
Formal Aspects of Computing (1996) 8:408-427
@ 1996 BCS Formal Aspects

of Computing

Real-Time Refinement in Manna and Pnueli's
Temporal Logic

David Scholefield
Real-Time Research Group, Department of Computer Science, University of York, York, UK

Keywords: Refinement, Temporal logic, Real-time; Specification

Abstract. A refinement calculus for the development of real-time systems is pre-
sented. The calculus is based upon a wide-spectrum language called TAM (the
Temporal Agent Model), within which both functional and timing properties
can be expressed in either abstract or concrete terms. A specification oriented
semantics is given for the language. Program development is considered as a re-
finement process i.e. the calculation of a structured program from an unstructured
specification. An example program is developed.

1. Introduction

Traditionally, temporal logics have been used for the verification of concurrent
programs [Bar85,MaP83,Ga187], and more recently real-time programs [Ost89,
Hoo91]. To accommodate reasoning about real-time, the qualitative operators of
temporal logic have been extended to include some notion of quantitative time. In
Ostroff's verification calculus [Ost89], a local variable T is introduced which holds
the current time. In Hooman's verification calculus [Hoo91], Koymans' Metric
Temporal Logic [KdR85] is used, in which the model operators are extended
to include real-time interval constraints. More recently, the Duration Calculus
[ZHR91] provides for a formal analysis of hybrid real-time systems i.e. systems
which are concerned with the interface between analogue control theory and the
digital computer.

However, in all of these cases the verification calculus depends upon a poste-
riori verification of the program against the specification. Such a method in prone

Correspondence and offprint requests to: David Scholefield, Real-Time Research Group, Department
of Computer Science, University of York, York YO1 5DD, UK. Email djsminster.york.ac.uk

Real-Time Refinement in Manna and Pnueli's Temporal Logic 409

to repeated reformulation of the program due to the verification process failing
[Sch92]. One solution to this problem is to use a top-down refinement calculus,
where each refinement towards a program is guaranteed correct with respect to
the specification due to the soundness of the laws of the calculus.

This paper introduces a refinement calculus for real-time programs in which
Manna and Pnueli's temporal logic [MAP83] is extended to a real-time logic by
axiomatising the behaviour of a local variable which represents the current time.
TAM, a wide-spectrum language, is defined which enables the program developer
to express both program specifications and implementations. A refinement rela-
tion is defined along with a refinement calculus which is sound with respect to
the refinement relation. The refinement calculus guides the step-wise refinement
of a specification by the gradual replacement of parts of the specification with
executable code. An example real-time program is refined. The refinement rela-
tion is proven compositional (monotonic), and the proofs of soundness of the
refinement laws are given.

2. The TAM Language

2.1. TAM Syntax

We define a real-time system as a collection of concurrently executing time
constrained computation agents which communicate asynchronously via time-
stamped shared data areas called shunts. The time-stamps refer to the time of
the last write to that shunt. Shunts may only have one writer but any number of
readers. Time is global i.e. a single clock is accessible by every agent and shunt.
The time domain is discrete, linear, and modelled by the positive integers. There
is a unique 'first time' instant from which we assume all systems will measure
their execution release times for all agents. We denote this time by 0.

The syntax of TAM is defined recursively in terms of agents sur by:

I I
~ ::= [w . d] 1 0 ~ s l w ' ~ l d [d l [S] d l d ; ~ l i ~ g ~ : : > d ~ l # n d

Where w is a set of shunt names, s is a shunt name, I is some finite indexing
set, gi are boolean expressions on shunts, ~ is an expression on shunts, and S is
a set of times.

[w �9 d] defines the environment for the agent ag. The set of shunts in w are
exactly those shunts which may be written to by d (and may not be written to
by any other concurrently executing agent). The shunts in w are also associated
with a type (a set of values). We use the convention of calling those shunts which
may be written to by an agent the output shunts of that agent. We also call those
shunts which may not be written to by an agent the input shunts of an agent.

/~ ~.a s performs an asynchronous output to the shunt s. The current time is
written to the shunt, along with the value of the expression ~9 (which may refer to
shunts). We use the notation s.v to refer to the value found in the shunt s, and s.ts
for the time-stamp. The user does not explicitly have to specify the time-stamp
to be written to the shunt, and may assume that the run-time environment will
perform this task.

w : q5 in an agent which specifies required behaviour on shunts. This statement

410 D. Scholefield

form is discussed in detail below. The shunts listed in w are not given a type
(they are already typed by the surrounding environment).

~ r executes the two agents concurrently. The two agents are released at the
same time, and the concurrent composition terminates some arbitrary time after
both sub-agents terminate.

[S] d imposes a duration equal to one of the values in the set S on d . This
agent form is therefore capable of describing a deadl ine on agent termination.

d ; ~ r defines the sequential composition of two agents. There is no delay
between the termination of the first agent and the execution of the second.

i y g i ~ ~4i evaluates all of the guards gi (which are boolean expressions on
shunts), and executes one of the agents corresponding to a true guard. If no
guard evaluates to true, then the choice agent simply terminates. The indexing
set I is always finite.

#n~r executes the agent ~4 in sequence n times.

17"
In addition we use the shorthand/lcl / ~ i to denote indexed concurrent composition

(I is finite), and similarly ~ d i to denote indexed sequential composition (again,
I is finite).

The syntax of the specification agent in TAM is defined as:

w : q)

where w is a set of shunt names which may be changed during the behaviour
defined by the specification, and 4) is a timed logic formula which describes that
behaviour. Thus, given a specification agent with an environment (i.e. [w0 �9 w : q~]),
then w can be seen as a further partitioning of w0 into a stable set w0 - w and a
changeable set w.

The logic used for the specification is Manna and Pnueli's temporal logic
[MAP83]. We assume a discrete linear time domain (positive integers i.e. T im e =
Z+), and use a special local variable z to denote the current time. We axiomatize
the behaviour of ~ so that the value increments with each transition to a new
state. This axiomatisation is given in the next section.

In a specification w : ~, the formula �9 may also contain two unique free
variables t, t' c T ime which represent the time at which the behaviour described
by �9 starts (t), and the time at which the behaviour terminates (t'). Other free
variables in q) represent shunts that appear in the program.

2.2. Example Agents

The 'watchdog timer' is a process which monitors a number of input channels
for activity, and any channel which remains inactive for a given number of time
units causes an alarm to be sounded. We model n input channels by shunts which
will be labelled dl, d2 dn, and model the alarm with an output shunt called
Alarm. There is an maximum inactivity period for each input shunt which is
denoted Ii, and a maximum interval before the alarm should 'sound' (be written
to) denoted Tala,m (the same value for all input channels). All shunts are of type
boolean.

Real-Time Refinement in Manna and Pnueli's Temporal Logic 411

There are two requirements on the watchdog timer behaviour: the first is a
liveness requirement which asserts when the alarm should be sounded:

R. 1 =def VInE [t, t7
(Vi E [1, n]((m + Ii + Talarm ~ t' /N stable(di, m, m + Ii)) =~

o(m + li <-- "C < m + Ii "}- Talarm
A A l a r m = (~, true))))

(Note that the predicate stable asserts that a shunt does not change value for a
given interval - it is formally defined in the next section.) The second requirement
is a safety requirement that only allows an alarm to be sounded in those cases
when there has been an inactive input shunt:

R.2 =def VInE [t, t']
(~(r = m) A A l a r m . t s = m =~

3i E [1, n](m - - I i >_ tA
~l ,g C [t,m](l -- Ii = gAl >_ m = Tazarm

Astable(di, g, I))))

The watchdog timer behaviour can now be specified by the agent:

[{Alarm : bool} * {A larm} : R.1 A R.2]

Note that the environment and the specification frame have the same single
shunt Alarm. In most instances, the initial specification of a system will have the
same shunts in both the environment and the frame; there seems little justification
for having shunts in the initial environment if they can never change value.

Consider a system which is required to search an input list of a given fixed size
for a given element within d time units. One way in which this might be achieved
is by dividing the list into two halves and searching each half concurrently (thus
potentially reducing the execution time given appropriate hardware support). We
use this example to illustrate how specification statements can be mixed with
executable code.

We assume an input shunt & which contains the list to search, and an input
shunt Se which contains the element to be searched for (assuming types E l e m e n t
and Lis t (E lement)) . In addition we assume two intermediate boolean shunts F1
and F2 which will indicate whether or not one of the searching agents has found
a match, and a final boolean output shunt F which will provide the result of the
overall search. We also assume two functions F i n d l n F i r s t 0 and F i n d l n S e e o n d O
which map an element and an element list to a boolean, and which searches the
first and second halves respectively.

There are two concurrent searching agents:

Search l =def FindlnFirs t (S l .V , Se.v) "'+ FI

Search2 =def FindlnSecond(S l .V , Se.v) ~ F2

There is also an agent which collates the results from F1 and F2 and outputs
the result into F:

Col la te =def {F} : o(z = t A (FI.V V F2.v =*" o(31 C [t, tT(stable(F, t, 1 -- 1)A

o(z = m A F = (l, true)))) A s table(F, l, t'))

412 D. Scholefield

The three agents may now be composed into a single system along with the
appropriate deadline:

[{F1, F2, F : bool} ,, [d]((SearchlrSearch2); Collate)]

Note that the collating agent is quite complex, and if we had written it as an
executable agent, we could have expressed it as:

Collate =def FI.V ~ (true ".~ F)
L2
F2.v ~ (true "~ F)

or even:

Collate =def Fl.V V F2.v ~ F

But in both of these cases we have restricted our system in terms of eventual
implementation; the purpose of a specification is to provide an abstract descrip-
tion which is free from implementation bias. Mixed programs are usually the
result of stepwise refinement within a wide-spectrum language rather than an
initial system description.

2.3. Derived Agent Forms

There are a number of useful agent forms which are commonly found in real-time
system design. These are defined below.

Deadline: We define a deadline as a duration set with values which range from 0
to a given maximum. We overload the duration operator syntax:

=d i

Skip: We define an agent which may have a duration of zero, and which changes
no shunts:

skip =def 0 : true

Delay: We define an agent which delays for a minimum of n time unts, and
changes no shunts:

cSn =def O : t' >_ t + n

2.4. Semantics

The semantics of TAM agents are given by formulae in the temporal logic. We
also make extensions to axiomatise the behaviour of the real-time variable z.

PAx. (Progress axiom)

UAx (Uniqueness axiom

Vnrq(,c = n ~ o~ : n + 1)

i~cl O('c : ni A d)i)

< ~ o (z :njA~jA,c~, .j o (z ' :n iAd) i))

Real-Time Refinement in Manna and Pnueli's Temporal Logic 413

The progress axiom asserts that in each state the value of z is exactly one
greater than the value in the previous state, and the uniqueness axiom asserts
that any formula which is temporally anchored to the earliest time (of that set of
times) may precede all other formulae.

We define some useful predicates on shunts in order to simplify the semantic
definitions. The predicate 'stable' asserts that the shunt s will not be changed
during the given interval:

Definition (Stable)

s tab l e (x ,n ,m) =def ~V(ac[~n,m] <> ('E = a A X =--- V))

In addition, the definition for stable is extended to sets of shunts.
The predicate wri te asserts that a given value is written to a shunt within an

interval, and that the shunt remains stable at all other times within the interval:

Definition (Write)

write(s , O, n, m) =def

~1 c [n, m](stable(s, n, 1 - 1) A o('c = 1 A s = (1, O)) A stable(s, 1, m))

We also define a chop operator:

Definition (Chop). Given two timed logic formulae s~ and N, then,

d - N = & f 3m E [t , t '](sC[m/t7 A N [m / t])

The semantics of an agent are now given by a timed logic formula. The specifica-
tion statement is defined in this manner also, giving a natural interpretation for
the refinement relation. Note that the semantics always assume an environment
(i.e. no program can be given a semantics without the explicit definition of an
environment).

Definition (Semantics)

[[[W �9 W 0 �9 t13]~ =def <>('C = t A s table(w - wo, t, t') A ~)

[[[w �9 0 --~ s]]] =&f [[[w �9 {s} �9 write(s , O, t, t')

[[[w . A;B]]] =def ~[W " A]]]-[[[W * B]]

[[[w �9 AIB]]] =def ([[[WA �9 A]]l~stable(wA, t, t'))
A([[[WB �9 B]]~s tab le (WB, t, t'))

[[[w * iU gi ~ Ai]]] =def

~(r = t A ((i~ ~gi A stable(w, t, t'))
V

(V (g~ A ~[w �9 Ad~))))

414 D. Scholefield

[[[w �9 [S]A]]] =def ~[W �9 A]]] A t' -- t C S

[[[w �9 + 1A]]] =def ~[W �9 A] ~ L u n A]]

~[w �9 =def stable(w, t, t')

In the semantic definition of the concurrent operator, the partitioning of the
environment w to WA and WB has to be complete (i.e. wa U wB = w) and disjoint
(i.e. WA A WB = 0), and all variables written to by A must be in WA, and similarly
for B. Variables and shunts which cannot be written by either agent may appear
in either environment.

An important property of the semantics is that of 'temporal independence'
i.e. the ability to remove any temporal anchor to the start time t, We express this
property in the following theorem:

Theorem (Temporal Independence). Given any agent ~ , then:

.(~ = t A ~A]) , ~ ~A]

The proof of this theorem is given in the appendix. It is used extensively in
soundness proofs of the refinement calculus.

3. R e f i n e m e n t

3.1. A Refinement Relation

Refinement is defined as the s t reng then ing of the logic formula given by the
semantics of the agent. This models the intuitive definition of refinement as a
lessening of non-determinism. We define a partial order on agents, denoted r--.

Definition (Refinement)

It would be very time consuming to convert all agents to their logic formulae,
and then prove that the implication holds; for any system of a reasonable size
such proofs would be too complex. Instead we provide a number of refinement
laws which together provide an (incomplete) (in)equational theory on agents, and
which is sound with respect to the refinment relation. We list these rules below.

3.2. Refinement Laws

Each semantic definition in the previous section gives rise to a refinement law
which we will label 'def...', for example:

[{s : bool} �9 {s} : write(s, true, t, t')] ~ [{s : bool} �9 true ~,~ s] (def-,-*)

In addition we present a number of basic refinement laws below. Their soundness
proofs rely on Manna and Pnueli's proof system, and theorems and inference

Real-Time Refinement in Manna and Pnueli's Temporal Logic 415

rules from this system are labelled T n or Dn in the proofs in the appendix. These
labels correspond to the ones given in [MAP83].

Specification

(contract frame) w �9 �9 E_ w / s : ep (any shunt S)

(expand frame) [wo �9 w " (P] E_ [w U { x T} �9 w U {x} �9 4p] (x new variable)

(strengthen) w 'qb E_ w ' ~ (i f q ~ q b)

Sequence

(seq-assoc) d; (~ ;~) E_ (d;N);g

Concurrent

(con-assoc) dl(~l~) g (d[~)l~

(split) [wo. ,Uwi 5< :_ iwo.n[wo,.w,,o, <]

(if wi n wj = 0 for i 7 ~ j, w0i n woj = 0 for i r j)

U w0. = w0, wi c each i) i E I z - - W o i

Deadline

(shorten) [S]d E_ [S - S '] d (combine) [S][T]~r E IS N T] d

Guards

(choose) i y g i =:=> ~ i E ~ j (if j c I A g j)

(nd) g l ~ a g l l g 2 ~ r E g l V g 2 ~ r

Recursion

(basis) w " qmi(ic l (@i[mi_l / t][mi/ t]) A stable(wo, mn, t)[t/mo])
__ pnw :ep (i f / = [1,nl)

where 3Ni denotes the nested existential quantification of the variables mi with
some indexing set such that i E I.

Composite agents allow us to describe complex behaviour by combining
simpler agents. However, in system development we would not want to complicate
the refinement method in proportion to the complexity of the system, instead
we would wish to have simple refinement obligations which could be trivially
composed in order to discharge complex refinement proof obligations.

In [Hoo91] the importance of compositionality of proof systems for concurrent
real-time formalisms is discussed. We assert that the refinement calculus for TAM
is compositional, i.e. systems can be sub-divided into sub-systems which may

416 D. Scholefield

then be refined in isolation, and recomposed to give a system which is a valid
refinement of the original specification. This form of compositionality is clearly
dependent upon the fact that refinement cannot break the interference constraint
on concurrent systems, and similarly cannot introduce unrestricted shunts. This
property of compositionality also holds for the other agent constructors (deadline,
sequence, variable declaration, shunt restriction, guards and recursion), and in the
refinement calculus, compositionality equates to the property of m o n o t o n i c i t y .

We therefore assert the following theorem:

Theorem (Refinement Monotonicity)

If d r- ~ then for any context ~g(_) we have <g(sJ) r- cg(N)

The proof of this theorem is given in the appendix.

4. Example

Consider a manufacturing plant in which a control system is required to count
the number of items on a conveyor belt. Each item may be of one of two colours:
black or red. Assuming that the items do not arrive at a faster rate than one
every five time units, then the system is required to count the number of items of
each colour that arrive over a given interval.

We can model this system by a single input shunt labelled 'in', and two output
shunts labelled 'countb' and countr. Writes to the input shunt represent the arrival
of items, and the numbers held in the output shunts represent the total number
of items of each colour. For simplicity we will assume that all positive integer
shunts initially have the value 0. We start by defining a useful predicate 'count':

count(x , X) = d e f

3n(n = 1{/E [t , t ' - 5] '<>(v = l a i n = (l,x))}[Ao(z = t ' A X . v = n))

This predicate asserts that at the end of the given interval (t') the count in shunt
X is equal to the number of instances in time when a value x is written to the
shunt in.

We may now give a complete specification:

S pec = aef [{ countb, countr �9 Z+}e

{countb, count~} :count (b lack , countb)

Acount(rec, countr)]

In addition we assert an environment axiom which provides an upper bound on
the item arrival rate, and an environment axiom which asserts that initially the
shunts all have a reasonable value.

EA.1 Vn, m E [t, t](O(~ = n A in.ts = n)

A o (~ = m A in.ts = m) ~ a b s (n - - m) >_ 5)

EA.2 o(z = t A countb.V = 0 A countr.v = O)

Real-Time Refinement in Manna and Pnueli's Temporal Logic

We may now start the refinement process. Step one
shunt.

Spec

417

is to introduce a new

E [{countb, countr, l a s t T i m e : Z+}�9

{ countb, countrmlast T ime} : count(black, countb) A count(red, countr)]

(expand frame)

The new shunt will keep a record of the time of the last write to the shunt in
so that time-stamps may be compared. From this point onwards we will drop
any reference to the environment which does not change. The next refinement
predicates over the new shunt and asserts that the value found in l a s t T i m e is
always the most recent time-stamp in the shunt in (not including any time-stamp
written in the last five time units).

F- {countr, countb, l a s t T i m e } : count(black, countb) A count(red, countr)

AVn C [t, t'](o(z = n A l a s tT ime .v = writes(t , n - 5)))

(strengthen)

where writes(t , n) =def m a x { l E [t, n] �9 o(z = l A in.ts = l)}

The next step is to partition the behaviour into sections which last for five time
units (one of a number of possible design decisions).

r- {countb, countr, l a s t T i m e } :

3mi(i~[[~1,~11 r It] [mi/ t'] A stable(w, m, , t'))[t /mo]

(strengthen)

Where t/ ----def [{l E (t,t'] �9 1 rood 5}1 (all members of (t,t'] which divide by 5).

Where q) =def

t' - t = 5 A o(z = tA3m, n, l(countb.v = m A countr.V = n A in.ts = lA
((l > las tT ime .v A in.v = black)

o(r = t' A countb.V -- m + 1
A l a s t T i m e . v = I))A

((l > las tT ime .v A in.v = red)
~(~ = t' A countr.v -- n + 1

A l a s t r i m e . v = l))))

Note that this last refinement step is the most complex one and it is dependent
upon the environment axioms EA.1 and EA.2. This partitioned form allows us to
refine to an iterative agent:

E #n{COuntb, countr, l a s t T i m e } :

Now we may concentrate on the iterated specification agent. The definition of

418 D. Scholefield

deadline, delay, and concurrency allows us to perform the following refinement:

{ countb, coUntr, last T ime} "

E_ [{5}](35t{countb, countr, l a s tT ime} �9 ~ ')

where (I)' is @ without the initial conjunct on t and t'. Now we refine the remaining
specification:

{ countb, countr, last T ime} �9 @'

r'- in.ts> las tT ime.v A in.v = black
=~ { countr, countb, last T ime} :write(countb, countb.v + 1, t, t')

A write(l ast T ime, in.ts, t, t')
u
in.ts > las tTime.v A in.v = red

{ countr, countb, last T ime } :write(countr, countr.V + 1, t, t')
A write(l ast Time, in.ts, t, t')

(def guards)

Now each guarded agent may be refined to a pair of concurrent outputs:

{ countb, countr, last T ime } �9 write(countb, countb.v + 1, t, t')

Awri te(last Time, in.ts, t, t')

countb.V + 1 "~ countb I in.ts ".* l a s t T i m e

(def write, concurrent)

This is the final refinement setp, and we may now compose all of the above
refinements into a single program:

E 1~[{5}](651in.ts > l a s t r i m e . v A in.v = black
(countb.V + 1 ~.~ countb I in . ts ' ,a las tT ime)

ii
in.ts > las tTime.v A in.v = red

(countr.v + 1 ..-+ count~ I in.ts ..~ las tT ime))

5. Conclusions

TAM is unique in providing a wide-spectrum development language for real-
time systems in which abstract specifications can be refined down to con-
crete executable programs. Wide-spectrum languages for non real-time systems
have been studied extensively, for example in the SETL language [SHS85], and
the CIP project [CIP85], wide-spectrum languages based upon predicate logic
are given transformation rules which allow refinement in a manner similar to
TAM.

The utility of a wide-spectrum language can be clearly seen in the refinement
method used by Morgan in his calculus [Mor90,MRG88]. In this language, the

Real-Time Refinement in Manna and Pnueli's Temporal Logic 419

concrete syntax is provided by Dijkstra's Guarded Command Language (GCL)
[Dij76]. The abstract specification syntax is provided by a statement form:

w :[pro, post]

where 'w' (called the 'frame') defines the scope of the specification, that is those
state variables which may be changed by the behaviour defined by the specifica-
tion, and pre and post are first-order predicate logic formulae which describe the
relationship between the program state before the 'execution' of the specification
statement and after the termination of the specification statement respectively.
The specification statement can therefore be viewed as a description of the mini-
mum requirements on the behaviour of any concrete statement which may replace
it during refinement.

Similarly, in Back and von Wright's wide-spectrum language [BvW90], the
concrete code is a version of Dijkstra's GCL and a statement called an assert
statement is denoted {b}, where b is a formula on the local state. The assert
statement will terminate correctly only if the local state satisfies the formula
when 'executed', otherwise it aborts.

Original work by Back [Bac80], and later [Bac88], can be seen as the first
investigation of adding specification statements to programming languages to aid
in the process of verification.

However, all of these languages are transformational; they describe computa-
tions which have all input data available at the start of execution, and provide a
result at their time of termination. This restriction provides the 'shape' of Mor-
gan's specification statement - it describes a relationship on initial and final states.
In real-time systems we are interested in input and output during the execution
of an agent. In addition, we are interested in the time at which the output and
inputs occur; our specification statement forms a timed invariant which reflects
these needs.

The next step is to provide automated support for the refinement process
which will enable us to tackle much more ambitious software systems. We also
plan to extend TAM to assist in programming 'in the large'.

Acknowledgements

The author would like to extend his thanks to Professor Jifeng He of the Pro-
gramming Research Group, Oxford University, for his advice on the specification
oriented semantics.

References

[Bac80]

[Bac88]

[Bar85]

[BvW90]

[CIp851

Back, R. J. R. "Correctness Preserving Program Refinements: Proof Theory and Appli-
cations", Tract 131, Mathematisch Centrum, Amsterdam. 1980.
Back, R. J. R. "A Calculus of Refinements for Program Derivations", Acta-Informatica,
25, p593-624. 1988.
Barringer, H. "A Survey of Verification Techniques for Parallel Programs", LNCS 191,
Springer-Verlag. 1985.
Back, R. J. R., von Wright,J. "Refinement Concepts Formalised in Higher-Order Logic",
BCS Formal Aspects of Computing, Vol 2, No. 3. 1990.
The CIP Language Group, "The Munich Project CIP: Voll", LNCS 183, Springer-
Verlag. 1985.

420

[Dij786]
[Hoo91]

[KdR85]

[Mor90]
[MAP83]

[MRG88]

[Sch92]

[SHS851

[SZH93]

[ZHR91]

D. Scholefield

Dijkstra, E. "A Discipline of Programming", Prentice-Hall. 1976.
Hooman, J. "Specifcation and Compositional Verification of Real-Time Systems", Ph.D.
Thesis, Technical University of Eindhoven. 1991.
Koymans, R., deRoever, W. R "Examples of a Real-Time Temporal Logic Specification",
in The Analysis of Concurrent Systems, LNCS 207, Springer-Verlag. 1985.
Morgan, C. "Programming from Specifications", Prentice-Hall International. 1990.
Manna, Z., Pnueli, A. "Verification of Concurrent Programs: a Temporal Proof System",
Technical Report, Dept. Computer Science, Stanford University. June 1983.
Morgan, C., Robinson, K., Gardiner, R "On The Refinement Calculus", Oxford Univer-
sity Programming Research Group, Technical Report PRG-70. October 1988.
Scholefield, D. "A Refinement Calculus for Real-Time Systems", Department of Com-
puter Science D.Phil. Thesis, University of York. July 1992.
Schonberg, E., Shields, D. "From Prototype to Efficient Implementation: a Case Study
Using SETL and C', Courant Institute of Mathematical Sciences, Dept. Computer
Science, New York University. 1985.
Scholefield, D. J., Zedan, H. S. M., He, J. "A Specification Oriented Semantics for
Real-Time Refinement", Theoretical Computer Science, Vol 131, p219-241. 1994.
Chaochen, Z., Hoare, C. A. R., Ravn, A. R "A Calculus of Durations" Information
Processing Letters, Vol 40, No. 5, p269-76. 1991.

A. Proofs

A.1. Temporal Independence

S p e c i f i c a t i o n

L e m m a . <>(@ A <>(@ A ~F)) <=> <>(q) A ~F)

1. <>(q) A <>(~ A W)) (hypothesis)
2. <>(q) A W) 1, T10,T4
3. gO A ~F (hypothesis)
4. q) 3, A-elim
5. <>(~ A ~) 3.T1
6. q) A <,(q~ A u?) 4,5,A-intro
7. @ A ~F ~ q? A 0 (0 A ud) 3 ,6 ,~ - in t ro
8. <>(~ A tt~) ~ �9 A <>(~ A tIJ) 7,D5
9 <>(q~ A <>(~ A ~)) ~ <>(q~ A ~) 1,2, =>-intro
10. <>(~ A <>(q) A ~)) ~ <,(q) A ~) 8,9, <=>-intro

P r o o f Subst i tu te stable(wo - w, t, t') A ~ = t for �9 in 1emma. []

D e a d l i n e

L e m m a . <>(z = t A (I)) A t' - - t r S <=~ <>(t = ~ A <>(z = t A q)) A t' - - t E S)

1. o (z = t A z (z = t A ~) A t ' - - t E S)
2. o(z -= t A ~(z = t A @)) A t' -- t E S
3. ~(T=tA~(~----tA~))
4. t ' - - t c S
5. o(~ = t) A ~, o (~ = t A q))
6. o o ('c = t A q))
7. ~,(~=tA~)

(hypothesis)
1,T61
2, A-elim
2,A-elim
3,T10
5,A-elim
6,T4

Real-Time Refinement in Manna and Pnueli's Temporal Logic 421

8. o (z = t A O) A t ' - - t E S
9. < > (t = t A O) A t ' - - t c S
10. <>(1 = t A q~)
11. o1 = t A o O
12. <>z=t
13. <>z = t A o (z = t A O)
14. < > (z = t A < > (v = t A (I))) A t ' - - t E S
15. <>('c = t A *(z = t A O) A t' -- t E S)
16. o (z = t A , (z = t A @) A t ' - - t E S)

o(v = t A ~) A t ' - - t E S
17. (, (z = t A O) A t ' - - t E S

<>(z = t A <>(1 = t A O) A t ' - - t ~ S)
17. < > (z = t A O) A t ' - - t E S

<=>o(t = t a <>(z = t A O) A t ' - - t E S)

P r o o f Substitute [[[w �9 A]]] for �9 in lemma. []

O u t p u t

4,7,A-intro
(hypothesis)
9, A-elim
10,T10
11,A-elim
10,12,A-intro
UAx,9,13,A-elim
14,T61

1 ,8 ,~- in t ro

9,15,=~-intro

9,17,r

P r o o f Defined in terms of specification s ta tement which is tempora l ly indepen-
dent. []

S e q u e n c e

We have to show that:

<>(t = t A qrn E It, tT([[[w * A]] [m/t'] A [[[w �9 B]]] [m/t]))

<:~ qn E It, t']([[[w �9 A]] [n/t'] A [[[w * S]l] [n/t])

We make the following substi tutions (assuming tempora l independence of agents
and N):

[[[w �9 A]]] [m/t']

[[[w �9 A]]] [n/t']

[[[w �9 B]]] [re~t]

[[[w �9 B]]] [n/t]

= <>(t = t A Ore)

= o (z = t A CI)n)

= o(Z = t A t]fm)

= o(Z = t A v / n)

We therefore have to prove the theorem:

<>(z = t A 3 m C It, t '] (o(z = t A (I)m) A <>(1 = t A v/m)))

3n E [t , t] (o(z = t A (I)n) A o(z = t A v/n))

1. <>(1 = t A ~ m E [t , t '] (o (z ~- t A ~ m) Ao(1 = t A V/m)))
2. o(qm E [t, t'](o(z = t A q)m) A o(z = t A v/m)))
3. 3m 6 [t, t'](~>(<>(z = t A r A <>(1 = t A v/m))
4. <>(<>(~ = t A ~ o) A o(-c = a A %))
5. o (o (z = t A C P a) A O o (z - - = a A V / a))

(hypothesis)
1,T10,A-elim
2,1"48
3,3-elim
4,T10,

422 D. Scholefield

6. o(e(r = t Aqb~))
7. o(z ----- t A ~a))
8. o o (z = tAupa))
9. e(z ----- t A upa))
10. ~(z-----tA~a) A o (z = t A u p a)
11. 3m E [t , t](o(z = t A q)~) Ao(v = t AUPm))
12. o(z = t A 3m ~ [t, t l (o (z = t A ~m) A o (r = t A up,.)))

=~ 3n E [t, t l (o (z = t A ~ .) A . (z = t A %))
13. ~n E [t, t '](o(r = t A q)~) A o(z = t A ~))
14. o(z = t A qb~) A e(z = t A UP,)
15. <,(r = t A q~a)
16. or = t A Oq)a
17. o r = t
18. <~'c = t A o (z : tAqba)
19. o(z = t A ~a)
20. or = t A o(r = t A @a) A o('c = t A UPa)
21. o(z ---- t i o(r = t A qba) A o(z = t A UPa))
22. o(z = t A qn E [t, t'](o(z = t A q)n) A O(z = t A upn)))
23. 3n E [t, tq(o(z = t Aq),) A o (r = t A UP,))

o (z = t A 3n ~ [t, t'](o(~ = t A r A ,~(~ = t A up.)))
24. o(z : t A 3m E [t, t'](o(z = t i (I)m) A o(r = t i upm)))

?n 6 [t, tl(o(z = t A r A o(z = t A upn))

5, A-elim
6,T4
4, A-elim
8,T4
7,9,A-intro
10,3-intro

1 ,11 ,~- in t ro+rename
(hypothesis)
13,3-elim
14, A-elim
15,T10
16, A-elim
15,17,A-intro
14,A-elim
18,19,A-intro
20,UAx,,~
21,3-intro

13,22,~-intro

12,23,<:~-intro

t requires t < a, but a E [t, t'] so trivially holds. []

I t era t ion

P r o o f Follows directly f rom temporal independence o f sequence. []

C o n c u r r e n t

The theorem we need to prove is that:

o(z = t A ~[WA �9 A]] ~ s t a b l e (W A , t, t') A [[[wB �9 B]]]~s tab le (we , t, t'))

<:~ [[[WA �9 A] l] - s t a b l e (w A , t, t') A [[[we �9 B i l l - s t a b l e (w e , t, t')

We know that the - operator preserves temporal independence (by p roof o f
sequence temporal independence) so we make the following correspondence:

[[[WA �9 A] l l ~ s t a b l e (w m t, t') =

[[[we �9 B]]]~s tab le (we , t, t') = up

We now have to prove the theorem:

o(z = t A <,(r = t A ~) A <>(~ = t A up)) ~ <>(~ = t A r A ('c = t A up)

1. o (z = t A o(z = t a @) A o(z = t A up)) (hypothesis)
2. <>~ = t A <, o (z = t A ~) A o <> (z = t A up) 1,T10
3. <> o (r = t A qb) 2,A-elim
4. <>(z = t A qb) 3,T4
5. o o (r = t A up) 2,A-elim

Real-Time Refinement in Manna and Pnueli's Temporal Logic 423

6. o(r = tAU?) 5,T4
7. <>(z = t A q)) A o(z = t A W) 4,5,A-intro
8. o(z ----- t Ao(z = t A~P) Ao(z ----- t A ~))

o(z = t A (I)) A o(z = t A ~) 1 ,7 ,~- in t ro
9. o(z ---- t A @) A o(z = t A ~) (hypothesis)
10. o(r = t A ~) 9,A-elim
i i . or---- tAoqb 10,TI0
12. o(z = t A ~) 9,A-elim
13. or = t l l ,A-el im
14. or = t A o(z = t A q)) A o(r = t A W) 10,12,13,A-intro
15. o(z = t A o (z = t A ~) A o (z = t A ~)) 14,UAx
16. o (z = t A ~) A o (z = t A W)

=~ o(r = t A o(r = t A @) A o(r = t A g2)) 9,15 ,~- in t ro
17. o (r = t A o (z = t A q)) A o (z = t A U d))

"r o(z = t A ~) A o(z = t A ~) 8 ,16 ,~- in t ro []

Guards

We m a y substi tute the two cases (where one of the guards is true, and none of
the cases are true), for q) in the specification lemma. []

A.2. Refinement Monotonicity

Sequence (Right)

We need to prove that if d E_ ~ then c g ; d E_ cg;N

we start with [[[w �9 ~ ; ~]]] = 3rn E [t, t']([[[w �9 ~111 [m/t'] A [[[w �9 N]]l [m/t])

1. 3m E [t, t']([[[w �9 cg]]] [m/t] A [[[w �9 ~l]l [re~t]) (hypothesis)
2. [[[w �9 cg]]] [a/t'] A [[[w �9 ~]]] [a/t]) (1,q-elim)
3. [[[w �9 qY]]I [a/t'] 2,A-elim
4. [[[w �9 N]]I [a/t] 2,A-elim
5. [[[w �9 N]]I ~ [[[w �9 d]] l (given)
6. [[[w �9 N]l] [a/t'] => [[[w �9 d]l] [a/t] 5,substitution
7. [[[w �9 d]] l [a/t] 4,6,MP
8. [[[w �9 ~]]1 [a/ t] A [[w �9 s~]~ [a/t] 3,7,A-intro
9. 3m E [t,t']([[[w �9 cg]]][m/t7 A [[[w �9 d]] l [m/ t]) 8,3-intro

= ~[w � 9 (def ;) []

Sequence (Left)

P r o o f As for sequence right. []

Concurrent

We need to prove that if sur E_ N then d l ~ _~ ~1~ (symmetr ic subcase is proven
by the concurrent commuta t iv i ty of the soundness p r o o f below). We start by

424 D. Scholefield

asserting that:

[[[w �9 ~1~1]] = 3 m

3l C [t, tq([[[wc �9

E [t, t']([[w/~ �9 N]]] [m/t'] A stable(WB, m, t'))A

c~]]] [lit'] A s table(wc, l, t'))

i. 3m E [t,t'](l[[WB * B]]][m/t'] A s tab le (wB,m, t '))A
3l E [t, t']([[[wc * C]]] [1/t'] A s table(wc, l, t '))A

2. 3m c [t,t]([[[WB * B]]][m/t'] A s table(ws, m,t '))
3. [[[WB * B]]] [a/t'] A stable(wB, a, t'))
4. [[[WB *' B]]] [a/t]
5. s table(wB,a, t '))
6. [[[WB �9 .~]ll ~ [[[WA �9 sr
7. [[[WB * r162 [a/t'] ~ [[[WA �9 ~4]]] [a/t]
8. [[[WA * ~]]] [a/t']
9. stable(wB, a, t') ~ stable(WA, a, t')
10. stabIe(wA, a, t')
11. [[[WA * sS]]][a/t'] A stable(wA, a, t')
12. ?m E [t, t']([[[wA �9 sJ]]] [m/t'] A stable(wA, m, t'))
13. 31 E [t, t']([[[wc * cg]]l [I/t'] A s table(wc, I, t'))
14. 3m E [t, tT([[WA ,, .4]]] [m/t'] A stable(WA, m, t'))A

31 E [t, t']([[[wc * cg]]] [l/t'] A s table(wc, l, t'))
= ~[w �9 ~r

(hypothesis)
1,A-elim
2,3-elim
3,A-elim
3,A-elim
(given)
6, subst i tut ion
3,7,MP
l emma (stable)
5,9,MP
8,10,A-intro
11,3-intro
2, A-elim

12,13,A-intro
(def [) []

Note that we assume that the WA c WB and so we may implicitly contract the
env i ronment f rame w during this refinement. Alternat ively we m a y assert that
W A = W B .

Guards

We wish to prove that o f ~4j ___ d j ' then l u g i ~ ~;/i 7- l u g i ~ ~ r

The p r o o f is trivial. Consider two cases: firstly, where none of the guards are true
then the L H S and R H S are identical regardless of the agents; secondly, when
one of the guards evaluates to true we have two subcases:

2.1 when gj is not true, and the refinement is unaffected,

2.2 when gj is true, and d j is chosen we have to prove:

but this is clearly true as we have [[[w �9 dj ']]] => [[[w * ,4]]] []

Deadline

We need to prove that if d 7- N then [S] d ~ [S]N. We start by asseting that:

[[[w. [S]B]]] = I[[w �9 N] A t' -- t C S

1. [[[w �9 ~] A t' -- t c S (hypothesis)
2. [[[w �9 B]]] ~ I]-[w �9 A]]] (given)

Real-Time Refinement in Manna and Pnueli's Temporal Logic 425

3. l[[w �9 B]~ 1,A-elim
4. [[[w �9 A]]] 2 ,3 ,MP
5. t ' - t ~ S 1,A-elim
6. [[[w �9 d]]] A t ' - t E S 4,5 ,A-intro

= [[[w �9 [S]~r (def [S]) []

Recursion

We need to p rove t ha t i f d __ N t h e n / ~ n d U_ #nN

P r o o f N o n - z e r o r ecu r s ion reduces to sequent ia l i ty , which has been p roven , and
zero r ecu r s ion gives us an ident ica l f o r m u l a for a n y agen t (by defini t ion) . []

A.3. Refinement Soundness

P r o o f o f (con t r ac t f r a m e)

1. z = t A s tab le (wo - w / x , t, t ') A qb (hypo thes i s)
2. s tab le (wo - w / x , t, t') 1,A-elim
3. z = t A r 1,A-elim
4. s tab le (wo - w / x , t, t') =~ s tab le (wo - w , t , ') l e m m a (s table)
5. s t a b l e (w o - w , t , t ') 2 ,4 ,MP
6. z = t A s tab le (wo - w, t, t ') A q) 3,5,A-intro
7. z = t A s tab le (wo - - w / x , t, t') A �9

=~ z = t A s tab le (wo - w, t, t ') A q5 1 ,6 ,MP
8. e('c = t A s tab le (wo - w / x , t, t') A ~)

=~ o(z = t A s tab le (wo - w, t, t ') A q~) 7,D5 []

P r o o f o f (e x p a n d f r a m e)

1. z = t A s t a b l e (w U {x : T} - w U {x}, t, t ') A q)
2. s t a b l e (w U {x : T} - - w U {x}, t, t ')
3. z = t A q)
4. s t a b l e (w U {x : T} - w U {x}, t, t') =~ s tab le (wo - w, t, t')
5. s tab le (wo - w , t, t')
6. z = t A s tab le (wo - w, t, t') A
7. ~ = t A s t a b l e (w U {x : T} - w U {x}, t, t ') A

z = t A s t ab l e (w U {x : T} - w U {x}, t, t ') A q5
8. o (z = t A s t a b l e (w U { x : T} - - w U {x}, t, t ') A q))

=~ o(z = t A s t a b l e (w U {x : T} - w U {x}, t, t ') A q))

(hypo thes i s)
1,A-elim
1,A-elim
l e m m a (s table)
2 ,4 ,MP
3,5,A-intro

1 ,6 ,MP

7,D5

P r o o f o f (s t reng then)

1. <,(z = t A s tab le (wo - - w, t, t ') A (I) (def spec)
2. z = t A s tab le (wo - - w, t, t ') A ufl (hypo thes i s)
3. W = ~ �9 (given)
4. ud 2, A-el im
5. q5 3 ,4 ,MP
6. z = t A s tab le(wo - w, t, t') 2,A-el im
7. z = t A s tab le (wo - w, t, t ') A q5 2,6,A-intro

426 D. Scholefield

8. z = t A stable(w�9 -- w, t, t') A tp
z = t/~ stable(w�9 - w, t, t') A

9. o(z = t A stable(w�9 - w, t, t') A eb)
2 ,7 ,~- in t ro
1,8,D5 []

P roo f of (seq-assoc). Trivial by associativity o f ~ (through associativity of con-
junction). []

P roof of (con-ass�9 Trivial by associativity of conjunction. []

P roof of (con-corn). Trivial by commuta t iv i ty of conjunction. []

P roof of (split)

[[[w0 �9 iE,U w ' , i~ Oi[[[= i~ ([[[w0i �9 wi : cbi]]]~stable(woi, t, t')) (def l)

A
1. //e) ([[[w0i �9 wi : q)i]]~stable(woi, t, t')) (hypothesis)

2. Aicl:t~i E [t,t']([[[woi OWl : ~i]]][mi/t'] A stable(woi, mi, t')))
1,(def ~)

3. iAl 3mi E [t,t']([[[Woi �9 wi " ~i]]][m/t'] A stable(wo, m,t ')))
2,(specific)

4. ~m C [t,t~(i ~ [[[woi �9 wi " OPi]]][m/t'] A stable(wo, m, t)

3, U w = w�9
iEl Oi

I I

5. 3m E [t, tq([[[wo �9 i UWi" : iEI/\dgi]][m/t'] Astable(wo, m,t '))
4,1emma

6. [w0 �9 i ~ w i " i~r t , t '1 5,(def ;)

and we have that [w �9 A;s table(w, t , t ')] E_ [w �9 A] []

Proof of (shorten)

1. [[[w �9 A]]]/X t' -- t C S (hypothesis)
2. t ' - t E S 1,A-elim
3. [[[w �9 A]~ 1, A-elim
4. (S ' _ _ S) ~ (t ' - t 6 S ' ~ t ' - t 6 S) l emma(se t s)
5. S ' ___ S (given)
6. t' - t E S' ~ t' -- t ~ S 5,4,MP
7. t' -- t E S' 2,6,MP
8. [[[w �9 A]]]/x t' - t c S' 3,7,A-intro []

P roof of (combine). Trivial by l emma t' -- t E S/x t' - t E T ~ t' -- t E (S U T) []

P roof o f (choose). Holds due to l emma [[[w �9 d j]]] => i V (gi/~ [[[w *, di]]]) []

P roof o f (nd). Trivial by distr ibution of conjunction. []

P roof of (basis) is by induction.

Real-Time Refinement in Manna and Pnueli's Temporal Logic

base case:

[WO " W " 3mi(i~1 ~ i [m i - 1 / t] [mi/ tT) A stable(wo, ran, t')[t /mo]
-- [wo �9 stable(wo, t, t')

because n = 0 and so mn = mo which is rep laced by t = g o d

(induct ive step).

We assert tha t (# n d) ; d = / ~ n + l ~ ' and therefore:

W " 3mmax(i)(3~i(ici_~max(l) (~i [mi/t'] [t/mo])

Astab l e(wo, ran', t')) [m / t'] A (]~) max(I) [m / t])

3fni(icI-~ax(i) ~i [mi/ t'] [t /mo])

A stable(wo, m., t') where n ' = max(l)

Received July 1993
Accepted in revised form November 1995 by T. S. E. Maibaum

427

