
Formal Aspects of Computing (1994) 6A: 826-845
@ 1994 BCS Formal Aspects

of Computing

Model-Checking Discrete Duration Calculus

Michae l R. H a n s e n

Department of Computer Science, Technical University of Denmark

Keywords: Real-time; Model-checking; Logic; Timed automata

Abstract. Duration Calculus was introduced in [ZHRgl] as a logic to specify and
reason about requirements for real-time systems. It is an extension of Interval
Temporal Logic [MosS5] where one can reason about integrated constraints over
time-dependent and Boolean valued states without explicit mention of absolute
time. Several major case studies, e.g. the gas burner system in [RRH93], have
shown that Duration Calculus provides a high level of abstraction for both
expressing and reasoning about specifications. Using Timed Automata [A1D92]
one can express how real-time systems can be constructed at a level of de-
tail which is close to an actual implementation. We consider in the paper the
correctness of Timed Automata with respect to Duration Calculus formulae.
For a subset of Duration Calculus, we show that one can automatically verify
whether a Timed Automaton ~g is correct with respect to a formula @, ab-
breviated Jg ~ N, i.e. one can do model-checking. The subset we consider is
expressive enough to formalize the requirements to the gas burner system given
in [RRH93]; but only for a discrete time domain. Model-checking is done by
reducing the correctness problem ~ N ~ to the inclusion problem of regular
languages.

1. Introduction

A central task of computer science is to provide systems which work correctly
with respect to their specifications. Typically, this task involves two languages: an
assertional language, i.e. a logic, for specifying desirable properties of the system
and an implementation language for expressing how the system is built from
known components.

Correspondence and offprint requests to: Michael R. Hansen, Department of Computer Science, Build-
ing 344, Technical University of Denmark, DK-2800 Lyngby, Denmark. Email: mrh@id.dtu.dk.

Model-Checking Discrete Duration Calculus 827

There are several ways of approaching this correctness issue. In the trans-
formational method one starts with a specification, which then step by step is
transformed according to given rules. The transformation ends when an im-
plementation is reached. The attractive property of this method is that the
implementation per construction is correct when the applied transformation
rules are all correct. This approach is for example advocated by [Old91, Bac90,
Mor90].

Another approach is to guess an implementation for a given specification
and then to check whether this implementation is correct afterwards. The ad-
vantage of this approach appears especially in cases of simple specification and
implementation languages where the correctness question can be answered by an
algorithm. Such an algorithm is in this case called a model-checking algorithm.

The concern of this paper is the correctness of systems which must obey
timing constraints. The very elegant work of [ACD90] provides a model-checking
algorithm for real-time systems. As specification language they use the real-time
temporal logic T C T L , which is similar to the logic studied in [Koy90], and
as implementation language they use the Timed Automata (timed graphs) of
[A1D92].

In this paper we use Timed Automata as implementation language and Du-
ration Calculus [ZHR91] as specification language. The distinctive feature of
Duration Calculus is that one can express and reason about integrated con-
straints of time-dependent states without explicit mention of absolute time. The
combination of Duration Calculus and Timed Automata is also interesting as
Duration Calculus is a state based formalism whereas Timed Automata are event
based.

1.1. An Informal Introduction to Duration Calculus

Consider as an example a simple version of the gas burner control of [RRH93],
where the gas burner directly can control the gas valve and monitor the flame.
To represent the current state of the gas burner, we use two time-dependent and
Boolean valued state variables:

G,F : Time ~ Bool

which express the state of the gas valve (open or closed) and the flame (on or
off). When the gas valve is open (closed) we also say that gas is on (off). The
Boolean values will be represented by 0 and 1.

The task is now to construct an implementation that constraints the state
variables G, F over time such that the gas burner operates in a safe manner. For
example, it is required that:

Safety. Gas must not leak for more than 5 seconds for any 30 second period.

A gas leak occurs whenever the state expression

L~--G A - , F

holds, i.e. if the gas is on while the flame is off. When we consider some bounded
interval [b, e] of time, the duration of L within this interval is given by the integral
fb L(t)dt as indicated in the following diagram:

828 M.R. Hansen

F I - -

o

G 1
0

I
T i m e b

r---s V--c--?
e

In the Duration Calculus an explicit reference to the time parameter t is
avoided. Instead the symbol fL denotes the duration of L; for each particular
interval it is a real number. Then the 5 second constraint on leaks can be expressed
by the formula fL < 5. The duration f l of the constant state 1 gives the length
of the interval of consideration. In the Duration Calculus f l is abbreviated to
the symbol f. Thus f < 30 expresses the fact that we only consider time intervals
of length 30 or less.

Now the above safety requirement of the gas burner can be expressed in the
Duration Calculus as follows:

[] (l ___ 30 fL _ 5)

The box operator [] states that the above formula should hold for any
sub-interval of a given time interval.

In the Duration Calculus we can also express other real-time requirements for
the gas burner control, for example that a flame should appear within 6 seconds
of a heat request: see e.g. [RRH93] for details. In this introduction we only wish
to familiarize the reader with the high level of abstraction the Duration Calculus
provides as a specification language.

It is by no ways obvious how to construct a Timed Automaton which im-
plements this requirement and it is also not obvious how to restrict such for-
mulae to make model-checking possible. Actually, as shown independently by
[Ska93, Bau93], model-checking Timed Automata with respect to Duration Cal-
culus formulae is as difficult as deciding validity of the formulae. Therefore, one
must restrict the attention to some subset of Duration Calculus. It is by no means
obvious which subset to choose.

Our choice is guided by the desire to cope with major case studies, e.g. that
of the Gas Burner system in [RRH93]. It turns out that the full Gas Burner
specification (i.e. not just the safety requirement above) can be expressed in
the decidable subset of Duration Calculus for a discrete time domain identified
in [ZHS93]. Furthermore, it was not possible to express this case study in the
smaller decidable subset for a continuous time domain (actually only denseness
is assumed) also identified in [ZHS93]. (See also later this section.) Thus we
consider a discrete time domain in this paper.

1.2. An Informal Introduction to Timed Automata

A very simple implementation of the above safety requirement for the gas burner
is now presented to introduce the notion of (parallel) Timed Automata. The
idea is to implement the system by a Gas-Flame device working in paral-
lel with a control automaton. The control automaton must interact with the
device in a way which assures that the above safety requirement is satis-
fied.

Model-Checking Discrete Duration Calculus

g, x : = 0

SI " -~G, ~F) , .(
- - , g , x = 4

(

S L : G, ~F

x<_4

sB : G, F

Fig. 1. The Timed Automaton Jgdevice.

829

)

)

The Gas-Flame device works as follows: It starts in an idle state si where
both the gas and the flame are off. I t stays in this state until the gas is turned on
by a g action. The device enters immediately the undesirable leak state sL when
g occurs. Furthermore, it has an automatic ignition which assures that the burn
state sB is entered within 4 seconds, unless a gas off action -~g is coming. The
leak state is unavoidable since gas must be flowing a little while before it can be
ignited. The burn state is left with the gas off action ~g.

The Timed Automaton Jgde~ice in Fig. 1 models this behaviour.
It communicates with its environment through actions in ddevice = {g, ~g}.

Furthermore, it controls the state variables ~P'ar,tevice = {G, F}. A clock x is used to
express that the flame must follow the gas within 4 seconds. It works as follows:
the moment when the state sL is entered, the value of x is reset to 0 due to the
label x := 0 on the transition from sl to sL. Both (all) transitions leaving sL are
marked with the clock constraint x _< 4. Thus, the state sL is left within 4 seconds,
either by switching off the gas or by entering the burn state.

Each state s ~ S = {si, sB, sL} is marked with a set of state variables p(s) ~_
{G,F} as follows: #(si) = {}, which models that both G and F are off in this
state, p(sr) = {G} which models that G is on and F is off, and y(sB) = {G,F}
models that both state variables are on.

Notice that Jg~ev~ce models a physical device and that it does not satisfy the
safety requirement, e.g. when gas is switched on and off several times fast after
each other.

This Gas-Flame device works in parallel with another automaton Jgcontrol
(Fig. 2) by synchronizing on the common actions g and ~g. Furthermore, ~g~ontrol
interacts with the environment over the events h for heat request (on) and ~h
for heat request (off). I.e. d~ontrot = {g, ~g, h, ~h} is the set of actions of Jg~o~trot.
Since leak of gas occurs each time the gas is turned on, a simple strategy to
avoid that the amount of accumulated gas gets too high for intervals shorter
than 30 seconds, is simply to wait 30 seconds to switch on the gas after a heat
request:

830 M. R. Hansen

1

{g} y = 30

{-,h,

Fig. 2. The Timed Automaton d/dcontrol .

Remarks:

(i) Like in [A1D92] we find it convenient to allow a set of actions to occur
simultaneously, e.g. both of the actions ~g and -~h occurs simultaneously
in the transition from s2 to so. Thus the single actions g and ~g occurring
on transitions of ~/~device must be considered as one element sets.

(ii) When we formalize Timed Automata in Section 3 we require that at least
one action must happen in a transition. Thus an auxiliary action should be
added on the "internal" step of d/laevice from the leak to the burn state.

(iii) The timed Automaton dGontrol controls no state variables, i.e. Varcontrol =
{}.

The implementation of the gas burner is described by the parallel composition
J~[I ~ ~4fcontrol [["/r device"

1.3. Related Work

The idea to consider Timed Automata as implementations of Duration Calculus
formulae comes from [RRH93] (and its predecessors). The automata which
they call phase automata are described by Duration Calculus formulae and the
verification that an automaton satisfies a Duration Calculus formula was done
partly by refinement techniques and partly using the proof rules of Duration
Calculus.

The work in [MRR93] further develops the refinement techniques by intro-
ducing high level operators (abbreviations for Duration Calculus formulae) to
express progress, liveness, and stability properties and decomposition rules for
these operators. Furthermore, a design of a real-time system (e.g. as described
by a Timed Automaton) can be expressed as combinations of the operators. An

Model-Checking Discrete Duration Calculus 831

alternative way to represent Timed Automata is to use the Mean Value Calculus
[ZhL94] (which is an extension of Duration Calculus). Instantaneous events can
be directly expressed in the Mean Value Calculus.

The usefulness of Duration Calculus for many case studies [RRH93, EKM93,
SRR92, BOF93] lead to a desire to consider mechanical support. One approach
is presented in [SKS93] where a proof assistant for Duration Calculus is built
upon PVS [OSR93]. Another approach is to search for subsets of Duration
Calculus formulae for which validity (and therefore also satisfiability) can be
decided. The work in [ZHS93] gives some limits on such subsets and it gives
some decision procedures also. The decision procedures are implemented and
tested on small examples in [SKS94] (see also Section 5). To sketch these
results we must introduce the chop connective ; of Interval Temporal Logic
[HMM83].

The formula f f l ;o~2 holds on an interval [b, e] iff there exists an m 6 [b, e]
such that ~,~1 holds on the first section [b, m] and if2 holds on the last section
[m, el. This connective is very powerful and for instance [] can be defined by chop
as Do~ ~ ~(~f f) (for all sub-intervals o~) where <>~ ~ true;(~;true) (for some
sub-interval ~-).

One limit identified by [ZHS93] is that satisfiability of formulae constructed
from atomic formulae of the form f = k (where k is a natural number) and [P]
(read: P is 1 everywhere (almost) on a non-point interval) using the connectives
-~, V, and chop ; is undecidabte for a continuous time domain. Another limit
is that satisfiability of formulae constructed from atomic formulae of the form
fP = fQ using the same connectives --,v and ; is undecidable as well (both
for continuous and discrete time). It is therefore not easy to define a relevant
decidable subset of Duration Calculus formulae where one can say something
about durations fP having chop ; (in some generality) as well.

The work in [ZZY93] considers Duration Calculus formulae in the form of
linear duration invariants :

T > ~ >_ t ~ A<ikij fP, < Kj)
J

where T, t, ki,j, Kj range over real numbers (T may be oo). An algorithm is pre-
sented for model-checking a Timed Automaton with respect to a linear duration
invariant. The idea is to reduce the correctness question to a finite set of linear
programming problems. It is based on a continuous time model and it can cope
with the previously stated safety requirement for the gas burner; but since it
does not allow chop to be used it cannot deal for instance with the liveness and
progress requirements for the gas burner defined in [RRH93]. All these require-
ments can be expressed in the subset of Duration Calculus formulae which is
considered in this paper for a discrete time domain.

The related work mentioned so far originate from the Duration Calculus
tradition started by [ZHR91]. But there is another rich literature on model-
checking real-time system which (we believe) originates from decidability results
on Timed Automata (see [A1D92] for a nice survey). A key result is a region graph
construction where the infinite number of states of a Timed Automaton is turned
into a finite set of regions in such a way that the Timed Automaton accepts an
empty set iff the language accepted by the region graph is empty also. In this way
the emptiness question of Timed Automata is reduced to an emptiness question
of un-timed (Btichi or Muller) automata. This yields a decision algorithm for the
emptiness question of Timed Automata.

832 M.R. Hansen

This result is further exploited in [ACD90] where it is shown how to model-
check a Timed Automaton M/with respect to a formula ~ of the branching time
logic TCTL, which is a timed extension of CTL [CES86]. The main idea of the
algorithm is first to construct a region graph from the Timed Automaton Jr then
to label the nodes of the region graph with sub-formulae of Y in such a way that
the model-checking question can be reduced to a teachability question of this
labelled region graph. In this early work there is no notion of duration neither in
the formulae of TCTL nor in the Timed Automata they use. Another difference
is that TCTL does not have a chop connective but only an until operator q/.

There are several approaches to extend this framework with the notion of
duration. In [KPS93], Timed Automata are extended to Integration Graphs allow-
ing the nodes to be labelled with integrators. An integrator can be considered a
generalized timer in the sense that it increases linearly over time in some nodes
and remains constant in others. Thus an integrator can be used to measure the
accumulated time the system spends in certain nodes. (The state variables G and
F of J//de~ce are examples of integrators.) Furthermore, they allow edges to be
labelled with tests in the form of linear constraints (equalities and inequalities)
involving integrators. Their main result is that the reachability question for In-
tegration Graphs is decidable for the case where the graphs only contain test
of integrators (which are not clocks) at the last transition (i.e. at most once). In
[BER94] it is shown that the teachability question is decidable for Integration
Graphs with one integrator even when it can be tested and reset at any transition.
For Integration Graphs with no restrictions there is a semi-decision procedure
for the reachability question presented in [ACH93].

In [BES93] the logic DTL is introduced by extending TCTL with duration
variables and they consider the question whether a Simple Timed Graph is correct
with respect to a DTL formula. A Simple Timed Graph can be considered a
Timed Automaton with one timer which is reset at each transition. They provide
model-checking procedures for subsets of DTL formulae in which eventuality and
invariance properties can be expressed. Results are given both for a discrete and
a continuous time domain. Some of the restrictions which are placed on formulae
concern the use of the until operator. This confirms our belief that chop is a
source of extra difficulties in model-checking. Another result which indicates that
chop is difficult to handle algorithmically is the decision procedure for a linear
time temporal logic given in [RoP86]. This procedure is non-elementary in the
nesting depth of chop. (The chop in [RoP86] partitions an infinite interval into a
finite prefix and an infinite suffix. Hence it is semantically different from the chop
considered here.)

1.4. Outline

Section 2 defines syntax and semantics of the subset of Duration Calculus which
we consider in this paper. Furthermore, a decision algorithm for satisfiability of
formulae is presented as this algorithm provides insight to the model-checking
problem. In Section 3 the concepts needed for Timed Automata are defined
formally and in Section 4 the notion of correctness of a Timed Automaton with
respect to a Duration Calculus formula is defined. It is shown in Section 5 that
the correctness problem is decidable. The complexity of the problem is addressed
also. The paper ends with a summary.

Model-Checking Discrete Duration Calculus 833

2. Duration Calculus

We define in this section the syntax and the (discrete time) semantics [ZHS93] of
the subset of Duration Calculus which we will consider in this paper.

The formulae are generated from the following sets of symbols:

�9 Some (possibly infinitely many) state variables X, Y, Z , . . .
e.g. G (gas) and F (flame) from the introduction.

�9 The constant 1
i.e. the state which is everywhere one.

�9 The set of constants kt,k2
each constant denoting a natural number.

�9 The connectives ~ and V from propositional logic.
�9 The modality "chop" ; from Interval Temporal Logic.
�9 The special symbols f , [and], and the brackets (and)

which as usual are used as auxiliary symbols.

The set of state expressions is generated inductively by the following rules:

1. the symbol 1 and every state variable X are state expressions
2. if P and Q are state expressions, so are -~P and P v Q.

The set of formulae is generated by:

l. fP = ki and [P] are formulae, for every state expression P and constant ki
2. If 91 and 92 are formulae, so are 99a, 9 l v 92, and 91 ;92.

(The connectives -7 and V on formulae are semantically different from those
on states as we shall see below).

The formula [P] can be read: P is 1 everywhere (almost) on a non-point
interval and the connective ; is the "chop" operator of Interval Temporal Logic.
A formula 91 ;92 can be read: the interval of consideration can be partitioned
into two sections such that 91 holds in the first section and 92 holds in the
second.

2.1. Semantics

In this section we give a discrete time semantics of formulae.
We assume that each constant ki is associated with a value k_ i E IN. Let

[0, N] c IR, for N E IN, be an interval. An interpretation ~ over [0, N] associates
a total function

Xy E [0, N] --~ {0, 1}

with each state variable X. The discontinuity points for X j must belong to IN.
An interpretation J can straightforwardly be extended to a function

J[[P]] E [0, N]--~ {0, 1}

for each state expression P. We will use the abbreviation P j ~ J [[P]].
The discrete semantics of formulae is different from the continuous semantics

[HaZ92] of formulae in two ways: one is that the discontinuity points of X j must

834 M.R. Hansen

belong to IN, the other is that we only consider the truth of formulae on intervals
[b, e] c IR +, for which b, e E IN. Let Intv(N) = { [a, b] I 0 < a <_ b < N Aa, b E IN}.

The semantics of a formula 9 in an interpretation J over [0, N] is a func-
tion

J[[9]] : In tv(N) ~ {tt,ff}

We shall use the following abbreviations"

Y, [b, e]
J , [b, e]

The semantics

Y, [b, e]

J , [b, el

J , [b, e]

J , [b, e]

J , [b, e]

A
[o, N]
every

9 ~ J[[9]l[b,e] = tt
g=9 ~- J [9]] [b , e] = f f

is defined inductively on the structure of formulae by:

f P = k i iff f bPy (t)d t=k - i

[P] iff f b P y (t) d t = e - b a n d b < e

7 9 iff J , [b , e] ~ 9

91 ~ / 9 2 l i t J , [b, e] ~ 91 or a ' , [b, e] ~ 9 2

91 ;92 iff J , [b, m] ~ 91 and J, [m, e] ~ 92,
for some m E IN where m E [b, e]

formula 9 is satisfiable iff ~ , [0, N] ~ 9 for some interpretation ~ over
(for some N). Furthermore, 9 is valid (written ~ 9) iff J , [0, N] ~ 9 for
interpretation J over [0, N] (for every N).

2.1.1. Abbreviations

We shall use the standard abbreviations from propositional logic for both state
expressions and formulae. Furthermore, we introduce:

f ~ f l
r l rll
true ~ [11 v r 1
~ ~-- true;(~;true)
[] 9 =

f e > k, ~- (f e = ki);true
JP <_ ki ~- (-~(fP >_ ki)) v (fP = ki)

reads "length of the interval"
reads "point interval"

reads "for some subinterval"
reads "for every subinterval"

2.1.2. Examples

Thus, the gas burner requirement from the introduction is expressible in this
simple subset of Duration Calculus:

[] < 30 => fL < 5)

Consider the following progress requirement: When the button (B) is pressed
for 3 time units then light (L) must be switched on. This requirement can for
instance be formalized as:

~ (([B] A l = 3);[~L])

Model-Checking Discrete Duration Calculus 835

2.2. Decision Algorithm

There exists an algorithm which can check satisfiability (and therefore also
validity) of the formulae defined above. We present it now without its correctness
proof (which can be found in [ZHS93]).

The idea is to reduce satisfiability of formulae to emptiness of regular lan-
guages (which is decidable), i.e. we construct for a given formula ~ a regular
language ~ (~) over an alphabet Z such that:

is satisfiable iff ~ (~) ~ {}

Let ~/Far be the (finite) set of state variables occurring in ~. As the alphabet
we take Z = ~(~//ar), i.e. the set of all subsets of ~ar. A letter V E Z is also
called a basic conjunct and is interpreted as the state expression

AxA A
XEV yE('C/'ar\V)

which asserts that all state variables in V are 1, and those not in V are 0.
The intuition is that a letter V E E describes an interpretation for one time

unit, and that a word V1 --- VN E E* describes an interpretation over [0, N]:

Definition 1. A word W = 111... VN E E* corresponds to an interpretation J
over [0, N] if J l [Vi]l(t) = 1 for t E (i - 1, i), i E {1 N}. (If N = 0 then W = e
is the empty word). []

The disjunctive normal form of a state expression P is a disjunction ViL1 gi
of basic conjuncts, n _> O. We let DNF(P) = {V1,..., V,} ___ Z denote the set of
basic conjuncts occurring in P 's disjunctive normal form.

The regular language N(~) ~ E* is defined by:

~ (f P = ki) = with ki occurrences of DNF(P)
,%

"DNF(-~P)*DNF(P). . . DNF(~P)*DNF(P)DNF(--~P):
~ ([P]) = (DNF(P)) +
~ (~ v ~z) = ~(@t) u ~(~2)

~(~ , ; ~2) = ~ (~ t) ~ (~ 2)

In this translation we exploit that regular languages are closed under Kleene
star (6r positive closure (~+) , union (~al td ~2), complement (Z* \ Za), and
concatenation (~1 ~2).

The decidability result follows from the following.

Lemma 1 [ZHS93]. Let a formula @, an interpretation d r over [0,N], and a
corresponding word W = V~... VN E Y* be given. Then

J , [O , N] M ~ i f f W ~ R (@) . []

836 M.R. Hansen

For a given word W ~ Z*, there is a natural way to define a corresponding
interpretation J w :

Definition 2. A word W = V1... I~,r E Z* induces an interpretation J w over
[0, N] as follows:

1, i f i - l < _ t < i a n d X E V ~
X~r W(t) = 0, i f i - l < _ t < i a n d X q ~ V ~

for 1 _< i_< N. []

Since W and J w by construction correspond to each other, we get immedi-
ately by Lemma 1:

Lemma 2. Let a word W = V1.. . VN ~ E* and a formula @ be given. Then

J w , [0 , N] ~ ~ iff W E ~ (~) . []

3. Timed Automata for Discrete Time

In this section we shall define the notion of automata which informally was
presented in the introduction. We adopt the main concepts from the Timed Au-
tomata of [A1D92]. The definition given here is based on a discrete time domain.
The main difference is that the Timed Automata of [A1D92] are extensions of
co-automata, i.e. automata which accept sets of infinite words, whereas our def-
inition of Timed Automata extends the finite state automata which accept sets
of finite words (cf. the decidability result in the previous section). The reason
that we come through with the simple automata is that formulae of Duration
Calculus are true (or false) on bounded time intervals, thus we never need to
consider infinite runs of the automata.

Definition 3. A Discrete Timed Automaton (short: Timed Automaton) is a structure
J/d = (d , ~ar , S, C, l ~, E, so), where

1. d is a finite and non-empty set of actions,
2. Var is a finite set of state variables,
3. S is a finite and non-empty set of states,
4. C is a finite set of clocks,
5. /1 ~ S ~ E, with Z = .~(~ar), associates a set of state variables (i.e. a basic

conjunct) with each state,
6. E ~ S x S x E v e n t s (d) x N(C) x ~b(C) is the transition relation, where

E v e n t s (d) ~- ~+(,~r is the set of events. An event a E E v e n t s (d) is a
non-empty set of actions,

ep(C) is the set of clock constraints generated by the following grammar:

b ::= true I x < k I x >_ k t bl A b2 I bl V b2 I -~b

where b, bb b2 E qb(C), x c C, and k E IN, and

7. so E S is the start state. []

Model-Checking Discrete Duration Calculus 837

a,)~,b St The notation s ,~ will be used as a shorthand for (s , s ' , a ,2 ,b) E E. The
intuition with this transition is: The Timed Automaton J r performs the set of
actions in a simultaneously in a state transition from s to s'. This transition is
only possible at times where the clock constraint b is true. Each clock in 2 is reset
to zero when the transition is taken.

To describe the dynamic behaviour formally the notion of clock interpretation
is introduced:

A clock interpretat ion v E C -~, IN is a function associating a natural num-
ber with each clock. The following operations on clock interpretations will be
used later:

(v + t)(x) ~ v(x) + t

f 0, i f x ~ 2
([~ - , 0] , ,) (x) v(x), otherwise

for any t E IN, x E C, and 2 ~ C.
It is obvious how to define the truth value of a clock constraint b in a given

clock interpretation v so the operational behaviour of a Timed Automaton can
now be described.

Definition 4. A run of d/ / is a sequence ((si, vi, ai, ti) t i = 0 , . . . n)

(so, v0, a0, t o) ' " (si, vi, ai, t i) " " (sn, vn, an, tn)

where n _> 0 and

1. (si, vi, ai, ti) ~ S x (C ~ IN) x N (d) x IN,

2. Vx ~ C : vo(x) = 0, a0 = {}, and to = 0,
i.e. d/d starts at time 0 in state so with all docks reset to zero, and

3. f o r 0 < i < n:

�9 ti < ti+l, and
ai+ l ,)4 ,bi

�9 there is a transition si 'E si+l such that bi is true in (vi + ti+l - ti) and
v~+l = [,l~ ---, 0](vi + t~+l - t3 . []

A run gives a very detailed view of ./~ as one can observe the states, the
values of clocks, the events which happen and at which time they happen. We
want however a less detailed view where only state variables in ~ a r and events
in E v e n t s (d) are observed as a function of time:

Definition 5. Each run R = ((si, "r ai, ti) I i = 0 n) of ./g induces the ob-
servat ion OR = ((/t(Si), ai, ti) I i = 0 n) over (d , ~ar) . []

Definition 6. The semant ics of Jr the set of observations over (d , ~ar) defined
by:

[[d//~ ~-- {OR I R is a run o f ~ / } []

Notice that this definition allows automata whose observations may only be
defined until some time N. For example, for an automaton with empty transition
relation, i.e. with E = {}, we even have that N = 0. To avoid this, one can impose
extra extendibi l i ty conditions to enforce that time "cannot stop". See for example

838 M, R. Hansen

[HaO93]. But such conditions do not influence model-checking properties and
are therefore not discussed here.

To explain the Timed Automaton discussed in the introduction, we must de-
fine the notion of parallel automata communicating synchronously over common
actions. To this end we introduce first the notion of projection.

Definition 7. Let an observation O = ((Vi, ai, q) i i = 0 n) over (d , ~ a r)
be given and let a / ' _ a/ , War' _~ ~//'ar. Then O $ (a/', "Uar') is called the projection
of O wrt. (a/', ~ar'). We have that

1. 0 ~ (a/',q./'ar') is defined iff the list L ~ ((V~ A ~Par',ai N a / ' , t t) [i = O , . . . , n)
satisfies that Vi > 0 : ai f3 a / ' = {} =~ Vt A ~tPar' = Vi-1 f'l ~g'ar', and

2. in the case where 0 ~ (a/', ~Uar') is defined, it is defined as the observation
over (a/ ' , War') which is obtained from L by removing elements of the form
(Vi f) ~l/'ar', {}, ti) where i > 0. []

The intuition behind the first condition in definition 7 is that state variables
in War' are only allowed to change at times where some action in a/ ' happens.

Definition 8. Let n Timed Automata Jr = (dr, Wari, St, Ci, #i, Et, soi), i = 1 , n
be given (n > 0) such that ~Yar inVar j = {} for i ~ j. Then, their parallel composi-

n a / n tion It~=1 dZt denotes the set of observations over (a/, :tPar) = (Ui=I i, U/=I ~ar~)
which is defined by

~ I1~'< .~tll = {O [0 .L (a/t, Yfari)is in [[JCill, i = 1 n}

where 0 $ (a/i , ~ar t) is in [[J l i l l is an abbreviation for: 0 $ (aCt, Vart) is defined
and O ~ (~r E l[J~i~. []

The following lemma says that Timed Automata are closed under parallel
composition, and thus we shall not consider parallel Timed Automata explicitly
in the remaining part of this paper.

Lemma 3. There is a Timed Automaton JPll! such that

~ a l t 11 = I[ft~'=~ ~ 1 1

P r o o f We define "/gll by a generalized "product construction". First we assume
that Ci fq Cj for i ~ j (this can easily be established by renaming of clocks). Then
dgll = (a/ , War, S, C, p, E, so), where

�9 S = & x ' " x S n ,
�9 C = C 1 U . . . u C n ,

�9 /A(S1 , . . . , Sn) : ~1(S1) U " " U ~ t n (S n) ,

�9 (Sl s ,) a.~;b (s i s ') iff

1. 2 = 21 U - . . U 2n, with 2i --- C~,
2. b = bl A . . - A b~, with bi e q~(C~), and
3. for i = 1, . . . ,n: let ai ~ af'ls~r and

ai = {} implies si = s' i,bi = true,2i = {} and
ai,2i,bi t

ai ~ {} implies si - - - % s i.

Model-Checking Discrete Duration Calculus 839

�9 SO =(SOl,...,SOn).

We leave the rest of the proof for the reader. []

4. Correctness

Let a Timed Automaton d g = (~r ~/'ar, S, C ,# ,E , so) and a duration formula @
be given such that the set of state variables occurring in @ is equal to ~trar. We
want to define the correctness of ~[wrt. @. To this end we must explain how
observations of Me/correspond to interpretations for 9 .

Definition 9. Each observation 0 = ((Vi, ai, ti) [i = 0 n) over (~4,~ar) in-
duces an interpretation J o 6 ~ar ~ ([0, tn] ---' {0, 1}) over [0,tn] as follows:

1, i f X E V~-I
X j ~ = 0, i f X ~ l)~-I

for any t �9 t i - 1 <-- t < t i and any X E ~ar. []

It is now straightforward to define the correctness of a Timed Automaton
with respect to a formula.

Definition 10. The Timed Automaton Jr is correct wrt.
iff, for every 0 c [[~ ~ :

~r [0, t.] ~
where J o is the interpretation over [0, tn] induced by O.

9 (written J / ~ 9)

[]

5. Model-Checking

Let a Timed Automaton ~ = (d , ~ehr, S, C, #, E, so) and a Duration Calculus
formula ~ be fixed throughout this section. Furthermore, assume that the set of
state variables occurring in 9 is equal to ~ar. We show how to check whether
d{ ~ 9 holds.

We have seen in Section 2 that a regular language ~ (~) characterizes all
interpretations for which ~ is true. So the idea is first to characterize all interpre-
tations induced by J//, i.e. { Jo I 0 ~ Ix/g]]}, by another regular language ~e(jg),
and then reduce the question whether J / / ~ 9 to the inclusion question

~ (~) _ ~ (9)

of two regular languages (which is decidable).
The first step in the construction is to simulate Jg by a simple finite state

automaton Jg without clocks. In this automaton time is simulated by an extra
action Z q~ d . The possibility of doing so is mentioned in e.g. [NSY92, A1D92].
A correctness proof of the below construction is given in [Bau93].

Consider a given state s of J{. When J l is in this state, there are infinitely
many clock interpretations v possible. So actually Jg can be considered an
automaton with infinitely many configurations, each configuration having the
form: (s, v).

This infinite set of configurations can be reduced to a finite set of "relevant
ones" by a technique used in the region graph construction in [ACD90]:

840 M, R. Hansen

For any clock x E C, let Cx be the largest constant to which x is compared
in the clock constraints of E. (Let cx ~ 0 if x does not occur in any clock
constraint in E.) The important property is the following: let b be an arbitrary
clock constraint in E and let v be a clock interpretation such that v(x) > cx.
Then b is true in v' iff b is true in v' for any v' obtained from v by mapping x to
a value greater than cx. Thus, the infinite set

c+~ ~- {cx + 1,cx + 2, cx + 3 }

can be treated as a single value.
Therefore, we Can derive a new set of relevant clock interpretations F(C,E)

from C and E where T E F(C, E) satisfies

v(x) {0 , c +)

for and any x E C.
Since C is a finite set, F(C,E) is a finite set also and we can reduce the

infinitely many configurations of ~gr to the finite set S x F(C, E).
It is obvious how to define the truth of a clock constraint b occurring in E in

a clock interpretation V E F(C, E). Furthermore, the following operation on clock
interpretations V E F(C, E) will be used:

(V@l)(x) -~ { V(x)+lc + ifV(x) E{0otherwise Cx--1}

The finite state automaton ./g is a structure M/t = (S, sO, ~m, g, 30), where

�9 ~ = s x r (c , E),

�9 d = {a z I a c Events(d)} U {•}, where a z ~ a u {)~} for a ~ Events(,~),

�9 g c R ~ Z (Z ~ N(~Kar)) is defined by g(s, T) = #(s),
�9 30 = (s0,V0), where for all x ~ C �9 T0(x) = 0, and
�9 the transition relation --~m_~ S x d • S is defined by:

ax
1. (s, V) ~m (s', V') iff, for some 2 _c C, b E ~(C):

a,2,b
s ,e s~,b is true in T @ 1, and V~ = [2 ~ 0](V@ 1)

2. (s, T') -~Zm (s, T) iff

a) V = V ~ @ l a n d

b) for some ~ ~ d , ~ ' ~ g : (s,V) ~ a 3'

_ Z

We call a simple transition s ~,~ g a time step. The condition 2.a) concerns the
obvious conditions on clock interpretations involving a time step and condition
2.b) requires that some transition is leaving (s, V).

The construction is illustrated by an example. Consider the following Timed
Automaton M/t:

-
a

~(x < 1)

Model-Checking Discrete Duration Calculus 841

where e g = {a, b}, ~ a r = {}, and we write a and b for the one element events {a}
and {b}, respectively.

The au tomaton ~g is given by:

bX l
b z

b x

where cx = 1, 1 + = {2, 3, 4, . . .}, and the second componen t v~ in (si, vx), i = 1, 2, is
the value of the clock x.

By an Jg t rans i t ion s e q u e n c e we mean a sequence tr of the following form:

?il _ E2 an z _
tr = ('So --hn s l '->m " ' " ""~m Sn)

where n = 0, i.e. tr = ~0, is allowed. Thus transitions cannot end with a time step.
The reason for this restriction is given in the following.

L e m m a 4 [Bau93].

0 = ((Vi , ai, ti) I 0 < i _< n) E [[~g] iff

there exists an ~ transit ion sequence:

f (__ ;~ Z a~ tr = so, rio,1)) ~ m (so, -v~o,2)) ~ m " " (so, -v(O~m)) ~m " "
_ Z _ an _

S n - - 1 , •(n--l,1)) "+m " ' " (Sn--1, V(n--l,kn)) - ~ m (Sn, V(n,1))
such that : g(si,7(id)) = Vi (i = 0 , n) and ki = t i - t i-1 (i = 1 , . . . ,n) . []

Thus any observat ion O of ~g can be simulated by an d f transit ion sequence
t r (which does not end with a time step), and conversely, every Jg transit ion
sequence simulates an observat ion o f ~g.

Let 0 and tr be given as in L e m m a 4. Consider the word W~ E Z* defined
f rom tr by:

842 M . R . H a n s e n

. V n _ 1

It is easily checked that the interpretation induced by 0, i.e. J o , is also the
interpretation induced by Wtr. So we define

~(.//r ~- { Wtr I tr is an dg transition sequence}

and we have that

{o% 1 0 ~ } = {•w I W ~ ' (~) } .

Suppose J w is an interpretation over [0, N]. Then J w , [0, N] ~ @ is abbre-
viated to J w ~ @. We have by Lemma 2:

.At ~ N iff J w ~ @, for all W 6 s iff 2'(J/{) c_ N(@)

We must show that So(d//) is a regular set. Let F S R = (Z, S ' , - % F', s{)) be a
finite state recognizer, where

�9 S' = (d x S) V {s~}, where s~ = ({}, s0),
�9 ~,___ S' x Z x S' is defined by

(a, ~) v , (~1, ~1) iff ~ ~m ~1 and V = ~(~)

Comment. The intuition with ~ is that it makes a transition each time unit, i.e.
a l

each transition__ step ~ ~m ~1 of Jr contribute with the letter V = g(j_))
since dg has been in ~ for one time unit. A state (a, ~) of F S R marks that J//
entered the state ~ with an a action.

�9 F' = {(~,~) I a r Z} is the set of accepting states (i.e. s~) 6 U).

We have that 5 f (J /) is the language accepted by F S R since

V o V I ' " V~-I is accepted by F S R iff

there exists a transition sequence of F S R :
vl Ix,<

({},s0) k , (al,sl) --+, " " -+, (aZn, Sn) iff

- - a l _ a 2 a. z
there exists an Jr transition sequence: 30 ~m Sl ~,~ " ' ~,~ ~n
such that Vi = g(~i), i = 0 n - 1 iff

there exists an Jr sequence tr: Wtr -- 170 V1 "'" V,-1.

Since the inclusion question is decidable for regular languages, we have:

Theorem

~(~ N is decidable.

5.1. Complex i ty

It is the transformation from a Duration Calculus formula to a finite state
automaton (via a regular expression) which is the main source for the complexity.
In [SKS94] the decision algorithm is implemented and tried out on proving
the correctness of Fischer's mutual exclusion protocol. The complexity of the
algorithm is very bad since each negation occurring in the formula may supply

Model-Checking Discrete Duration Calculus 843

an exponent in the complexity. An exponent may occur when a non-deterministic
automaton is transformed into a deterministic one. The authors of [SKS94]
have found that the satisfiability problem is non-elementary. So the worst case
complexity is horrible.

Experiments with finite automata show however that an exponential blow-up
in the number of states very rarely occurs when building "complement" au-
tomata, and the test results on Fischer's protocol example were not too bad.
It took for example approximately twelve minutes to verify a formula consist-
ing of 3775 characters on a DECStation 5000-240 with 128 MB of memory.
Moreover, for formulae occurring in case studies the situation seems (always)
to be that the level of nesting of negations which may cause an exponential
blow-up is very low. The reason for this is that formulae with alternating appli-
cation of negation e.g. (through implication) in (((@1 :* N2) =~ ~3) ~ ~4) or in
(" n (~ ((~ 1) ; ~ 2) ; ~ 3) ; ~ 4) are very difficult to comprehend and therefore do not
occur in specification examples.

6. Summary

The topic in this paper is how to model-check Timed Automata with respect to
formulae of Duration Calculus.

The work in [RRH93, MRR93] has been a major source of inspiration since
it shows both that Duration Calculus is a high-level language for expressing
requirements to real-time systems and that one can systematically refine these
requirements in several steps until a formula is reached which describes an
implementation. They describe their implementations by phase transition systems
which are close to the Timed Automata of [A1D92].

On the other hand, the work of [ACD90] shows that one can model-check
Timed Automata with respect to formulae in the real-time temporal logic TCTL.
So it would be nice to combine the above results to obtain an algorithm to
model-check Timed Automata with respect to Duration Calculus formulae.

The result of this paper is that Timed Automata can be model-checked with
respect to formulae belonging to a subset of Duration Calculus, which is powerful
enough to express interesting case studies, e.g. [RRH93]. However, we restricted
our attention to a discrete time domain and, furthermore, the results in [ZHS93]
show that even very small subsets of Duration Calculus formulae are undecidable
for a continuous (dense) time domain. The undecidable subsets in [ZHS93] show
that both the integral and the chop connective are very powerful. So to get
model-checking for "usable" formulae for continuous time one must restrict
use of integral and chop. Concerning continuous (or dense) time the restricted
use of integral is considered for instance in [BER94, BES93, KPS93, ZZY93].
Concerning restricted use of chop the real-time interval logic considered in
[RDM93] may be interesting as it is a decidable interval logic without chop; but
where some interval properties can be specified using search patterns.

Acknowledgements

This work was done while the author was a visitor to the Abteilung Semantik,
Fachbereich Informatik, Universitgt Oldenburg, Germany. This work is partially

844 M.R. Hansen

funded by the Danish Natural Science Research Council, by ProCoS II ESPRIT
BRA 7071 and by HCM project ERB4001GT920879.

The many comments and suggestions from Ernst-Rtidiger Olderog are greatly
appreciated. The author is grateful to Regine Bauer, Jiirgen Bohn, Zhou Chaochen,
Cheryl Dietz, Stephan Kleuker, Anders P. Ravn, Hans Rischel, Stephan RiSssig,
Michael Schenke, Peter Sestoft, and Jens Ulrik Skakkeb~ek for discussions.

References

[ACD90]

[A1D92]

[ACH931

[Bac90]

[Bau93]

[BER94]

[BES93]

[BOF93]

[CES861

[EKM93]

[HMM83]

[HaZ92]

[HaO93]

[KPS93]

[Koy90]

[MRR93]

[Mor90]
[Mos85]

Alur R., Courcoubetis C. and Dill D.: Model-Checking for Real-Time Systems. In Fifth
Annual IEEE Symp. on Logic in Computer Science, 1990, pp. 414-425.
Alur R. and Dill D.: The Theory of Timed Automata. In Real-Time: Theory in Practice,
J.W. de Bakker, C. Huizing, W.P. de Roever and G. Rozenberg (eds), LNCS 600,
Springer-Verlag 1992, pp. 45-73.
Alur R., Courcoubetis C., Henzinger T. and Ho P-H.: Hybrid Automata: An Algorithmic
Approach to the Specification and Verification of Hybrid Systems. In Hybrid Systems,
R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel (eds), LNCS 736, Springer-Verlag
1993, pp. 209-229.
Back R.J.R.: Refinement Calculus, Part II: Parallel and Reactive Programs. In Stepwise
Refinements of Distributed Systems: Models, Formalisms, Correctness, J.W. de Bakker,
W.-P. de Roever and G. Rozenberg (eds), LNCS 430, Springer-Verlag 1990, pp. 67-93.
Bauer R.: Model-checking for Duration Calculus, Oldenburg University, May 1993. (In
German).
Bouajjani A., Echahed R. and Robbana R.: Verifying Invariance Properties of Timed
Systems with Duration Variables, Report from VERIMAG-SPECTRE, Miniparc-Zirst,
Rue Lavoisier, 38330 Montbonnot St-Martin, France, 1994.
Bouajjani A., Echahed R. and Sifakis J.: On Model Checking for Real-Time Properties
with Durations. In Eigth Annual IEEE Symp. on Logic in Computer Science, 1993, pp.
147-159.
Bowen J., Olderog E.-R., Franzle M. and Ravn A.P.: Developing Correct Systems. In
Proc. Fifth Euromicro Workshop on Real-Time Systems, IEEE Computer Society Press
1993, pp. 176-187.
Clarke E.M., Emerson E.A. and Sistla A.P.: Automatic Verification of Finite State
Concurrent Systems using Temporal Logic. ACM Trans. on Programming Languages
and Systems, 8(2), 244-263, (1986).
Engel M., Kubica M., Madey J., Parnas D.L., Ravn A.P. and Schouwen A.J. van:
A Formal Approach to Computer Systems Requirements Documentation. In Hybrid
Systems, R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel (eds), LNCS 736,
Springer-Verlag 1993, pp. 252474.
Halpern J., Moszkowski B. and Manna Z.: A Hardware Semantics Based on Temporal
Intervals. In ICALP'83, J. Diaz (ed), LNCS 154, Springer-Verlag 1983, pp. 278-291.
Hansen M.R. and Zhou Chaochen: Semantics and Completeness of Duration Calculus.
In Real-Time: Theory in Practice, J. W. de Bakker, C. Huizing, W.-P. de Roever and
G. Rozenberg (eds), LNCS 600, Springer-Verlag 1992, pp. 209-225.
Hansen M.R. and Olderog E.-R.: Constructing Circuits from Decidable Duration Calculus,
Oldenburg University, April 1993.
Kesten Y., Pnueli A., Sifakis J. and Yovine S.: Integration Graphs: A Class of Decidable
Hybrid Systems. In Hybrid Systems, R.L. Grossman, A. Nerode, A.P. Ravn and H.
Rischel (eds), LNCS 736, Springer-Verlag 1993, pp. 179-208.
Koymans R.: Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4), 255-299, (1990).
Masiero P.C., Ravn A.P. and Rischel H.: Refinement of Real-Time Specifications. ProCoS
II ESPRIT BRA 7071 report no. ID/DTH PCM 1/1, Department of Computer Science,
Technical University of Denmark, 1993.
Morgan C.: Programming from Specifications, Prentice Hall International, 1990.
Moszkowski B.: A Temporal Logic for Multilevel Reasoning about Hardware. IEEE
Computer, 18(2), 10~19, 1985.

Model-Checking Discrete Duration Calculus 845

[NSY92]

[Otd91]

[OSR93]

[RDM93]

[RRH93]

[RoP86]

[Ska931
[SkS94]

[SKS93]

[SRR921

[ZHS93]

[ZHR91]

[ZZY93]

[ZhL94]

Nicollin X., Sifakis J. and Yovine S.: From ATP to Timed Graphs and Hybrid Systems.
In Real-Time: Theory in Practice, J. W. de Bakker, C. Huizing, W.-P. de Roever and
G. Rozenberg (eds), LNCS 600, Springer-Verlag i992, pp. 549-572.
Olderog E.-R.: Nets, Terms and Formulas: Three Views of Concurrent Processes and Their
Relationship, Cambridge University Press, 1991.
Owre S., Shankar N. and Rushby J.M.: User Guide for the PVS Specification and
Verification System, Language, and Proof Checker (Beta Release). Computer Science
Laboratory, SRI International report (three volumes), Menlo Park, CA 94025, USA,
1993.
Ramakrishna Y.S, Dillon L.K., Moser L.E., Melliar-Smith P.M. and Kutty G.: A
Real-Time Interval Logic and Its Decision Procedure. In Proc. Foundations of Software
Technology and Theoretical Computer Science, R.K. Shyamasundar (ed), LNCS 761,
Springer-Veflag, 1993, pp. 173-192.
Ravn A.E, Rischel H. and Hansen K.M.: Specifying and Verifying Requirements of
Real-Time Systems. IEEE Trans. Softw. Eng., 19(1), 41-55, (1993).
Rosner R. and Pnueli A.: A Choppy Logic. In Proc. First Annual IEEE Syrup. on Logic
in Computer Science, 1986, pp. 306-313.
SkakkeNek J.U.: Private communications, April 1993.
Skakkeb~ek J.U. and Sestoft P.: Checking Validity of Duration Calculus Formulas. ProCoS
II, ESPRIT BRA 7071, report no. ID/DTH JUS 3/1, Department of Computer Science,
Technical University of Denmark, 1994.
Skakkeb~ek LU. and Shankar N.: A Duration Calculus Proof Checker: Using PVS as
a Semantic Framework. Report no. SRI-CSL-93-10, Computer Science Laboratory, SRI
International, Menlo Park, CA 94025, USA 1993.
Skakkeb~ek J.U., Ravn A.R, Rischel H. and Zhou Chaochen: Specification of Embedded,
Real-Time Systems. In Proc. Fourth Euromicro Workshop on Real-Time Systems, IEEE
Computer Society Press 1992, pp. 116-121.
Zhou Chaochen, Hansen M.R. and Sestoft P.: Decidability and Undecidability Results
for Duration Calculus. In STACS'93, P. Enjalbert, A. Finkel and K.W. Wagner (eds)
LNCS 665, Springer-Verlag 1993, pp. 58-68.
Zhou Chaochen, Hoare C.A.R. and Ravn A.P.: A Calculus of Durations. In Information
Processing Letters, 40(5), 269-276, (1991).
Zhou Chaochen, Zhang Jingzhong, Yang Lu and Li Xiaoshan: Linear Duration Invari-
ants. UNU/IIST Report no. tl , UNU/IIST, RO. Box 3058, Macau, 1993.
Zhou Chaocben and Li Xiaoshan: A Mean Value Calculus of Durations. In A Classical
Mind: Essays in Honour of C.A.R. Hoare, A.W. Roscoe (ed), Prentice Hall International
1994, pp. 431-451.

Received July 1993.
Accepted in revised form June t994

