
Formal Aspects of Computing (1996) 8:706-715
@ 1996 BCS Formal Aspects

of Computing

An Algebraic Semantic Framework for Object
Oriented Languages with Concurrency
(Extended Abstract)*
R u t h Breu I and Elena Z u c c a 2

1 Inst. •r Informatik, TU Miinchen, Miinchen, Germany;
2 DISI - Dipartimento di Informatica e Scienze dell'Informazione, Universitfi di Genova,
Genova, Italy

Keywords: Object oriented languages; Semantics; Concurrency; Algebraic speci-
fications; Labelled transition systems; Classes; Inheritance; Object identity

Abstract. This paper presents an algebraic semantics schema for object oriented
languages including concurrent features. A class, the basic syntactic unit of an
object oriented language, in our approach denotes a set of algebras determined
by an algebraic specification. This specification describes a system of (possibly
active) objects interacting via method calls. Extending other approaches, struc-
tured classes are modelled in a fully compositional way. This means that the
semantic counterpart of class combinators such as inheritance and clientship are
specification combinators. A model of records with sharing allows us to describe
typical object oriented features like object sharing, inheritance polymorphism and
dynamic binding. For modelling the dynamic behaviour of objects, we rely on an
algebraic description of labelled transition systems.

Introduction

The aim of this paper is to supply a guideline for giving the semantics of a
variety of concrete object oriented languages with concurrent features. To this
end, we propose an algebraic framework which combines notions and results
from different approaches.

Correspondence and offprint requests to: Elena Zucca, DISI, Universit/t di Genova, Via Dodecaneso,
35, 16146 Genova, Italy. Email: zucca@disi.unigeSt
* This is an extended abstract of [BrZ96], which can be retrieved by downloading the (compressed
Postscript) file: FAC,_8E.ps.z found in directory pub/fac on the ftp.cs.man.ac.uk. Work partially
supported (for E. Zucca) by WG n.6112 COMPASS, Murst 40% - Modelli della computazione e dei
linguaggi di programmazione and HCM-MEDICIS.

An Algebraic Semantic Framework for Object Oriented Languages with Concurrency 707

The first idea on which this paper is based is that the class structuring mech-
anism of object oriented languages is really close to the structuring mechanism
of algebraic specifications. In our paper, a class denotes a set of algebras de-
termined by an algebraic specification. More precisely, a class interface (name
and type of the operations which can be performed on objects) can be modelled
in a very straightforward way by the formal notion of signature, while a class
implementation (internal structure of objects and meaning of the methods) can
be modelled in an axiomatic way stating the properties that operations must
satisfy. That approach enables us to give a compositional semantics of classes; in
this respect it is different from the traditional denotational style like used e.g. in
[Wo187] for Smalltalk. Indeed, a class combinator (e.g. inheritance) is semantically
interpreted as a function which handles sets of algebras, or, in an equivalent way,
as a specification combinator. In particular, we use the algebraic specification
language ASL [Wir86].

Interpreting classes as algebraic specifications enables us, on one hand, to use
the algebraic approach as a foundation for explaining and formally defining con-
cepts of object orientation. On the other hand, a common framework is provided
for expressing different levels of description of a system, from a very high-level
specification expressing properties in an abstract way to a lower level one cor-
responding to a particular class implementation. An analysis and development
of these aspects in a sequential context has been done by one of the authors in
[Bre91].

A second main aspect addressed in this paper is modelling the execution
of an object oriented program as the evolution of a dynamic system in which
many objects exist and interact. In that respect, we strongly agree with the
classification introduced in [Weg87] and view an object as an entity which has an
immutable identity and an internal state which changes during the lifetime of the
object. Moreover, we are interested in possibly concurrent systems, i.e. systems
in which many objects can evolve in parallel. Object interaction in a concurrent
environment includes features like synchronization via message passing, mutual
exclusion, priorities and so on. The relationship between the object and the
process paradigm is not yet clear (see [Str86] for some discussion about that).
Many authors take the point of view of modelling objects as processes tout court.
We do not completely agree with that vision and prefer to keep a more modular
approach, distinguishing between a passive and an active part of a concurrent
object system.

The passive part (current configuration of the existing objects and the relations
between them), what we call an object environment in the paper, is modelled as a
usual data type. In particular, the framework of algebraic specifications enables
us to give a quite abstract description of an object environment. This abstract
description is satisfied by different concrete models which can be modularly
inserted in our schema. In the full version of this paper [BrZ96] we present also
a concrete model which is interesting in itself since it gives a quite unusual view
of object sharing (modelled as a congruence over terms denoting objects).

For what concerns the active part (processes evolving concurrently and per-
forming actions which can change the passive part) we rely on the approach to
concurrency based on algebraic transition systems (see [AsR93]) for a general
presentation). That enables us from one side to insert our concurrency treatment
in a modular way in the overall framework. From the other side, a seman-
tics schema for handling a variety of concrete languages is presented, by using
parametric specifications to be instantiated by the actual concurrent features

708 R. Breu and E. Zucca

one is dealing with. Hence our aim is more general than giving the semantics
for a particular concurrent object oriented language, like e.g. in [AdB86] for
POOL.

In this extended abstract, the main aim is to give to the reader the overall
flavour of our semantics framework. To this end, we present in Section 1 the fea-
tures of the object oriented languages we are considering, and the corresponding
schema of abstract syntax; in Sections 2 and 3 we define the top-level semantic
functions. In particular, Section 2 shows the interpretation of class combinators
as specification combinators, and Section 3 gives an outline of the concurrent
object system (passive and active part) we associate with a class. We refer to the
full version of this paper [BrZ96] for t he complete semantics definition, all the
technicalities and examples of application.

This paper has been written largely as a result of the experience gained by
the authors during the work in the Esprit project DRAGON, in which one of the
aims was the development of an object oriented notation particularly suitable for
reuse and distribution [BKS88]. A preliminary version has been presented at the
9th FST & TCS Conference [BrZ89].

1. The Language Schema

We consider a schema of object oriented languages which includes the following
main concepts.

�9 A class describes a collection of objects. Each object consists of an internal
state which is determined by the attributes of the class, together with a set
of methods and (possibly) a thread. The internal state of an object can be
manipulated by the outside through a method call or by the object itself by
performing its thread. Classes (and objects) are called active if they contain a
thread, passive otherwise. Objects are dynamic entities which exist only after
they have been created.

�9 New classes can be defined using a set of class combinators. The most im-
portant structuring relations between classes are inheritance and clientship. A
class C1 which inherits from a class C2 CC1 is an heir of C2", "C2 is an
ancestor of C1"), owns all the attributes and methods of C2 to which it may
add its own. A class can have several ancestor classes, i.e. we consider multiple
inheritance. A class C1 which uses a class C2, ("C1 is a client of C2", "C2
is a server of C1"), can have attributes and method parameters of class C2.
These two class relations are modelled by a unique syntactic combinator in
our language schema.

In addition, we consider two other class combinators, the export and
the rename operators, which enables one to hide and to rename methods,
respectively.

�9 We consider a typed language, thus attributes and method parameters have a
type. We rely on a mixed paradigm, thus type means here either a basic type
or a class. Basic types such as booleans or integers denote sets of values. The
mechanism of (inheritance) polymorphism allows the assignment of an object
of any heir class of C to an attribute of a class C. As a consequence, the
class of the object an attribute refers to can change dynamically, i.e. during
execution (dynamic binding).

An Algebraic Semantic Framework for Object Oriented Languages with Concurrency 709

Formally, the abstract

Class::=
Inherits-Uses::=
Flat: :=
Export: :=
Rename: :=
Attr::=
Type-Id::=
Method::=
Param: :=
Body: :=
Thread::=
Method-Impl::=
Renaming ::=
Method-Renaming::=

syntax is defined as follows.

Flat [Inherits-Uses i Export I Rename
Set(Class) Set(Class) Flat
Set(Attr) Set(Method) Body
Set(Method) Class
Renaming Class
Attr-Id Type-Id
Basic-Type[Class-Id
Method-Id List(Param) [Type-Id]
Param-Id Type-Id
Set(Method Method-Impl) [Thread]
Command
Command
Set(Method-Renaming)
Method-Id Method-Id

A hierarchical class is based on two sets of classes which are the inherited and the
used classes, respectively. A flat class is the special case in which these two sets
are empty. A method whose implementation is defined in the class body has to be
declared in the method set part of the class. As a particular case of inheritance,
a method which has no implementation in the ancestor class (called deferred),
can be made concrete in an heir class, i.e. an implementation can be introduced.
Moreover, methods can also be redefined in heir classes.

The syntax of commands is left open since it depends on the particular
language being considered. For simplicity, we assume each class expression c to
be associated implicitly with a class identifier C, i.e. an environment of classes is
not explicitly modelled.

2. The Class Structure

For the semantics definition we use the algebraic specification language ASL
[Wir86]. This language supports full first-order logic with partial functions, and
in an extension also higher-order logic. For a brief introduction to the syntactic
and semantic features of ASL, we refer to the full version of the paper.

First of all, we associate with a class c with name C two signatures, which
model the interfaces of a class describing visibility relationships. The signature
Interface(C, c), called the (full) interface, contains all the methods which are
visible in a class. These methods may be used inside its body both in the method
implementations and in the thread. The signature User-Interface(C, c), called the
user interface, is the restriction of the interface signature to those methods which
are visible to client classes of c.

Interface:Class-Id x Class -~ Method-Sig,
User-Interface:Class-Id x Class ~ Method-Sig

Here above, Method-Sig denotes the class of the method signatures. A method
signature is a triple < BS, CS, M > consisting of a set BS of basic sorts, a set CS
of class sorts and a set M of method operations, where each method operation
consists of a symbol denoting its name, a class sort denoting the class to which
the method belongs and a tuple of sorts denoting the types of the parameters
and the result type, if any. We use a method signature just as an abbreviated
notation for a usual signature (the formal definition of the conversion is given in
[BrZ96]).

710 R. Breu and E. Zucca

The full interface of a hierarchical class contains the own methods (the
semantic function Methods-Sig, whose definition is straighforward, translates a
set of methods into a method signature), together with the user interfaces of t h e
server classes and the full interfaces of the ancestors. For the latter ones, the
name C replaces the name of the ancestor, reflecting the fact that objects of an
heir class are also objects of their ancestor class and thus own all their features.
This Principle has been applied throughout the semantics definition.

The user interface contains the own methods together with the user interfaces
of the ancestor classes. Note that clientship is a non-transitive relation; that
means, the user interface of a server class of c is not exported to clients of c.

We give now the semantic clauses defining the full and the user interface of a
class.

Let c -- Inherits-Uses({cl,..., ca}, {c1',..., cm'}, attrs, methods, body)
and Name(c/) = C/, i = 1 m.

Interface (C, c) =def
Methods-Sig(C, methods) + Interface(C, cl) +.. . + Interface(C, ca)
+User-lnterface(C x', c1') + . . . + User-Interface(C,/, cm')

User -Interface (C, c) =eef
Methods-Sig (C, methods)
+User-Interface(C, cl) +.. . + User-Interface(C, ca)

We assume for simplicity that in a class expression a unique identifier, denoted
by Name(c), is associated with each class subexpression c constructed by the
operators Inherits-Uses and Flat, and then we define Name(Export(m,d)) =def
Name(d) and Name(Rename(r, d)) =def Name(d).

The application of the renaming operator causes a renaming of interfaces. The
export operator restricts the user interface; it has no effect on the full interface.

Interface(C, Export(methods, d)) =aef Interface(C, d)
User-Interface (C, Export(methods, d)) =def

< BasicSorts(User-Interface(C, d)), ClassSorts(User-Interface(C, d)),
Methods(User-Interface(C, d))

n Methods(Methods-Sig(C, methods)) >
Interface(C, Rename(r, d)) =def

rename Interface (C, d) by Method -Renaming (r),
User-Interface(C, Rename(r, d)) =def

rename User-Interface (C, d) by Method-Renaming (r)

The semantic function Method-Renaming translates a renaming into the corre-
sponding signature morphism which renames (method) signatures. For simplicity,
we assume the same syntax for renamings and (method) signature morphisms,
and define Method-Renaming(r) =def r.

We define now the specification associated with a class.
The specification of a hierarchical class is obtained as the sum of the speci-

fication of the corresponding concurrent object system Conc-Obj (C, c) (outlined
in the following section), the specification of basic types BASE, the specifications
of ancestors where redefined methods have been forgotten and the specifications
of clients, enriched by the operations corresponding to methods and the axioms
corresponding to method definitions.

Spec:Class-Id x Class --* Spec
Let c = Inherits-Uses({cl ca}, {c~ , c~,}, attrs, methods, body)

An Algebraic Semantic Framework for Object Oriented Languages with Concurrency 711

and Name(c/) = C/ , i = 1 m.
Spec(C, c) = des

enrich Conc-Obj(C, c) + BASE
+ forget Redefined-Methods(C, body, cl) from Spee(C, cl) + ...
+ forget Redefined-Methods(C, body, e,) from Spee(C, c,) +
+ Spec(Cl', c1') +.. . + Spec(Cm', c~') by

opns Method-Opns (C, methods)
axioms Method-Axioms (C, c)

We assume that Method-Opns(C, methods) denotes the set of the operations in
the method signature Method-Sig(C, methods). The definition of Method-Axioms
can be found below. The expression Redefined-Methods(C, body, ci) returns the
(operations corresponding to) methods of an ancestor class ci which are redefined
in the body of C. The formal definition is straightforward and given in [BrZ96].

The application of the Export operator does not affect a class specification.
The Rename operator on classes has its correspondence in the rename operator
of ASL.

Spec(C, Export(methods, d)) =def Spec(C, d)
Spec(C, Rename(r, d)) =def rename Spec(C, d) by Method-Renaming (r)

The semantic function Method-Axioms translates each method implementation
contained in the body of the class into an axiom.

Method-Axioms : Class-Id x Class ~ Axioms
Method-Axioms(C, Inherits-Uses({cl c,}, {c1' cm'},

attrs, methods, body)) =d~f
U(m,com)ebody { Method-Axiom(C, m, com)} U {Create-Axiom(C, c)}

The translation of a method implementation into an axiom (Method-Axiom) and
the specification of the default Create method (Create-Axiom) depend on the
syntax of commands. In [BrZ96], we give some examples of translation of both
sequential and concurrent commands.

Deferred methods, i.e. methods without an implementation, have no related
axiom in the specification. In other words, the specification of a deferred method
is totally loose. This means that the interpretation of this method in some model
of the class specification is an arbitrary process. That way, the mechanism of
deferring methods in ancestors and introducing implementations in heirs has an
intuitive semantic counterpart in the mechanism of model set inclusion used in
the algebraic framework to model implementation relationship.

3. Objects in a Concurrent Environment

In this section, we outline the definition of the semantic function Conc-Obj which
gives the specification of the concurrent object system corresponding to a class.
As explained in the introduction, the concurrent object system consists, roughly,
of two parts: the passive part, i.e. the current states of the existing objects, and
the active part, i.e. the processes which execute threads of objects of active classes.

We first give an outline of the definition of the semantic function Obj returning
the specification of the passive part, which we call object environment. In this paper
we assume that an object state has a record structure, as it is in most existing
object oriented languages. Hence an object environment is determined by the

712 R. Breu and E. Zucca

c l a s s C is
attrs

X : I N T E G E R
Y : B O O L E A N

end class C

set of the currently existing objects and by the current interpretation of unary
operations modelling attributes. The basic operations which can be performed
on an object environment are reading/updating an attribute of an existing object
and creating a new object of an existing class. Methods can be seen as operations
derived from these primitives, i.e. the effect of a method execution (if terminating)
is always a finite sequence of elementary steps each one being a basic operation.
Formally:

�9 for each C class name we have two operations

I sNew c " (obj-env , name c) ~ boolean
Createc : (obj-env, namec) ~ obj-env

whose intuitive meaning is testing whether an object name is a new name of
class C (i.e. it is not yet used as the name of any existing object) and adding
an object of class C to an object environment, respectively;

�9 for each X: T attribute of a class C we have two operations

- [-] . X r "(obj-env, namec) --* 2 ,
_ [- . X r *-- _]c "(obj-env, namec, T) ~ obj-env

whose intuitive meaning is reading and updating the attribute X of an object
of class C (here and in what follows T denotes T if T is a basic type, namer
otherwise (i.e. if T is a class).

Each class defines a corresponding structure of object environments; for example
the following class definitions

class C' is
u s e s C;
attrs X 1 : C; X 2 : C;

end class C'

define object environments in which objects of class C and C' can be created and
there are operations for reading/updating attributes X, Y, Xb X2.

In order to formalize that correspondence, we introduce, similarly to the
notion of method signature mentioned before, the auxiliary notion of attribute
signature which captures the informal idea of the attribute structure of a class. An
attribute signature is a 4-tuple < BS, CS,_<,A > consisting of a set BS of basic
sorts, a set CS of class sorts, a partial ordering ___ on CS, called the inheritance
relation, and a family A of attributes of the form X: C ~ T.

The semantic function Attr-Sig , which returns the attribute signature corre-
sponding to a class, is defined in [BrZ96].

In this way, the specification Obj (C, c) of the object environment associated
with a class c with name C is defined by

Obj (C, c) =def O B J - E N V (A t t r - S i g (C , c))

where OBJ-ENV is a parametric specification of object environments providing,
for a given attribute signature, the operations for reading/updating attributes,
creating objects and testing mentioned above. In [BrZ96], we give two different
definitions of OBJ-ENV: an abstract version, stating only properties we require
an object environment to satisfy, and an implementation (based on modelling
object sharing as a congruence over terms denoting objects) which is interesting
by itself.

An Algebraic Semantic Framework for Object Oriented Languages with Concurrency 713

We illustrate now the active part of the concurrent object system associated
with a class. We first give a brief introduction to the approach to concurrency
based on algebraic transition systems (see [AsR93]), starting from the notion of
label led transi t ion sys tem.

A labelled transition system consists of a set of s tates (modelling execution
stages), a set of act ions or f l ags (modelling interaction of the system with the
outside) and a set of t ransi t ions which are triples (s, a, s t) where s, s' are states and a

a a St is an action, usually written s ~ s'. The intuitive meaning of a transition s
is that the system can evolve from the state s into the state s t by performing an
interaction with the outside which is labelled by a.

In particular, we use a specialized version of labelled transition systems
which we call concurren t objec t sys tems . A concurrent object system is a labelled
transition system with states of the form < prl] . . . I prn, ~, a > where prl , prn
are states of a lower-level labelled transition system which is called process
transi t ion sys tem, prl I . . . I prn is a multiset of process states (the vertical bar
is used to suggest parallel composition), z is a process i n format ion (an entity
keeping trace of information needed for handling interaction of processes, e.g.
priorities or locking of variables), o- is the object environment described above.
Process information and object environment have no own transitions, but may
be changed as a consequence of the transition of processes.

The transitions of the concurrent system are deduced from the transitions of
the process transition system by a set of axioms, each one being of the form

al an
(*) prl , pr ' 1 A . . . A pr , , pr~ A Cond(al , an, t, a)

0 -t < prl j . . . j prn j prse t , t, a > ~ < prtl] . . .] pr~] prse t , z', >

The intuitive meaning of such an axiom is that, if < prl I . . . I prn] prse t , ~, ~ >
is the current state of the concurrent system and each pri can evolve into the
new process state p r / b y performing the action ai, and if moreover the condition
Cond(aa , an, z, ~) holds, then the whole system can evolve in the new state
< pr~ [. . . I pr~ I prse t , t',o-' >. We assume for simplicity no flags for the
transitions of the concurrent system (that means that we consider the concurrent
system as a closed system, whose evolution is always internal). Here prse t denotes
a multiset of processes which do not take part in this transition.

Labelled transition systems can be described by algebraic specifications just
as usual data types. The algebraic specification corresponding to a particular
concurrent object system is obtained instantiating a parametric specification, as
shown below.

CONC-OBJ-SYSTEM(PROCESS, PROCESS-INF,
OBJ, TRANSITION-AXIOMS) =def

enrich MSET(PROCESS) + OBJ +-PROCESS-INF by
opns
{ < -, -, - > ~ < -, -, - > : (mset (process), process-inf, obj-env,

mset (process), process -inf , obj -env) ~ bool)
axioms TRANSITION-AXIOMS

Here we assume that PROCESS is the specification of the process transition
system, where process is the sort of the states and the transition relation is
denoted by ~ (not to be confused with =~ which denotes the transition relation
of the whole system), MSET is a parametric specification of multisets, OBJ and
PROCESS- INF are the specifications of the object environment and of the process

714 R. Breu and E. Zucca

information, respectively, and TRANSITION-AXIOMS is a set of axioms each
one being of the form (*).

The specification of the concurrent object system associated with a class can
now be obtained instantiating the above parametric specification; each actual
parameter is the result of a semantic function (defined in [BrZ96]).

Conc-Obj (C, c) =def
C O N C - O B J - S Y S T E M (Process(C, c), Process-Inf (C, c),

Obj (C, c), Transition-Axioms (C, c))

As an example, we show below the definition of the transition axioms in the
case in which the language has no concurrent features, hence the only process
actions are "standard", i.e. related to reading/updating attributes and creating
new objects. In the case of a language with significant concurrent features, the
definitions below have to be extended (see [BrZ96]).

Transition-Axioms(C, c) =def Standard- Transition-Axioms(Attr-Sig(C, c))
Standard- Transition-Axioms : Attr-Sig ~ Axioms
Standard- Transition-Axioms (AE) =def

n.ASSIGN-Xr(x)
{pr > pr r

< pr I prset, t ,a > ~ < p~ I prset,~,a[n.Xr ~ x] >,

n.GET-Xr(x)
pr p~ A cr[n].Xr = x ~ < pr I prset, t, a > ~ < pr' I prset, l, a >

I X: C ~ r E Attrs(AY~)}

n.CREATEc (thread)
U{pr > pr' A IsNewc(a, n) A Isc(n)

< prlprset , ~, a >=>< pr ' lprse t] thread, l, Createc(a, n) >
[C 6 ClassSorts(AE)}

4. Concluding Remarks

In the preceding sections, an algebraic semantic framework for object oriented
programming languages with concurrency has been presented. A class is modelled
by an algebraic specification which describes in a loose approach the objects of
the class. The use of the algebraic specification language ASL enables us to model
structured classes in a compositional way, based on the structuring operators on
specifications. Concerning the model of objects, we consider a general framework
of objects in a concurrent environment. The methods of a class are described
by processes acting on the passive parts of objects which are determined by the
attribute structure of the class. Our object model describes typical object oriented
features like object sharing, inheritance polymorphism and dynamic binding of
methods.

The work done in this paper has been and will be continued in at least two
directions.

First, an integration of abstract specification facilities into an object ori-
ented development method is desirable. By the algebraic semantics, a common
framework for classes and abstract data types has been provided. This com-
mon framework enables an integration of (implementation-oriented) classes and
(property-oriented) specifications via a formal correctness relation. The relation

An Algebraic Semantic Framework for Object Oriented Languages with Concurrency 715

between a sequential object oriented approach and algebraic specifications has
been deeply investigated in [Bre91].

For what concerns the model of object systems, a main result of this paper is
to show that it is possible to insert in a modular way a model of the dynamic
evolution in the overall algebraic framework, giving a compositional interpretation
of classes. That is achieved by what we call the "state-as-term" approach, i.e.
modelling the current configuration of a dynamic system as a term of a special
sort and the transformations from a configuration to another as operations
(predicates). This idea is extremely fruitful and at the root of a variety of
formalisms (see [AsR93] for references). Nevertheless, somebody might not like
the fact that in this approach there is no strong distinction between static and
dynamic aspects of a system.

Indeed some work has been done in extending in a more proper way the alge-
braic treatment to the dynamic case, introducing a new kind of structures which
are a generalization of usual algebras, called d-oids [AsZ95]. In this approach,
the "state-as-algebra" view is taken, seeing configurations as usual algebras and
transformations as operations at a higher level, i.e. operations handling algebras.
An interesting further work in that direction would be to give within this new
framework a compositional model of classes as the one proposed in this paper.

Acknowledgment

The authors are grateful to their colleagues in the DRAGON project, especially
to Martin Wirsing, Roll Hennicker (for the Miinich side), Egidio Astesiano and
Gianna Reggio (for the Genova side), for many helpful discussions and comments.

References

[AdB86] America, R, de Bakker, J., Kok J. and Rutten, J. Denotational semantics of a parallel
object-oriented language. Tech. Report CS-R8626, Amsterdam, 1986.

[AsR93] Astesiano, E. and Reggio, G. Algebraic specification of concurrency. In Recent Trends
in Data Type Specification (Dourdan, France, August 1991), LNCS 655, 1993.

[AsZ95] Astesiano, E. and Zucca, E. D-oids: a model for dynamic data-types. Mathematical
Structures in Computer Science, 5(2):257-282, June 1995.

[BKS88] Bayan, R., Kaag, E, Spasojevic, A., Di Maio, A., Cardigno, C., Gatti, S., Crespi Reghizzi,
S., Astesiano, E., Giovini, A., Gautier, B., Atkinson, C., Wirsing, M., Hennicker, R.
and Zucca, E. An object oriented approach to dragon. Deliverable of the project
"DRAGON" (Esprit 1550), 1988.

[Bre91] Breu, R. Algebraic Specification Techniques in Object Oriented Programming Environment.
LNCS 562, 1991.

[BrZ89] Breu, R. and Zucca, E. An algebraic compositional semantics of an object oriented
notation with concurrency. In Foundations of Software Technology and Theoretical
Computer Science 1989, LNCS 405, 1989.

[BrZ96] Breu, R. and Zucca, E. An algebraic semantic framework for object oriented languages
with concurrency. Formal Aspects of Computing, 8(E):289, 1996. (For details see page
705).

[Str86] Strom, R. A comparison of the object-oriented and process paradigm. SIGPLAN
Notices, 21(10):88-97, 1986.

[Weg87] Wegner, P. Dimensions of object based language design. In OOPSLA '87, 1987.
[Wir86] Wirsing, M. Structured algebraic specifications: A kernel language. Theoretical Computer

Science, 43:123~50, 1986.
[Wo187] Wolczko, M. Semantics of Smalltalk-80. In ECOOP '87, LNCS 276, 1987.

Received April 1990
Accepted in revised form July 1996 by C. B. Jones

