type checker can be implemented using type variables as place-markers for 
unknown types, and using a unification algorithm that binds unknown variables 
to official types, fully expanding any type abbreviations first. We explore in the 
next section the consequences of this rule, and the extent to which it can be relaxed 
in particular cases, allowing some type abbreviations to be left unexpanded. 

6. Tame Functions 

Consider the expression rev((1 ,  2, 3)), in which the generic function rev is used to 
reverse a sequence of natural numbers. With N and seq X as type abbreviations, 
our typing algorithm has no difficulty in assigning to the argument (1, 2, 3) the 
type seq N in place of the official type P(Z x Z). What about the whole expression? 
The symbol rev is generic, and it is used here with implicit parameters, so our type 
checking algorithm invents a type variable c~ to stand for its generic parameter: 

r e v  :: s e q  ~ - ~  s e q  c~ 

What should be substituted for the type variable ~ ? It is tempting to suppose that 
the answer is N, but that is not correct, because of the language rule that implicit 
parameters are chosen as the types  that can be deduced from the context, and the 
official type here is Z, not N. Thus we deduce the value Z for the type variable ~. 
This instance of rev therefore has type seq Z -++ seq Z, and after expansion, the 
type of the actual argument (1, 2, 3) matches the domain type seq Z. The type of 
the whole expression is therefore deduced as seq 7. 

Although this type is correct, it is a little disappointing because we know that 
the actual value of  the expression, (3,2, 1), is a sequence over N, and no harm 
would have been done if we had taken the value of e to be N instead of Z. But this 
observation is based on a special property of rev that does not hold in general. 
In this example, the difference in information content between the types seq N 
and seq Z may seem small, but what is at stake here is the principle that all type 
abbreviations must be expanded when an implicit parameter is filled in from the 
context, and an unbounded amount of information may be thrown away in that 
expansion. 

To avoid complete expansion, it is necessary to formalize the property of 
rev that guarantees that the result is in seq N rather than seq Z. We call this 
property tameness ,  and give a formal definition later; in a sense, it expresses the 
property that the behaviour of a generic function does not depend on its generic 
parameter, but only the value of its argument. It is simplest to explain the concept 
of tameness first in the case of a total function like rev that has a single generic 
parameter, before giving the full definition. The tameness of rev is equivalent to 
the following: 

I f X  I _cX and s ~ s e q X  I, then r e v [ X ' ] ( s )  = r e v [ X ] ( s )  

Most of the generic functions defined in the standard Z library are tame, but a 
few are not. One of the latter is the generalized intersection operator 

Cl[X] : p ( P x )  - ~  p x  

This fails to be tame because of the way it treats the empty set, which depends on 
the parameter X : [')[X] | = X.  Another function in the standard library that is 
not tame is the reflexive transitive closure operator (_*). It is not tame because, 
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for any relation R, the reflexive-transitive closure R* = (_*)[X](R) contains the 
identity relation id X,  and so the value of this expression depends on the generic 
parameter X. 

In general, a generic function f with type 

[Xl,...,Xn] �9 tl[Xt . . . . .  Xn] ~ t2[Xl,...,Xn] 

is said to be tame if the following property holds: 

If X[ ---Xi for 1 < i < n, then tl[X'] <if[Jr] = f [ X ' ]  

In this definition, the notation S <lf  is used for the restriction of a func t ionf  to 
the set S. I f f  : X -++ Y, then 

S <~ f={x  : X ; y  :Y  Ix ES A(x~---~y) E f . x ~ - - ~ y }  

This definition also covers functions with multiple arguments, because of the Z 
convention that identifies them with functions whose single argument is a tuple. 

Functions that are known to be tame can be treated specially when inferring 
types, by using the following rule: 

E ::' tl{;~/~} 
[ p0 c) ~ [z] " P(tl • t2) ; f  tame ] 

f(E) ::' t2{aH} 

The expressionf(E ) could also be treated by using the rules for generic constants 
and function application, but these would result in the extra condition that the 
types ul, . . . ,  un should be official. The new rule avoids this condition, and thus 
can be applied without expanding abbreviations. 

In a type checking program, the rule for tame functions can be implemented 
by marking the type variables introduced for the generic parameters of f as 
belonging to a tame function. During unification, such variables can be bound to 
enriched types without expanding them first. 

7. Applications and Conclusion 

The author's type checking program fuzz [Spi92b] allows generic constants to be 
marked either as type abbreviations or as tame functions. The standard library 
that the type checker loads before analysing the user's specification is already 
annotated in this way, and users are free to add their own annotations for 
extensions that they add to the standard library. 

For the type checker to work properly, it is necessary that the generic constants 
that are marked as type abbreviations have a power-set type and are monotonic, 
and that those marked as tame functions have a function type and are genuinely 
tame. In each case, the first of the two stated requirements is a matter of typing, 
and the fuzz program can check that it is satisfied; but verifying the second 
requirement is more difficult, and the responsibility is left with the designer of 
the library. Errors here can affect the accuracy of the enriched types that the 
fuzz program displays for expressions, but not whether it reports errors in a 
specification, because although the types computed by the program are expressed 
in the enriched type system proposed in this paper, types are checked for equality 
essentially by expanding them into the official types first. 

The strategy of displaying abbreviated types wherever possible is highly 
effective in improving the quality of error messages. For example, if s has been 
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declared as a sequence, then the predicate s = {0} is ill-typed, and fuzz displays 
the following error message: 

"example.tex", line 4: Types do not agree in equation 
> Predicate: s = {0} 
> LHS type: seq NN 
> RHS type: P NN 

Without type abbreviations, the types would have been displayed as P(Z x Z) and 
P Z, making the error message slightly less clear. In more complex examples, the 
increase in clarity is more dramatic. The expression (_ - _) o (_ - _) composes the 
concatenation operator ~ with itself. It is ill-typed because the operator expects 
a pair of sequences, but it returns a single sequence. Fuzz displays the following 
error message: 

"example.tex", line 8: Right argument of operator \circ has wrong type 
> Expression: (_ \cat _) \circ (_ \cat _) 
> Arg type: seq ? x seq ? -+> seq ? 
> Expected: ? <-> seq ? x seq ? 

This message clearly shows that the expression ( _ -  _) is a function from pairs of 
sequences to sequences; the type of the elements has not so far been determined, 
and is displayed as a question mark. The composition operator o expects relations 
as its arguments, and it expects the target type of the right-hand argument to 
match the source type of the left-hand argument, which plainly does not happen 
in the example. Without type abbreviations, the types in this example would be 
displayed as P((P(Zx 2) x P(Zx?)) x P(Zx?)) and P(? x (P(Zx?) x P(Zx?))). The 
complexity of these expressions speaks for itself. 

The type system proposed in this paper does not replace the 'official' type 
system based on P and x; specifications are still well-typed exactly when the 
official type system succeeds in ascribing a unique type to every expression. 
Instead, the richer type system proposed here is to be used in addition to the official 
type system, as a way of extracting further information from a specification in an 
organized way. As we have seen, this extra information can be used to produce 
more helpful error messages in a type checking program. 

Other possible applications of the richer type system are to generate indexes 
of the specification that give more helpful typing information for identifiers, and 
to support interactive browsing of a specification or machine-assisted proof of 
theorems about it. In machine-assisted proof, whether it is carried out fully au- 
tomatically, or with the machine performing the house-keeping tasks of checking 
a human-directed proof, one of the most persistent problems is dealing with all 
the trivial conditions that must be checked. In reasoning about Z specifications, 
many of these conditions are assertions that values belong to particular sets, when 
their membership of these sets is 'obvious' from the 'types' of the expressions in- 
volved. The author hopes that, by formalizing and automating the calculation of 
these types, the work reported in this paper will contribute to making automated 
reasoning more effective. 

The theorem prover implemented by Boyer and Moore [BoM79] makes similar 
use of heuristically-derived types, although their type system is limited to a finite 
number of disjoint classes of objects, and they do not have type constructors that 
lead to complex types with a nested structure. They report, however, that even 
their very simple type system contributes significantly to the efficiency of their 
theorem prover in dealing with 'obvious' conjectures. 
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The idea of a type system that supports inclusion relations among types has 
been exploited by Cardelli [Car85] and others in the study of type systems for 
object-oriented programming languages, and by Mitchell [Mitg0] in the study 
of second-order lambda calculus. The purpose and formulation of the type 
system proposed here differs significantly from these sources, however. More 
closely related is the 'order-sorted' algebra used in the specification language OBJ 
[GoM92]. Unlike OBJ, the type system proposed here includes type constructors, 
and allows for generic objects in addition to generic theories. 
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Appendix: Proof of Results 

In this appendix, we give the proofs of a number of  results about the containment 
relation r-- between types, and principally the three results stated in Section 5. The 
author has verified these results using the Boyer-Moore theorem prover [BoM79] 
for the special case where every type abbreviation has two arguments. 

We begin by proving termination of the process of  expanding type abbrevia- 
tions. This is equivalent to proving termination of a system of  rewrite rules that 
contains one rule a [~] > t for each type abbreviation a with p(a)  = [~] �9 P t. A 
step of rewriting with this rule amounts to replacing an an occurrence a [fi] of  the 
type abbreviation a with the instance t { f i / ~ }  of the right hand side. We have said 
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that it must be possible to assign to each type abbreviation a a natural number 
level(a) such that the expansion of each a contains only abbreviations of  a lower 
level than a. This makes termination of the expansion process obvious, since it 
amounts to no more than non-recursive macro expansion. Nevertheless, we go to 
the trouble of  giving a termination ordering, because later proofs will use induc- 
tion on this ordering. One termination ordering that works is the recursive path 
ordering (see [Der82]) induced by the assignment of levels to type abbreviations. 
The reference cited includes proofs that this partial order is well-founded and 
respects the type constructors. 

Alternatively, an explicit termination measure may be constructed as follows. 
I f  t is a type and X is a given set name, we define a measure deg(t, X ). Informally, 
deg( t ,X)  is the number  of  occurrences of  X in ~ - but since we have not yet 
proved the existence of ~, we must not use this as the formal definition. Instead, 
we use the following recursive definition: 

d e g ( X , X )  = 1 

d e g ( Y , X ) = O  (Y  C X )  

deg(P t , X )  = deg( t ,X)  

deg(q x ...  x t , , X )  = deg( t l ,X)  + . ' .  +deg( tn ,X)  

deg(a[fi],X ) = ~ i  deg(t,zi ) * deg(ui,X ) where p(a ) = [5] �9 P t 

This is a good definition because the measure (level(t),size(t)) goes down lexico- 
graphically in each recursive call, where by extension level(t) for a type t is the 
maximum level of  any type abbreviation occurring in t, and size(t) is simply the 
number  of  symbols in t. We may assume because of the strictness of  each type 
abbreviation a that deg(t, zi) > 0 for each i, where p(a) = [2] �9 P t. 

Next, we define a measure rank(t), again by recursion on (level(t),size(t)): 

rank iX ) = 0 

rank(? t) = rank(t) 

rank(tl x .. .  x tn) = rank(q) + . . .  + rank(tn) 

rank(a[fi]) = 1 + rank(t) + ~ i  deg(t,zi) * rank(ui) 

where p(a) = [5] * P t 

The measure rank(t) provides a termination ordering for expansion of type 
abbreviations. Informally, rank(t) is the maximum number  of  steps of  type 
expansion that t can undergo before it becomes official. It  is easy to show by 
structural induction on t that 

rank(t {fi/~ }) = rank(t) + ~ i  deg(t,zi) * rank(ui) 

The only difficult case in this proof  arises when t = a [~] and the types vi satisfy 
the equation. In this case, if p(a) = [2] �9 P w, then 

rank(a [~1 {fi/5 }) 

= rank (a [fi {fi/5 }]) 

= 1 + rank(w) + ~ j  deg(w,xj)  * rank(vj{fi/2}) 

= 1 + rank(w) + ~ j  deg(w,xj)  * (rank(vj) + ~-~i deg(vj,zi) * rank(ui)) 
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Fig. 2. Expansion lemma. 

= 1 + rank(w) + ~ j  deg(w,xj) * rank@j) 

+ E i  ( ~ j  deg(w,xj)* deg(vj,zi)) * rank(ui) 

= rank(a[~]) + ~-}i deg(a[~],zi) * rank(ui) 

Thus  if a is any type abbreviat ion,  then rank(a[fi]) = rank(t{fi/~}) + 1 where 
p(a) = [~] * P t, and the rank goes down by one when a type abbrevia t ion  is ex- 
panded  directly. Because of  strictness, each type constructor  is strictly monoton ic  
with respect  to the rank measure,  so this measure  decreases when a type abbre-  
viat ion is expanded anywhere  inside a type, and expansion of  type abbreviat ions  
therefore terminates  after a finite n u m b e r  of  steps. We shall often use induction 
on the c o m p o u n d  measure  (rank(t), size(t)) under  the lexicographic ordering;  we 
call this type induction. 

We now prove the following expansion lemma, which means  that  every expan-  
sion of  a [fi] can be obtained either simply by expanding types f rom fi, or by 
expanding the abbrevia t ion  a as the very first step, then expanding fur ther  the 
type that  results f rom that  step: 

Proposition 1. I f  a is a type abbreviat ion,  p(a) = [~] �9 P t, and a[fi] _E t '  then 
either t '  = a[fi'] for some types fi' with fi _U fi', or t{fi/~} ___ t ' .  

Proof Suppose that  a[fi] _ t I and t I is not  o f  the form a[fi I] with fi _ ill. 
According to the rules defining E, there is then a chain of  types 

a[fi] __. a[fi (1)] E ... v- a[fi(k)] [-- t{fi(k)/~} V- t(1) V- ...  E t (m) = t' 

in which each step arises f rom the expansion of  a single occurrence of  a type 
abbreviat ion,  and fi F fi(~) G .. .  E u (k). Taking fi, = fi(k), we have 

a[fi] E_ a[fi'] E t{fi ' /~} _ t I 

with fi _ fil (see Fig. 2). I f  t{fi/fi.} r t{fi'/~}, then the proposi t ion follows; and 
this last formula  is easily proved by type induction on t. []  
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We next  turn  to the three results s ta ted in Section 5. We begin with the first o f  
them:  

Proposi t ion 2. Fo r  each type t there is a unique official type t such tha t  t _Z ~. 

Proof  Type induc t ion  on t. I f  t is a basic  type X ,  then t is a l r eady  official, and 
we m a y  take  ~ = t ; this choice is p la in ly  the only one possible.  I f  t is a power  set 
type P u, where there is a unique official type  fi with u _Z fi, then we take  ~ = P ~. 
Pla in ly  t __ ~; for its uniqueness,  observe that  i f  t I is such tha t  t = P u __ t r, then 
t '  = P u I for some u t with u __ u'. I f  t ~ and  hence u I is official, it follows that  
u '  = fi, and  so t r = ~. The case tha t  t is a Car tes ian  p roduc t  type ul x . . .  x un is 
similar.  

Final ly,  if  t is an  abbrev ia ted  type a [fi] where p(a) = [~] �9 P w, then t ___ t ' ,  
where t ~ = w{fi/~}, and  t '  has  smal ler  r ank  than  t. We m a y  assume the existence 

A! 
of  a unique official type ~' such tha t  t '  _ t ,  and  immedia t e ly  t E t '  E ~", so we 
take  t = t ' .  I t  remains  to show that  t '  is the only official type t" wi th  t E_ t" ;  
for this we use the expans ion  lemma.  Suppose  t E t I' and  t" is official. Since 
a[fi] = t r- t", e i ther  t = a[fi ']  for some fi', or  t '  - - w { f i / ~ }  _E t". Because t 'I is 

official the first o f  these is impossible ,  so t '  E_ t" and  by  uniqueness o f  f '  we have 
~ = ~' = t".  [ ]  

Before proving the second result  f rom Section 5, we state and  prove a l emma  tha t  
is der ived f rom strictness. 

Proposi t ion 3. I f  a is a type abbrevia t ion ,  and two types t = a[fi] and  t t = a[fi '] 
~ ^r for each i. satisfy ~ = t ,  then hi = u i 

Proof  We shall  prove the fol lowing by type induct ion  on w : if  v = w{fi/~} and 
v' = w{fi ' /~} satisfy ~ = ~', and  w conta ins  an occurrence o f  zi for some i, then 
ui ^ = u i.^t The desired result  follows on tak ing  w = a [~]. 

I f  w is a given set, then in fact w = Z i and fii ---- ~ = U = ui.̂ ' 
I f  w is a power  set type P y, then y conta ins  an occurrence of  zi, and  we m a y  

assume tha t  the result  holds  when w is replaced by  y. Also,  if  r = y{f i /~} and  
r' = y{ f i l /~}  then P ?  = ~ = ~' = PU,  so ? = 7i. So the induc t ion  hypothes is  
gives tha t  ~i --  fi[ as required. 

I f  w is a Car tes ian  p roduc t  type yl x . . -  x yn, then at  least  one o f  the yj 
conta ins  an occurrence o f  zi. The a rgument  proceeds  as for the case w = P y. 

Finally,  suppose  w is a type abbrev ia t ion  a[~],  where p(a) = [2] �9 r,  and  
suppose  that  the result  holds  i f  w is replaced by any type tha t  is smal ler  in 
our  ordering.  Then v = a[/5] where pj = yj{fi /5} for each j .  So v _E s, where 
s = r { } / 2 } .  Similarly,  v' r- s', where s '  and  pj are defined ana logous ly  to s 
and  pj. Thus  ~ ~ ~i ~ = = --  s ,  and  r is a type with smal ler  rank  than  w, since 
rank(w)  = 1 + rank(r)  + ~ j  deg(r, xj)  * rank(yj).  Also,  one o f  the yj conta ins  

an occurrence o f  zi; and  because  a is strict, r also conta ins  an occurrence o f  
this yj. We therefore  deduce  (by replac ing w by r in the induc t ion  hypothesis)  
that  /3j = /3j.' for this value o f  j .  Next,  observe tha t  yj has smal ler  size and 
no greater  r ank  than  w, so m a y  deduce  (replacing w by yj in the induc t ion  
hypothesis)  tha t  ~i = u~ as required.  [ ]  

We next  prove the result  i tself:  

Proposition 4. I f  t = t~ then t and  t ~ have a least  uppe r  b o u n d  t u t ' .  

Proo f  Simul taneous  type induc t ion  on t and  t'. I f  ne i ther  t nor  t ~ is a type 



584 M. Spivey 

abbrevia t ion ,  then the a rgument  is s t ra ightforward.  We consider  explici t ly the 
fol lowing cases:  

(a) t = a [fi] and  t ~ = a [fi'] are instances  o f  the same type abbrevia t ion .  

(b) t = a [fi] and  t '  = b [fi'] wi th  a @ b. 

(c) t = a [fi], bu t  t '  is not  a type abbrevia t ion .  

(d) t '  = b[fi'], bu t  t is no t  a type abbrevia t ion .  

In  each case, we m a y  assume that  the result  holds  i f  ei ther t or  t '  is replaced by 
a type o f  smal ler  rank.  

= ^~ ^~ for each i. Also,  each For  case (a), since f t ,  our  l emma tells us tha t  zii = u i 
ui has smal ler  r ank  than  t, and  each u; has smal ler  r ank  than  t I, so the induc t ion  
hypothes is  gives a least  uppe r  b o u n d  si = ui uu; for each i. We claim tha t  r = a [3] 
is a least  uppe r  b o u n d  o f  tl and  t2. Pla inly  t _ r and  t ~ E r ; now suppose  r ~ is any  
uppe r  b o u n d  o f  t and  t (  By the expans ion  l emma (twice), e i ther  r I = a [3'] with 
fi E_ 3' and  fi' _ ~', or  w{fi /5} __ r '  and  w{fi ' /5}  U__ r ' ,  where p(a) = [5] * Pw.  In 
the first case, leastness o f  si gives si E s; for each i, and  so r _ rL In the second 
case, we claim that  w{g/~} r- r'; then r = a[~] _ w{~/5} E_ r' as required.  This 
last  c la im is easily proved by ano the r  type  induct ion  on w. 

Fo r  case (b), suppose  the level o f  a is greater  than  or  equal  to tha t  o f  b ; the 
o ther  case is symmetric .  A n y  c o m m o n  expans ion  r of  t and  t '  is not  o f  the form 
a[~],  so by  the expans ion  l emma tl = w{fi /5} _ r, where p(a) = [~] �9 Pw.  The 
type ta has smal ler  r ank  than  t, so we m a y  deduce f rom the induct ion  hypothes is  
that  tl and  t '  have a least  uppe r  b o u n d  tl u t ' ,  which is also a least upper  b o u n d  
for t and  t ' .  Cases (c) and  (d) are similar,  and  again  we expand  either t or  t ~ as 
necessary before  appea l ing  to the induct ion  hypothesis .  []  

We finally prove the th i rd  result  f rom Section 5: 

Propos i t ion  5. I f  t = tl x . - .  x tn then there are least  types Ul, . . . ,  /A n such tha t  
t E U l  x ' "  XUn.  

Proof The p r o o f  is aga in  by  type induct ion  on t. Since ~ is a Car tes ian  p roduc t  
tl x �9 . .  • tn, it is plain that  t i tself  canno t  be a given set or  power-set  type, and  if  
t is a Car tes ian  p roduc t  ul x . . .  x uk, then k = n and ul, . . . ,  un are the required 
least  types. 

The remain ing  case is when t is a type abbrev ia t ion  a [~] with p(a) = [5] * P w. 
We m a y  assume tha t  the result  holds  of  t' = w{f:/5}, which has smaller  r ank  

than  t and  satisfies 5' --  t = tl x - - .  x tn. So let ul . . . . .  u~ be least  types such tha t  
t '  _E ul x . . .  x u~ = v, say. These ui are the required least  types for t, because  

! ! 
the expans ion  l emma guarantees  tha t  if  t E_ u 1 x - . .  x u~ = v', say, then ei ther  
v' = a[F] for some r (which is impossible) ,  or  t '  r v' ,  in which case fi r- fi' as 
required. The  p r o o f  o f  the ana logous  result  for power-set  types is similar.  [ ]  
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