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Abstract. Duration Calculus was introduced in [ZHRgl] as a logic to specify and 
reason about requirements for real-time systems. It is an extension of Interval 
Temporal Logic [MosS5] where one can reason about integrated constraints over 
time-dependent and Boolean valued states without explicit mention of absolute 
time. Several major case studies, e.g. the gas burner system in [RRH93], have 
shown that Duration Calculus provides a high level of abstraction for both 
expressing and reasoning about specifications. Using Timed Automata [A1D92] 
one can express how real-time systems can be constructed at a level of de- 
tail which is close to an actual implementation. We consider in the paper the 
correctness of Timed Automata with respect to Duration Calculus formulae. 
For a subset of Duration Calculus, we show that one can automatically verify 
whether a Timed Automaton ~g is correct with respect to a formula @, ab- 
breviated Jg ~ N, i.e. one can do model-checking. The subset we consider is 
expressive enough to formalize the requirements to the gas burner system given 
in [RRH93]; but only for a discrete time domain. Model-checking is done by 
reducing the correctness problem ~ N ~ to the inclusion problem of regular 
languages. 

1. Introduction 

A central task of computer science is to provide systems which work correctly 
with respect to their specifications. Typically, this task involves two languages: an 
assertional language, i.e. a logic, for specifying desirable properties of the system 
and an implementation language for expressing how the system is built from 
known components. 
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There are several ways of approaching this correctness issue. In the trans- 
formational method one starts with a specification, which then step by step is 
transformed according to given rules. The transformation ends when an im- 
plementation is reached. The attractive property of this method is that the 
implementation per construction is correct when the applied transformation 
rules are all correct. This approach is for example advocated by [Old91, Bac90, 
Mor90]. 

Another approach is to guess an implementation for a given specification 
and then to check whether this implementation is correct afterwards. The ad- 
vantage of this approach appears especially in cases of simple specification and 
implementation languages where the correctness question can be answered by an 
algorithm. Such an algorithm is in this case called a model-checking algorithm. 

The concern of this paper is the correctness of systems which must obey 
timing constraints. The very elegant work of [ACD90] provides a model-checking 
algorithm for real-time systems. As specification language they use the real-time 
temporal logic T C T L ,  which is similar to the logic studied in [Koy90], and 
as implementation language they use the Timed Automata (timed graphs) of 
[A1D92]. 

In this paper we use Timed Automata as implementation language and Du- 
ration Calculus [ZHR91] as specification language. The distinctive feature of 
Duration Calculus is that one can express and reason about integrated con- 
straints of time-dependent states without explicit mention of absolute time. The 
combination of Duration Calculus and Timed Automata is also interesting as 
Duration Calculus is a state based formalism whereas Timed Automata are event 
based. 

1.1. An Informal Introduction to Duration Calculus 

Consider as an example a simple version of the gas burner control of [RRH93], 
where the gas burner directly can control the gas valve and monitor the flame. 
To represent the current state of the gas burner, we use two time-dependent and 
Boolean valued state variables: 

G,F : Time ~ Bool 

which express the state of the gas valve (open or closed) and the flame (on or 
off). When the gas valve is open (closed) we also say that gas is on (off). The 
Boolean values will be represented by 0 and 1. 

The task is now to construct an implementation that constraints the state 
variables G, F over time such that the gas burner operates in a safe manner. For 
example, it is required that: 

Safety. Gas must not leak for more than 5 seconds for any 30 second period. 

A gas leak occurs whenever the state expression 

L~--G A - , F  

holds, i.e. if the gas is on while the flame is off. When we consider some bounded 
interval [b, e] of time, the duration of L within this interval is given by the integral 
fb L(t)dt as indicated in the following diagram: 
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In the Duration Calculus an explicit reference to the time parameter t is 
avoided. Instead the symbol fL denotes the duration of L; for each particular 
interval it is a real number. Then the 5 second constraint on leaks can be expressed 
by the formula fL < 5. The duration f l  of the constant state 1 gives the length 
of the interval of consideration. In the Duration Calculus f l  is abbreviated to 
the symbol f. Thus f < 30 expresses the fact that we only consider time intervals 
of length 30 or less. 

Now the above safety requirement of the gas burner can be expressed in the 
Duration Calculus as follows: 

[] ( l  ___ 30 fL  _ 5) 

The box operator [] states that the above formula should hold for any 
sub-interval of a given time interval. 

In the Duration Calculus we can also express other real-time requirements for 
the gas burner control, for example that a flame should appear within 6 seconds 
of a heat request: see e.g. [RRH93] for details. In this introduction we only wish 
to familiarize the reader with the high level of abstraction the Duration Calculus 
provides as a specification language. 

It is by no ways obvious how to construct a Timed Automaton which im- 
plements this requirement and it is also not obvious how to restrict such for- 
mulae to make model-checking possible. Actually, as shown independently by 
[Ska93, Bau93], model-checking Timed Automata with respect to Duration Cal- 
culus formulae is as difficult as deciding validity of the formulae. Therefore, one 
must restrict the attention to some subset of Duration Calculus. It is by no means 
obvious which subset to choose. 

Our choice is guided by the desire to cope with major case studies, e.g. that 
of the Gas Burner system in [RRH93]. It turns out that the full Gas Burner 
specification (i.e. not just the safety requirement above) can be expressed in 
the decidable subset of Duration Calculus for a discrete time domain identified 
in [ZHS93]. Furthermore, it was not possible to express this case study in the 
smaller decidable subset for a continuous time domain (actually only denseness 
is assumed) also identified in [ZHS93]. (See also later this section.) Thus we 
consider a discrete time domain in this paper. 

1.2. An Informal Introduction to Timed Automata 

A very simple implementation of the above safety requirement for the gas burner 
is now presented to introduce the notion of (parallel) Timed Automata. The 
idea is to implement the system by a Gas-Flame device working in paral- 
lel with a control automaton. The control automaton must interact with the 
device in a way which assures that the above safety requirement is satis- 
fied. 
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Fig. 1. The Timed Automaton Jgdevice. 
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The Gas-Flame device works as follows: It  starts in an idle state si where 
both the gas and the flame are off. I t  stays in this state until the gas is turned on 
by a g action. The device enters immediately the undesirable leak state sL when 
g occurs. Furthermore, it has an automatic ignition which assures that the burn 
state sB is entered within 4 seconds, unless a gas off action -~g is coming. The 
leak state is unavoidable since gas must be flowing a little while before it can be 
ignited. The burn state is left with the gas off action ~g. 

The Timed Automaton Jgde~ice in Fig. 1 models this behaviour. 
It  communicates with its environment through actions in ddevice = {g, ~g}. 

Furthermore, it controls the state variables ~P'ar,tevice = {G, F}. A clock x is used to 
express that the flame must follow the gas within 4 seconds. It  works as follows: 
the moment  when the state sL is entered, the value of x is reset to 0 due to the 
label x := 0 on the transition from sl to sL. Both (all) transitions leaving sL are 
marked with the clock constraint x _< 4. Thus, the state sL is left within 4 seconds, 
either by switching off the gas or by entering the burn state. 

Each state s ~ S = {si, sB, sL} is marked with a set of  state variables p(s) ~_ 
{G,F} as follows: #(si) = {}, which models that both G and F are off in this 
state, p(sr) = {G} which models that G is on and F is off, and y(sB) = {G,F} 
models that both state variables are on. 

Notice that Jg~ev~ce models a physical device and that it does not satisfy the 
safety requirement, e.g. when gas is switched on and off several times fast after 
each other. 

This Gas-Flame device works in parallel with another automaton Jgcontrol 
(Fig. 2) by synchronizing on the common actions g and ~g. Furthermore, ~g~ontrol 
interacts with the environment over the events h for heat request (on) and ~h 
for heat request (off). I.e. d~ontrot = {g, ~g, h, ~h} is the set of  actions of  Jg~o~trot. 
Since leak of gas occurs each time the gas is turned on, a simple strategy to 
avoid that the amount  of  accumulated gas gets too high for intervals shorter 
than 30 seconds, is simply to wait 30 seconds to switch on the gas after a heat 
request: 
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Fig. 2. The Timed Automaton d/dcontrol . 

Remarks: 

(i) Like in [A1D92] we find it convenient to allow a set of actions to occur 
simultaneously, e.g. both of the actions ~g and -~h occurs simultaneously 
in the transition from s2 to so. Thus the single actions g and ~g occurring 
on transitions of ~/~device must be considered as one element sets. 

(ii) When we formalize Timed Automata in Section 3 we require that at least 
one action must happen in a transition. Thus an auxiliary action should be 
added on the "internal" step of d/laevice from the leak to the burn state. 

(iii) The timed Automaton dGontrol controls no state variables, i.e. Varcontrol = 
{}. 

The implementation of the gas burner is described by the parallel composition 
J~[I ~ ~4fcontrol [[ "/r device" 

1.3. Related Work 

The idea to consider Timed Automata as implementations of Duration Calculus 
formulae comes from [RRH93] (and its predecessors). The automata which 
they call phase automata are described by Duration Calculus formulae and the 
verification that an automaton satisfies a Duration Calculus formula was done 
partly by refinement techniques and partly using the proof rules of Duration 
Calculus. 

The work in [MRR93] further develops the refinement techniques by intro- 
ducing high level operators (abbreviations for Duration Calculus formulae) to 
express progress, liveness, and stability properties and decomposition rules for 
these operators. Furthermore, a design of a real-time system (e.g. as described 
by a Timed Automaton) can be expressed as combinations of  the operators. An 
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alternative way to represent Timed Automata is to use the Mean Value Calculus 
[ZhL94] (which is an extension of Duration Calculus). Instantaneous events can 
be directly expressed in the Mean Value Calculus. 

The usefulness of Duration Calculus for many case studies [RRH93, EKM93, 
SRR92, BOF93] lead to a desire to consider mechanical support. One approach 
is presented in [SKS93] where a proof assistant for Duration Calculus is built 
upon PVS [OSR93]. Another approach is to search for subsets of Duration 
Calculus formulae for which validity (and therefore also satisfiability) can be 
decided. The work in [ZHS93] gives some limits on such subsets and it gives 
some decision procedures also. The decision procedures are implemented and 
tested on small examples in [SKS94] (see also Section 5). To sketch these 
results we must introduce the chop connective ; of Interval Temporal Logic 
[HMM83]. 

The formula f f l  ;o~2 holds on an interval [b, e] iff there exists an m 6 [b, e] 
such that ~,~1 holds on the first section [b, m] and if2 holds on the last section 
[m, el. This connective is very powerful and for instance [] can be defined by chop 
as Do~ ~ ~(~f f )  (for all sub-intervals o~) where <>~ ~ true;(~;true) (for some 
sub-interval ~-). 

One limit identified by [ZHS93] is that satisfiability of formulae constructed 
from atomic formulae of the form f = k (where k is a natural number) and [P] 
(read: P is 1 everywhere (almost) on a non-point interval) using the connectives 
-~, V, and chop ; is undecidabte for a continuous time domain. Another limit 
is that satisfiability of formulae constructed from atomic formulae of the form 
fP = fQ using the same connectives --,v and ; is undecidable as well (both 
for continuous and discrete time). It is therefore not easy to define a relevant 
decidable subset of Duration Calculus formulae where one can say something 
about durations fP  having chop ; (in some generality) as well. 

The work in [ZZY93] considers Duration Calculus formulae in the form of 
linear duration invariants : 

T > ~ >_ t ~ A<ikij fP,  < Kj) 
J 

where T, t, ki,j, Kj range over real numbers (T may be oo). An algorithm is pre- 
sented for model-checking a Timed Automaton with respect to a linear duration 
invariant. The idea is to reduce the correctness question to a finite set of linear 
programming problems. It is based on a continuous time model and it can cope 
with the previously stated safety requirement for the gas burner; but since it 
does not allow chop to be used it cannot deal for instance with the liveness and 
progress requirements for the gas burner defined in [RRH93]. All these require- 
ments can be expressed in the subset of Duration Calculus formulae which is 
considered in this paper for a discrete time domain. 

The related work mentioned so far originate from the Duration Calculus 
tradition started by [ZHR91]. But there is another rich literature on model- 
checking real-time system which (we believe) originates from decidability results 
on Timed Automata (see [A1D92] for a nice survey). A key result is a region graph 
construction where the infinite number of states of a Timed Automaton is turned 
into a finite set of regions in such a way that the Timed Automaton accepts an 
empty set iff the language accepted by the region graph is empty also. In this way 
the emptiness question of Timed Automata is reduced to an emptiness question 
of un-timed (Btichi or Muller) automata. This yields a decision algorithm for the 
emptiness question of Timed Automata. 
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This result is further exploited in [ACD90] where it is shown how to model- 
check a Timed Automaton M/with respect to a formula ~ of the branching time 
logic TCTL, which is a timed extension of CTL [CES86]. The main idea of the 
algorithm is first to construct a region graph from the Timed Automaton Jr then 
to label the nodes of the region graph with sub-formulae of Y in such a way that 
the model-checking question can be reduced to a teachability question of this 
labelled region graph. In this early work there is no notion of duration neither in 
the formulae of TCTL nor in the Timed Automata they use. Another difference 
is that TCTL does not have a chop connective but only an until operator q/. 

There are several approaches to extend this framework with the notion of 
duration. In [KPS93], Timed Automata are extended to Integration Graphs allow- 
ing the nodes to be labelled with integrators. An integrator can be considered a 
generalized timer in the sense that it increases linearly over time in some nodes 
and remains constant in others. Thus an integrator can be used to measure the 
accumulated time the system spends in certain nodes. (The state variables G and 
F of J//de~ce are examples of integrators.) Furthermore, they allow edges to be 
labelled with tests in the form of linear constraints (equalities and inequalities) 
involving integrators. Their main result is that the reachability question for In- 
tegration Graphs is decidable for the case where the graphs only contain test 
of integrators (which are not clocks) at the last transition (i.e. at most once). In 
[BER94] it is shown that the teachability question is decidable for Integration 
Graphs with one integrator even when it can be tested and reset at any transition. 
For Integration Graphs with no restrictions there is a semi-decision procedure 
for the reachability question presented in [ACH93]. 

In [BES93] the logic DTL is introduced by extending TCTL with duration 
variables and they consider the question whether a Simple Timed Graph is correct 
with respect to a DTL formula. A Simple Timed Graph can be considered a 
Timed Automaton with one timer which is reset at each transition. They provide 
model-checking procedures for subsets of DTL formulae in which eventuality and 
invariance properties can be expressed. Results are given both for a discrete and 
a continuous time domain. Some of the restrictions which are placed on formulae 
concern the use of the until operator. This confirms our belief that chop is a 
source of extra difficulties in model-checking. Another result which indicates that 
chop is difficult to handle algorithmically is the decision procedure for a linear 
time temporal logic given in [RoP86]. This procedure is non-elementary in the 
nesting depth of chop. (The chop in [RoP86] partitions an infinite interval into a 
finite prefix and an infinite suffix. Hence it is semantically different from the chop 
considered here.) 

1.4. Outline 

Section 2 defines syntax and semantics of the subset of Duration Calculus which 
we consider in this paper. Furthermore, a decision algorithm for satisfiability of 
formulae is presented as this algorithm provides insight to the model-checking 
problem. In Section 3 the concepts needed for Timed Automata are defined 
formally and in Section 4 the notion of correctness of a Timed Automaton with 
respect to a Duration Calculus formula is defined. It is shown in Section 5 that 
the correctness problem is decidable. The complexity of the problem is addressed 
also. The paper ends with a summary. 
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2. Duration Calculus 

We define in this section the syntax and the (discrete time) semantics [ZHS93] of 
the subset of Duration Calculus which we will consider in this paper. 

The formulae are generated from the following sets of symbols: 

�9 Some (possibly infinitely many) state variables X,  Y, Z , . . .  
e.g. G (gas) and F (flame) from the introduction. 

�9 The constant 1 
i.e. the state which is everywhere one. 

�9 The set of constants kt,k2 . . . .  
each constant denoting a natural number. 

�9 The connectives ~ and V from propositional logic. 
�9 The modality "chop" ; from Interval Temporal Logic. 
�9 The special symbols f ,  [ and ], and the brackets ( and ) 

which as usual are used as auxiliary symbols. 

The set of state expressions is generated inductively by the following rules: 

1. the symbol 1 and every state variable X are state expressions 
2. if P and Q are state expressions, so are -~P and P v Q. 

The set of formulae is generated by: 

l. fP  = ki and [P] are formulae, for every state expression P and constant ki 
2. If 91 and 92 are formulae, so are 99a,  9 l  v 92, and 91 ;92. 

(The connectives -7 and V on formulae are semantically different from those 
on states as we shall see below). 

The formula [P] can be read: P is 1 everywhere (almost) on a non-point 
interval and the connective ; is the "chop" operator of Interval Temporal Logic. 
A formula 91 ;92 can be read: the interval of consideration can be partitioned 
into two sections such that 91 holds in the first section and 92 holds in the 
second. 

2.1. Semantics 

In this section we give a discrete time semantics of formulae. 
We assume that each constant ki is associated with a value k_ i E IN. Let 

[0, N] c IR, for N E IN, be an interval. An interpretation ~ over [0, N] associates 
a total function 

Xy E [0, N] --~ {0, 1} 

with each state variable X. The discontinuity points for X j  must belong to IN. 
An interpretation J can straightforwardly be extended to a function 

J[[P]]  E [0, N]--~ {0, 1} 

for each state expression P. We will use the abbreviation P j  ~ J [ [ P  ]]. 
The discrete semantics of formulae is different from the continuous semantics 

[HaZ92] of formulae in two ways: one is that the discontinuity points of X j  must 
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belong to IN, the other is that we only consider the truth of formulae on intervals 
[b, e] c IR +, for which b, e E IN. Let Intv(N)  = { [a, b] I 0 < a <_ b < N Aa, b E IN}. 

The semantics of a formula 9 in an interpretation J over [0, N] is a func- 
tion 

J[[ 9 ]] : In tv(N)  ~ {tt,ff} 

We shall use the following abbreviations" 

Y, [b, e] 
J ,  [b, e] 

The semantics 

Y, [b, e] 

J ,  [b, el 

J ,  [b, e] 

J ,  [b, e] 

J ,  [b, e] 

A 
[o, N] 
every 

9 ~ J[[9]l[b,e] = tt 
g=9 ~- J [ 9 ] ] [ b , e ] = f f  

is defined inductively on the structure of formulae by: 

f P = k i  iff f bPy ( t )d t=k - i  

[P] iff f b P y ( t ) d t = e - b a n d b < e  

7 9  iff J , [ b , e ] ~ 9  

91 ~ / 9  2 l i t  J ,  [b, e] ~ 91 or  a ' ,  [b, e] ~ 9 2 

91 ;92 iff J ,  [b, m] ~ 91 and J, [m, e] ~ 92, 
for some m E IN where m E [b, e] 

formula 9 is satisfiable iff ~ ,  [0, N] ~ 9 for some interpretation ~ over 
(for some N). Furthermore, 9 is valid (written ~ 9 )  iff J ,  [0, N] ~ 9 for 
interpretation J over [0, N] (for every N). 

2.1.1. Abbreviations 

We shall use the standard abbreviations from propositional logic for both state 
expressions and formulae. Furthermore, we introduce: 

f ~ f l  
r l  rll 
true ~ [11 v r 1 
~ ~-- true;(~;true) 
[ ] 9  = 

f e  > k, ~- ( f e  = ki);true 
JP <_ ki ~- (-~(fP >_ ki)) v ( fP  = ki) 

reads "length of the interval" 
reads "point interval" 

reads "for some subinterval" 
reads "for every subinterval" 

2.1.2. Examples 

Thus, the gas burner requirement from the introduction is expressible in this 
simple subset of  Duration Calculus: 

[] < 30 => fL  < 5) 

Consider the following progress requirement: When the button (B) is pressed 
for 3 time units then light (L) must be switched on. This requirement can for 
instance be formalized as: 

~ ( ( [ B ]  A l = 3);[~L]) 
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2.2. Decision Algorithm 

There exists an algorithm which can check satisfiability (and therefore also 
validity) of  the formulae defined above. We present it now without its correctness 
proof  (which can be found in [ZHS93]). 

The idea is to reduce satisfiability of formulae to emptiness of regular lan- 
guages (which is decidable), i.e. we construct for a given formula ~ a regular 
language ~ ( ~ )  over an alphabet Z such that: 

is satisfiable iff ~ ( ~ )  ~ {} 

Let ~/Far be the (finite) set of  state variables occurring in ~.  As the alphabet 
we take Z = ~(~//ar), i.e. the set of all subsets of ~ar. A letter V E Z is also 
called a basic conjunct and is interpreted as the state expression 

AxA A 
XEV yE('C/'ar\V) 

which asserts that all state variables in V are 1, and those not in V are 0. 
The intuition is that a letter V E E describes an interpretation for one time 

unit, and that a word V1 --- VN E E* describes an interpretation over [0, N]: 

Definition 1. A word W = 111... VN E E* corresponds to an interpretation J 
over [0, N] if J l [  Vi ]l(t) = 1 for t E (i - 1, i), i E {1 . . . . .  N}. (If N = 0 then W = e 
is the empty word). [] 

The disjunctive normal form of  a state expression P is a disjunction ViL1 gi 
of basic conjuncts, n _> O. We let DNF(P)  = {V1,..., V,} ___ Z denote the set of 
basic conjuncts occurring in P 's  disjunctive normal form. 

The regular language N(~)  ~ E* is defined by: 

~ ( f P  = ki) = with ki occurrences of DNF(P)  
,% 

"DNF(-~P)*DNF(P). . .  DNF(~P)*DNF(P)DNF(--~P):  
~ ( [ P ] )  = (DNF(P))  + 
~ ( ~  v ~z) = ~(@t) u ~(~2) 

~(~ , ;  ~2)  = ~ ( ~ t ) ~ ( ~ 2 )  

In this translation we exploit that regular languages are closed under Kleene 
star (6r positive closure (~+) ,  union (~al td ~2),  complement (Z* \ Za), and 
concatenation (~1 ~2).  

The decidability result follows from the following. 

Lemma 1 [ZHS93]. Let a formula @, an interpretation d r over [0,N], and a 
corresponding word W = V~... VN E Y* be given. Then 

J , [ O , N ] M ~ i f f W ~ R ( @ ) .  [] 
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For a given word W ~ Z*, there is a natural way to define a corresponding 
interpretation J w  : 

Definition 2. A word W = V1... I~,r E Z* induces an interpretation J w  over 
[0, N] as follows: 

1, i f i - l < _ t < i a n d X E V ~  
X~r W(t) = 0, i f i - l < _ t < i a n d X q ~ V ~  

for 1 _< i_< N. [] 

Since W and J w  by construction correspond to each other, we get immedi- 
ately by Lemma 1: 

Lemma 2. Let a word W = V1.. .  VN ~ E* and a formula @ be given. Then 

J w , [ 0 , N ]  ~ ~ iff W E ~ (~ ) .  [] 

3. Timed Automata for Discrete Time 

In this section we shall define the notion of  automata which informally was 
presented in the introduction. We adopt the main concepts from the Timed Au- 
tomata of [A1D92]. The definition given here is based on a discrete time domain. 
The main difference is that the Timed Automata of [A1D92] are extensions of 
co-automata, i.e. automata which accept sets of infinite words, whereas our def- 
inition of  Timed Automata extends the finite state automata which accept sets 
of  finite words (cf. the decidability result in the previous section). The reason 
that we come through with the simple automata is that formulae of  Duration 
Calculus are true (or false) on bounded time intervals, thus we never need to 
consider infinite runs of the automata. 

Definition 3. A Discrete Timed Automaton (short: Timed Automaton) is a structure 
J/d = ( d ,  ~ar ,  S, C, l ~, E,  so), where 

1. d is a finite and non-empty set of  actions, 
2. Var  is a finite set of state variables, 
3. S is a finite and non-empty set of states, 
4. C is a finite set of clocks, 
5. /1 ~ S ~ E, with Z = .~(~ar),  associates a set of  state variables (i.e. a basic 

conjunct) with each state, 
6. E ~ S x S x E v e n t s ( d )  x N(C)  x ~b(C) is the transition relation, where 

E v e n t s ( d )  ~- ~+(,~r is the set of events. An event a E E v e n t s ( d )  is a 
non-empty set of actions, 

ep(C) is the set of  clock constraints generated by the following grammar: 

b ::= true I x < k I x >_ k t bl A b2 I bl V b2 I -~b 

where b, bb b2 E qb(C), x c C, and k E IN, and 

7. so E S is the start state. [] 



Model-Checking Discrete Duration Calculus 837 

a,)~,b St The notation s ,~ will be used as a shorthand for ( s , s ' , a ,2 ,b )  E E.  The 
intuition with this transition is: The Timed Automaton J r  performs the set of 
actions in a simultaneously in a state transition from s to s'. This transition is 
only possible at times where the clock constraint b is true. Each clock in 2 is reset 
to zero when the transition is taken. 

To describe the dynamic behaviour formally the notion of clock interpretation 
is introduced: 

A clock interpretat ion v E C -~, IN is a function associating a natural num- 
ber with each clock. The following operations on clock interpretations will be 
used later: 

(v + t)(x) ~ v(x) + t 

f 0, i f x ~ 2  
([~ - ,  0 ] , , ) (x )  v(x), otherwise 

for any t E IN, x E C, and 2 ~ C. 
It is obvious how to define the truth value of a clock constraint b in a given 

clock interpretation v so the operational behaviour of a Timed Automaton can 
now be described. 

Definition 4. A run of  d/ / is  a sequence ((si, vi, ai, ti) t i = 0 , . . .  n) 

(so, v0, a0, t o ) ' "  (si, vi, ai, t i ) "  " (sn, vn, an, tn) 

where n _> 0 and 

1. (si, vi, ai, ti) ~ S x (C ~ IN) x N ( d )  x IN, 

2. Vx  ~ C : vo(x) = 0, a0 = {}, and to = 0, 
i.e. d/d starts at time 0 in state so with all docks reset to zero, and 

3. f o r 0 < i <  n: 

�9 ti  < ti+l, and 
ai+ l ,)4 ,bi 

�9 there is a transition si 'E si+l such that bi is true in (vi + ti+l - ti) and 
v~+l = [,l~ ---, 0](vi  + t~+l - t3 .  [ ]  

A run gives a very detailed view of ./~ as one can observe the states, the 
values of clocks, the events which happen and at which time they happen. We 
want however a less detailed view where only state variables in ~ a r  and events 
in E v e n t s ( d )  are observed as a function of  time: 

Definition 5. Each run R = ((si, "r ai, ti) I i = 0 . . . . .  n) of  ./g induces the ob- 
servat ion OR = ((/t(Si), ai, ti) I i = 0 . . . . .  n) over ( d ,  ~ar ) .  [] 

Definition 6. The semant ics  of Jr the set of observations over ( d ,  ~ar )  defined 
by: 

[[d//~ ~-- {OR I R is a run o f ~ / }  [] 

Notice that this definition allows automata whose observations may only be 
defined until some time N. For example, for an automaton with empty transition 
relation, i.e. with E = {}, we even have that N = 0. To avoid this, one can impose 
extra extendibi l i ty  conditions to enforce that time "cannot stop". See for example 
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[HaO93]. But such conditions do not influence model-checking properties and 
are therefore not discussed here. 

To explain the Timed Automaton discussed in the introduction, we must de- 
fine the notion of parallel automata communicating synchronously over common 
actions. To this end we introduce first the notion of projection. 

Definition 7. Let an observation O = ((Vi, ai, q) i i = 0 . . . . .  n) over ( d , ~ a r )  
be given and let a / '  _ a/ ,  War' _~ ~//'ar. Then O $ (a/', "Uar') is called the projection 
of O wrt. (a/', ~ar').  We have that 

1. 0 ~ (a/',q./'ar') is defined iff the list L ~ ((V~ A ~Par',ai N a / ' , t t )  [ i = O , . . . , n )  
satisfies that Vi > 0 : ai f3 a / '  = {} =~ Vt A ~tPar' = Vi-1 f'l ~g'ar', and 

2. in the case where 0 ~ (a/', ~Uar') is defined, it is defined as the observation 
over (a/ ' ,  War')  which is obtained from L by removing elements of the form 
(Vi f) ~l/'ar', {}, ti) where i > 0. [] 

The intuition behind the first condition in definition 7 is that state variables 
in War' are only allowed to change at times where some action in a/ '  happens. 

Definition 8. Let n Timed Automata Jr = (dr,  Wari, St, Ci, #i, Et, soi), i = 1 . . . .  , n 
be given (n > 0) such that ~Yar inVar j  = {} for i ~ j. Then, their parallel composi- 

n a /  n tion It~=1 dZt denotes the set of observations over (a/, :tPar) = (Ui=I i, U/=I ~ar~) 
which is defined by 

~ I1~'< .~tll  = {O [ 0 .L (a/t, Yfari)is in [[ JCill, i = 1 . . . . .  n} 

where 0 $ (a/i ,  ~ar t )  is in [[ J l i l l  is an abbreviation for: 0 $ (aCt, Vart)  is defined 
and O ~ (~r E l[J~i~. [] 

The following lemma says that Timed Automata are closed under parallel 
composition, and thus we shall not consider parallel Timed Automata explicitly 
in the remaining part of this paper. 

Lemma 3. There is a Timed Automaton JPll! such that 

~ a l t  11 = I[ ft~'=~ ~ 1 1  

P r o o f  We define "/gll by a generalized "product construction". First we assume 
that Ci fq Cj for i ~ j (this can easily be established by renaming of  clocks). Then 
dgll = (a/ ,  War, S, C, p, E,  so), where 

�9 S = & x ' " x S n ,  
�9 C = C 1 U . . . u C n ,  

�9 /A(S1 , . . . , Sn )  : ~1(S1) U " "  U ~ t n ( S n )  , 

�9 (Sl . . . . .  s , )  a.~;b (s i . . . . .  s ' )  iff 

1. 2 = 21 U - . . U 2n, with 2i --- C~, 
2. b = bl A . . -  A b~, with bi e q~(C~), and 
3. for i = 1, . . . ,n:  let ai ~ af'ls~r and 

ai = {} implies si = s' i,bi = true,2i  = {} and 
ai,2i,bi t 

ai ~ {} implies si - - - %  s i. 
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�9 SO =(SOl,...,SOn). 

We leave the rest of  the proof for the reader. [] 

4. Correctness 

Let a Timed Automaton d g =  (~r ~/'ar, S, C ,# ,E ,  so) and a duration formula @ 
be given such that the set of state variables occurring in @ is equal to ~trar. We 
want to define the correctness of  ~[  wrt. @. To this end we must explain how 
observations of Me/correspond to interpretations for 9 .  

Definition 9. Each observation 0 = ((Vi, ai, ti) [ i = 0 . . . . .  n) over (~4,~ar) in- 
duces an interpretation J o  6 ~ar  ~ ([0, tn] ---' {0, 1}) over [0,tn] as follows: 

1, i f X  E V~-I 
X j ~  = 0, i f X  ~ l)~-I 

for any t �9 t i - 1  <-- t < t i  and any X E ~ar.  [] 

It is now straightforward to define the correctness of a Timed Automaton 
with respect to a formula. 

Definition 10. The Timed Automaton Jr is correct wrt. 
iff, for every 0 c [[ ~ ~ : 

~r [0, t.] ~ 
where J o  is the interpretation over [0, tn] induced by O. 

9 (written J /  ~ 9 )  

[] 

5. Model-Checking 

Let a Timed Automaton ~ = ( d ,  ~ehr, S, C, #, E, so) and a Duration Calculus 
formula ~ be fixed throughout this section. Furthermore, assume that the set of 
state variables occurring in 9 is equal to ~ar.  We show how to check whether 
d{ ~ 9 holds. 

We have seen in Section 2 that a regular language ~ ( ~ )  characterizes all 
interpretations for which ~ is true. So the idea is first to characterize all interpre- 
tations induced by J//, i.e. { Jo  I 0 ~ Ix/g]]}, by another regular language ~e(jg), 
and then reduce the question whether J / / ~  9 to the inclusion question 

~ ( ~ )  _ ~ ( 9 )  

of two regular languages (which is decidable). 
The first step in the construction is to simulate Jg  by a simple finite state 

automaton Jg without clocks. In this automaton time is simulated by an extra 
action Z q~ d .  The possibility of doing so is mentioned in e.g. [NSY92, A1D92]. 
A correctness proof of the below construction is given in [Bau93]. 

Consider a given state s of J{. When J l  is in this state, there are infinitely 
many clock interpretations v possible. So actually Jg  can be considered an 
automaton with infinitely many configurations, each configuration having the 
form: (s, v ). 

This infinite set of configurations can be reduced to a finite set of "relevant 
ones" by a technique used in the region graph construction in [ACD90]: 
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For any clock x E C, let Cx be the largest constant to which x is compared 
in the clock constraints of  E. (Let cx ~ 0 if x does not occur in any clock 
constraint in E.) The important property is the following: let b be an arbitrary 
clock constraint in E and let v be a clock interpretation such that v(x) > cx. 
Then b is true in v' iff b is true in v' for any v' obtained from v by mapping x to 
a value greater than cx. Thus, the infinite set 

c+~ ~- {cx + 1,cx + 2, cx + 3  . . . .  } 

can be treated as a single value. 
Therefore, we Can derive a new set of relevant clock interpretations F(C,E)  

from C and E where T E F(C, E) satisfies 

v(x) {0 . . . .  , c +)  

for and any x E C. 
Since C is a finite set, F(C,E)  is a finite set also and we can reduce the 

infinitely many configurations of  ~gr to the finite set S x F(C, E). 
It is obvious how to define the truth of a clock constraint b occurring in E in 

a clock interpretation V E F(C, E). Furthermore, the following operation on clock 
interpretations V E F(C, E) will be used: 

(V@l)(x) -~ { V(x)+lc + ifV(x) E{0otherwise . . . . .  Cx--1} 

The finite state automaton ./g is a structure M/t = (S, sO, ~m, g, 30), where 

�9 ~ = s x r ( c ,  E), 

�9 d = {a z I a c Events(d)} U {•}, where a z ~ a u {)~} for a ~ Events(,~), 

�9 g c R ~ Z (Z ~ N(~Kar)) is defined by g(s, T) = #(s), 
�9 30 = (s0,V0), where for all x ~ C �9 T0(x) = 0, and 
�9 the transition relation --~m_~ S x d • S is defined by: 

ax 
1. (s, V) ~m (s', V') iff, for some 2 _c C, b E ~(C): 

a,2,b 
s ,e s~,b is true in T @ 1, and V~ = [2 ~ 0](V@ 1) 

2. (s, T') -~Zm (s, T) iff 

a) V = V  ~ @ l a n d  

b) for some ~ ~ d , ~ '  ~ g : (s,V) ~ a 3' 

_ Z 

We call a simple transition s ~,~ g a time step. The condition 2.a) concerns the 
obvious conditions on clock interpretations involving a time step and condition 
2.b) requires that some transition is leaving (s, V). 

The construction is illustrated by an example. Consider the following Timed 
Automaton M/t: 

- . . . .  
a 

~(x  < 1) 
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where e g  = {a, b},  ~ a r  = {}, and we write a and b for the one element events {a} 
and {b}, respectively. 

The au tomaton  ~g is given by: 

bX l 
b z 

b x 

where cx = 1, 1 + = {2, 3, 4, . . .},  and the second componen t  v~ in (si, vx), i = 1, 2, is 
the value of  the clock x. 

By an Jg  t rans i t ion  s e q u e n c e  we mean a sequence tr  of  the following form: 

?il _ E2 an z _ 
tr  = ('So --hn s l  '->m " ' "  ""~m Sn) 

where n = 0, i.e. tr  = ~0, is allowed. Thus  transitions cannot  end with a time step. 
The  reason for  this restriction is given in the following. 

L e m m a  4 [Bau93]. 

0 = ((Vi ,  ai, ti) I 0 < i _< n) E [[~g]  iff 

there exists an ~ transit ion sequence: 

f ( __ ;~ Z a~ tr  = so, rio,1 )) ~ m  (so, -v~o,2)) ~ m  " "  (so, -v(O~m)) ~m " "  
_ Z _ an  _ 

S n - - 1 ,  •(n--l,1)) "+m " ' "  (Sn--1, V(n--l,kn)) - ~ m  (Sn, V(n,1)) 
such that :  g(si,7(id)) = Vi (i = 0 . . . .  , n )  and ki = t i -  t i-1 (i = 1 , . . . ,n) .  [] 

Thus  any observat ion O of  ~g can be simulated by an d f  transit ion sequence 
t r  (which does not  end with a time step), and conversely, every Jg  transit ion 
sequence simulates an observat ion o f  ~g. 

Let  0 and tr  be given as in L e m m a  4. Consider  the word W~ E Z* defined 
f rom tr by: 
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. V n _  1 

It is easily checked that the interpretation induced by 0, i.e. J o ,  is also the 
interpretation induced by Wtr. So we define 

~(.//r ~- { Wtr I tr is an dg transition sequence} 

and we have that 

{o% 1 0 ~ }  = {•w I W ~ ' ( ~ ) } .  

Suppose J w  is an interpretation over [0, N]. Then J w ,  [0, N] ~ @ is abbre- 
viated to J w  ~ @. We have by Lemma 2: 

.At ~ N iff J w  ~ @, for all W 6 s  iff 2'(J/{) c_ N(@) 

We must show that So(d//) is a regular set. Let F S R  = (Z, S ' , - %  F', s{)) be a 
finite state recognizer, where 

�9 S' = ( d  x S) V {s~}, where s~ = ({}, s0), 
�9 ~,___ S' x Z x S' is defined by 

(a, ~) v ,  (~1, ~1) iff ~ ~m ~1 and V = ~(~) 

Comment. The intuition with ~ is that it makes a transition each time unit, i.e. 
a l  

each transition__ step ~ ~m ~1 of Jr  contribute with the letter V = g(j_)) 
since dg has been in ~ for one time unit. A state (a, ~) of F S R  marks that J// 
entered the state ~ with an a action. 

�9 F' = {(~,~) I a r Z} is the set of  accepting states (i.e. s~) 6 U). 

We have that 5 f ( J / )  is the language accepted by F S R  since 

V o V I ' "  V~-I is accepted by F S R  iff 

there exists a transition sequence of F S R  : 
vl Ix,< 

({},s0) k ,  (al,sl) --+, " "  -+, (aZn, Sn) iff 

- -  a l  _ a 2  a. z 
there exists an Jr  transition sequence: 30 ~m Sl ~,~ " '  ~,~ ~n 
such that Vi = g(~i), i = 0 . . . . .  n - 1 iff 

there exists an Jr sequence tr: Wtr -- 170 V1 "'" V,-1. 

Since the inclusion question is decidable for regular languages, we have: 

Theorem 

~(  ~ N is decidable. 

5.1. Complex i ty  

It is the transformation from a Duration Calculus formula to a finite state 
automaton (via a regular expression) which is the main source for the complexity. 
In [SKS94] the decision algorithm is implemented and tried out on proving 
the correctness of  Fischer's mutual exclusion protocol. The complexity of the 
algorithm is very bad since each negation occurring in the formula may supply 
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an exponent in the complexity. An exponent may occur when a non-deterministic 
automaton is transformed into a deterministic one. The authors of [SKS94] 
have found that the satisfiability problem is non-elementary. So the worst case 
complexity is horrible. 

Experiments with finite automata show however that an exponential blow-up 
in the number of states very rarely occurs when building "complement" au- 
tomata, and the test results on Fischer's protocol example were not too bad. 
It took for example approximately twelve minutes to verify a formula consist- 
ing of 3775 characters on a DECStation 5000-240 with 128 MB of memory. 
Moreover, for formulae occurring in case studies the situation seems (always) 
to be that the level of nesting of negations which may cause an exponential 
blow-up is very low. The reason for this is that formulae with alternating appli- 
cation of negation e.g. (through implication) in (((@1 :* N2) =~ ~3)  ~ ~4) or in 
( " n ( ~ ( ( ~ 1 ) ; ~ 2 ) ; ~ 3 ) ; ~ 4 )  are very difficult to comprehend and therefore do not 
occur in specification examples. 

6. Summary 

The topic in this paper is how to model-check Timed Automata with respect to 
formulae of Duration Calculus. 

The work in [RRH93, MRR93] has been a major source of inspiration since 
it shows both that Duration Calculus is a high-level language for expressing 
requirements to real-time systems and that one can systematically refine these 
requirements in several steps until a formula is reached which describes an 
implementation. They describe their implementations by phase transition systems 
which are close to the Timed Automata of [A1D92]. 

On the other hand, the work of [ACD90] shows that one can model-check 
Timed Automata with respect to formulae in the real-time temporal logic TCTL. 
So it would be nice to combine the above results to obtain an algorithm to 
model-check Timed Automata with respect to Duration Calculus formulae. 

The result of this paper is that Timed Automata can be model-checked with 
respect to formulae belonging to a subset of Duration Calculus, which is powerful 
enough to express interesting case studies, e.g. [RRH93]. However, we restricted 
our attention to a discrete time domain and, furthermore, the results in [ZHS93] 
show that even very small subsets of Duration Calculus formulae are undecidable 
for a continuous (dense) time domain. The undecidable subsets in [ZHS93] show 
that both the integral and the chop connective are very powerful. So to get 
model-checking for "usable" formulae for continuous time one must restrict 
use of integral and chop. Concerning continuous (or dense) time the restricted 
use of integral is considered for instance in [BER94, BES93, KPS93, ZZY93]. 
Concerning restricted use of chop the real-time interval logic considered in 
[RDM93] may be interesting as it is a decidable interval logic without chop; but 
where some interval properties can be specified using search patterns. 
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