Skip to main content
Log in

Active, optical range imaging sensors

  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Active, optical range imaging sensors collect three-dimensional coordinate data from object surfaces and can be useful in a wide variety of automation applications, including shape acquisition, bin picking, assembly, inspection, gaging, robot navigation, medical diagnosis, and cartography. They are unique imaging devices in that the image data points explicitly represent scene surface geometry in a sampled form. At least six different optical principles have been used to actively obtain range images: (1) radar, (2) triangulation, (3) moire, (4) holographic interferometry, (5) focusing, and (6) diffraction. In this survey, the relative capabilities of different sensors and sensing methods are evaluated using a figure of merit based on range accuracy, depth of field, and image acquisition time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agin GJ, Highnam, PT (1983) Movable light stripe sensor for obtaining 3D coordinate measurements. Proceedings SPIE Conference on 3-D Machine Perception (360):326

    Google Scholar 

  • Ahola R, Heikkinen T, Manninen M (1985) 3D image acquisition by scanning time of flight measurements. Proceedings International Conference on Advances in Image Processing and Pattern Recognition

  • Altschuler MD, Altschuler BR, Toboada J (1981) Laser electro-optic system for rapid 3D topographic mapping of surfaces. Optical Engineering 20(6):953–961

    Google Scholar 

  • Andresen K (1986) The phase shift method applied to moire image processing. Optik 72:115–119

    Google Scholar 

  • ANSI 1986. American National Standard for the safe use of lasers. (ANSI Z136.1-1986) American National Standards Institute, New York

    Google Scholar 

  • Asada M, Ichikawa H, Tsuji S (1986) Determining surface property by projecting a stripe pattern. Proceedings International Conference on Pattern Recognition IEEE-CS, IAPR: 1162–1164

  • Banic J, Sizgoric S, O'Neill R (1987) Airborne scanning lidar bathymeter measures water depth. Laser Focus/ Electro-Optics: 48–52

  • Bastuschek CM, Schwartz JT (1984) Preliminary implementation of a ratio image depth sensor. Robotics Research Report No. 28, Courant Institute of Mathematical Sciences, New York University, New York

    Google Scholar 

  • Beheim G, Fritsch K (1986) Range finding using frequency-modulated laser diode. Applied Optics, 25(9):1439–1442

    Google Scholar 

  • Besl PJ (1987) Range imaging sensors. Tech. Report GMR-6090. Computer Science Dept., General Motors Research Labs, Warren, MI

    Google Scholar 

  • Besl PJ (1988) Active optical range imaging sensors. In: Advances in Machine Vision: Architectures and Applications. J. Sanz (Ed.), Springer-Verlag, New York

    Google Scholar 

  • Besl PJ, Jain RC (1985) Three dimensional object recognition. ACM Computing Surveys 17(1):75–145

    Google Scholar 

  • Bickel G, Hausler G, Maul M (1984) Optics in Modern Science and Technology, Conf. Dig. ICO-13:534

    Google Scholar 

  • Bickel G, Hausler G, Maul M (1985) Triangulation with expanded range of depth. Optical Engineering 24(6):975–979

    Google Scholar 

  • Binger N, Harris SJ (1987) Applications of laser radar technology. Sensors 4(4):42–44

    Google Scholar 

  • Binnig G, Rohrer H (1985) The scanning tunneling microscope. Scientific American 253, 2 (Aug), 50–69

    Google Scholar 

  • Blais F, Rioux M (1986) Biris: a simple 3D sensor. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:235–242

    Google Scholar 

  • Boehnlein AJ, Harding KG (1986) Adaptation of a parallel architecture computer to phase-shifted moire interferometry. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:132–146

    Google Scholar 

  • Boulder Electro-Optics (1986) Product information, Boulder, Colorado, (now Boulder Melles Griot)

  • Boyer KL, Kak AC (1987) Color encoded structured light for rapid active ranging. IEEE Transactions Pattern Analysis Machine Intelligence PAMI-9, 1:14–28

    Google Scholar 

  • Brou P (1984) Finding the orientation of objects in vector maps. International Journal of Robot Research 3:4

    Google Scholar 

  • Bumbaca F, Blais F, Rioux M (1986) Real-time correction of 3D nonlinearities for a laser rangefinder. Optical Engineering 25(4):561–565

    Google Scholar 

  • Carrihill B (1986) The intensity ratio depth sensor. Ph.D. dissertation, Courant Institute of Mathematical Sciences, New York University, New York

    Google Scholar 

  • Carrihill B, Hummel R (1985) Experiments with the intensity ratio depth sensor. Computer Vision, Graphics, Image Processing 32:337–358

    Google Scholar 

  • Case SK, Jalkio JA, Kim RC (1987) 3D vision system analysis and design. In: Three-Dimensional Machine Vision, T. Kanade (Ed.), Kluwer Academic, Boston, pp. 63–96

    Google Scholar 

  • Cathey WT, Davis WC (1986) Vision system with ranging for maneuvering in space. Optical Engineering 24(7):821–824. See also Imaging system with range to each pixel. Journal of the Optical Society of America A 3(9):1537–1542

    Google Scholar 

  • CDRH 1985. Federal Register, Part III, Dept. of Health and Human Services, 21 CFR Parts 1000 and 1040 [Docket No. 80N-0364], Laser Products; Amendments to Performance Standard; Final Rule. For further info, Contact Glenn Conklin, Center for Devices and Radiological Health (HFZ-84), U.S. Food and Drug Administration, 5600 Fishers Lane, Rockville, MD 20857

  • Chang M, Hu CP, Lam P, Wyant JC (1985) High precision deformation measurement by digital phase shifting holographic interferometry. Applied Optics 24(22):3780–3783

    Google Scholar 

  • Chavel P, Strand TC (1984) Range measurement using Talbot diffraction imaging of gratings. Applied Optics 23(6):862–871

    Google Scholar 

  • Church EL, Vorburger TV, Wyant JC (1985) Direct comparison of mechanical and optical measurements of the finish of precision machined optical surfaces. Optical Engineering 24(3):388–395

    Google Scholar 

  • Cline HE, Holik AS, Lorenson WE (1982) Computeraided surface reconstruction of interference contours. Applied Optics 21(24):4481–4489

    Google Scholar 

  • Cline HE, Lorenson WE, Holik AS (1984) Automated moire contouring. Applied Optics 23(10):1454–1459

    Google Scholar 

  • Corle TR, Fanton JT, Kino GS (1987) Distance measurements by differential confocal optical ranging. Applied Optics 26(12):2416–2420

    Google Scholar 

  • Cotter SM, Batchelor BG (1986) Deriving range maps at real-time video rates. Sensor Review 6(4):185–192

    Google Scholar 

  • Cowley JM, Moodie AF (1957) Fourier images: I—the point source. Proceedings Physical Society 70:486–496

    Google Scholar 

  • Cunningham R (1986) Laser radar for the space conscious. Lasers and Applications July: 18–20

  • Cyberoptics (1987) Product information. Minneapolis, MN

  • Damm L (1987) A minimum-size all purpose fiber optical proximity sensor. Proceedings Vision'87 Conference: 6-71-6-91

  • Dandliker R, Ineichen B, Mottier F (1973) Optics Communications 9:412

    Google Scholar 

  • Dandliker R (1980) Heterodyne holography review. Progress in Optics 17:1

    Google Scholar 

  • Dandliker R, Thalmann R (1985) Heterodyne and quasiheterodyne holographic interferometry. Optical Engineering 24(5):824–831

    Google Scholar 

  • Dandridge A (1982) Current induced frequency modulation in diode lasers. Electron. Letters 18:302

    Google Scholar 

  • Denstman H (1980) State-of-the-art optics: Automated image focusing. Industrial Photography, July:33–37

    Google Scholar 

  • Dereniak EL, Crowe DG (1984) Optical Radiation Detectors. Wiley, New York

    Google Scholar 

  • Diffracto (1987) Product Literature. Laser probe digital ranging sensor. Diffracto, Ltd., Windsor, Canada

    Google Scholar 

  • Digital Optronics (1986) Product literature. Springfield, VA

  • Dimatteo PL, Ross JA, Stern HK (1979) Arrangement for sensing the geometric characteristics of an object. (RVSI) U.S. Patent 4175862

  • Electro-Optical Information Systems (1987) Product Information. EOIS, Santa Monica, CA

    Google Scholar 

  • Faugeras OD, Hebert M (1986) The representation, recognition, and locating of 3-D objects. International Journal of Robotic Research 5(3):27–52

    Google Scholar 

  • Froome KD, Bradsell RH (1961) Distance measurement by means of a light ray modulated at a microwave frequency. Journal of Scientific Instrumentation 38:458–462

    Google Scholar 

  • Gasvik KJ (1983) Moire technique by means of digital image processing. Applied Optics 22(23):3543–3548

    Google Scholar 

  • Goldberg N (1982) Inside autofocus: How the magic works. Popular Photography, Feb:77–83

    Google Scholar 

  • Goodman JW (1986) A random walk through the field of speckle. Optical Engineering 25(5):610–612

    Google Scholar 

  • Gottlieb M (1983) Electro-Optic and Acousto-Optic Scanning and Deflection. Marcel-Dekker, New York

    Google Scholar 

  • Griffin DR (1958) Listening in the dark: The acoustic orientation of bats and men. Yale University Press, New Haven, CT

    Google Scholar 

  • Grossman P (1987) Depth from Focus. Pattern Recognition Letters 5(1):63–69

    Google Scholar 

  • Haggren H, Leikas E (1987) Mapvision—The photogrammetric machine vision system. Proceedings Vision'87 Conference: 10-37–10-50

  • Halioua M, Srinivasan V (1987) Method and apparatus for surface profilometry. New York Institute of Technology, Old Westury, NY. U.S. Patent 4,641,972

    Google Scholar 

  • Halioua M, Krishnamurthy RS, Liu H, Chiang FP (1983) Projection moire with moving gratings for automated 3D topography. Applied Optics 22(6):850–855

    Google Scholar 

  • Hall EL, Tio JBK, McPherson CA, Sadjadi FA (1982) Measuring curved surfaces for robot vision. Computer 15(12):42–54

    Google Scholar 

  • Hane K, Grover CP (1985) Grating imaging and its application to displacement sensing. Journal of Optical Society of America A 2(13):9

    Google Scholar 

  • Harding KG (1983) Moire interferometry for industrial inspection. Lasers and Applications Nov.: 73

    Google Scholar 

  • Harding KG, Goodson K (1986) Hybrid high accuracy structured light profiler. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision 728:132–145

    Google Scholar 

  • Harding KG, Tait R (1986) Moire techniques applied to automated inspection of machined parts. Proceedings Vision'86 Conference, SME, Dearborn, MI

    Google Scholar 

  • Hariharan P (1985) Quasi-heterodyne hologram interferometry. Optical Engineering 24(4):632–638

    Google Scholar 

  • Hariharan P, Oreb BF, Brown N (1983) tApplied Optics 22(6):876

    Google Scholar 

  • Harvey JE, MacFarlane MJ, Forgham JL (1985) Design and performance of ranging telescopes: Monolithic vs. synthetic aperture. Optical Engineering 24(1):183–188

    Google Scholar 

  • Hausler G, Maul M (1985) Telecentric scanner for 3D sensing. Optical Engineering 24(6):978–980

    Google Scholar 

  • Heikkinen T, Ahola R, Manninen M, Myllyla R (1986) Recent results of the performance analysis of a 3D sensor based on time of flight. Proceedings SPIE Quebec International Symposium on Optical and Optoelectronic Applied Sciences and Engineering.

  • Hersman M, Goodwin F, Kenyon S, Slotwinski A (1987) Coherent laser radar application to 3D vision and metrology. Proceedings Vision'87 Conference 3-1-3-12

  • Holland SW, Rossol L, Ward MR (1979) Consight-1: A vision controlled robot system for transferring parts from belt conveyors. In: Computer Vision and SensorBased Robots G.G. Dodd and L. Rossol (Eds.), Plenum Press, New York, pp. 81–97

    Google Scholar 

  • Horn BKP (1968) Focusing. MIT, Project MAC, AI Memo 160

  • Hulsmeyer C (1904) Hertzian wave projecting and receiving apparatus adapted to indicate or give warning of the presence of a metallic body, such as a ship or a train, in the line of projection of such waves. U.K. Patent 13,170

  • HYMARC (1987) Product information. Ottawa, Ontario Canada

  • Idesawa M, Yatagai Y, Soma T (1976) A method for the automatic measurement of 3D shapes by new type of moire topography. Proceedings 3rd International Conference Pattern Recognition: 708

  • Idesawa M, Yatagai Y, Soma T (1977) Scanning moire method and automatic measurement of 3D shapes. Applied Optics 16(8):2152–2162

    Google Scholar 

  • Idesawa M, Yatagai Y (1980) 3D shape input and processing by moire technique. Proceedings 5th International Conference Pattern Recognition, IEEE-CS: 1085–1090

  • Idesawa M, Kinoshita G (1986) New type of miniaturized optical range sensing methods RORS and RORST. Journal of Robotic Systems 3(2):165–181

    Google Scholar 

  • Inokuchi S, Sato K, Matsuda F (1984) Range imaging system for 3-D object recognition. Proceedings 7th International Conference Pattern Recognition: 806–808

  • Jalkio J, Kim R, Case S (1985) 3D inspection using multistripe structured light. Optical Engineering 24(6):966–974

    Google Scholar 

  • Jalkio J, Kim R, Case S (1986) Triangulation based range sensor design. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:132–146

    Google Scholar 

  • Jarvis RA (1976) Focus optimization criteria for computer image processing. Microscope 24(2):163–180

    Google Scholar 

  • Jarvis RA (1982) Computer vision and robotics laboratory. IEEE Computer 15(6):9–23

    Google Scholar 

  • Jarvis RA (1983a) A laser time-of-flight range scanner for robotic vision. IEEE Transactions Pattern Analysis Machine Intelligence PAMI-5 5:505–512

    Google Scholar 

  • Jarvis RA (1983b) A perspective on range finding techniques for computer vision. IEEE Transactions Pattern Analysis Machine Intelligence PAMI-5, 2:122–139

    Google Scholar 

  • Jelalian AV, McManus RG (1977) AGARD Panel Proceeding No. 77. June, Sec. 2.1, pp 1–21

  • Johnson M (1985) Fiber displacement sensors for metrology and control. Optical Engineering 24(6):961–965

    Google Scholar 

  • Kak AC (1985) Depth perception for robot vision. In: Handbook of Industrial Robotics, S. Nof (Ed.) Wiley, New York, pp 272–319

    Google Scholar 

  • Kanade T, Asada H (1981) Noncontact visual 3D rangefinding devices. In: Proceedings SPIE 3D Machine Perception, B.R. Altschuler (Ed.):48–53

  • Kanade T, Fuhrman M (1985) A noncontact optical proximity sensor for measuring surface shape. In: ThreeDimensional Machine Vision, T. Kanade (Ed.), Kluwer Academic Boston, pp 151–194

    Google Scholar 

  • Karara HM (1985) Close-range photogrammetry: where are we and where are we heading? Photogrammetric Engineering and Remote Sensing 51(5):537–544

    Google Scholar 

  • Kawata H, Endo H, Eto Y (1985) A study of laser radar. Proceedings 10th International Technical Conference on Experimental Safety Vehicles

  • Kellogg WN (1961) Porpoises and sonar. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Kern Instruments (1987) Product Information. Gottwald, R. and Berner, W., The new Kern system for positioning and automated coordinate evaluation; advanced technology for automated 3D coordinate determination. Brewster, NY. and Aarau, Switzerland

  • Keyes RJ (1986) Heterodyne and nonheterodyne laser transceivers. Review of Scientific Instrumentation 57(4):519–528

    Google Scholar 

  • Khetan RP (1975) The theory and application of projection moire methods. Ph.D. dissertation. Dept. of Engineering Mechanics, State University of New York, Stony Brook

    Google Scholar 

  • Kingslake R (1983) Optical system designAcademic Press, New York

    Google Scholar 

  • Kinoshita G, Idesawa M, Naomi S (1986) Robotic range sensor with projection of bright ring pattern. Journal of Robotic Systems 3(3):249–257

    Google Scholar 

  • Koenderink JJ, Van Doorn AJ (1986) Dynamic shape. Biological Cybernetics 53:383–396

    Google Scholar 

  • Kratky V (1979) Real-time photogrammetric support of dynamic 3D control. Photogrammetric Engineering and Remote Sensing 45(9):1231–1242

    Google Scholar 

  • Krotkov EP (1986) Focusing. Ph.D. Dissertation, U. Penn, Phila, PA

    Google Scholar 

  • Krotkov E, Martin JP (1986) Range from focus. Proceedings IEEE International Conference on Robotics and Automation, IEEE-CS: 1093–1098

  • Kurahashi A, Adachi M, Idesawa M (1986) A prototype of optical proximity sensor based on RORS. Journal of Robotic Systems 3(2):183–190

    Google Scholar 

  • Labuz J, McVey ES (1986) Camera and projector motion for range mapping. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision 728:227–234

    Google Scholar 

  • Lamy F, Liegeois C, Meyrueis P (1981) 3D automated pattern recognition using moire techniques. Proceedings SPIE 360:345–351

    Google Scholar 

  • Landman MM, Robertson SJ (1986) A flexible industrial system for automated 3D inspection. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:203–209

    Google Scholar 

  • Laser Technology (1986) Product information. Norristown, PA

  • Leader JC (1986) Speckle effects on coherent laser radar detection efficiency. Optical Engineering 25(5):644–650

    Google Scholar 

  • Leger JR, Snyder MA (1984) Real-time depth measurement and display using Fresnel diffraction and whitelight processing. Applied Optics 23(10):1655–1670

    Google Scholar 

  • Leith E, Upatnieks J (1962) Reconstructed wavefronts and communication theory. Journal of Optical Society America 54:1123–1130

    Google Scholar 

  • Lewis RA, Johnston AR (1977) A scanning laser rangefinder for a robotic vehicle. Proceedings 5th International Joint Conference on Artificial Intelligence: 762–768

  • Lewis JRT, Sopwith T (1986) 3D surface measurement by microcomputer. Image and Vision Computing 4(3):159–166

    Google Scholar 

  • Livingstone FR, Tulai AF, Thomas MR (1987) Application of 3-D vision to the measurement of marine propellers. Proceedings Vision'87 Conference: 10-25–10-36

  • Livingstone FR, Rioux M (1986) Development of a large field of view 3D vision system. Proceedings SPIE 665

  • Lord Rayleigh (JW Strutt) (1874) On the manufacture and theory of diffraction gratings. Phil. Mag. 47(81):193

    Google Scholar 

  • Lord Rayleigh (JW Strutt) (1881) Phil. Mag. 11:196

    Google Scholar 

  • Lorenz RD (1984) Theory and design of optical/electronic probes for high performance measurement of parts. Ph.D. dissertation, Univ. of Wisconsin-Madison

  • Lorenz RD (1986) A novel, high-range-to-resolution ratio, optical sensing technique for high speed surface geometry measurements. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision 728:152–146

    Google Scholar 

  • Macy WW (1983) Two-dimensional fringe pattern analysis. Applied Optics 22(22):3893–3901

    Google Scholar 

  • Mader DL (1985) Holographic interferometry of pipes: precision interpretation by least squares fitting. Applied Optics 24(22):3784–3790

    Google Scholar 

  • Marshall G (1985) Laser Beam Scanning, Marcel-Dekker, New York

    Google Scholar 

  • Matsuda R (1986) Multifunctional optical proximity sensor using phase modulation. Journal of Robotic Systems 3(2):137–147

    Google Scholar 

  • Matthews HJ, Hamilton DK, Sheppard CJR (1986) Surface profiling by phase-locked interferometry. Applied Optics 25(14):2372–2374

    Google Scholar 

  • Mersch SH, Doles JE (1985) Cylindrical optics applied to machine vision. Proceedings Vision'85 Conference, SME, 4-53–4-63

  • Mertz L (1983) Real-time fringe pattern analysis. Applied Optics 22(10):1535–1539

    Google Scholar 

  • Miller GL, Wagner ER (1987) An optical rangefinder for autonomous robot cart navigation. Proceedings SPIE Industrial Electronics, Cambridge, MA, (November)

  • Moore DT, Traux BE (1979) Phase-locked moire fringe analysis for automated contouring of diffuse surfaces. Applied Optics 18(l):91–96

    Google Scholar 

  • Mundy JL, Porter GB (1986) A three-dimensional sensor based on structured light. In: Three-Dimensional Machine Vision, T. Kanade (Ed.), Kluwer Academic, Boston, pp 3–62

    Google Scholar 

  • Nakagawa Y, Ninomiya T (1987) Three-dimensional vision systems using the structured light method for inspecting solder joints and assembly robots. ThreeDimensional Machine Vision, T. Kanade (Ed.), Kluwer Academic, Boston, pp 543–565

    Google Scholar 

  • Nevatia R, Binford TO (1973) Structured descriptions of complex objects. Proceedings 3rd International Joint Conference on Artificial Intelligence: 641–647

  • Newport Corp (1987) Product Information. Design and testing with holography. Machine vision components. Fountain Valley, CA

  • Nitzan D, Brain AE, Duda RO (1977) The measurement and use of registered reflectance and range data in scene analysis. Proceedings IEEE 65(2):206–220.

    Google Scholar 

  • Nitzan D, Bolles R, Kremers J, Mulgaonkar P (May 1986) 3D vision for robot applications. NATO Workshop on Knowledge Engineering for Robotic Applications, Maratea, Italy

  • Oboshi T (1976) Three-Dimensional Imaging Techniques. Academic Press, New York

    Google Scholar 

  • Oster G (1965) Moire optics: a bibliography. Journal of Optical Society America 55:1329

    Google Scholar 

  • Ozeki O, Nakano T, Yamamoto S (1986) Real-time range measurement device for 3D object recognition. IEEE Trans. Pattern Analysis Machine Intelligence. PAMI-8, 4, 550–553

    Google Scholar 

  • Pantzer D, Politch J, Ek L (1986) Heterodyne profiling instrument for the angstrom region. Applied: Optics 25(22):4168–4172

    Google Scholar 

  • Parthasarathy S, Birk J, Dessimoz J (1982) Laser rangefinder for robot control and inspection. Proceedings SPIE Robot Vision 336:2–11

    Google Scholar 

  • Pelowski KR (1986) 3D measurement with machine vision. Proceedings Vision'86 Conference: 2-17–2-31

  • Pentland AP (1987) A new sense of depth of field. IEEE Transaction Pattern Analysis Machine Intelligence PAMI-9, 4:523–531

    Google Scholar 

  • Perceptron (1987) Product information. Farmington Hills, MI

  • Perrin JC, Thomas A (1979) Electronic processing of moire fringes: application to moire topography and comparison with photogrammetry. Applied Optics 18(4):563–574

    Google Scholar 

  • Peterson RW, Robinson GM, Carlsen RA, Englund CD, Moran PJ, Wirth WM (1984) Interferometric measurements of the surface profile of moving samples. Applied Optics 23(10):1464–1466

    Google Scholar 

  • Photonic Automation, Inc. (1987) Product literature. Improving automated SMT inspection with 3D vision. M. Juha and J. Donahue. Santa Ana, CA

  • Pipitone FJ, Marshall TG (1983) A wide-field scanning triangulation rangefinder for machine vision. International Journal of Robotics Research 2(1):39–49

    Google Scholar 

  • Pinckney HFL (1978) Theory and development of an online 30 Hz video photogrammetry system for real-time 3D control. International Archives of Photogrammetry, Vol. XXII, Part V. 2:38 pages

  • Pirodda L (1982) Shadow and projection moire techniques for absolute and relative mapping of surface shapes. Optical Engineering 21:640

    Google Scholar 

  • Popplestone RJ, Brown CM, Ambler AP, Crawford GF (1975) Forming models of plane-and-cylinder faceted bodies from light stripes. Proceedings 4th International Joint Conference on Artificial Intelligence: 664–668

  • Potmesil M (1983) Generating models of solid objects by matching 3D surface segments. Proceedings 8th International Joint Conference on Artificial Intelligence: 1089–1093

  • Potsdamer J, Altschuler M (1982) Surface measurement by space-encoded projected beam system. Computer Graphics Image Processing 18:1–17

    Google Scholar 

  • Pryputniewicz RJ (1985) Heterodyne holography applications in studies of small components. Optical Engineering 24(5):849–854

    Google Scholar 

  • Quist TM, Bicknell WE, Bates DA (1978) ARPA Semiannual report: optics research, Lincoln Laboratory, MIT

  • Reid GT (1986) Automatic fringe pattern analysis: A review. Optics and Lasers in Engineering 7:37–68

    Google Scholar 

  • Rioux M (1984) Laser range finder based upon synchronized scanners. Applied Optics 23(21):3837–3844

    Google Scholar 

  • Rioux M, Blais F (1986) Compact 3-D camera for robotic applications. Journal of Optical Society of America A 3(9):1518–1521

    Google Scholar 

  • Robotic Vision Systems, Inc (1987) Product literature. RVSI, Hauppage, NY

    Google Scholar 

  • Rocker F (1974) Localization and classification of 3D objects. Proceedings 2nd International Conference Pattern Recognition: 527–528

  • Rosenfeld JP, Tsikos CJ (1986) High-speed space encoding projector for 3D imaging. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:146–151

    Google Scholar 

  • Ross JA (1978) Methods and systems for 3D measurement. U.S. Patent 4,199,253. (RVSI, Hauppage, NY)

    Google Scholar 

  • Sampson RE (1987) 3D range sensor via phase shift detection (Insert). IEEE Computer 20(8):23–24

    Google Scholar 

  • Sasaki O, Okazaki H (1986) Sinusoidal phase modulating interferometry for surface profile measurement. And Analysis of measurement accuracy in sinusoidal phase modulating interferometry. Applied Optics 25(18):3137–3140,3152–3158

    Google Scholar 

  • Sato Y, Kitagawa H, Fujita H (1982) Shape measurement of curved objects using multiple-slit ray projection. IEEE Transactions Pattern Analysis Machine Intelligence PAMI-4, 6:641–649

    Google Scholar 

  • Sato K, Inokuchi S (1985) 3D surface measurement by space encoding range imaging. Journal of Robotic Systems 2(1):27–39

    Google Scholar 

  • Schewe H, Forstner W (1986) The program PALM for automatic line and surface measurement using image matching techniques. Proceedings Symposium International Society for Photogrammetry and Remote Sensing, Vol. 26, Part 3/2:608–622

    Google Scholar 

  • Schlag JF, Sanderson AC, Neumann CP, Wimberly FC (1983) Implementation of automatic focusing algorithms for a computer vision system with camera control. CMU-RI-TR-83-14

  • Schmitt F, Maitre H, Clainchard A, Lopez-Krahm J (1985) Acquisition and representation of real object surface data. SPIE Proceedings Biostereometrics Conf., Vol. 602

  • Schmitt F, Barsky B, Du W (1986) An adaptive subdivision method for surface-fitting from sampled data. Computer Graphics 20(4):179–188

    Google Scholar 

  • Schuman W, Dubas M (1979) Holographic Interferometry. Springer-Verlag, Berlin

    Google Scholar 

  • Schwartz J (1983) Structured light sensors for 3D robot vision. Robotics Research Report No. 8, Courant Institute of Mathematical Sciences, New York University, New York

    Google Scholar 

  • Sciammarella CA (1982) The moire method-A review. Exp. Mech. 22:418–433

    Google Scholar 

  • SELCOM (1987) Optocator product information. Valdese, NC, US; Partille, Sweden; Krefeld, West Germany

  • Servo-Robot (1987) Product information. Boucherville, Quebec, Canada

  • Shirai Y, Suwa (1972) Recognition of polyhedra with a range finder, Pattern Recognition 4:243–250

    Google Scholar 

  • Silvaggi C, Luk F, North W (1986) Position/dimension by structured light. Experimental Techniques: 22–25

  • Skolnick MI (1962) Introduction to Radar Systems. McGraw-Hill, New York

    Google Scholar 

  • Slevogt H (1974) Technische Optik. Walter de Gruyter, Berlin, pp 55–57

    Google Scholar 

  • Smith RC, Cheeseman P (1987) On the representation and estimation of spatial uncertainty. International Journal of Robotics Res. 5(4):56–68

    Google Scholar 

  • Solid Photography, Inc. (1977) (now Robotic Vision Systems, Inc. (RVSI), Hauppage, NY)

  • Srinivasan V, Liu HC, Halioua M (1985) Automated phase measuring profilometry: A phase-mapping approach. Applied Optics 24(2):185–188

    Google Scholar 

  • Stockman G, Hu G (1986) Sensing 3D surface patches using a projected grid. Proceedings Computer Vision Pattern Recognition Conference: 602–607

  • Strand T (1983) Optical three-dimensional sensing. Optical Engineering 24(l):33–40

    Google Scholar 

  • Svetkoff DJ (Oct. 1986) Towards a high resolution, video rate, 3D sensor for machine vision. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:216–226

    Google Scholar 

  • Svetkoff DJ, Leonard PF, Sampson RE, Jain RC (1984) Techniques for real-time feature extraction using range information. Proceedings SPIE-Intelligent Robotics and Computer Vision 521:302–309

    Google Scholar 

  • Talbot H (1836) Facts relating to optical science No. IV. Phil. Mag. 9:401–407

    Google Scholar 

  • Technical Arts Corp (1987) Product Literature. Redmond, WA

  • Teich MC (1968) Infrared heterodyne detection. Proceedings IEEE 56(l):37–46

    Google Scholar 

  • Tenenbaum J (1970) Accommodation in computer vision. Ph.D. dissertation, Stanford University, Stanford, CA

    Google Scholar 

  • Terras R (1986) Detection of phase in modulated optical signals subject to ideal Rayleigh fading. Journal of Optical Society of America A 3(11):1816–1825

    Google Scholar 

  • Thalmann R, Dandliker R (1985) Holographic contouring using electronic phase measurement. Optical Engineering 24(6):930–935

    Google Scholar 

  • Theocaris PS (1969) Moire fringes in strain analysis. Pergamon Press, New York

    Google Scholar 

  • Tozer BA, Glanville R, Gordon AL, Little MJ, Webster JM, Wright DG (1985) Holography applied to inspection and measurement in an industrial environment. Optical Engineering 24(5):746–753

    Google Scholar 

  • Tsai R (1986) An efficient and accurate camera calibration technique for 3D machine vision. Proceedings Computer Vision Pattern Recognition Conference IEEE-CS:364–374

  • Vest CM (1979) Holographic interferometry. Wiley, New York

    Google Scholar 

  • Vuylsteke P, Oosterlinck A (1986) 3D perception with a single binary coded illumination pattern. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:195–202

    Google Scholar 

  • Wagner JW (1986) Heterodyne holographic interferometry for high-resolution 3D sensing. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:173–182

    Google Scholar 

  • Wagner JF (June 1987) Sensors for dimensional measurement. Proceedings Vision'87 Conference, pp 13-1-13-18

  • Wang JY (1984) Detection efficiency of coherent optical radar. Applied Optics 23(19):3421–3427

    Google Scholar 

  • Wang JY, Bartholomew BJ, Streiff ML, Starr EF (1984) Imaging CO2 radar field tests. Applied Optics 23(15):2565–2571

    Google Scholar 

  • Wang JY (1986) Lidar signal fluctuations caused by beam translation and scan. Applied Optics 25(17):2878–2885

    Google Scholar 

  • Wang YE, Mitiche A, Aggarwal JK (1985) Inferring local surface orientation with the aid of grid coding. IEEE Workshop on Computer Vision: Representation and Control: pp 96–104

  • Wei D, Gini M (1983) The use of taper light beam for object recognition. In: Robot Vision, R. Pugh (Ed.), IFS Publications, Springer-Verlag, Berlin

    Google Scholar 

  • Will PM, Pennington KS (1972) Grid coding: a novel technique for image processing. Proceedings IEEE 60(6):669–680

    Google Scholar 

  • Winthrop JT, Worthington CR (1965) Theory of fresnel images I. Plane periodic objects in monochromatic light. Journal of the Optical Society of America 55(4):373–381

    Google Scholar 

  • Wuerker RF, Hill DA (1985) Holographic microscopy. Optical Engineering 24(3):480–484

    Google Scholar 

  • Yamamoto H, Sato K, Inokuchi S (1986) Range imaging system based on binary image accumulation. Proceedings International Conference on Pattern Recognition IEEE:233–235

  • Yatagai T, Idesawa M, Yamaashi Y, Suzuki M (1982) Interactive fringe analysis system: Applications to moire contourogram and interferogram. Optical Engineering 21(5):901

    Google Scholar 

  • Yeung KK, Lawrence PD (1986) A low-cost 3D vision system using space-encoded spot projections. Proceedings SPIE Conference on Optics, Illumination, and Image Sensing for Machine Vision, 728:160–172

    Google Scholar 

  • Zuk DM, Dell'Eva ML (1983) Three-dimensional vision system for the adaptive suspension vehicle. Final Report No. 170400-3-F, ERIM, DARPA 4468, Defense Supply Service-Washington

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besl, P.J. Active, optical range imaging sensors. Machine Vis. Apps. 1, 127–152 (1988). https://doi.org/10.1007/BF01212277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01212277

Key words

Navigation