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Abstract

A process is ‘computable’ if it can be modelled by a transition system that has a recursive structure.
The equivalence relation between transition systems considered is bisimulation. As a means for defining
transition systems (modulo bisimulation), the specification language CRL (micro Common Representa-
tion Language) is used. Two simple fragments of uCRL are singled out, yielding universal expressivity
with respect to recursive and primitive recursive transition systems over a fixed, finite label set. For all
transition systems defined by a uCRL specification over the recursive fragment, and for the class of .all
primitive recursive transition systems over some finite label set, the properties ‘bisimilarity’, ‘deadlock
freedom’ and ‘regularity’ (i.e., having a bisimilar finite representation) are classified in the arithmetical
hierarchy. Finally it is shown that in the domain of primitive recursive transition systemns over a fixed,
finite label set, a genuine hierarchy in bisimilarity can be defined via the complexity of the witnessing
relations.
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1 INTRODUCTION

yduction

the behaviour of a system, such as a computer or a coffee vending machine, in terms
e) actions that can be performed. In this paper transition systems are considered as
| representations of processes. Such a transition system consists of a set of states, a set
resenting the actions, and a transition relation, prescribing for each state the possible
..e., what actions can be performed, and (per action) what state results. Distinguishing
initial’ then yields a formal representation of a process. A process is called computable
ssociated with a transition system that has a recursive structure: the sets of states and
wursive, and from each state all next steps can be computed as a finite set. A widely
vioural equivalence relation on transition systems is (strong) bisimulation equivalence
', GV89], which is the semantic equivalence relation considered in this paper.

se of this paper is twofold: first transition systems and bisimulation equivalence are
srms of (basic) recursion theory. Secondly, it is intended to illustrate that the particular
anguage pCRL (micro Common Representation Language, [GP90, GP91a)) is a suitable
e definition of transition systems (modulo bisimulation), and hence for the study of
y.
ge pCRL is designed for the specification of (parallel, communicating) processes. This
fragment of the specification language CRL [SSA90]. Typically, uCRL supports only
c features of CRL or other specification languages such as LOTOS [IS087], SDL [CCI87]
0], and is meant to be a vehicle for the study of these basic features. For #CRL there
eory, providing the mathematical means to analyse behavioural aspects of processes,
\ about behavioural equivalences [GP91b]. This proof theory is based on an axiomatic
'he tradition of the framework ACP (the Algebra of Communicating Processes) developed
\ and KLOP (for an overview and historical references see [BW90]). The language uCRL
:nsion of the ACP set-up in that it allows the specification of data, and that it contains
connecting data values to process behaviour. To be more precise: a uCRL-specification
formal language for defining processes.

ular types of transition systems over finite label sets play a role in this paper: “recur-
imitive recursive” transition systems. For each of these domains of transition systems, a
CRL is described that is universally expressive: any (primitive) recursive transition sys-
fined (modulo bisimulation) using a ‘canonical’ uCRL-specification over the appropriate

:’ property of a transition system modelling some process should be bisimulation invari-
m the level of bisimulation equivalence that transition systems are assumed to model
r instance the ‘number of states’ of a transition system is no such property, as even
ansition systems can be bisimilar while having a different number of states. The follow-
on invariant properties of recursive transition systems over a fixed, finite label set are
nd classified with respect to their defining pCRL-specifications: bisimilarity which is
9, deadlock freedom which is also complete in 13, and regularity (i.e., having a bisimilar
itation) which is complete in £J. It is argued that these classification results are also
pect to the class of all primitive recursive systems over a fixed, finite label set.

nature of bisimilarity itself (i.e., the existence of a relation that is a bisimulation) is
[t turns out that in the relatively simple domain of primitive recursive transition systems
finite label set, one can distinguish between bisimilarity based on primitive recursive,
wrsively enumerable or unrestricted witnessing bisimulations.

k. In [BBK87] BAETEN, BERGSTRA and KLOP show that ACP with ‘abstraction’ is
pressive over a comparable domain of recursive transition systems, and that the feature
really necessary in that case. DARONDEAU uses in [Dar90a] a wider notion of ‘recursive
:ems’ than is done here (the transition relation must be recursive as a set so that infinite



branching may occur; see also FERNANDO in [Fer92]), whereby these results do not carry over to
the present approach. However, in [Dar90b] DARONDEAU proves that “The maximal reduction of
a primitive recursive and deterministic transition graph with finite degree and finite labelling is not
always recursive.” In Section 6 there is a result of BERGSTRA [Ber91] implying that it even need not
be recursively enumerable.

Acknowledgements. I thank Jos Baeten, Jan Bergstra, Javier Blanco, Tim Fernando, Henri Korver,
Joachim Parrow, Jan Rutten and Frits Vaandrager for discussions and critical remarks. In particular
the observations of Jan Bergstra formed a fundamental inspiration.

2 Computable processes

This section introduces transition systems and bisimulation equivalence. Then ‘computable’ behaviour
is defined by means of transition systems having a recursive structure. Finally the bisimulation
invariant properties of transition systems that play a role in this paper are introduced.

2.1 Preliminaries
A (rooted, labelled) transition system is a quadruple (S, L, —, sg) with
1. S # 0 a set of states, ,
2. L # 0 a set of labels or actions,
3. — C S X L x S a transition relation, and
4. sg € S its root.

Instead of writing (s,l,s') € —, the more ‘pictorial’ notation s S , in accordance with the way
transition systems will be visualised (see Example 2.1.2), is used from now on.

In a rooted transition system the root represents the initial state of the process it models. The
transition relation then prescribes for each state what actions may be performed (if any) and what
state results per possible action. In fact the states of a transition system only play a role in structuring
the actions a process may perform. The operational behaviour embodied by a transition system is the
real object of interest. This behaviour can be captured by regarding transition systems modulo
(strong) bisimulation equivalence [Par81]:

Definition 2.1.1 (Bisimulation equivalence and isomorphisms). Let Ti = (S1, Ly, —1,51) and
Ty = (83, Lg,—3, s2) be two transition systems. A relation R C §; x Sy is a bisimulation iff R
satisfies the transfer property, i.e., for each pair (¢1,2) € R:

~ t3 5wy = TJuy.ty by up and (u1,u) € R,
~ tg—bgup => Juy.t; —b; uy and (u1,us) € R.
The transition systems T} and T, are bisimilar, notation
ER=1}

iff there exists a bisimulation R C S; x Sz such that (s1, s9) € R.
The transition systems Ty and T3 are called isomorphic, notation

T]_ ﬁTz

if there is bijective mapping between S; and S5 that preserves the roots and the respective transition
relations. n
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Observe that ¢« is an equivalence relation on transition systems, and that isomorphic transition
systems are bisimilar.

Example 2.1.2. Consider the following three, bisimilar transition systems (Nat denoting the natural
numbers):

T, ¥ (Nat,{a},{n - n+1|n € Nat},0)
I, = ({0}: {a'}) {0 — 0}1 0)
T ¥ ({0,1,2},{a,b,c},{0 % 0,1 % 1,2 -2 2},0).

In the following picture all these transition systems are visualised, where the roots are indicated by a
small downward arrow and -~ abbreviates w consecutive a-transitions:

0 0 0
a «© a « a
1
a T 1
2 a
a
3 2
a” b
41 T3

It follows easily that Nat x {0} is a bisimulation relating 77 and T, and 7 and T3. The transi-
tion systems T3 and T3 are related by {(0,0)}. n

An immediate consequence of regarding transition systems modulo bisimulation equivalence concerns
root connectedness: only states that can be reached from the root play a role. More formally, given a
transition system T' = (S, L, —, sg), let

SO ‘%éf {50}3
Sip ¥ {s'|3ses;Mel.s Ly,

S“’ dre—f Ui<w Si'

Then T < (S, L,— N(S, X L x 8,),50). In a similar way also the set L of labels can be restricted
to those labels that occur in transitions from S,,. There is a sound reason for not defining a transition
system right away as a connected, directed, labelled graph. In the spirit of a specification language
for (equivalence classes) of transition systems, it is usual to define a transition relation via a calculus
that operates on language expressions, i.e., on the structure of the states (as to obtain an operational
semantics in the style of PLOTKIN [Plo81, GV89]). Therefore the transitions from any state may not
depend on properties of the transition system, as for instance root connectedness.
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The property root connectedness can be used to define transition systems that distinguish two types
of termination: ‘deadlock’ and ‘successful termination’.

Definition 2.1.3 (Termination in transition systems). Let T = (S, L, —, s9) be a transition system
such that the distinguished symbol / (“tick”) is in L, and L\ {1/} # 0. The label 1/ is used to signal
successful termination.

1. A state s € S is called a termination state iff s has no outgoing transitions having a label in

L\ {V/}, ie.,
— N({s} x L\ {v/} x §) =0,

and either s = sg or there is a root connected state s’ € S and a label a € L\ {y/} such that

s 2 5 €—,
2. A termination state s € S represents deadlock iff s has no outgoing transitions.

3. A termination state s € S represents successful termination iff s # s, there is one outgoing
transition of the form

v

5 % s e—s,

and for this transition the resulting state s’ has no outgoing transitions.

The transition system T is properly terminating (PT) iff for all s,s' € S that are root connected
and that satisfy s A €——, the state s is a termination state, and every termination state in T'
represents either deadlock or successful termination. |

Some examples:

0 0
a v
1 1
Vv a
2 2 2 3
A PT transition system Two transition systems that are not PT

2.2 Recursive transition systems

Following BERGSTRA and KLOP [BBK87], a ‘computable’ process is a process of which in any state
all possible next steps are finite in number and can be computed. Such a process is modelled by
a ‘recursive’ transition system. ! In the formal definition of such transition systems the following
standard primitive recursive (de)coding functions relating Nat x Nat and Nat [Dav82] are used:

iy) = ;- ((z+y)?+3y+az)
gilz) = pwy<z.[3z2<z.5(y,2) =41]
jo(z) = pz<z.[Fy<z.j(y,2) =4

Typically j(j1(x), j2(2)) = = and j;(j(z1,22)) = z;. Moreover, a useful property is z < j(z, ¥) >y

1Some common references to recursion theory are [Rog67, Dav82].
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Definition 2.2.1. A transition system (S, L, —, 8p) is recursive iff
1. The set § C Nat of states is a recursive set.

2. The set L of labels can be coded as a recursive set, i.e., there is an injective function 7 : L — Nat
such that ’

L) € (i) | 1e L}

is recursive.

3. The relation — can be represented by a (total) recursive function nezt such that for all s € §
the value of nezt(s) is the canonical index? (CI) of the finite set coding all next steps from s:

neat(s) = CI({j(i(1), ") | s > s'})
(80 Drpegt(s) contains all values j(i(l), s") for which s SLIPY )
4. The root sg is 0.
If appropriate, (S, L, —, s¢) is sometimes denoted as
(8, L, next, 7).

A transition system is primitive recursive, PRIM for short, iff the sets S and ¢(L), and the function
nezt are PRIM. ]

In the case that L is (isomorphic with) Nat, it is assumed that the coding function  itself is recursive.
Note that in a recursive transition system the number of next steps is always finite: such systems are
called finitely branching.

An alternative approach would be to define a recursive transition system as one that may be
countably branching and has a recursive structure. In [Dar90a] this approach is followed, and there a
transition system is “recursive” iff its transition relation is a recursive set.

A transition system (S, L, —, so) is called finite iff both S and L are finite (so a finite transition
system is always isomorphic with a PRIM transition system). Finite transition systems are of interest,
because they are easy comprehensible and immediately reveal a simple type of behaviour (‘regular’
behaviour). The question whether a (primitive) recursive transition system is bisimilar to a finite one
is highly undecidable. This question is further dealt with in Section 5.-

Any (primitive) recursive transition system can be unfolded into a bisimilar one that is tree-like,
i.e., of which the root connected part is a tree (cf. Example 2.1.2, where T; is an unfolded version of
T,). This can be done by the following transformation. Take Nat as the set of states of the system to
be defined. Given a recursive transition system

T = (S, L, next, i),

the idea is to define a new function tree-nezt(.) on Nat that defines transitions s -1 &' such that
s < s' and such that all root connected states contain a reference to nezt that guarantees bisimilarity.
Assume a state s of T is related to a state j(£, s) of the system under construction (initially the root
0 is related to j(0,0) = 0), and in T there is a transition

l !
8§ — 8.

2The canonical index of @ is 0, of {ki,k2, ..., k;} it is the number 251 + 2%2 4 . 4+ 2%, and D, is the finite set with
canonical index .
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responding transition
3(f(2,s,4(1)), ")

‘unction satisfying V1, ze, z3,y. j(z1,2) < j(f(z1, Z2, Z3), y). Due to this inequality,
1ese new transitions never generate cycles. The j; values of the new states can be used
sing nect) what transitions are defined in the original system T, whence guaranteeing
w a formal definition of this new system, fixing f, can be given. Let

characteristic function that yields 1 in case of membership, and 0 otherwise. Then
se-next, 1) with

NE S Cly € Dnestjaiey] - ¥R @ LGN
ySneat(jz(2))

se-like transition system yielding T' «= T' by definition.
in the transformation described above, the function tree-next is PRIM if nextis. Hence

vrimitive recursive transition system in this way yields a bisimilar tree-like transition
gain PRIM.

llation invariant properties

of recursive transition systems over a fixed, finite label set that play a role in this
atroduced. All of these have to be invariant under bisimulation equivalence, as it are
: classes that represent ‘operational behaviour’. So, if T, ..., T}, are transition systems
-ty P holds, say P(Ty, ..., Tn), and T; < T}, then also P(T}, ..., Tt). Typically, neither
s’, nor ‘being tree-like’ is a bisimulation invariant property of a single transition system
» restriction to root connected transition systems), as was illustrated in Example 2.1.2.
erty that will be considered is bisimilarity itself (because ¢ isan equivalence relation,
wer two transition systems that is bisimulation invariant). This property is of interest
t characterises all of what is taken to be important of a transition system.

verty of interest concerns properly terminating (PT') transition systems (see Definition
ansition system is deadlock free if all termination states represent successful termina-
deadlock freedom is invariant under bisimilarity. The interest of this property can be
lows. In pCRL, concurrent processes are defined using parallel operators and com-
arations. The remnants of unsuccessful communications are then encapsulated: the
-ansitions are removed [BW90]. If at some point there is no communication possible,
adlock.

that goes with finiteness modulo bisimulation is reqularity: a transition system is
isimilar with some finite transition system. The term ‘regular’ refers to the theory of
s [HUT79], from which also standard techniques can be used to prove that a transition
sgular. In particular, the presence of an “irregular trace” contradicts the Pumping
sular languages [HU79]. As noted before, regular transition systems are of interest
> “finitely representable’ (cf. Example 2.1.2).

transition system, let its ny;, projection be its (rooted) subtree of depth n. So modulo
e ny, projection of a recursive transition system is a well defined notion modelling
s that can be performed. Projections play a crucial role in the way properties of
ion systems are classified in Section 5. For instance, two recursive transition systems
Wl their projections are. '
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language yCRL, two simple fragments

introduces the fragments of the specification language uCRL that are used to specify
cursive transition systems over a fixed, finite label set (modulo bisimulation). Any
s term is associated with such a (primitive) recursive transition system.

ge uCRL [GP90, GP91a] can be characterised as an extension of the process specification
> [BW90] with data. A (well-formed) uCRL specification may contain the declaration of
types and defines a process specification environment in which such data may be used
a dependent process behaviour. This paper concentrates on some fragments of effective
ljective referring to the effective computability of associated notions. Before explaining
, it makes sense to impose the following general restrictions, adopted throughout the

re no parameterised actions (this corresponds with the restriction to recursive transition
over finite label sets).

gard to data, only (total) recursive functions and relations are considered (or sometimes
ly primitive recursive ones).

ree basic uCRL process operators are used: choice, sequential composition and the
nal (this operator resembles the programming construct if - then - else -).

the common system ACP, the additional feature of the uCRL-fragments considered is
lentifiers (used to specify processes recursively) may be parameterised with conceptually
ple data type, viz. the natural numbers on which only total recursive operations are
18 the availability of the conditional by which process behaviour can be specified as
data values. Therefore it is so to speak the smallest extension of the ACP framework
wrallelism and abstraction) in the direction of ‘involving data in specifications’, i.e., in the
CRL. It turns out that with respect to expressivity and some computational properties
transition systems, this fragment constitutes already an interesting extension.

ax of yCRL(TREC) and pCRL(PRIM)

d) pCRL specification contains a finite number of two types of declaration units: one
he ‘data part’ of the specification, and one forming the ‘process part’. In the following
. described separately. As there is in this paper only a restricted use of the language
acerning parameterisation), the syntax given here is simpler than in ([GP90].

wrt.  Only two data sorts play a role: the Booleans of which the sort name Bool and
T (true) and F (false) must be declared in any (well-formed) specification; and the
ers, represented as the sort Nat with constant 0 and successor function S. Furthermore
.may contain a finite number of ‘function declarations’, provided these are total recursive
ort). As an example of the syntax of data specification in uCRL, the specification of
functions is shown in Table 1, where the keyword rew (‘rewriting rules’) precedes the
ons of the functions (using the variables declared by var).
remainder of this paper a coding of Turing Machines (or any other equivalent computing
2d. In particular KLEENE’S well-known T'-predicate [Kle52, Dav82] plays a crucial role
e specifications to come: let m > 1 € Nat, then

yoer Ymy 2)

ation of process identifiers in ACP with a finite data type is not considered as an extension: it can
*ked by using all ‘instantiated’ process identifiers.
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rt Bool
nc T,F:— Bool

rt Nat
nc 0:— Nat
S, pd : Nat — Nat
add, monus, times : Nat X Nat — Nat

r z,y:Nat

w pd(0)=0
pd(S(z)) ==
add(z,0) ==z

add(z,f(gg)) = S(add(z,y))
monus(m: S(y)) = pd(monus(z,y))
times(z,0) =0

times(z, S(y)) = add(times(z,y), )

nc eg: Nat X Nat — Bool
z,y: Nat
w  eq(z,z)=T
eq(S(z), S(y)) = eq(z,y)
eq(S(z),0) =F
eq(0, S(z)) =F

L]

Table 1: A data specification.

3 a computation according to the Turing Machine coded by z for arguments (y1, .., Ym)-
-essed that once such a coding is defined, the predicate T}, (for a fixed value m) is PRIM.
Ton(Z, Y1, -y Ym, 2) cant be defined in a specification by a Boolean valued characteristic

part. The most simple processes are (atomic) actions. These must be declared
1 the keyword act. For example

b

1 of actions with names a, b.
ex processes can be declared by means of (parameterised) process identifiers, possibly
way. Such declarations must be preceded by the keyword proc. For example

counter(z) =p
buffer = q

+ a counter is declared. It is a process with one parameter x of sort Nat. The parameter
.in the process term p that specifies its behaviour and has no wider scope. The syntax
ns is defined below. In the second line of the example a parameterless process buffer
s behaviour is given by the process term ¢. In this paper all process declarations are
ameterised, or parameterised over Nat (so the sort of the variables possibly occurring
ttifiers is always Nat). *

- typing of data parameters in process declarations is necessary.
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'ms may be constructed according to the following syntax:

(p+p)
(-p)
(patvp)
)

n
n{t1, ...y tm)

epresents choice and the - stands for sequential composition. The conditional construct
1 alternative way to write an if - then - else expression introduced by HOARE et al.
e also [BB90]). The data-term ¢ is supposed to be of the standard sort of the Booleans
<part is executed if the data-term t evaluates to true (T) and the b-part is executed if
38 to false (F'). Furthermore § is a constant called deadlock or inaction, and represents
in which no steps can be performed. Finally n is the name of some declared action or
ifier, and t1, ..., t,, are data terms.

ns in puCRL(TREC) and puCRL(PRIM). A specification over the fragment of uCRL
v sequence starting with the declaration given in Table 1, possibly followed by a number
tion declarations, action declarations and process declarations.

+ pCRL, specifications have to be guarded as to safeguard that any process term is
a transition system that is recursive. Guardedness is a condition on the way recursion
in process declarations. Typically, unguarded specifications may represent transition
are infinitely branching. The following criterion for syntactic guardedness (a sort of
:ursion scheme’) is further used. It is based on the syntax of specifications, and it is
roperty. (In Section 3.2 a much wider, but undecidable criterion for guardedness is

3.1.1 (Syntactic guardedness). Let E be a specification that contains the data part
ove.

be process terms over E with p a (parameterised) process identifier, then p is syntactically
' in q iff one of the following conditions is satisfied:

(g1 + g2) or ¢ = (g1 <t > gqq), and p is syntactically guarded in ¢; and gq,

= n(...,z,...) and ¢ = (r < eg(z,0) = T > n(..., monus(z,1),...)), and p is syntactically
arded in 7,

= (q1 - g2), and p is syntactically gnarded in ¢,

s any action or 6.

wification F is syntactically guarded iff in each of its process declarations the left-hand
e process identifier) is syntactically guarded in the right-hand side (the ‘body’).

ments of effective uCRL that play a role in this paper can be defined. Given a finite set
bels), these fragments turn out to have universal expressivity with respect to the class of
primitive recursive transition systems over that label set.

1.1.2. A specification E belongs to pgCRL(TREC) (respectively uCRL(PRIM)) iff

uns the declarations given in Table 1,
tions in F are total recursive (primitive recursive, respectively),

wtactically guarded.
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reviation of specifications. In the sequel specifications are abbreviated by describ-
curring process declarations, and even these in an informal way. As an example consider
m E of the form given in Table 2.

The contents of Table 1
.. some more function declarations ... } data part of E
actab

proc K(z,y, z) = body } process part of E

Table 2: A uCRL(TREC) specification E.

7 will be described by
) = body.

med that any data function occurring in body is familiar to the reader and declared
rt of E. A further convention is to use a,b,c,... as identifiers for actions, plus the
it all actions occurring in body are declared in E.

rrms (as body), brackets are omitted according to the convention that - binds stronger
arding .<t>. as a binary process operator for any closed data term ¢ over the Booleans),
sinds stronger than +, and that these operators associate to the right.

s way, the restriction to syntactic guardedness is relaxed in favour of readability. For
recification

P(£(3))
= Q(f(z) 9(z))
= a- P(g(x))

oduces process identifiers A and P(z). In this case the declaration of P(z) serves as a
viation for the less readable formal declaration of Q(z,y), which is then the following:

-0 Q(f(g(2)), 9(g(x)))

-aightforward syntactic substitution, and the process identifier A is used to abbreviate
m Q(f(£(3)), g(£(3))).

b to the data used in specifications, the following conventions are adopted. For the
is declared in Table 1 infix notation and standard symbols will be further used: t + u,
for add(t,u), monus(t,u) and times(t, u), respectively. Furthermore t = u and t # u
oreviations for eg(t,u) = T and eg(t,u) = F, respectively. Also the Boolean standard
V are often used. To increase readability, brackets are omitted when possible and
will be used. Letters v, w,z,y, 2, ... are reserved for variables declared over Nat, and
m,n,... range over numerals. Finally, the domain of T}, occurring in an (informal)
given by context (number of arguments) and the subscript m is omitted.

atics of uCRL(TREC) and pCRL(PRIM)

f any specification over u.CRL(TREC) is interpreted in the canonical term algebra over
(Nat) = {0, 5(0), ...} and D(Bool) = {T,F}. So any function declared is regarded as
ual normal forms in the appropriate domain.
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>nal semantics of uCRL(TREC) is given by an interpretation function SOS (Structured
smantics) that, if instantiated with (the signature of) some pgCRL(TREC) specification
sach closed process term over E a transition system. Thus

SRL(TREC) — (P() — TS[P()U{v}, AL) u{V}]
ecification E over uCRL(TREC),
she set of closed process terms over F,

P(FE) is the set of actions declared in E,

ession TS[P(E)U {y/} , A(E) U {+/}] abbreviates the domain of recursive transition
over states P(E) U {4/} and labels A(F) U {,/}, where 4/ is used to express successful
ion (cf. Definition 2.1.3). Note that P(E) is denumerably infinite, as 6,6 +6, ...,6-6, ... €

d process term p € P(E), the transition system SOS(E)(p) is defined by:

vV}, ABE)U{v}, —z ,p)

1sition relation — g , further abbreviated by —, is provided by the calculus given in
1¢ following three rules:

AE) a-*+y RN
z - g y—y
+ — e — &
Tty —zx z+y—y
g ., T >
— i EY  —
-z, y—>y
at> ————— ift="T —— ift=F
zatpy — ' zatpy — g
[ )
cursion a7 if y = z refers to a process instantiation in E
y—z

Table 3: Transition rules for a ugCRL(TREC) specification E.

ables z,y range over P(E) and the primed variables z',y’ over P(E)U {V/},
ile introducing < ¢ b, the side conditions ¢t = T and t = F refer to the normal form of t,

scursion rule a process instantiation in F is a closed instance of a process declaration in
all data parameters in the right-hand side represented by their associated normal forms

Is).
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root connected parts of the transition systems associated to an action a € A(E) and

z P(E) can be visualised as follows (observe that the right-hand side transition system
¢ free):

ample, assume that E contains the process declaration K(z) = a - K(z +1). Using
he second rule for sequential composition it follows that a - K(1) —= K(1), and using
stantiation K(0) = a - K(1), application of the recursion rule yields K(0) ~= K(1).
+0) - K(1).

operational semantics SOS introduced here is of a referential nature: any such semantics
tion systems that are (strongly) bisimilar with the SOS ones will be of further interest.
n the next section.

ion to uCRL(TREC) now implies that SOS yields (isomorphic images of) recursive
ems. (In fact this holds for the standard operational semantics for effective uCRL, of
the restriction to the particular uCRL(TREC) syntax [GP90]):

1.  Let p be some process specified over a specification E in uCRL(TREC), then
isomorphic with a recursive transition system. Moreover, this transition system is
nating (see Definition 2.1.3).

1) First note that SOS(E)(p) is finitely branching: by syntactic guardedness any closed
' can be expanded (using the declarations in E) into a term for which the next steps
on terms headed by process identifiers. It follows from the calculus for —+ g that only
1ext steps from ¢ can be derived.

th the set of (syntactic well-formed) closed data terms and the set P(E) U {4/} can be
sive sets (even as PRIM sets), where the latter coding has the property that the code
'ger than those of its proper subterms, and that 0 is not in its range. Write

Yu{v} — Nat\ {0}

. Using the calculus for — g, define a TREC function nezt'(.) that computes the next
)de of a closed term in the style of Definition 2.2.1 (yielding some CI). The function
C as it must be able to evaluate the TREC functions defined in E. Now given p as in
efine a coding

)U{\/} — Nat

d Lga = "¢ for ¢ # p. Adjusting nezt'(.) to next(.) by taking the difference between
o account, it then follows that

p) ~ (LP(E)U {+/}1, A(E) U {+/}, next, 1)

as L. on the appropriate subdomain A(E) U {1/}.
lows immediately from the rules of — g that both these transition systems are properly
|
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Corollary 3.2.2. Let p be some process specified over a specification E in pCRL(PRIM), then
SOS(E)(p) is isomorphic with a PRIM transition system.

Another important (algebraic) property of SOS is that the bisimilarity induced by it is a congruence
with respect to the process operators of uCRL(TREC) [GP90].

As to illustrate the claim that gCRL(TREC) provides an elegant mechanism for the specification
of transition systems, consider the following example:

Example 3.2.3. Let the specification £ be defined by
K(z,y) = a-K(y,z)az=00b-K(z~1,y+2)

so that SOS(E)(K(0,0)) consists of the infinite trace a* (its root connected part is isomorphic with
the transition system T3 from Example 2.1.2). Hence SOS(E)(KX(0,0)) is regular.

In the case that n+m > 0, the transition system SOS(E)(K(n,m)) has the infinite trace (starting
from the root)

b . g BRI L g p2Rntm) L pRQ@REm)

(omitting b™ if n = 0). Recall that a transition system is ‘regular’ if it is bisimilar with a finite
transition system. It follows that SOS(E)(K(n,m)) is regular iff n = m = 0. (The assumption that if
n+m > 0, there is a finite automaton that accepts all prefixes of the latter, infinite trace contradicts
the ‘Pumping Theorem’ for regular languages [HU79].) |

This section is concluded with some reflections on guardedness. The motivation for (syntactic)
guardedness is made explicit in the following example.

Example 3.2.4. Consider the specification F given by
X=X a+a

Then SOS(E)(X - a) has an a-transition to SOS(E)(a*) for any & > 1, as can be seen from the
following derivations for the cases k =1 and k = 2:

a -/ X a-a
X-at+a-"4 . . . X-a+a-Sa

X 5 and using this result derive .

X-a-2a X.a-%aa

With the conclusion of the second derivation it can be derived that
X-a-%d®
and so on and so forth. So SOS(E)(X - a) is infinitely branching, and hence not recursive. |

The most general definition of ‘guardedness’ guaranteeing effective behaviour is in the case of
pCRL(TREC) (or uCRL(PRIM)) the following.5

Definition 3.2.5 (Guardedness). Let E be a specification with data declaration as in uCRL(TREC)
(or as in pCRL(PRIM)) that is not necessarily syntactically guarded.

1. Let p,q € P(E) and p be a process identifier. Then p is guarded in g iff one of the following
conditions is satisfied:

® ¢ = q; + g2, and p is guarded in g; and qq,

5in [GP90] guardednessis defined relative to the algebraic semantics, and, moreover, involves all the process operators
from pCRL.
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g1 <> gy and either ¢ = T and p is guarded in g1, or ¢ = F and p is guarded in g,

g1 - g2, and p is guarded in ¢,

any action or §,

a process identifier different from p, that is, there must be a semantical difference: eg.
and p(k + 0) are not considered to be different.

ess Name Dependency Graph of E, notation
DG(E)

ph that has as its node set all (closed) process identifiers defined in E and an arc from
ff p1 = g is a closed instance of a process declaration in E and ps is not guarded in q.

ification E is guarded iff PNDG(E) is well founded, i.e., does not contain an infinite

t a specification E is guarded iff for any node in PNDG(E) there ezists an upper bound
its paths. This suggests that the question whether E is guarded is undecidable. Indeed
owing result:

In pCRL with data declaration restricted as in uCRL(PRIM), guardedness is complete

a specification E such that for fixed k,! the graph PNDG(E) has for process identifiers
: following properties: there is an arc

1,n") — K(m,n,n'+1) iff =T(k,l,m,n+1),

',) — K(ma n' + 1:0)

sstion of the well foundedness of PNDG(E), and hence of the guardedness of E, is
faction of the T-predicate. Let E be defined as follows:

)= K(a:,z+l,0)<3y=0!>(a,-K(a:+1,0,0)<1T(k,l,:1:,y)t>K(m,y -~ 1,z+1)).

only has a ‘local’ purpose in the systematic testing of T(k,[,x,vy) that goes on for
lue of z as long as the T-predicate is not satisfied: it induces testing down from
wrger values than the initial value of y. So, for any node K(m,n,n') € PNDG(E) there
anch iff Vy . —T'(k, [, m,y) holds.

ecification E is guarded iff for all m (instantiating z) there is an n (the y instance)
'y m,n). The upper bound of the path length from any node in PNDG(E) can then be
the initial K values in that node.

suarded <= Vzdy.T(k,!,z,vy).

. side is a standard condition for completeness in II (for references see Section 5).
specification k,{ are fixed, and the question of the latter condition can be very simple
ilar cases, there is no algorithmic procedure to check whether it holds. Hence, the
CRL(PRIM) specification being guarded is complete in I13. n

the restriction to syntactic guardedness as defined in 3.1.1, rather than to guardedness
» next section it is shown that syntactic guardedness is not a restriction in terms of
odulo strong bisimulation).
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4 Symbolic implementations and expressivity

In this section the relation between recursive transition systems over a fixed, finite label set and
#CRL(TREC) as a language for specifying these (modulo bisimulation) is further investigated. It is
shown that the selected fragments of uCRL have universal expressivity over the two selected domains of
transition systems. However, the distinction between successful termination and deadlock introduces
a subtlety that is somewhat difficult. Finally, it is proved that modulo bisimulation these two domains
(over a fixed, finite label set) are different.

4.1 Symbolic implementations

A transition system T is a symbolic implementation of a pCRL(TREC) process term p over some
LCRL(TREC) specification E iff

T < SOS(E)(p)

where SOS is the function defined in Section 3.2. Conversely, the process term p (and its defining
specification E) is said to specify the transition system T, in this case. Any function that assigns
symbolic implementations to closed process terms specified over pCRL(TREQC) is further referred to
as a symbolic operational semantics.

An important question is whether SOS itself is ‘nice enough’ as a symbolic operational semantics.
Are there no such semantics that yield simpler transition systems, in particular ‘minimal’ transition
systems? This is not even the case for the restriction to uCRL(PRIM):

Theorem 4.1.1. Any symbolic operational semantics for uCRL(PRIM) yields too large transition
systems.

Proof. Consider for example the uCRL(PRIM) specification E defined by
K(z,y,z) =a-K(z,y,z+ 1)<aT(z,y,2) > b- K(z,y,2z +1).

Let k,[ be fixed. First assume T'(k,,m) for some m. In this case consider the transition system
To ¥ ({0,1,...,m+1},{a, b}, Tr,0)

with the transition relation
ﬂd—if{w—“—»m+1|m<m} U{m - m4+1} U {m+1 -2 m+1}

Then Ty is a finite symbolic implementation of K (k,1,0), and is certainly ‘smaller’ than
SOS(E)(K(k,1,0)). In the case that T'(k,,m) holds, the root connected part of SOS(E)(K(k,1, 0))
and Ty are depicted in Figure 1. In the case that —=3z.T(k,l, z), the transition system T, defined
in Example 2.1.2 would be a minimal symbolic implementation of K(k,1,0) (and SOS(E)(K(k,1,0))
would resemble 7} in that example).

Hence for each pair k,! it follows that SOS(E)(K(k,1,0)) is regular. This example shows that a
symbolic operational semantics yielding transition systems with minimal sets of states (and labels)
must be able to decide for each k, | whether 32.T'(k, , z), so must be able to solve the halting problem.

n

4.2 Expressivity

It is shown that any (primitive) recursive transition system over a finite label set can be represented
by a pCRL(TREC) process term (respectively a process specified over uCRL(PRIM)). The first result
excludes the successful termination label 1/ (see Definition 2.1.3) and is on transition systems having
one type of termination states.
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1e root connected part of SOS(E)(K(k,[,0)) and a symbolic implementation Tj.

Every (primitive) recursive transition system over a finite set of labels not including
:d modulo bisimulation over uCRL(TREC) (over uCRL(PRIM), respectively).

T = (S,{ay, ..., an}, nezt, i) and recall that in a recursive transition system the initial
A(z) abbreviate the process term

(@) é+...+ap, <z =1(ap) > §)

any k € Nat a closed term of n summands, one of which possibly represents a label
tion, and all others are é.
mbolic implementation of the process P specified by the following specification E:

= Q(0)

R(nezt(z), nezt(z))

AA(G1(2)) - Qa(e)) <z € Dy > 6 +
§<az =00 R(z ~ 1,y).

1 as follows:

on nezt(.) can be specified in pCRL(TREC) as it is a total recursive function, or in
>RIM in pCRL(PRIM).

ding functions j; and j; are PRIM,
ons are PRIM (membership of finite sets coded by a CI; equality).

" the function nezt, the property n € D,, = n < m, and by unravelling the
P it follows that SOS(E)(P) < T, as the root connected parts of both transition
1 isomorphic: (with some abuse of notation) Q(k) =~ k for any state k of T N

this theorem to transition systems that are properly terminating, i.e., that distinguish
nation and deadlock (see Definition 2.1.3), is slightly more complex:



4 SYMBOLIC IMPLEMENTATIONS AND EXPRESSIVITY

.2.2. Bvery properly terminating (primitive) recursive transition system over a finite set .
be specified modulo bisimulation over uCRL(TREC) (over uCRL(PRIM), respectively).

I'=(8S,{a1, ..., Gn, v/}, next, ) and let AA(z) abbreviate the process term
=14(a1)> 8+ ...+ a, <z =i(a,) > §).
symbolic implementation of the process P specified by

P = Q)

1) = R(nezt(z), nezt(z))

N = AA((2))- QUa(z)) 9z € Dy AVz S w2 (2 € Djya) Aji(2) = (V) 6 +
b<z=00R(z~1,y) +
AA(Gi(z)) <z € Dy AVz < z.2 € Djy(o) A J1(2) = i(y/) b 6.

argued in the same way as in the proof above because all (slightly extended) conditions
iC (PRIM, respectively). Another difference with the specification in the preceding proof
mmand of R(z,y), which possibly generates successful termination states. ]

iitive) recursive transition system T' = (S, L, next,) with L finite and either / & L or
erminating, gives rise to a specification E over: yCRL(TREC) (or pCRL(PRIM)) that
nonical’ process term P for which SOS(E)(P) < T. In particular this holds for any
fied over uCRL(TREC) (by Theorem 3.2.1), or, more generally, for any process specified
: uCRL without parameterised actions [GP90]. Theorem 4.2.2 then suggests a “normal
n”, the proof of which is based on strong bisimulation semantics and on the coding of
a data type.

expected, the restriction to PRIM functions in the data part of specifications does not
irsive transition systems over a finite label set specifiable, The idea is that a non PRIM
4 is total recursive) can be used to define a process that has a ‘branching degree’ growing
ny PRIM function (no smart use of coding and PRIM data functions can be of help):

.2.3. There is a recursive transition system over a finite set of labels that cannot be
lulo bisimulation over uCRL(PRIM).

sider the following function Ack, (a version of) the Ackermann generalised exponential
7], which is TREC but not PRIM:

Ack(0,y) = y+1
ck(x+1, 0) = Ack(z, 1)
+1,y+1) Ack(z, Ack(z + 1,y)).

fication E over uCRL(TREC) be defined by

= a-Plz+1)+
b- Q(Ack(z, 2)))

= c¢-R(z) +
baz=00Q(z~1)

= baz=0pc-R(z+1).

there is a PRIM transition system T = (S, {a, b, ¢}, nezt, 1) that is a symbolic implemen-
). Let F: Nat — Nat be such that 7;(F(k)) is the code of the state characterised by the
J2(F(k)) is the code of the state characterised by the trace a* - b. Formally:
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G%(z) uy < z.[y € Dy A ji(y) = i(a)]
G¥z) = py<zlyeD, A 31(y) = i(b)]

F(0) = j(0,52(G%(next(0))))
F(z +1) 3( 52(G*(neat(51(F(2))))) ,
52(G*(next(j2(G* (nezt(j1(F(2)))))) )-
Observe that F is PRIM if next is. Now for any k € Nat it holds that
next(jo(F(k))) > Ack(k, k).

This follows from the fact that this particular value of next codes a state that must have Ack(k,k)+1
different outgoing c-transitions (each of these entails its own number of consecutive c-transitions).
Consequently the CI of the set coding all these labels and resulting states is certainly larger than
Ack(k, k). Hence, nezt cannot be a primitive recursive function, contradicting the assumption. So
SOS(E)(P(0)) is a recursive transition system over a finite label set that is not PRIM. |

5 Arithmetical classification of properties

In this section the properties bisimilarity, deadlock freedom and regularity over recursive transition
systems (introduced in Section 2.3) are classified in the arithmetical hierarchy. 8 The results proven
state that each of these properties is complete in a particular class, meaning that its definition is
exactly as complex as characteristic for that class.

The arithmetical characterisation takes place on the level of pCRL(TREC) specifications. By the
Expressivity Theorems 4.2.1 and 4.2.2 (and by the interest in specification languages plus their asso-
ciated proof theory) it is interesting to characterise properties on this level. The section is concluded
with an arithmetical characterisation of the properties mentioned above with respect to the class of
all primitive recursive transition systems over a fixed, finite label set.

5.1 The approach

Given a certain class C in the arithmetical hierarchy and one of the properties, completeness in C is
proved as follows:

1. Show that for any specification the property is equivalent to a relation in C. For instance, given
a specification F and a recursive coding .7 of P(E), show that SOS(E)(p) & SOS(E)(g) iff
("","¢) e ReC.

2. Show the completeness in C by giving a specification for which a special case of the property

is equivalent to a relation that is complete in C. For instance, given some specification E and

process terms p(k), g over E, show for some R complete in C that SOS(E)(p(k)) < SOS(E)(q)
if keR.

So 1 implies that (in general) the property is not more complex than any relation in C, and 2 implies
that it is as least as complex as a relation that is complete in C.

For reference to arithmetical completeness consider the following special relations, referring to the
Enumeration Theorem of Kleene [Kle52]. Let n > 1, then the binary relation E,, is defined as

{(z,z) | 1 Vy2...3yn » T0(2, 2, 11, ---¥n)} in case n is odd,
{(z,z) | Jy1Vy2...Vyn « 7 Tn(2, 2,91, ...yn)} in case n is even.

Now E, is complete in £0, and —F, (i.e., the complement of E,) is complete in TI0.
n P n

9This means that each of these properties is related to a numerical relation of which the ‘complexity of definition’ is
subject to a clear cut criterion for classification: the ‘arithmetical hierarchy’ [Rog67l.
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A crucial step in the proofs to come is based on some standard facts about the basic theory of ACP

[BW90]. The standard axiom system BPA; (Basic Process Algebra with §) consists of the axioms in
Table 4.

z+(y+z)=(x+y)+2z Al| z+é=z A6

zt+y=y+z A2 6-z=6 A7
z+zr=2a A3
(z+y)-z2=z-2+y-z A4
(z-y) z=z-(y-2) A5

Table 4: The axioms of BPA;.

Given a pCRL(TREC) specification E, the set of BPAs-terms over E consists of the process terms
that can be constructed out of §, the actions declared in E and the operators + and -. There is the
following standard completeness result: for any two BPAs-terms p, q over E it holds that

BPAs p=gq <= SOS(E)(p) & SOS(E)q).

Moreover, given a coding . of the BPAs-terms over E as a recursive set, the relation A C Nat x Nat
defined by

A {(p,7q7) | BPAs F p = q}

is recursive (the idea is that the axioms of BPA; \ {A1l, A2}, when read as rewriting rules from left
to right form a strongly normalising rewriting system [BW90]).

5.2 Bisimilarity

Naively one may expect from the definition of bisimilarity (over some pCRL(TREC) specification)
that this property is £} hard: there exists a relation R such that for all pairs (p,q) € R the transfer
property (see 2.1.1) is satisfied and that contains the roots. However, bisimilarity turns out to be
complete in I19. Application of the two steps mentioned above:

1. In terms of the theory of ACP, this step comprises application of the “Approximation Induction
Principle (AIP~)” from [BW90]. This principle states that two finitely branching transition

systems are bisimilar if all their projections are. Let E be some arbitrary specification over
pCRL(TREC).

(a) Define a function .7 that codes the closed process terms over E as a recursive set, and
observe that a PRIM predicate can then be defined that singles out the codes of the BPA 5-
terms over E.

(b) Define a TREC function Ezp(n,z) that expands n times the terms headed by process
identifier(s) that occur in the term coded by z. A simple example to explain this function:

M=a M
then Ezp(0,"M™) ="M", Ezp(1,"M") ="a - M7, Ezp(2," M) ="a.a- M",..

(c) Define a TREC function Pr(n,z) that yields a BPAs-term of at most ‘depth’ n with the
property that

Pr(n, Ezp(n,"p"))



6.3 Deadlock freedom and regularity 21

codes a BPAj-term, say p,, such that SOS(E)(p,) is bisimilar with the n;, projection of
SOS(E)(p). Using the example above: Pr(0,"M7) = Pr(1,"M™) =67, and Pr(1,"a-
M™) = Pr(1,7a-a-M") = Fa". (In the terminology of [BW90], Pr represents only a pseudo
projection function on process terms, for it yields "6 when applied to terms headed by a
process identifier. However, the combination of syntactic guardedness and applying Ezp
sufficiently often makes this deviation irrelevant.)

Then SOS(E)(p) < SOS(E)(q) iff
("p","q") € {(z,y) | Yz . A(Pr(z, Ezp(z,z)), Pr(z, Ezp(z,9)))}

with A as defined in the previous section 5.1. As the defining relation is recursive, it follows
that < over E is in the class IT.

2. Bisimilarity can be proven complete in II{ using the following specification E over uCRL(PRIM):

K(z,y,z)
M

a - §<4T(z,y,z)>a  K(z,y,2+1)
a-M

then SOS(E)(K(k,l,0)) 2 M <+ Vz.-T(klz)
< (k,l) € ~E;.

The latter problem is complete in I19.

5.3 Deadlock freedom and regularity

The arithmetical characterisation of ‘deadlock freedom’ is also complete in IIJ. Application of the two
classification steps:

1. Let E be fixed over uCRL(TREC) and ".” be a coding function such that "P(E)” is recursive.
It is not hard to define a PRIM relation that characterises the codes of BPAs-terms over E that

can be proven &-free in the system BPAj, say DF. Using the functions Ezp and Pr introduced
above, SOS(E)(p) is deadlock free iff

Tp* € {z | Vy. DF(Pr(y, Ezp(y,z)) V y = 0}

(characterising that all (non-zero) projections on process terms are deadlock free). As the
defining relation is recursive, it follows that deadlock freedom over E is in the class IIJ.

2. Deadlock freedom is complete in 119 by the example in the previous section:

SOS(E)(K(k,1,0)) is deadlock free <= Vz.-T(k,l,2)
<~ (k1) € —E;.

The property ‘regularity’ is complete in 9:

1. Let E be a specification over uCRL(TREC). Assume some coding of the finite transition systems
over A(E) and a (PRIM) relation Fm _that characterises these. For example, n € Fin iff Ja(n)
is the CI of codes of transitions k —> | with a € A(E) and k,l < j1(n). Let the function
Pr' : Nat x Nat — Nat be such that Pr'(z,y) yields the code of § in case z € Fin, and yields
the (code of) the y;; projection of z as a BPAs-term otherwise. Now SOS(E)(p) is regular iff
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'p" € {z | IyVz. A(Pr(z, Ezp(z,z)), Pr'(y, 2)) V z = 0}

where the relation A denoted BPA; derivability. Hence, regularity over F can be defined as a
%9 relation.

2. For the completeness in X3, consider for fixed &, [ the trace

a bUHHT(6L0Y) | g2 pltpy T(klly) . gm+l pltpy.T(klmy)

This trace is “regular” iff 3zVy.~T'(k, !, z, y), for the trace then ends in a b-loop. A #CRL(PRIM)
specification E for defining this trace is

K(v,w,z,y,2z) = a-L(v,w,2,y,z)9z=00a- K(v,w,z,y,2 ~ 1)
L(v,w,z,y,2) = b-K(v,w,z+1,0,2+1)aT(v,w,z,y)>b- L(v,w,z,y+ 1, 2).

So SOS(E)(K(k,1,0,0,0)) isregular <= JaVy.-T(k,l,z, )
<> (k1) € EL

The latter problem is complete in 9.

5.4 Properties of primitive recursive transition systems

The classification results from above also hold over the domain of all PRIM transition systems over a
fixed, finite label set. In the following it is argued (somewhat sketchy) that these classification results
also hold for PRIM transition systems that are properly terminating (see Definition 2.1.3). The slightly
simpler case restricting to transition systems over a finite label set that do not distinguish successful
termination from deadlock can be dealt with in a similar way.

Let a finite set L of labels including +/ be given. Fix a coding of all unary PRIM functions, and
define a PRIM predicate Prim that characterises these codes and a binary PRIM function Ewval that
evaluates application (standard). In order to characterise PT transition systems by such codes, assume
a surjective function

i: Nat —» L

be given (so any label is coded by at least one element of Nat).
First of all the property PT itself should be defined over these codes. This property can now be
defined as a unary predicate using the following auxiliary function and relation:

¢ Define the PRIM function TL (Tree Like conversion) that transforms codes of unary PRIM
functions into those of bisimilar tree-like versions with the property that s —— s' = s < '
(cf. the transformation in Section 2.2).

¢ Define the binary PRIM predicate RC (Root Connectedness) such that RC(z,y) iff y is a root
connected state in TL(z). By the property of T'L mentioned above, this can be done by primitive
recursion on the second argument.

As the predicate PT should only test values in the codomain of T, it can be defined in 1.

Further define a binary PRIM projection function (operating on a transition system TL(z) and a
state y for which RC(x,y)) that extracts the labels of next steps as codes of actions for constructing
process terms that are:

e possibly an action followed by §,

e possibly an action followed by nothing (successful termination),
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e possibly an action followed by the remaining smaller projection of the root connected subtree of
TL(z) from this next state.

In the same style as described above, the properties in question can now be defined. Note that
concerning all recursive transition systems over a finite label set (characterised by standard codes for
recursive functions), a property like bisimilarity can be defined by demanding totality (complete in
113) plus the BPA;-derivability between all finite projections as sketched above.

6 Restricted forms of bisimilarity

In this section different restricted forms of bisimilarity are investigated. The motivation for this is an
observation of BERGSTRA [Ber91] that there are bisimilar primitive recursive transition systems over
a finite label set that cannot be related by means of a recursively enumerable bisimulation. So even
over a relatively simple domain, bisimilarity is a complex relation. Furthermore two more forms of

bisimilarity are distinguished that are both weaker than bisimilarity based upon the existence of a r.e.
bisimulation.

6.1 Recursively enumerable bisimulations

In the following theorem it is shown that recursively enumerable bisimulations do not identify all
bisimilar primitive recursive transition systems (over a fixed, finite label set). Its proof uses recursively
inseparable sets [Rog67] in the specification of processes that are bisimilar, but for which the existence
of a recursively enumerable bisimulation implies the existence of a recursive separation.

Theorem 6.1.1 (BERGSTRA [Ber91]). There are two primitive recursive transition systems over

a finite set of labels that are bisimilar, but cannot be related by means of a recursively enumerable
bisimulation.

Proof. Let W,, and W,, be recursively inseparable sets. Consider the following specification E over
pCRL(PRIM):

Alz) = e-Alz+1)+ B(z) = e-Blz+1)+
d- P(z,0) + d-Qi(z,0) +
d- Py(z,0) d- Qq(z,0)
Pl(may) = GP1($,y+1)+ Ql(mvy) = an(m’y+l)+
b-8§<T(er,z,y)> 6 + b-6aT(ey,z,y)> b +

c-8§<aT(eg,z,y)> 6

o~

-6<aT(eg,z,y)> 6

P2('r1y) = a-P2(a:,y+l)+ Qz(-’l:,y) =
-6aT(ey,z,y)> 6 +
b-6<aT(eq,z,y)> 8

]

~6<aT(ey,z,y)p 6 +
-6aT(eg,z,y)p 6.

(]
o

(3}

Then SOS(E)(A(0)) and SOS(E)(B(0)) are PRIM transition systems (cf. Corollary 3.2.2). Now
SOS(E)(A(0)) = SOS(E)(B(0)).

To show this, it is first argued that for any & € Nat one has
SOS(E)(d- P(k,0) + d - Py(k,0)) & SOS(E)(d- Q:(k,0) + d- Q2(k,0)).
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Distinguishing the three cases k € W,,, k € W,, and k ¢ W, UW,,, this can most easily be shown
by pictures suggesting the isomorphisms to be used.

1. Ifk € W,,, say T(es, k,1):
d - Py(k,0) +d - Pa(k,0) d-Q1(k,0) + d- Q2(k,0)

i

Qi(k,0) Q2(k,0)

l

a 1

a

Qulk, D) Q2(k, 1)

2. f k € W, the b and c labels of SOS(E)(d - P,(k,0) + d - P,(k,0)) above should be reversed,
and again bisirnulation is obvious;

3. IUfkgW,, UW,, :
d - P1(k,0) + d - Pa(k,0) d-Q1(k,0) +d- Q2(k,0)

P, (kv 0) P2(ky 0) Ql(ks 0) Qz(k’ 0)

a® a¥

So for any k € Nat it follows that SOS(E)(A(k)) & SOS(E)(B(k)). As bisimilarity is a congru-
ence relation, it follows easily that

SOS(E)(A(0)) = SOS(E)(B(0)).

It remains to be shown that any (isomorphic image of a) bisimulation relating SOS(E)(A(0)) and
SOS(E)(B(0)) cannot be recursively enumerable. Assume the contrary for a relation S, then both

S € {(9",7a") | (7,9) € 5} 0 {("Pi(,0)7,7Q1(n,0)") | m € Nat}

and

S Z{(p, ") | (p,9) € S} N (Nat?\ {("Py(n,0)", 7 Qs (n, 0)") | m € Nat})
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are also recursively enumerable, assuming that 7.7 is a function in the style of the proof of Theorem
3.2.1, and "Py (k)" and "Q; (k)" are TREC functions on k. Let for i = 1,2

51 {n| ("Pi(n,0)7,7Qi(n,0)") € S:}.

Then also S} and S} are recursively enumerable. As S] and Sj are complementary, both are recursive.
But this is a contradiction, as S} constitutes a recursive separation of W., and W.,: first observe that
for any n € Nat it must hold that (A(n), B(n)) € S. Secondly,

neW,, : as A(n) % Pi(n,0) and B(n) - Q;(n,0) (i = 1,2), at least one of (Pi(n,0), Q:i(n,0))
should be in S. By bisimilarity and n € W,,, this must be the case for ¢ = 1, and not for 7 = 2.
Hence n € 8.

n € W, : in a similar way it follows that n € S5 = —S5].

Write «,¢. for bisimilarity induced by a recursively enumerable bisimulation. An immediate conse-
quence of the theorem above is that both Expressivity Theorems 4.2.1 and 4.2.2 do not hold modulo
©re (as ¢ is a transitive relation).

6.2 Weaker bisimulations

Tt is shown that in the domain of PRIM transition systems over a fixed, finite label set ‘PRIM bisim-
ilarity’ identifies less than ‘recursive bisimilarity’, which in turn identifies less than r.e. bisimilarity.
The first result uses processes defined as in the proof of the preceding theorem.

Theorem 6.2.1. There are two primitive recursive transition systems over a finite set of labels that
are recursiwely bisimilar, but not PRIMly bisimilar.

Proof. Consider the process declarations from the proof of BERGSTRA’S Theorem 6.1.1, but now take
We, a recursive set that is not PRIM, and W,, = Nat \ W,,. Proceeding as in the proof of 6.1.1, it
follows that the PRIM transition systems SOS(E)(A(0)) and SOS(E)(B(0)) are recursively bisimilar,
but not PRIMly bisimilar. n

The next result again uses recursively inseparable sets. In its proof two r.e. bisimilar processes are
defined for which the assumption of a recursive bisimulation implies a recursive separation.

Theorem 6.2.2. There are two primitive recursive transition systems over a finite set of labels that
are r.e. bisimilar, but not recursively bisimilar.

Proof. Let W,, and W,, be recursively inseparable sets. Consider the following specification:

A = a- A

B(a:)y) G‘B(miy-i'l) +

C(z,y)<y <y.T(e1,z,¥)> 6 +
b-6<a3y <y.T(es,z,y)> 6

where C(z,y) =

Toczcyla- B(z,0) a3y <y.T(e1,2,y") A =32’ < z,y" <y.z <2 AT(e1,2',y")> ).



26 7 CONCLUSIONS

(A formal, but less readable description of C(z,y) can be obtained by inserting appropriate condi-
tionals and defining a recursion for this PRIMly bounded sum.)

Let k & vz« [z € W.,]. Typically, in SOS(E)(B(k,0)) the root B(k,0) is connected to all states
B(m,n) withm ¢ W,, via a-transitions, so all of these must be related to A in a bisimulation. Now
SOS(E)(A) <1 SOS(E)(B(k,0)), for given an appropriate coding function ™.7 of closed process
terms, {("A","B(z,y)") | = € W,,,y € Nat} is a r.e. bisimulation. Furthermore B(m,n) with
m € W,, cannot be related to A because of the b-transition. The assumption that there is a recursive
bisimulation relating SOS(E)(A) and SOS(E)(B(k,0)) thus assumes a recursive separation of W,,
and W,,. ||

7 Conclusions

Essentially based on [BBK87], the property of a transition system being (primitive) recursive is defined.
Also two fragments of the specification language pCRL [GP90, GP91a] are introduced, uCRL(TREC)
and pCRL(PRIM), and their correspondence with transition systems is established: 4uCRL(TREC)
is universally expressive (modulo bisimulation) with respect to all recursive transition systems over
a fixed, finite label set, and so is pCRL(PRIM) if one restricts to the primitive recursive transition
systems. Given a uCRL(TREC) specification, the basic properties bisimilarity, deadlock freedom and
regularity all turn out to be undecidable. Furthermore, if two primitive recursive transition systems
are bisimilar, it may well be that the witnessing relation is of a rather complex nature. For two
process terms p, ¢, write SOS(E)(p) < rec SOS(E)(g) if the witnessing bisimulation is recursive, and
let < prim.rec be defined similarly. It is shown that prim.rec identifies less than e , which
in turn identifies less than <. , which in turn identifies less than bisimilarity as such (i.e., < ).
One more consequence addresses a proof theoretic phenomenon: consider some axiomatic, finitary
proof system for uCRL(PRIM), say . Proving for any two closed process terms p,q over some
uCRL(PRIM) specification E that

Fp=gq = SOS(E)(p) 2. SOS(E)(q)

shows by the result of BERGSTRA (Theorem 6.1.1) and the Expressivity Theorem 4.2.2 that | is not
complete (relative to E). As the implication above can be shown for the uCRL(PRIM) fragment of
the proof system for uCRL defined in [GP91b)], it follows that this system is not complete with respect
to this fragment. This applies also to the uCRL{(TREC) fragment. A conclusion of this may be that
other process algebras, for example those defined by recursively enumerable bisimilarity, have their
right of existence. '

A final remark is that all the results of this paper can be generalised to a restricted case of countably
many labels or actions. Let the following example be illustrative: assume a,b are names of actions
that are parameterised over N, so eg. a(0),5(17), ... are then actions. 7 In this case both Expressivity

Theorems, and hence all preceding results are still preserved. To see this let i, the function coding
the labels, be defined as:

i(a(k)) = j(0, k) and i(b(k)) = j(1, k).
Let AA(x) abbreviate the process term
a(j2(z)) < g1(z) = 0> § + b(ja(z)) < ju(z) = 1 6.

It is immediately clear how the proofs of Theorems 4.2.1 and 4.2.2 should be modified.

"In (effective) uCRL actions may be data parameterised.
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