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Abstract. A refinement calculus for the development of real-time systems is pre- 
sented. The calculus is based upon a wide-spectrum language called TAM (the 
Temporal Agent Model), within which both functional and timing properties 
can be expressed in either abstract or concrete terms. A specification oriented 
semantics is given for the language. Program development is considered as a re- 
finement process i.e. the calculation of a structured program from an unstructured 
specification. An example program is developed. 

1. Introduction 

Traditionally, temporal logics have been used for the verification of concurrent 
programs [Bar85,MaP83,Ga187], and more recently real-time programs [Ost89, 
Hoo91]. To accommodate reasoning about real-time, the qualitative operators of 
temporal logic have been extended to include some notion of quantitative time. In 
Ostroff's verification calculus [Ost89], a local variable T is introduced which holds 
the current time. In Hooman's verification calculus [Hoo91], Koymans' Metric 
Temporal Logic [KdR85] is used, in which the model operators are extended 
to include real-time interval constraints. More recently, the Duration Calculus 
[ZHR91] provides for a formal analysis of hybrid real-time systems i.e. systems 
which are concerned with the interface between analogue control theory and the 
digital computer. 

However, in all of these cases the verification calculus depends upon a poste- 
riori verification of the program against the specification. Such a method in prone 
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to repeated reformulation of  the program due to the verification process failing 
[Sch92]. One solution to this problem is to use a top-down refinement calculus, 
where each refinement towards a program is guaranteed correct with respect to 
the specification due to the soundness of the laws of the calculus. 

This paper introduces a refinement calculus for real-time programs in which 
Manna and Pnueli's temporal logic [MAP83] is extended to a real-time logic by 
axiomatising the behaviour of a local variable which represents the current time. 
TAM, a wide-spectrum language, is defined which enables the program developer 
to express both program specifications and implementations. A refinement rela- 
tion is defined along with a refinement calculus which is sound with respect to 
the refinement relation. The refinement calculus guides the step-wise refinement 
of a specification by the gradual replacement of parts of the specification with 
executable code. An example real-time program is refined. The refinement rela- 
tion is proven compositional (monotonic), and the proofs of  soundness of the 
refinement laws are given. 

2. The TAM Language 

2.1. TAM Syntax 

We define a real-time system as a collection of concurrently executing time 
constrained computation agents which communicate asynchronously via time- 
stamped shared data areas called shunts. The time-stamps refer to the time of  
the last write to that shunt. Shunts may only have one writer but any number of  
readers. Time is global i.e. a single clock is accessible by every agent and shunt. 
The time domain is discrete, linear, and modelled by the positive integers. There 
is a unique 'first time' instant from which we assume all systems will measure 
their execution release times for all agents. We denote this time by 0. 

The syntax of TAM is defined recursively in terms of agents sur by: 

I I 
~ ::= [ w . d ] 1 0 ~ s l w ' ~ l d [ d l [ S ] d l d ; ~ l  i ~ g ~ : : > d ~ l # n d  

Where w is a set of shunt names, s is a shunt name, I is some finite indexing 
set, gi are boolean expressions on shunts, ~ is an expression on shunts, and S is 
a set of times. 

[w �9 d ]  defines the environment for the agent ag. The set of shunts in w are 
exactly those shunts which may be written to by d (and may not be written to 
by any other concurrently executing agent). The shunts in w are also associated 
with a type (a set of values). We use the convention of calling those shunts which 
may be written to by an agent the output shunts of that agent. We also call those 
shunts which may not be written to by an agent the input shunts of an agent. 

/~ ~.a s performs an asynchronous output to the shunt s. The current time is 
written to the shunt, along with the value of the expression ~9 (which may refer to 
shunts). We use the notation s.v to refer to the value found in the shunt s, and s.ts 
for the time-stamp. The user does not explicitly have to specify the time-stamp 
to be written to the shunt, and may assume that the run-time environment will 
perform this task. 

w : q5 in an agent which specifies required behaviour on shunts. This statement 
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form is discussed in detail below. The shunts listed in w are not given a type 
(they are already typed by the surrounding environment). 

~ r  executes the two agents concurrently. The two agents are released at the 
same time, and the concurrent composition terminates some arbitrary time after 
both sub-agents terminate. 

[ S ] d  imposes a duration equal to one of the values in the set S on d .  This 
agent form is therefore capable of  describing a deadl ine  on agent termination. 

d ; ~ r  defines the sequential composition of two agents. There is no delay 
between the termination of the first agent and the execution of the second. 

i y g i  ~ ~4i evaluates all of  the guards gi (which are boolean expressions on 
shunts), and executes one of the agents corresponding to a true guard. If no 
guard evaluates to true, then the choice agent simply terminates. The indexing 
set I is always finite. 

#n~r executes the agent ~4 in sequence n times. 

17" 
In addition we use the shorthand/lcl / ~ i  to denote indexed concurrent composition 

(I is finite), and similarly ~ d i  to denote indexed sequential composition (again, 
I is finite). 

The syntax of the specification agent in TAM is defined as: 

w : q )  

where w is a set of shunt names which may be changed during the behaviour 
defined by the specification, and 4) is a timed logic formula which describes that 
behaviour. Thus, given a specification agent with an environment (i.e. [w0 �9 w : q~]), 
then w can be seen as a further partitioning of w0 into a stable set w0 - w and a 
changeable set w. 

The logic used for the specification is Manna and Pnueli's temporal logic 
[MAP83]. We assume a discrete linear time domain (positive integers i.e. T im e  = 
Z+), and use a special local variable z to denote the current time. We axiomatize 
the behaviour of ~ so that the value increments with each transition to a new 
state. This axiomatisation is given in the next section. 

In a specification w : ~, the formula �9 may also contain two unique free 
variables t, t' c T ime  which represent the time at which the behaviour described 
by �9 starts (t), and the time at which the behaviour terminates (t'). Other free 
variables in q) represent shunts that appear in the program. 

2.2. Example Agents 

The 'watchdog timer' is a process which monitors a number of input channels 
for activity, and any channel which remains inactive for a given number of time 
units causes an alarm to be sounded. We model n input channels by shunts which 
will be labelled dl, d2 ..... dn, and model the alarm with an output shunt called 
Alarm.  There is an maximum inactivity period for each input shunt which is 
denoted Ii, and a maximum interval before the alarm should 'sound' (be written 
to) denoted Tala,m (the same value for all input channels). All shunts are of  type 
boolean. 
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There are two requirements on the watchdog timer behaviour: the first is a 
liveness requirement which asserts when the alarm should be sounded: 

R. 1 =def VInE [t, t7 
(Vi E [1, n]((m + Ii + Talarm ~ t' /N stable(di, m, m + Ii)) =~ 

o(m + li <-- "C < m + Ii "}- Talarm 
A A l a r m  = (~, true)))) 

(Note that the predicate stable asserts that a shunt does not change value for a 
given interval - it is formally defined in the next section.) The second requirement 
is a safety requirement that only allows an alarm to be sounded in those cases 
when there has been an inactive input shunt: 

R.2 =def VInE [t, t'] 
(~(r = m ) A A l a r m . t s  = m =~ 

3i E [1, n](m - - I i  >_ tA 
~l ,g C [t,m](l -- Ii = gAl >_ m = Tazarm 

Astable(di,  g, I)))) 

The watchdog timer behaviour can now be specified by the agent: 

[{Alarm : bool} * {A larm}  : R.1 A R.2] 

Note that the environment and the specification frame have the same single 
shunt Alarm.  In most instances, the initial specification of a system will have the 
same shunts in both the environment and the frame; there seems little justification 
for having shunts in the initial environment if they can never change value. 

Consider a system which is required to search an input list of a given fixed size 
for a given element within d time units. One way in which this might be achieved 
is by dividing the list into two halves and searching each half concurrently (thus 
potentially reducing the execution time given appropriate hardware support). We 
use this example to illustrate how specification statements can be mixed with 
executable code. 

We assume an input shunt & which contains the list to search, and an input 
shunt Se which contains the element to be searched for (assuming types E l e m e n t  
and Lis t (E lement ) ) .  In addition we assume two intermediate boolean shunts F1 
and F2 which will indicate whether or not one of the searching agents has found 
a match, and a final boolean output shunt F which will provide the result of the 
overall search. We also assume two functions F i n d l n F i r s t  0 and F i n d l n S e e o n d O  
which map an element and an element list to a boolean, and which searches the 
first and second halves respectively. 

There are two concurrent searching agents: 

Search l  =def FindlnFirs t (S l .V ,  Se.v) "'+ FI 

Search2 =def FindlnSecond(S l .V ,  Se.v) ~ F2 

There is also an agent which collates the results from F1 and F2 and outputs 
the result into F: 

Col la te  =def {F} : o(z  = t A (FI.V V F2.v =*" o(31 C [t, tT(stable(F,  t, 1 -- 1)A 

o(z = m A F = (l, true)))) A s table(F,  l, t')) 
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The three agents may now be composed into a single system along with the 
appropriate deadline: 

[{F1, F2, F : bool} ,, [d]((SearchlrSearch2); Collate)] 

Note that the collating agent is quite complex, and if we had written it as an 
executable agent, we could have expressed it as: 

Collate =def FI.V ~ (true ".~ F) 
L2 
F2.v ~ (true "~ F) 

or even: 

Collate =def Fl.V V F2.v ~ F 

But in both of these cases we have restricted our system in terms of eventual 
implementation; the purpose of a specification is to provide an abstract descrip- 
tion which is free from implementation bias. Mixed programs are usually the 
result of  stepwise refinement within a wide-spectrum language rather than an 
initial system description. 

2.3. Derived Agent Forms 

There are a number  of  useful agent forms which are commonly found in real-time 
system design. These are defined below. 

Deadline: We define a deadline as a duration set with values which range from 0 
to a given maximum. We overload the duration operator syntax: 

=d i 

Skip: We define an agent which may have a duration of zero, and which changes 
no shunts: 

skip =def 0 : true 

Delay: We define an agent which delays for a minimum of n time unts, and 
changes no shunts: 

cSn =def O : t' >_ t + n 

2.4. Semantics 

The semantics of  TAM agents are given by formulae in the temporal logic. We 
also make extensions to axiomatise the behaviour of  the real-time variable z. 

PAx.  (Progress axiom) 

UAx (Uniqueness axiom 

Vnrq(,c = n ~ o~ : n + 1) 

i~cl O('c : ni A d)i) 

< ~ o ( z  :njA~jA,c~, .j o (z ' :n iAd) i )  ) 
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The progress axiom asserts that in each state the value of z is exactly one 
greater than the value in the previous state, and the uniqueness axiom asserts 
that any formula which is temporally anchored to the earliest time (of that set of 
times) may precede all other formulae. 

We define some useful predicates on shunts in order to simplify the semantic 
definitions. The predicate 'stable'  asserts that the shunt s will not be changed 
during the given interval: 

Definition (Stable) 

s tab l e ( x ,n ,m)  =def ~V(ac[~n,m] <> ('E = a A X =--- V)) 

In addition, the definition for stable is extended to sets of shunts. 
The predicate wri te  asserts that a given value is written to a shunt within an 

interval, and that the shunt remains stable at all other times within the interval: 

Definition (Write) 

write(s ,  O, n, m) =def 

~1 c [n, m](stable(s,  n, 1 - 1) A o('c = 1 A s = (1, O)) A stable(s,  1, m)) 

We also define a chop operator: 

Definition (Chop). Given two timed logic formulae s~ and N, then, 

d - N  = & f  3m E [t , t '](sC[m/t7 A N [ m / t ] )  

The semantics of an agent are now given by a timed logic formula. The specifica- 
tion statement is defined in this manner also, giving a natural interpretation for 
the refinement relation. Note that the semantics always assume an environment 
(i.e. no program can be given a semantics without the explicit definition of an 
environment). 

Definition (Semantics) 

[[[W �9 W 0 �9 t13]~ =def <>('C = t A s table(w - wo, t, t') A ~ )  

[[[w �9 0 --~ s]]] =&f [[[w �9 {s} �9 write(s ,  O, t, t') 

[[[w . A;B]]] =def ~[W " A]]]-[[[W * B]] 

[[[w �9 AIB]]] =def ([[[WA �9 A]]l~stable(wA, t, t')) 
A([[[WB �9 B]]~s tab le (WB,  t, t')) 

[[[w * iU gi ~ Ai]]] =def 

~(r = t A ( ( i~  ~gi A stable(w,  t, t')) 
V 

(V (g~ A ~[w �9 Ad~)))) 
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[[[w �9 [S]A]]] =def ~[W �9 A]]] A t' -- t C S 

[[[w �9 + 1A]]] =def ~[W �9 A ] ~ L u n A ] ]  

~[w �9 =def stable(w, t, t') 

In the semantic definition of the concurrent operator, the partitioning of the 
environment w to WA and WB has to be complete (i.e. wa U wB = w) and disjoint 
(i.e. WA A WB = 0), and all variables written to by A must be in WA, and similarly 
for B. Variables and shunts which cannot be written by either agent may appear 
in either environment. 

An important property of the semantics is that of 'temporal independence' 
i.e. the ability to remove any temporal anchor to the start time t, We express this 
property in the following theorem: 

Theorem (Temporal Independence). Given any agent ~ ,  then: 

.(~ = t A ~A]) , ~  ~A] 

The proof of this theorem is given in the appendix. It is used extensively in 
soundness proofs of the refinement calculus. 

3. R e f i n e m e n t  

3.1. A Refinement Relation 

Refinement is defined as the s t reng then ing  of the logic formula given by the 
semantics of the agent. This models the intuitive definition of refinement as a 
lessening of non-determinism. We define a partial order on agents, denoted r--. 

Definition (Refinement) 

It would be very time consuming to convert all agents to their logic formulae, 
and then prove that the implication holds; for any system of a reasonable size 
such proofs would be too complex. Instead we provide a number of refinement 
laws which together provide an (incomplete) (in)equational theory on agents, and 
which is sound with respect to the refinment relation. We list these rules below. 

3.2. Refinement Laws 

Each semantic definition in the previous section gives rise to a refinement law 
which we will label 'def...', for example: 

[{s : bool} �9 {s} : write(s, true, t, t')] ~ [{s : bool} �9 true ~,~ s] (def-,-*) 

In addition we present a number of basic refinement laws below. Their soundness 
proofs rely on Manna and Pnueli's proof system, and theorems and inference 
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rules from this system are labelled T n  or Dn in the proofs in the appendix. These 
labels correspond to the ones given in [MAP83]. 

Specification 

(contract frame) w �9 �9 E_ w / s  : ep (any shunt S) 

(expand frame) [wo �9 w " (P] E_ [w U { x  T} �9 w U {x} �9 4p] (x new variable) 

(strengthen) w 'qb  E_ w ' ~  ( i f q ~ q b )  

Sequence 

(seq-assoc) d; (~ ;~)  E_ (d;N);g  

Concurrent 

(con-assoc) dl(~l~) g (d[~)l~ 

(split) [wo. ,Uwi 5<  :_ iwo.n[wo,.w,,o, < ]  

(if wi n wj  = 0 for i 7 ~ j, w0i n woj = 0 for i r j) 

U w0. = w0, wi c each i) i E I  z - -  W o i  

Deadline 

(shorten) [S ]d  E_ [S - S ' ] d  (combine) [S][T]~r E IS N T ] d  

Guards 

(choose) i y g i  =:=> ~ i  E ~ j  (if j c I A g j) 

(nd) g l ~ a g l l g 2 ~ r  E g l V g 2 ~ r  

Recursion 

(basis) w " qmi( ic l (@i[mi_l / t][mi/ t  ]) A stable(wo, mn, t )[t/mo]) 
__ pnw :ep ( i f /  = [1,nl) 

where 3Ni denotes the nested existential quantification of the variables mi with 
some indexing set such that i E I. 

Composite agents allow us to describe complex behaviour by combining 
simpler agents. However, in system development we would not want to complicate 
the refinement method in proportion to the complexity of the system, instead 
we would wish to have simple refinement obligations which could be trivially 
composed in order to discharge complex refinement proof obligations. 

In [Hoo91] the importance of compositionality of proof systems for concurrent 
real-time formalisms is discussed. We assert that the refinement calculus for TAM 
is compositional, i.e. systems can be sub-divided into sub-systems which may 
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then be refined in isolation, and recomposed to give a system which is a valid 
refinement of the original specification. This form of compositionality is clearly 
dependent upon the fact that refinement cannot break the interference constraint 
on concurrent systems, and similarly cannot introduce unrestricted shunts. This 
property of  compositionality also holds for the other agent constructors (deadline, 
sequence, variable declaration, shunt restriction, guards and recursion), and in the 
refinement calculus, compositionality equates to the property of m o n o t o n i c i t y .  

We therefore assert the following theorem: 

Theorem (Refinement Monotonicity) 

If d r- ~ then for any context ~g(_) we have <g(sJ) r- cg(N) 

The proof of this theorem is given in the appendix. 

4. Example 

Consider a manufacturing plant in which a control system is required to count 
the number of items on a conveyor belt. Each item may be of one of  two colours: 
black or red. Assuming that the items do not arrive at a faster rate than one 
every five time units, then the system is required to count the number of items of 
each colour that arrive over a given interval. 

We can model this system by a single input shunt labelled 'in', and two output 
shunts labelled 'countb' and countr. Writes to the input shunt represent the arrival 
of items, and the numbers held in the output shunts represent the total number 
of items of each colour. For simplicity we will assume that all positive integer 
shunts initially have the value 0. We start by defining a useful predicate 'count': 

count(x ,  X )  = d e f  

3n(n = 1{/E [ t , t ' -  5] '<>(v = l a i n  = (l,x))}[ Ao(z = t ' A X . v  = n)) 

This predicate asserts that at the end of the given interval (t') the count in shunt 
X is equal to the number of instances in time when a value x is written to the 
shunt in. 

We may now give a complete specification: 

S pec = aef [ { countb, countr �9 Z+}e 

{countb, count~} :count (b lack ,  countb) 

Acount(rec,  countr )] 

In addition we assert an environment axiom which provides an upper bound on 
the item arrival rate, and an environment axiom which asserts that initially the 
shunts all have a reasonable value. 

EA.1 Vn, m E [t, t](O(~ = n A in.ts = n) 

A o (~ = m A in.ts = m) ~ a b s ( n - -  m) >_ 5) 

EA.2 o(z = t A countb.V = 0 A countr.v = O) 
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We may now start the refinement process. Step one 
shunt. 

Spec  

417 

is to introduce a new 

E [{countb, countr, l a s t T i m e  : Z+}�9  

{ countb, countrmlast  T ime} : count(black,  countb ) A count(red,  countr ) ] 

(expand frame) 

The new shunt will keep a record of the time of the last write to the shunt in 
so that time-stamps may be compared. From this point onwards we will drop 
any reference to the environment which does not change. The next refinement 
predicates over the new shunt and asserts that the value found in l a s t T i m e  is 
always the most recent time-stamp in the shunt in (not including any time-stamp 
written in the last five time units). 

F- {countr, countb, l a s t T i m e }  : count(black,  countb) A count(red,  countr) 

AVn C [t, t'](o(z = n A l a s tT ime .v  = writes(t ,  n -  5))) 

(strengthen) 

where writes(t ,  n) =def m a x { l  E [t, n] �9 o(z  = l A in.ts = l)} 

The next step is to partition the behaviour into sections which last for five time 
units (one of a number of possible design decisions). 

r- {countb, countr, l a s t T i m e }  : 

3mi( i~[[~1,~11 r It] [mi/ t'] A stable(w, m, ,  t') )[ t /mo ] 

(strengthen) 

Where t/ ----def [{l E (t,t'] �9 1 rood 5}1 (all members of (t,t'] which divide by 5). 

Where q) =def 

t' - t = 5 A o(z  = tA3m,  n, l(countb.v = m A countr.V = n A in.ts = lA 
((l > las tT ime .v  A in.v = black) 

o(r  = t' A countb.V -- m + 1 
A l a s t T i m e . v  = I))A 

((l > las tT ime .v  A in.v = red) 
~(~ = t' A countr.v -- n + 1 

A l a s t r i m e . v  = l)))) 

Note that this last refinement step is the most complex one and it is dependent 
upon the environment axioms EA.1  and EA.2.  This partitioned form allows us to 
refine to an iterative agent: 

E #n{COuntb, countr, l a s t T i m e }  : 

Now we may concentrate on the iterated specification agent. The definition of 
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deadline, delay, and concurrency allows us to perform the following refinement: 

{ countb, coUntr, last T ime} " 

E_ [{5}](35t{countb, countr, l a s tT ime}  �9 ~ ' )  

where (I)' is @ without the initial conjunct on t and t'. Now we refine the remaining 
specification: 

{ countb, countr, last T ime} �9 @' 

r'- in.ts> las tT ime.v  A in.v = black 
=~ { countr, countb, last T ime}  :write( countb, countb.v + 1, t, t') 

A write( l ast T ime, in.ts, t, t') 
u 
in.ts > las tTime.v  A in.v = red 

{ countr, countb, last T ime } :write( countr, countr.V + 1, t, t') 
A write( l ast Time,  in.ts, t, t') 

(def guards) 

Now each guarded agent may be refined to a pair of concurrent outputs: 

{ countb, countr, last T ime } �9 write( countb, countb.v + 1, t, t') 

Awri te(  last Time,  in.ts, t, t') 

countb.V + 1 "~ countb I in.ts ".* l a s t T i m e  

(def write, concurrent) 

This is the final refinement setp, and we may now compose all of the above 
refinements into a single program: 

E 1~[{5}](651in.ts > l a s t r i m e . v  A in.v = black 
(countb.V + 1 ~.~ countb I in . ts ' ,a  las tT ime)  

ii 
in.ts > las tTime.v  A in.v = red 

(countr.v + 1 ..-+ count~ I in.ts ..~ las tT ime))  

5. Conclusions 

TAM is unique in providing a wide-spectrum development language for real- 
time systems in which abstract specifications can be refined down to con- 
crete executable programs. Wide-spectrum languages for non real-time systems 
have been studied extensively, for example in the SETL language [SHS85], and 
the CIP project [CIP85], wide-spectrum languages based upon predicate logic 
are given transformation rules which allow refinement in a manner similar to 
TAM. 

The utility of a wide-spectrum language can be clearly seen in the refinement 
method used by Morgan in his calculus [Mor90,MRG88]. In this language, the 
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concrete syntax is provided by Dijkstra's Guarded Command Language (GCL) 
[Dij76]. The abstract specification syntax is provided by a statement form: 

w :[pro, post] 

where 'w' (called the 'frame') defines the scope of the specification, that is those 
state variables which may be changed by the behaviour defined by the specifica- 
tion, and pre and post are first-order predicate logic formulae which describe the 
relationship between the program state before the 'execution' of the specification 
statement and after the termination of the specification statement respectively. 
The specification statement can therefore be viewed as a description of the mini- 
mum requirements on the behaviour of any concrete statement which may replace 
it during refinement. 

Similarly, in Back and von Wright's wide-spectrum language [BvW90], the 
concrete code is a version of Dijkstra's GCL and a statement called an assert 
statement is denoted {b}, where b is a formula on the local state. The assert 
statement will terminate correctly only if the local state satisfies the formula 
when 'executed', otherwise it aborts. 

Original work by Back [Bac80], and later [Bac88], can be seen as the first 
investigation of adding specification statements to programming languages to aid 
in the process of verification. 

However, all of these languages are transformational; they describe computa- 
tions which have all input data available at the start of execution, and provide a 
result at their time of termination. This restriction provides the 'shape' of Mor- 
gan's specification statement - it describes a relationship on initial and final states. 
In real-time systems we are interested in input and output during the execution 
of an agent. In addition, we are interested in the time at which the output and 
inputs occur; our specification statement forms a timed invariant which reflects 
these needs. 

The next step is to provide automated support for the refinement process 
which will enable us to tackle much more ambitious software systems. We also 
plan to extend TAM to assist in programming 'in the large'. 
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A. Proofs 

A.1. Temporal Independence 

S p e c i f i c a t i o n  

L e m m a .  <>(@ A <>(@ A ~F)) <=> <>(q) A ~F) 

1. <>(q) A <>(~ A W)) (hypothesis)  
2. <>(q) A W) 1, T10,T4 
3. gO A ~F (hypothesis)  
4. q) 3, A-elim 
5. <>(~ A ~ )  3.T1 
6. q) A <,(q~ A u?) 4,5,A-intro 
7. @ A ~F ~ q? A 0 ( 0  A ud) 3 ,6 ,~ - in t ro  
8. <>(~ A tt~) ~ �9 A <>(~ A tIJ) 7,D5 
9 <>(q~ A <>(~ A ~ ) )  ~ <>(q~ A ~ )  1,2, =>-intro 
10. <>(~ A <>(q) A ~ ) )  ~ <,(q) A ~ )  8,9, <=>-intro 

P r o o f  Subst i tu te  stable(wo - w, t, t') A ~ = t for �9 in 1emma. [] 

D e a d l i n e  

L e m m a .  <>(z = t A (I)) A t' - -  t r S <=~ <>(t = ~ A <>(z = t A q)) A t' - -  t E S )  

1. o ( z = t A z ( z = t A ~ ) A t ' - - t E S )  
2. o(z -= t A ~(z = t A @)) A t' --  t E S 
3. ~(T=tA~(~----tA~)) 
4. t ' - - t c S  
5. o(~ = t) A ~, o (~ = t A q)) 
6. o o  ('c = t A q)) 
7. ~,(~=tA~) 

(hypothesis)  
1,T61 
2, A-elim 
2,A-elim 
3,T10 
5,A-elim 
6,T4 
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8. o ( z = t A O )  A t ' - - t E S  
9. < > ( t = t A O )  A t ' - - t c S  
10. <>(1 = t A q~) 
11. o1 = t A o O  
12. <>z=t  
13. <>z = t A o ( z  = t A O )  
14. < > ( z = t A < > ( v = t A ( I ) ) ) A t ' - - t E S  
15. <>('c = t A *(z  = t A O) A t' --  t E S) 
16. o ( z = t A , ( z = t A @ ) A t ' - - t E S )  

o(v = t A  ~ ) A t ' - - t  E S 
17. ( , ( z = t A O )  A t ' - - t E S  

<>(z = t A <>(1 = t A O )  A t ' - - t  ~ S)  
17. < > ( z = t A O )  A t ' - - t E S  

<=>o(t = t a <>(z = t A O )  A t '  - -  t E S)  

P r o o f  Substitute [[[w �9 A]]] for �9 in lemma.  [] 

O u t p u t  

4,7,A-intro 
(hypothesis) 
9, A-elim 
10,T10 
11,A-elim 
10,12,A-intro 
UAx,9,13,A-elim 
14,T61 

1 ,8 ,~- in t ro  

9,15,=~-intro 

9,17,r 

P r o o f  Defined in terms of  specification s ta tement  which is tempora l ly  indepen- 
dent. [] 

S e q u e n c e  

We have to show that:  

<>(t = t A qrn E It, tT([[[w * A ]] [m/t'] A [[[w �9 B]]] [m/t]))  

<:~ qn E It, t']([[[w �9 A ]] [n/t'] A [[[w * S]l] [n/t]) 

We make  the following substi tutions (assuming tempora l  independence of  agents 
and N):  

[[[w �9 A]]] [m/t'] 

[[[w �9 A]]] [n/t'] 

[[[w �9 B]]] [re~t] 

[[[w �9 B]]] [n/t] 

= <>(t = t A Ore) 

= o (z  = t A CI)n) 

= o(Z = t A t]fm) 

= o(Z = t A v / n )  

We therefore have to prove the theorem:  

<>(z = t A 3 m  C It, t ' ] (o(z  = t A (I)m) A <>(1 = t A v/m)))  

3n E [ t , t ] (o(z  = t A (I)n) A o(z = t A v/n)) 

1. <>(1 = t A ~ m  E [ t , t ' ] ( o ( z  ~- t A ~ m )  Ao(1 = t A V/m))) 
2. o(qm E [t, t'](o(z = t A q)m) A o(z = t A v/m))) 
3. 3m 6 [t, t'](~>(<>(z = t A r A <>(1 = t A v/m)) 
4.  <>(<>(~ = t A ~ o )  A o(-c = a A %)) 
5. o ( o ( z = t A C P a )  A O o ( z - - = a A V / a ) )  

(hypothesis) 
1,T10,A-elim 
2,1"48 
3,3-elim 
4,T10, 



422 D. Scholefield 

6. o(e(r = t Aqb~)) 
7. o(z ----- t A ~a)) 
8. o o ( z  = tAupa)) 
9. e(z ----- t A upa)) 
10. ~(z-----tA~a) A o ( z = t A u p a )  
11. 3m E [t , t](o(z = t A q)~) Ao(v = t AUPm)) 
12. o(z = t A 3m ~ [t, t l ( o ( z  = t A ~m)  A o ( r  = t A up,.))) 

=~ 3n E [t, t l ( o ( z  = t A ~ . )  A . ( z  = t A % ) )  
13. ~n E [t, t '](o(r = t A q)~) A o(z = t A ~ ) )  
14. o(z = t A qb~) A e(z = t A UP,) 
15. <,(r = t A q~a) 
16. or  = t A Oq)a 
17. o r = t  
18. <~'c = t A o ( z  : tAqba) 
19. o(z = t A ~a)  
20. or = t A o(r  = t A @a) A o('c = t A UPa) 
21. o(z ---- t i o(r = t A qba) A o(z = t A UPa)) 
22. o(z = t A qn E [t, t'](o(z = t A q)n) A O(z = t A upn))) 
23. 3n E [t, tq(o(z = t Aq),)  A o ( r  = t A UP,)) 

o (z  = t A 3n ~ [t, t'](o(~ = t A r  A ,~(~ = t A up.)))  
24. o(z : t A 3m E [t, t'](o(z = t i (I)m) A o(r = t i upm))) 

?n 6 [t, tl(o(z = t A r A o(z = t A upn)) 

5, A-elim 
6,T4 
4, A-elim 
8,T4 
7,9,A-intro 
10,3-intro 

1 ,11 ,~- in t ro+rename 
(hypothesis) 
13,3-elim 
14, A-elim 
15,T10 
16, A-elim 
15,17,A-intro 
14,A-elim 
18,19,A-intro 
20,UAx,,~ 
21,3-intro 

13,22,~-intro 

12,23,<:~-intro 

t requires t < a, but  a E [t, t'] so trivially holds. [] 

I t era t ion  

P r o o f  Follows directly f rom temporal  independence o f  sequence. [] 

C o n c u r r e n t  

The theorem we need to prove is that:  

o(z  = t A ~[WA �9 A ] ] ~ s t a b l e ( W A ,  t, t') A [[[wB �9 B]]]~s tab le (we ,  t, t')) 

<:~ [[[WA �9 A ] l ] - s t a b l e ( w A ,  t, t') A [[[we �9 B i l l - s t a b l e ( w e ,  t, t') 

We know that  the - operator  preserves temporal  independence (by p roof  o f  
sequence temporal  independence) so we make the following correspondence:  

[[[WA �9 A ] l l ~ s t a b l e ( w m  t, t') = 

[[[we �9 B]]]~s tab le (we ,  t, t') = up 

We now have to prove the theorem: 

o(z = t A <,(r = t A ~ )  A <>(~ = t A up)) ~ <>(~ = t A r  A ('c = t A up) 

1. o (z  = t A o(z  = t a @) A o(z  = t A up)) (hypothesis) 
2. <>~ = t A <, o (z = t A ~ )  A o <> (z = t A up) 1,T10 
3. <> o (r = t A qb) 2,A-elim 
4. <>(z = t A qb) 3,T4 
5. o o (r = t A up) 2,A-elim 
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6. o(r = tAU?) 5,T4 
7. <>(z = t A q)) A o(z = t A W) 4,5,A-intro 
8. o(z ----- t Ao(z  = t A~P) Ao(z  ----- t A ~ ) )  

o(z = t A (I)) A o(z = t A ~ )  1 ,7 ,~- in t ro  
9. o(z ---- t A @) A o(z = t A ~ )  (hypothesis) 
10. o(r  = t A ~ )  9,A-elim 
i i .  or---- tAoqb 10,TI0 
12. o(z = t A ~ )  9,A-elim 
13. or  = t l l ,A-el im 
14. or  = t A o(z = t A q)) A o(r = t A W) 10,12,13,A-intro 
15. o(z = t A o ( z  = t A ~ ) A o ( z  = t A ~ ) )  14,UAx 
16. o ( z = t A ~ ) A o ( z = t A W )  

=~ o(r = t A o(r = t A @) A o(r = t A g2)) 9,15 ,~- in t ro  
17. o ( r = t A o ( z = t A q ) ) A o ( z = t A U d ) )  

"r o(z = t A ~)  A o(z = t A ~ )  8 ,16 ,~- in t ro  [] 

Guards 

We m a y  substi tute the two cases (where one of  the guards  is true, and none of  
the cases are true), for q) in the specification lemma.  [] 

A.2. Refinement Monotonicity 

Sequence (Right) 

We need to prove that  if d E_ ~ then c g ; d  E_ cg;N 

we start  with [[[w �9 ~ ; ~]]] = 3rn E [t, t']([[[w �9 ~111 [m/t'] A [[[w �9 N]]l [m/t]) 

1. 3m E [t, t']([[[w �9 cg]]] [m/t]  A [[[w �9 ~l]l [re~t]) (hypothesis) 
2. [[[w �9 cg]]] [a/t'] A [[[w �9 ~]]] [a/t]) (1,q-elim) 
3. [[[w �9 qY]]I [a/t'] 2,A-elim 
4. [[[w �9 N]]I [a/t] 2,A-elim 
5. [[[w �9 N]]I ~ [[[w �9 d ] ] l  (given) 
6. [[[w �9 N]l] [a/t'] => [[[w �9 d]l]  [a/t] 5,substitution 
7. [[[w �9 d]] l  [a/t] 4,6,MP 
8. [[[w �9 ~]]1 [a/ t]  A [[w �9 s~]~ [a/t] 3,7,A-intro 
9. 3m E [t,t']([[[w �9 cg]]][m/t7 A [[[w �9 d]] l [m/ t ] )  8,3-intro 

= ~[w � 9  (def ;) [] 

Sequence (Left)  

P r o o f  As for sequence right. [] 

Concurrent 

We need to prove that  if sur E_ N then d l ~  _~ ~1~ (symmetr ic  subcase is proven 
by the concurrent  commuta t iv i ty  of  the soundness p r o o f  below). We start  by 
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asserting that:  

[[[w �9 ~1~1]] = 3 m  

3l C [t, tq([[[wc �9 

E [t, t']([[w/~ �9 N]]] [m/t'] A stable(WB, m, t'))A 

c~]]] [lit'] A s table(wc,  l, t')) 

i. 3m E [t,t'](l[[WB * B]]][m/t'] A s tab le (wB,m, t ' ) )A  
3l E [t, t']([[[wc * C]]] [1/t'] A s table(wc,  l, t '))A 

2. 3m c [t,t]([[[WB * B]]][m/t'] A s table(ws,  m,t ' ))  
3. [[[WB * B]]] [a/t'] A stable(wB, a, t')) 
4. [[[WB *' B]]] [a/t] 
5. s table(wB,a, t ' ) )  
6. [[[WB �9 .~]ll ~ [[[WA �9 sr 
7. [[[WB * r162 [a/t'] ~ [[[WA �9 ~4]]] [a/t] 
8. [[[WA * ~]]] [a/t'] 
9. stable(wB, a, t') ~ stable(WA, a, t') 
10. stabIe(wA, a, t') 
11. [[[WA * sS]]][a/t'] A stable(wA, a, t') 
12. ?m E [t, t']([[[wA �9 sJ]]] [m/t'] A stable(wA, m, t')) 
13. 31 E [t, t']([[[wc * cg]]l [I/t'] A s table(wc,  I, t')) 
14. 3m E [t, tT([[WA ,, .4]]] [m/t'] A stable(WA, m, t'))A 

31 E [t, t']([[[wc * cg]]] [l/t'] A s table(wc,  l, t')) 
= ~[w �9 ~r 

(hypothesis) 
1,A-elim 
2,3-elim 
3,A-elim 
3,A-elim 
(given) 
6, subst i tut ion 
3,7,MP 
l emma (stable) 
5,9,MP 
8,10,A-intro 
11,3-intro 
2, A-elim 

12,13,A-intro 
(def [) [] 

Note  that  we assume that  the WA c WB and so we may  implicitly contract  the 
env i ronment  f rame w during this refinement. Alternat ively we m a y  assert that  
W A = W B .  

Guards 

We wish to prove that  o f  ~4j ___ d j '  then l u g  i ~ ~;/i 7- l u g  i ~ ~ r  

The p r o o f  is trivial. Consider  two cases: firstly, where none of  the guards are true 
then the L H S  and R H S  are identical regardless of  the agents;  secondly, when 
one of  the guards  evaluates to true we have two subcases: 

2.1 when gj is not  true, and the refinement is unaffected, 

2.2 when gj is true, and d j  is chosen we have to prove:  

but  this is clearly true as we have [[[w �9 dj ' ] ] ]  => [[[w * ,4]]] [] 

Deadline 

We need to prove that  if  d 7- N then [ S ] d  ~ [S]N. We start  by asseting that:  

[ [ [w.  [S]B]]] = I[[w �9 N] A t' -- t C S 

1. [[[w �9 ~ ]  A t' -- t c S (hypothesis) 
2. [[[w �9 B]]] ~ I]-[w �9 A]]] (given) 
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3. l[[w �9 B]~ 1,A-elim 
4. [[[w �9 A]]] 2 ,3 ,MP 
5. t ' - t  ~ S 1,A-elim 
6. [[[w �9 d ] ] ]  A t '  - t E S 4,5 ,A-intro 

= [[[w �9 [S]~r (def  [S]) [] 

Recursion 

We need  to p rove  t ha t  i f  d __ N t h e n / ~ n d  U_ #nN 

P r o o f  N o n - z e r o  r ecu r s ion  reduces  to sequent ia l i ty ,  which  has  been  p roven ,  and  
zero  r ecu r s ion  gives us an  ident ica l  f o r m u l a  for  a n y  agen t  (by  defini t ion) .  [] 

A.3. Refinement Soundness 

P r o o f  o f  ( con t r ac t  f r a m e )  

1. z = t A s tab le (wo  - w / x ,  t, t ') A qb (hypo thes i s )  
2. s tab le (wo  - w / x ,  t, t') 1,A-elim 
3. z = t A r 1,A-elim 
4. s tab le (wo  - w / x ,  t, t') =~ s tab le (wo  - w ,  t , ' )  l e m m a  (s table)  
5. s t a b l e ( w o -  w , t , t ' )  2 ,4 ,MP 
6. z = t A s tab le (wo  - w, t, t ') A q) 3,5,A-intro 
7. z = t A s tab le (wo  - -  w / x ,  t, t') A �9 

=~ z = t A s tab le (wo  - w, t, t ') A q5 1 ,6 ,MP 
8. e('c = t A s tab le (wo  - w / x ,  t, t') A ~ )  

=~ o(z  = t A s tab le (wo  - w, t, t ') A q~) 7,D5 [] 

P r o o f  o f  ( e x p a n d  f r a m e )  

1. z = t A s t a b l e ( w  U {x : T} - w U {x}, t, t ') A q) 
2. s t a b l e ( w  U {x : T} - -  w U {x}, t, t ') 
3. z = t A q )  
4. s t a b l e ( w  U {x : T} - w U {x}, t, t') =~ s tab le (wo  - w,  t, t') 
5. s tab le (wo  - w ,  t, t') 
6. z = t A s tab le (wo  - w,  t, t') A 
7. ~ = t A s t a b l e ( w  U {x : T} - w U {x}, t, t ') A 

z = t A s t ab l e (w  U {x : T} - w U {x}, t, t ') A q5 
8. o ( z  = t A s t a b l e ( w  U { x :  T} - -  w U {x}, t, t ') A q)) 

=~ o(z  = t A s t a b l e ( w  U {x : T} - w U {x}, t, t ') A q)) 

(hypo thes i s )  
1,A-elim 
1,A-elim 
l e m m a  (s table)  
2 ,4 ,MP 
3,5,A-intro 

1 ,6 ,MP 

7,D5 

P r o o f  o f  ( s t reng then)  

1. <,(z = t A s tab le (wo  - -  w, t, t ') A (I) (def  spec)  
2. z = t A s tab le (wo  - -  w, t, t ') A ufl (hypo thes i s )  
3. W = ~  �9 (given) 
4. ud 2, A-el im 
5. q5 3 ,4 ,MP 
6. z = t A s tab le(  wo - w,  t, t') 2,A-el im 
7. z = t A s tab le (wo  - w, t, t ') A q5 2,6,A-intro 
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8. z = t A stable(w�9 -- w, t, t') A tp 
z = t/~ stable(w�9 - w, t, t') A 

9. o(z = t A stable(w�9 - w, t, t') A eb) 
2 ,7 ,~- in t ro  
1,8,D5 [] 

P roo f  of  (seq-assoc). Trivial by associativity o f  ~ ( through associativity of  con- 
junction).  [] 

P roof  of  (con-ass�9 Trivial by associativity of  conjunction. [] 

P roof  of  (con-corn). Trivial by commuta t iv i ty  of  conjunction. [] 

P roof  of  (split) 

[[[w0 �9 iE,U w ' ,  i~ Oi[[[= i~ ([[[w0i �9 wi :  cbi]]]~stable(woi, t, t')) (def l) 

A 
1. //e) ([[[w0i �9 wi : q)i]]~stable(woi, t, t')) (hypothesis) 

2. Aicl:t~i E [t,t']([[[woi OWl : ~i]]][mi/t'] A stable(woi, mi, t'))) 
1,(def ~)  

3. iAl 3mi E [t,t']([[[Woi �9 wi " ~i]]][m/t'] A stable(wo, m,t '))) 
2,(specific) 

4. ~m C [t,t~(i ~ [[[woi �9 wi " OPi]]][m/t'] A stable(wo, m, t )  

3, U w  = w�9 
iEl Oi 

I I 

5. 3m E [t, tq([[[wo �9 i UWi" : iEI/\dgi]][m/t'] Astable(wo,  m,t '))  
4,1emma 

6. [w0 �9 i ~ w i "  i~r t , t  '1 5,(def ;) 

and we have that  [w �9 A;s table(w, t , t ' ) ]  E_ [w �9 A] [] 

Proof  of  (shorten) 

1. [[[w �9 A]]]/X t' -- t C S (hypothesis) 
2. t ' -  t E S 1,A-elim 
3. [[[w �9 A]~ 1, A-elim 
4. ( S ' _ _ S ) ~ ( t ' - t 6 S ' ~ t ' - t 6 S )  l emma(se t s )  
5. S '  ___ S (given) 
6. t' - t E S'  ~ t' --  t ~ S 5,4,MP 
7. t' --  t E S'  2,6,MP 
8. [[[w �9 A]]]/x t' - t c S'  3,7,A-intro [] 

P roof  of  (combine).  Trivial by l emma  t' --  t E S/x  t' - t E T ~ t' -- t E (S U T)  [] 

P roof  o f  (choose). Holds  due to l emma [[[w �9 d j ] ] ]  => i V (gi/~ [[[w *, di]]])  [] 

P roof  o f  (nd). Trivial by distr ibution of  conjunction.  [] 

P roof  of  (basis) is by induction. 
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base case:  

[WO " W " 3mi( i~1 ~ i [ m i - 1 /  t] [mi/ tT ) A stable(wo, ran, t')[t /mo] 
--  [wo �9 stable(wo, t, t') 

because  n = 0 and  so mn = mo which is rep laced  by  t = g o d  

( induct ive step). 

We assert  tha t  ( # n d ) ;  d = / ~ n + l ~ '  and  therefore:  

W " 3mmax(i)(3~i(ici_~max(l) (~i [mi/t'] [t/mo]) 

Astab l e( wo, ran', t') ) [m / t'] A (]~) max( I ) [m / t ] ) 

3fni( icI-~ax(i) ~i [mi/ t'] [t /mo] ) 

A stable(wo, m., t') where n ' =  max(l) 
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