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Abstract. This paper presents an algebraic semantics schema for object oriented 
languages including concurrent features. A class, the basic syntactic unit of an 
object oriented language, in our approach denotes a set of algebras determined 
by an algebraic specification. This specification describes a system of (possibly 
active) objects interacting via method calls. Extending other approaches, struc- 
tured classes are modelled in a fully compositional way. This means that the 
semantic counterpart of class combinators such as inheritance and clientship are 
specification combinators. A model of records with sharing allows us to describe 
typical object oriented features like object sharing, inheritance polymorphism and 
dynamic binding. For modelling the dynamic behaviour of objects, we rely on an 
algebraic description of labelled transition systems. 

Introduction 

The aim of this paper is to supply a guideline for giving the semantics of a 
variety of concrete object oriented languages with concurrent features. To this 
end, we propose an algebraic framework which combines notions and results 
from different approaches. 
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The first idea on which this paper is based is that the class structuring mech- 
anism of object oriented languages is really close to the structuring mechanism 
of algebraic specifications. In our paper, a class denotes a set of algebras de- 
termined by an algebraic specification. More precisely, a class interface (name 
and type of the operations which can be performed on objects) can be modelled 
in a very straightforward way by the formal notion of signature, while a class 
implementation (internal structure of objects and meaning of the methods) can 
be modelled in an axiomatic way stating the properties that operations must 
satisfy. That approach enables us to give a compositional semantics of classes; in 
this respect it is different from the traditional denotational style like used e.g. in 
[Wo187] for Smalltalk. Indeed, a class combinator (e.g. inheritance) is semantically 
interpreted as a function which handles sets of algebras, or, in an equivalent way, 
as a specification combinator. In particular, we use the algebraic specification 
language ASL [Wir86]. 

Interpreting classes as algebraic specifications enables us, on one hand, to use 
the algebraic approach as a foundation for explaining and formally defining con- 
cepts of object orientation. On the other hand, a common framework is provided 
for expressing different levels of description of a system, from a very high-level 
specification expressing properties in an abstract way to a lower level one cor- 
responding to a particular class implementation. An analysis and development 
of these aspects in a sequential context has been done by one of the authors in 
[Bre91]. 

A second main aspect addressed in this paper is modelling the execution 
of an object oriented program as the evolution of a dynamic system in which 
many objects exist and interact. In that respect, we strongly agree with the 
classification introduced in [Weg87] and view an object as an entity which has an 
immutable identity and an internal state which changes during the lifetime of the 
object. Moreover, we are interested in possibly concurrent systems, i.e. systems 
in which many objects can evolve in parallel. Object interaction in a concurrent 
environment includes features like synchronization via message passing, mutual 
exclusion, priorities and so on. The relationship between the object and the 
process paradigm is not yet clear (see [Str86] for some discussion about that). 
Many authors take the point of view of modelling objects as processes tout court. 
We do not completely agree with that vision and prefer to keep a more modular 
approach, distinguishing between a passive and an active part of a concurrent 
object system. 

The passive part (current configuration of the existing objects and the relations 
between them), what we call an object environment in the paper, is modelled as a 
usual data type. In particular, the framework of algebraic specifications enables 
us to give a quite abstract description of an object environment. This abstract 
description is satisfied by different concrete models which can be modularly 
inserted in our schema. In the full version of this paper [BrZ96] we present also 
a concrete model which is interesting in itself since it gives a quite unusual view 
of object sharing (modelled as a congruence over terms denoting objects). 

For what concerns the active part (processes evolving concurrently and per- 
forming actions which can change the passive part) we rely on the approach to 
concurrency based on algebraic transition systems (see [AsR93]) for a general 
presentation). That enables us from one side to insert our concurrency treatment 
in a modular way in the overall framework. From the other side, a seman- 
tics schema for handling a variety of concrete languages is presented, by using 
parametric specifications to be instantiated by the actual concurrent features 
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one is dealing with. Hence our aim is more general than giving the semantics 
for a particular concurrent object oriented language, like e.g. in [AdB86] for 
POOL. 

In this extended abstract, the main aim is to give to the reader the overall 
flavour of our semantics framework. To this end, we present in Section 1 the fea- 
tures of the object oriented languages we are considering, and the corresponding 
schema of abstract syntax; in Sections 2 and 3 we define the top-level semantic 
functions. In particular, Section 2 shows the interpretation of class combinators 
as specification combinators, and Section 3 gives an outline of  the concurrent 
object system (passive and active part) we associate with a class. We refer to the 
full version of this paper [BrZ96] for t he  complete semantics definition, all the 
technicalities and examples of application. 

This paper has been written largely as a result of the experience gained by 
the authors during the work in the Esprit project DRAGON, in which one of the 
aims was the development of  an object oriented notation particularly suitable for 
reuse and distribution [BKS88]. A preliminary version has been presented at the 
9th FST & TCS Conference [BrZ89]. 

1. The Language Schema 

We consider a schema of object oriented languages which includes the following 
main concepts. 

�9 A class describes a collection of objects. Each object consists of an internal 
state which is determined by the attributes of the class, together with a set 
of methods and (possibly) a thread. The internal state of an object can be 
manipulated by the outside through a method call or by the object itself by 
performing its thread. Classes (and objects) are called active if they contain a 
thread, passive otherwise. Objects are dynamic entities which exist only after 
they have been created. 

�9 New classes can be defined using a set of class combinators. The most im- 
portant structuring relations between classes are inheritance and clientship. A 
class C1 which inherits from a class C2 CC1 is an heir of C2", "C2 is an 
ancestor of C1"), owns all the attributes and methods of C2 to which it may 
add its own. A class can have several ancestor classes, i.e. we consider multiple 
inheritance. A class C1 which uses a class C2, ("C1 is a client of C2", "C2 
is a server of C1"), can have attributes and method parameters of class C2. 
These two class relations are modelled by a unique syntactic combinator in 
our language schema. 

In addition, we consider two other class combinators, the export and 
the rename operators, which enables one to hide and to rename methods, 
respectively. 

�9 We consider a typed language, thus attributes and method parameters have a 
type. We rely on a mixed paradigm, thus type means here either a basic type 
or a class. Basic types such as booleans or integers denote sets of values. The 
mechanism of  (inheritance) polymorphism allows the assignment of  an object 
of any heir class of C to an attribute of a class C. As a consequence, the 
class of the object an attribute refers to can change dynamically, i.e. during 
execution (dynamic binding). 
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Formally, the abstract 

Class::= 
Inherits-Uses::= 
Flat: := 
Export: := 
Rename: := 
Attr::= 
Type-Id::= 
Method::= 
Param: := 
Body: := 
Thread::= 
Method-Impl::= 
Renaming ::= 
Method-Renaming::= 

syntax is defined as follows. 

Flat [ Inherits-Uses i Export I Rename 
Set(Class) Set(Class) Flat 
Set(Attr) Set(Method) Body 
Set(Method) Class 
Renaming Class 
Attr-Id Type-Id 
Basic-Type[ Class-Id 
Method-Id List(Param) [Type-Id] 
Param-Id Type-Id 
Set(Method Method-Impl) [Thread] 
Command 
Command 
Set(Method-Renaming) 
Method-Id Method-Id 

A hierarchical class is based on two sets of  classes which are the inherited and the 
used classes, respectively. A flat class is the special case in which these two sets 
are empty. A method whose implementation is defined in the class body has to be 
declared in the method set part  of  the class. As a particular case of  inheritance, 
a method which has no implementation in the ancestor class (called deferred), 
can be made concrete in an heir class, i.e. an implementation can be introduced. 
Moreover, methods can also be redefined in heir classes. 

The syntax of commands is left open since it depends on the particular 
language being considered. For simplicity, we assume each class expression c to 
be associated implicitly with a class identifier C, i.e. an environment of  classes is 
not explicitly modelled. 

2. The Class Structure 

For the semantics definition we use the algebraic specification language ASL 
[Wir86]. This language supports full first-order logic with partial functions, and 
in an extension also higher-order logic. For a brief introduction to the syntactic 
and semantic features of  ASL, we refer to the full version of the paper. 

First of  all, we associate with a class c with name C two signatures, which 
model the interfaces of  a class describing visibility relationships. The signature 
Interface( C, c), called the (full) interface, contains all the methods which are 
visible in a class. These methods may be used inside its body both in the method 
implementations and in the thread. The signature User-Interface(C, c), called the 
user interface, is the restriction of the interface signature to those methods which 
are visible to client classes of  c. 

Interface:Class-Id x Class -~ Method-Sig, 
User-Interface:Class-Id x Class ~ Method-Sig 

Here above, Method-Sig denotes the class of the method signatures. A method 
signature is a triple < BS, CS, M > consisting of a set BS of basic sorts, a set CS 
of class sorts and a set M of method operations, where each method operation 
consists of  a symbol denoting its name, a class sort denoting the class to which 
the method belongs and a tuple of  sorts denoting the types of  the parameters 
and the result type, if any. We use a method signature just as an abbreviated 
notation for a usual signature (the formal definition of the conversion is given in 
[BrZ96]). 
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The full interface of a hierarchical class contains the own methods (the 
semantic function Methods-Sig, whose definition is straighforward, translates a 
set of methods into a method signature), together with the user interfaces of t h e  
server classes and the full interfaces of the ancestors. For the latter ones, the 
name C replaces the name of the ancestor, reflecting the fact that objects of an 
heir class are also objects of  their ancestor class and thus own all their features. 
This Principle has been applied throughout the semantics definition. 

The user interface contains the own methods together with the user interfaces 
of the ancestor classes. Note that clientship is a non-transitive relation; that 
means, the user interface of a server class of c is not exported to clients of c. 

We give now the semantic clauses defining the full and the user interface of a 
class. 

Let c -- Inherits-Uses({cl,..., ca}, {c1',..., cm'}, attrs, methods, body) 
and Name(c/) = C/, i = 1 ..... m. 

Interface ( C, c) =def 
Methods-Sig(C, methods) + Interface(C, cl) +.. .  + Interface(C, ca) 
+User-lnterface( C x', c1') + . . .  + User-Interface(C,/, cm') 

User -Interface ( C, c) =eef 
Methods-Sig (C, methods) 
+User-Interface(C, cl) +.. .  + User-Interface(C, ca) 

We assume for simplicity that in a class expression a unique identifier, denoted 
by Name(c), is associated with each class subexpression c constructed by the 
operators Inherits-Uses and Flat, and then we define Name(Export(m,d)) =def 
Name(d) and Name(Rename(r, d)) =def Name(d). 

The application of the renaming operator causes a renaming of interfaces. The 
export operator restricts the user interface; it has no effect on the full interface. 

Interface(C, Export(methods, d)) =aef Interface(C, d) 
User-Interface ( C, Export(methods, d)) =def 

< BasicSorts(User-Interface(C, d)), ClassSorts(User-Interface(C, d)), 
Methods( User-Interface(C, d) ) 

n Methods(Methods-Sig(C, methods)) > 
Interface(C, Rename(r, d) ) =def 

rename Interface ( C, d) by Method -Renaming (r), 
User-Interface(C, Rename(r, d)) =def 

rename User-Interface ( C, d) by Method-Renaming (r) 

The semantic function Method-Renaming translates a renaming into the corre- 
sponding signature morphism which renames (method) signatures. For simplicity, 
we assume the same syntax for renamings and (method) signature morphisms, 
and define Method-Renaming(r) =def r. 

We define now the specification associated with a class. 
The specification of a hierarchical class is obtained as the sum of  the speci- 

fication of the corresponding concurrent object system Conc-Obj (C, c) (outlined 
in the following section), the specification of basic types BASE, the specifications 
of ancestors where redefined methods have been forgotten and the specifications 
of clients, enriched by the operations corresponding to methods and the axioms 
corresponding to method definitions. 

Spec:Class-Id x Class --* Spec 
Let c = Inherits-Uses({cl . . . . .  ca}, {c~ . . . .  , c~,}, attrs, methods, body) 
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and Name(c/) = C/ , i  = 1 . . . . .  m. 
Spec(C,  c) = des 

enrich Conc-Obj(C, c) + BASE 
+ forget Redefined-Methods(C, body, cl) from Spee(C, cl) + ... 
+ forget Redefined-Methods(C, body, e,) from Spee(C, c,) + 
+ Spec(Cl', c1') +.. .  + Spec(Cm', c~') by 

opns Method-Opns ( C, methods) 
axioms Method-Axioms ( C, c) 

We assume that Method-Opns(C, methods) denotes the set of the operations in 
the method signature Method-Sig(C, methods). The definition of Method-Axioms 
can be found below. The expression Redefined-Methods(C, body, ci) returns the 
(operations corresponding to) methods of an ancestor class ci which are redefined 
in the body of C. The formal definition is straightforward and given in [BrZ96]. 

The application of the Export operator does not affect a class specification. 
The Rename operator on classes has its correspondence in the rename operator 
of ASL. 

Spec(C, Export(methods, d)) =def Spec(C, d) 
Spec( C, Rename(r, d)) =def rename Spec( C, d) by Method-Renaming (r ) 

The semantic function Method-Axioms translates each method implementation 
contained in the body of the class into an axiom. 

Method-Axioms : Class-Id x Class ~ Axioms 
Method-Axioms(C, Inherits-Uses({cl . . . . .  c,}, {c1' . . . . .  cm'}, 

attrs, methods, body)) =d~f 
U(m,com)ebody { Method-Axiom( C, m, com)} U {Create-Axiom(C, c)} 

The translation of a method implementation into an axiom (Method-Axiom) and 
the specification of the default Create method (Create-Axiom) depend on the 
syntax of commands. In [BrZ96], we give some examples of translation of both 
sequential and concurrent commands. 

Deferred methods, i.e. methods without an implementation, have no related 
axiom in the specification. In other words, the specification of a deferred method 
is totally loose. This means that the interpretation of this method in some model 
of the class specification is an arbitrary process. That way, the mechanism of 
deferring methods in ancestors and introducing implementations in heirs has an 
intuitive semantic counterpart in the mechanism of model set inclusion used in 
the algebraic framework to model implementation relationship. 

3. Objects in a Concurrent Environment 

In this section, we outline the definition of the semantic function Conc-Obj which 
gives the specification of the concurrent object system corresponding to a class. 
As explained in the introduction, the concurrent object system consists, roughly, 
of two parts: the passive part, i.e. the current states of the existing objects, and 
the active part, i.e. the processes which execute threads of objects of active classes. 

We first give an outline of the definition of the semantic function Obj returning 
the specification of the passive part, which we call object environment. In this paper 
we assume that an object state has a record structure, as it is in most existing 
object oriented languages. Hence an object environment is determined by the 
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c l a s s  C is 
attrs 

X : I N T E G E R  
Y : B O O L E A N  

end class C 

set of the currently existing objects and by the current interpretation of unary 
operations modelling attributes. The basic operations which can be performed 
on an object environment are reading/updating an attribute of an existing object 
and creating a new object of an existing class. Methods can be seen as operations 
derived from these primitives, i.e. the effect of a method execution (if terminating) 
is always a finite sequence of elementary steps each one being a basic operation. 
Formally: 

�9 for each C class name we have two operations 

I sNew  c " ( obj-env , name c ) ~ boolean 
Createc : (obj-env, namec)  ~ obj-env 

whose intuitive meaning is testing whether an object name is a new name of 
class C (i.e. it is not yet used as the name of any existing object) and adding 
an object of class C to an object environment, respectively; 

�9 for each X: T attribute of a class C we have two operations 

- [ - ] . X r  "(obj-env, namec)  --* 2 ,  
_ [ - . X r  *-- _ ]c "(obj-env, namec, T )  ~ obj-env 

whose intuitive meaning is reading and updating the attribute X of an object 
of class C (here and in what follows T denotes T if T is a basic type, namer  
otherwise (i.e. if T is a class). 

Each class defines a corresponding structure of object environments; for example 
the following class definitions 

class C' is 
u s e s  C;  
attrs X 1 : C;  X 2 : C;  

end class C' 

define object environments in which objects of class C and C' can be created and 
there are operations for reading/updating attributes X, Y, Xb X2. 

In order to formalize that correspondence, we introduce, similarly to the 
notion of method signature mentioned before, the auxiliary notion of attribute 
signature which captures the informal idea of the attribute structure of a class. An 
attribute signature is a 4-tuple < BS,  CS,_<,A > consisting of a set BS of basic 
sorts, a set CS of class sorts, a partial ordering ___ on CS,  called the inheritance 
relation, and a family A of attributes of the form X: C ~ T. 

The semantic function Attr-Sig ,  which returns the attribute signature corre- 
sponding to a class, is defined in [BrZ96]. 

In this way, the specification Obj (C, c) of the object environment associated 
with a class c with name C is defined by 

Obj (C, c) =def O B J - E N V ( A t t r - S i g ( C ,  c)) 

where OBJ-ENV is a parametric specification of  object environments providing, 
for a given attribute signature, the operations for reading/updating attributes, 
creating objects and testing mentioned above. In [BrZ96], we give two different 
definitions of OBJ-ENV: an abstract version, stating only properties we require 
an object environment to satisfy, and an implementation (based on modelling 
object sharing as a congruence over terms denoting objects) which is interesting 
by itself. 
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We illustrate now the active part  of  the concurrent object system associated 
with a class. We first give a brief introduction to the approach to concurrency 
based on algebraic transition systems (see [AsR93]), starting from the notion of 
label led transi t ion sys tem.  

A labelled transition system consists of  a set of  s tates  (modelling execution 
stages), a set of  act ions  or f l ags  (modelling interaction of the system with the 
outside) and a set of  t ransi t ions  which are triples (s, a, s t) where s, s' are states and a 

a a St is an action, usually written s ~ s'. The intuitive meaning of a transition s 
is that the system can evolve from the state s into the state s t by performing an 
interaction with the outside which is labelled by a. 

In particular, we use a specialized version of labelled transition systems 
which we call concurren t  objec t  sys tems .  A concurrent object system is a labelled 
transition system with states of  the form < prl  ] . . .  I prn, ~, a > where prl  . . . .  , prn 
are states of  a lower-level labelled transition system which is called process  
transi t ion sys tem,  prl  I . . .  I prn is a multiset of  process states (the vertical bar 
is used to suggest parallel composition), z is a process  i n format ion  (an entity 
keeping trace of  information needed for handling interaction of  processes, e.g. 
priorities or locking of  variables), o- is the object environment described above. 
Process information and object environment have no own transitions, but may 
be changed as a consequence of  the transition of processes. 

The transitions of  the concurrent system are deduced from the transitions of  
the process transition system by a set of  axioms, each one being of the form 

al an 
(*) prl  , pr '  1 A . . .  A pr ,  , pr~ A Cond(al . . . .  , an, t, a) 

0 -t < prl j . . .  j prn j prse t ,  t, a > ~ <  prtl ] . . .  ] pr~ ] prse t ,  z', > 

The intuitive meaning of such an axiom is that, if < prl  I . . .  I prn ] prse t ,  ~, ~ > 
is the current state of  the concurrent system and each pri can evolve into the 
new process state p r / b y  performing the action ai, and if moreover the condition 
Cond(aa . . . .  , an, z, ~)  holds, then the whole system can evolve in the new state 
< pr~ [ . . .  I pr~ I prse t ,  t',o-' >. We assume for simplicity no flags for the 
transitions of  the concurrent system (that means that we consider the concurrent 
system as a closed system, whose evolution is always internal). Here prse t  denotes 
a multiset of  processes which do not take part  in this transition. 

Labelled transition systems can be described by algebraic specifications just 
as usual data types. The algebraic specification corresponding to a particular 
concurrent object system is obtained instantiating a parametric specification, as 
shown below. 

CONC-OBJ-SYSTEM(PROCESS, PROCESS-INF, 
OBJ, TRANSITION-AXIOMS) =def 

enrich MSET(PROCESS) + OBJ +-PROCESS-INF by 
opns 
{ < -, -, - > ~ <  -, -, - > : (mset (process), process-inf, obj-env, 

mset (process), process -inf  , obj -env ) ~ bool ) 
axioms TRANSITION-AXIOMS 

Here we assume that PROCESS is the specification of the process transition 
system, where process  is the sort of  the states and the transition relation is 
denoted by ~ (not to be confused with =~ which denotes the transition relation 
of the whole system), MSET is a parametric specification of multisets, OBJ and 
PROCESS- INF are the specifications of  the object environment and of the process 
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information, respectively, and TRANSITION-AXIOMS is a set of axioms each 
one being of the form (*). 

The specification of the concurrent object system associated with a class can 
now be obtained instantiating the above parametric specification; each actual 
parameter is the result of a semantic function (defined in [BrZ96]). 

Conc-Obj ( C, c) =def 
C O N C - O B J - S Y S T E M (  Process( C, c), Process-Inf ( C, c), 

Obj ( C, c), Transition-Axioms ( C, c) ) 

As an example, we show below the definition of the transition axioms in the 
case in which the language has no concurrent features, hence the only process 
actions are "standard", i.e. related to reading/updating attributes and creating 
new objects. In the case of a language with significant concurrent features, the 
definitions below have to be extended (see [BrZ96]). 

Transition-Axioms(C, c) =def Standard- Transition-Axioms(Attr-Sig( C, c) ) 
Standard- Transition-Axioms : Attr-Sig ~ Axioms 
Standard- Transition-Axioms (AE) =def 

n.ASSIGN-Xr(x) 
{pr > pr r 

< pr I prset, t ,a > ~ <  p~ I prset,~,a[n.Xr ~ x] >, 

n.GET-Xr(x) 
pr p~ A cr[n].Xr = x ~ <  pr I prset, t, a > ~ <  pr' I prset, l, a > 

I X: C ~ r E Attrs(AY~)} 

n.CREATEc (thread) 
U{pr > pr' A IsNewc(a, n) A Isc(n) 

< prlprset ,  ~, a >=>< pr ' lprse t]  thread, l, Createc(a, n) > 
[ C 6 ClassSorts(AE)} 

4. Concluding Remarks 

In the preceding sections, an algebraic semantic framework for object oriented 
programming languages with concurrency has been presented. A class is modelled 
by an algebraic specification which describes in a loose approach the objects of 
the class. The use of the algebraic specification language ASL enables us to model 
structured classes in a compositional way, based on the structuring operators on 
specifications. Concerning the model of objects, we consider a general framework 
of objects in a concurrent environment. The methods of a class are described 
by processes acting on the passive parts of objects which are determined by the 
attribute structure of the class. Our object model describes typical object oriented 
features like object sharing, inheritance polymorphism and dynamic binding of 
methods. 

The work done in this paper has been and will be continued in at least two 
directions. 

First, an integration of abstract specification facilities into an object ori- 
ented development method is desirable. By the algebraic semantics, a common 
framework for classes and abstract data types has been provided. This com- 
mon framework enables an integration of (implementation-oriented) classes and 
(property-oriented) specifications via a formal correctness relation. The relation 
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between a sequential object oriented approach and algebraic specifications has 
been deeply investigated in [Bre91]. 

For what concerns the model of object systems, a main result of this paper is 
to show that it is possible to insert in a modular way a model of the dynamic 
evolution in the overall algebraic framework, giving a compositional interpretation 
of classes. That is achieved by what we call the "state-as-term" approach, i.e. 
modelling the current configuration of a dynamic system as a term of a special 
sort and the transformations from a configuration to another as operations 
(predicates). This idea is extremely fruitful and at the root of a variety of 
formalisms (see [AsR93] for references). Nevertheless, somebody might not like 
the fact that in this approach there is no strong distinction between static and 
dynamic aspects of a system. 

Indeed some work has been done in extending in a more proper way the alge- 
braic treatment to the dynamic case, introducing a new kind of structures which 
are a generalization of usual algebras, called d-oids [AsZ95]. In this approach, 
the "state-as-algebra" view is taken, seeing configurations as usual algebras and 
transformations as operations at a higher level, i.e. operations handling algebras. 
An interesting further work in that direction would be to give within this new 
framework a compositional model of classes as the one proposed in this paper. 
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