
Formal Aspects of Computing (1992) 4:13-47
@ 1992 BCS Formal Aspects

of Computing

Modular Structuring of VDM Specifications
in VVSL

C. A. M i d d e l b u r g

PTT Research, Dr Neher Laboratories, 2260 AK Leidschendam, The Netherlands

Keywords: Formal specification language; Model-oriented specification; Modular
structuring; VDM

Abstract. VVSL is a language for writing modularly structured VDM specifica-
tions. Its modularisation mechanism permits two modules to have parts of their
state in common, including hidden parts. Firstly, this paper gives an overview
of the structuring sublanguage of VVSL and a concise description of its seman-
tic foundations: DA (a general algebraic model of modules) and 2r~-calculus (a
variant of classical lambda calculus). The paper also presents a variation on a
"challenge problem" of Fitzgerald and Jones as an example of the use of VVSL's
structuring language. Finally, their modular structuring style and the suggested
language features to support it are commented upon.

1. Introduction

In [Mid90], the author presents a definition of the syntax and semantics of VVSL,
a language for modularly structured VDM specifications. Important differences
between VVSL and the main VDM specification languages are:

The addition of the inter-condition to the usual pre- and post-condition pair of
operation definitions in VDM style, to support implicit specification of operations
which interfere through a partially shared state

The provision of modularisation and parametrisation mechanisms which are
adequate for writing large state-based specifications in VDM style and have a
firm mathematical foundation

Correspondence and offprint requests to: C. A. Middelburg, PTT Research, Dr Neher Laboratories,
PO Box 421, 2260 AK Leidschendam, The Netherlands.

14 c.A. Middelburg

The inter-condition is a formula from a language of temporal logic. With the use
of the inter-condition, operations which interfere through a partially shared state
(called non-atomic operations) can be defined while maintaining as much of the
VDM style of specification as possible. The modularisation and parametrisation
mechanisms permit two modules to have parts of their state in common, including
hidden parts. They also allow requirements to be put on the modules to which a
parametrised module may be applied.

In [FiJ90], Fitzgerald and Jones present a challenge for existing specification
languages with facilities supporting modular structuring. Essentially, they sug-
gest that a specification language should' supply the ability to create multiple
instances of imported modules and then to refer to the appropriate instances
dynamically. Absence of these features means that the language cannot fully cope
with modularisations in their style.

VVSL does not supply the above-mentioned features. It is very straightforward
to show that VVSL supplies all the other main features for modular structuring
which are suggested in [FiJ90]. This means that it is not very useful to repeat
the challenge problem for VVSL. Instead, a variation on the challenge problem
is presented in this paper. This variation resolves satisfactorily the main question
remaining in [FiJ90], viz. "Where would the specification of the operations of
relational algebra be placed in a structure such as this?" (The question refers to
the chosen structuring in [FiJ90].)

1.1. VVSL and Modular Structuring

The design of VVSL aimed at obtaining a language with a well-defined semantics
that, apart from its exte~Jsions for non-atomic operations, can be considered to
be a language for flat VDM specifications together with a language for mod-
ularisation and parametrisation that is put on top of it, both syntactically and
semantically. This is accomplished by means of modularisation and parametri-
sation constructs like those of COLD-K [Jon89a], using the usual flat VDM
specifications as basic building blocks. Like any module, these flat VDM specifi-
cations are essentially interpreted as presentations of logical theories of a special
kind. For flat VDM specifications, the models of the logical theory coincide with
the models according to the original interpretation.

VVSL without its modularisation and parametrisation constructs is referred
to asflat VVSL. The flat VDM specification language incorporated in flat VVSL
is roughly a restricted version of the emerging standard VDM specification
language BSI/VDM SL [BSIgl, Lar90]. It is very similar to the language used
in [Jon86]. One can define types, functions working on values of these types, state
variables which can take values of these types, and (atomic) operations which may
interrogate and modify the state variables. For an introduction to this flat VDM
specification language, see [Jon86] ([Jon90] is a revision of [Jon86] adapted to
the proposed concrete syntax of BSI/VDM SL). In Part I of [Midg0], flat VVSL
has been given a logical semantics by defining a translation to the language of a
many-sorted infinitary logic of partial functions, called MPL~o [KoR89].

The structuring sublanguage of VVSL consists of the modularisation and
parametrisation constructs complementing flat VVSL. A general algebraic model
of specification modules suitable for state-based specifications, called Descrip-
tion Algebra [Jon89b], is used as the semantic foundation of the modularisation
constructs. Description Algebra is based on the logic MPL~o. A variant of classi-

Modular Structuring of VDM Specifications in VVSL 15

cal lambda calculus with parameter restrictions and a conditional fl-rule, called
)~Tc-calculus [Fei89], is used as the semantic foundation of the parametrisation
constructs. MPLo~, Description Algebra and 2~-calculus also constitute the se-
mantic basis of COLD-K. In Part II of [Midg0], the structuring sublanguage of
VVSL has been given a semantics by defining a translation to the set of terms of
an extended version of the 2rt-calculus for a specialisation of DA.

Defining types in VDM style introduces subtype relationships with accompa-
nying implicit conversions. If a type is defined as a subtype of another type, then
the introduced subtype relationship is pragmatically a relationship between an
"abstract data type" and its "representation". The modularisation mechanism of
VVSL hides such representations.

Actually, only the language for modularly structured VDM specifications
incorporated in VVSL is considered in the remainder of this paper. In [Mid91],
the extensions for non-atomic operations are explained. In a way, the somewhat
sketchy paper [Mid89] is superseded by the current paper and [Mid91].

1.2. Semantic Foundations

The specifics of the main features supplied by the structuring sublanguage of
VVSL cannot be fully understood without going into details of its semantic foun-
dations. This paper contains a concise detailed description of the mathematical
basis for the semantics of VVSL's structuring sublanguage (comprising DA and
;t~-calculus). However, the description is not more detailed than what it takes
to make a trustworthy assessment of the usefulness of the main features in this
language and to grasp the semantic consequences of additional features.

1.3. Structure of the Paper

Section 2 gives an overview of the structuring sublanguage of VVSL. Section 3
gives a concise description of its semantic foundations: DA and 2re-calculus.
The necessary refinements for the interpretation of the VVSL's structuring sub-
language are broadly outlined. An example of its use, which is based on the
challenge problem of Fitzgerald and Jones in [FiJ90], is presented in Section 4.
In Section 5, some remarks are made about their modular structuring style and
the semantic aspects of the special features needed to cope with it.

2. O v e r v i e w o f V V S L ' s Structuring Sublanguage

This section describes informally and in broad outline how specifications are
modularly structured in VVSL.

The modularisation and parametrisation constructs which complement flat
VVSL are similar to those of COLD-K. The latter are explained in detail
in [Jon89a]. The modularisation and parametrisation constructs of VVSL are
quite different from those proposed in [Bea88] for the forthcoming standard
VDM specification language BSI/VDM SL [BSIgl]. Inadequacies of the prede-
cessors of that proposal were the main reason to choose something different for
VVSL.

In Section 2.1, a short introduction to the modularisation constructs of VVSL

16 C.A. Middelburg

(including a local definition construct for modules) is given. The parametrisation
constructs are treated in Section 2.2.

2.1. M o d u l e s

The modularisation constructs of VVSL can be informally explained in terms of:

visible names: a collection of names for types, state variables, functions and
operations which may be used externally.

hidden names: a collection of names for types, state variables, functions and
operations which may not be used externally.

formulae: a collection of formulae representing the properties characterising the
types, state variables, functions and operations denoted by the visible names (both
the visible and hidden names may occur in these formulae as symbols).

Together, these collections constitute a so-called descr ipr ion .
Due to the possibility of "identifier overloading", the visible and hidden names

mentioned above must be "typed names" and not just the identifiers which are
used as names in VVSL (except in signatures and renamings, see below). A typed
name has one of the following forms:

t
v : t

f : t l • "'" X tn ~ tn+l
o p : t l N "'" N tn ~ tn+l X "'" X tm

for types
for state variables
for functions
for operations

In VVSL, the constructs for denoting sets of typed names are called s igna tures .

A signature is usually an enumeration of the typed names concerned:

UI~...,Un~

where uj (1 < j _< n) is a typed name.
Related to signatures are renamings . They correspond to mappings from typed

names to typed names and are used to replace the visible names of a module by
new ones. A renaming is of the following form:

Ul ~ i l , . . . ,un ~ in,

where uj (1 _< j _< n) is a typed name and ij is the new untyped name for
it. The translation of the new untyped name to the appropriately typed one is
straightforward.

The form and meaning of the modularisation constructs of VVSL are as
follows:

modute ~-- ~ ~ (9 end. The visible names are the names introduced in the type
definitions from J , the variable definitions from ~ , the function definitions
from J and the operation definitions from (9 (see Part I of [Mid90] for an
overview of the definition constructs of VVSL). None of these names are hidden.
The formulae represent the properties characterising the types, state variables,
functions and operations which may be associated with the names introduced in
these definitions according to the VVSL interpretation of the definitions.
import M1 M n into M. The visible names are the visible names of the " imported"
modules M1 Mn as well as those of the "importing" module M. Likewise, the

Modular Structuring of VDM Specifications in VVSL 17

hidden names are the hidden names of all these modules and the formulae are
the formulae of all these modules.

export S from M. The visible names are the visible names of the "exporting"
module M that are also names of the "exported" signature S. The hidden names
are the hidden names of the exporting module M as well as its visible ones that
are not names of the exported signature S. The formulae are the formulae of the
exporting module M.

rename R in M. The visible names are the new names, according to the renaming
R, for the visible ones of the module M. The hidden names are the hidden names
of the module M. The formulae are the formulae of the module M with all
occurrences of its visible names replaced by the new names for them.

The definitions of the module construct may be free. A free definition is a definition
in which the keyword free occurs following its header. A free definition introduces
a free name and a non-free definition introduces a defined name. Roughly speaking,
a free name is a name which is supposed to be defined elsewhere (i.e. in another
module). This means that the body of the definition (empty in case of a free
type name or a free state variable name) does not define the type, function,
state variable or operation denoted by the free name. In case of a free function
or operation name, the body of the definition must be considered to describe
assumptions about the function or operation denoted by the name.

In case of name clashes, the union of the formulae of the imported modules
and the importing module of the import construct may lead to undesirable changes
in the properties represented by the formulae. Therefore, a restriction applies to
visible names. Visible names are allowed to clash, provided that the name can
always be traced back to at most one non-free definition. Name clashes of hidden
names can be regarded as being avoided by automatic renamings, in case the
name can be traced back to more than one non-free definition. Otherwise they
are not avoided. This makes it possible for two modules to have hidden state
variables in common! Without this feature, the modularisation mechanism would
be unsuited to the modular structuring of specifications of many existing software
systems. However, when designing a system hand in hand with a specification, it
should be used very rarely. It is not used in the example presented in Section 4.

For the import construct, it is assumed that all visible names of the imported
modules used but not explicitly introduced in the importing module are implicitly
introduced in the importing module by a free definition.

There is also a local definition construct for modules. The form and meaning
of this construct are straightforward:

let ml A M1 and ... and mn ~ Mn in M. I f n = 1, the description denoted by M
when the module name ml stands for the description denoted by M]. Otherwise,
the description denoted by let ink2 A Mk2 and ... and ink, A__ Mk, in M when
the module name mk~ stands for the description denoted by Mk~; where the list

~ 1<..., k, is some permutat ion of the list 1 n such that if mk~ occurs in Mkj then
j. I f such a permutat ion does not exist, the meaning of the local definition

construct is undefined.

Actually, all constituent modules of modularisation constructs may be parametri-
sed modules (described in Section 2.2). In this section, the meaning of the
modularisation constructs is only explained for the non-parametrised case. For the
import construct and the export construct, the generalisation is straightforward.

18 C.A. Middelburg

For the rename construct, it involves renaming of renamings. This is not always
possible.

2.2. Parametrised Modules

An abstraction construct and an application construct constitute the parametrisa-
tion constructs of VVSL. Abstractions correspond roughly to n-ary functions on
descriptions. Each of their argument domains consists of the implementations of a
description. Broadly speaking, a description d' is considered to be an implemen-
tation of a description d if the visible names of d are also visible names of d' and
the properties represented by the formulae of d are also properties represented
by the formulae of d'. Applications describe applications of these functions to
appropriate arguments.

The form and meaning of the parametrisation constructs of VVSL are as
follows:

abstract ml:M1 rn~:M, of M. The function sending each tuple (dl,. . . ,d~) of
descriptions, that are implementations of the descriptions denoted by the "para-
meter restriction" modules M b . . . , M~, respectively, to the description denoted by
the module M when the module names mi stand for di (1 < i _< n).

apply M to m l Mn. The description resulting from applying the function
denoted by M to the tuple (dl ,d,) of descriptions denoted by the modules
M1 M,, respectively, whenever di is in the i-th argument domain of the
function (1 _ i < n) and undefined otherwise.

Actually, the parametrisation constructs support higher-order functions on de-
scriptions. Both arguments and results may be functions on descriptions. This
means that all constituent modules of an abstraction construct (including the
parameter restriction modules) may be parametrised modules. Roughly speaking,
a function on descriptions f ' is considered to be an implementation of a function
on descriptions f if description f '(d) is an implementation of description f(d)
for all descriptions d. The implementation relation is extended for higher-order
functions on descriptions in the same vein.

3. Semantic Foundations of VVSL's Structuring Sublanguage

Description Algebra (DA), an algebraic model of specification modules (suitable
for state-based specifications) introduced by Jonkers in [Jon89b], is used as the
semantic foundation of the modularisation constructs of VVSL. 2~-calculus, a
variant of classical lambda calculus (with parameter restriction and a conditional
/~-rule) introduced by Feijs in [Fei89], is used as the semantic foundation of the
parametrisation constructs of VVSL.

Both ingredients of the mathematical basis for the semantics of the structuring
sublanguage of VVSL are first sketched in Section 3.1. DA and 2~-calculus are
treated in more detail in Sections 3.3 and 3.4, respectively. Section 3.5 describes
the VVSL specific refinements of this basis in broad outline. MPL~, which is
used as the underlying logic of DA, is treated in Section 3.2. Because the use of
this logic is not essential, only a brief overview is given.

Modular Structuring of VDM Specifications in VVSL 19

3.1. Short Introduction to the Semantic Foundations

3.1.1. Description Algebra

VVSL is a language for model-oriented, state-based specification. Effective sep-
aration of concerns often motivates the hiding of state variables from a module
(access to state variables is permitted only via exported operations), in partic-
ular where a suitable modular structuring of the specification requires that the
same state variables are accessed from several modules. For the adequacy of
the modularisation mechanism provided by VVSL for the modular structuring
of specifications of many existing software systems, it is indispensable that it
permits two or more modules to have hidden state variables in common. This
requires a model of specification modules which is more concrete than most
models proposed for modular property-oriented, algebraic specifications (such as
the ones presented in [BHKg0, SAT85, WiB89]). Appropriately concrete models
(e.g. the model presented in [Ber86] and the presentation model from [Wir86])
usually treat name clashes in a way which still inhibits modules to have hidden
state variables in common. DA makes it possible for modules to have hidden
state variables in common. This is largely due to the way in which it treats
name clashes. Nevertheless, many algebraic laws holding in the more generally
accepted models also hold for DA. These laws include most laws of Module
Algebra [BHKg0].

Description Algebra is a heterogeneous algebra. Its main ingredients are:

Descriptions. The objects of interest are descriptions. A description consists of
an externally visible signature, an internal signature, a set of formulae and an
origin partition. It is essentially a presentation of a logical theory extended with
an encapsulating signature and a component for dealing with name clashes in
the composition of descriptions. MPL~o [KoR89] is used as the underlying logic
of DA. As an abstract meaning, an MPL,o theory can be attached to each
description.
Operations on descriptions. Descriptions can be adapted and combined by means
of operations for renaming, importing and exporting. The basic modularisation
concepts of decomposition and information hiding are supported by importing
and exporting, respectively. Renaming provides for control of name clashes in the
composition of modules.

3.1.2. 2~-Calculus

For the adequacy of the parametrisation mechanism provided by VVSL for
practical applications, it is highly desirable that it makes it possible to put
requirements on the modules to which a parametrised module may be applied.
This is supported by the parameter restriction feature of 2~z-calculus. Reduction
for 2~z-calculus resembles reduction for classical lambda calculus. The Church-
Rosser property is not invalidated by addition of parameter restrictions, and
the strong normalisation property is inherited from typed lambda calculus. This
means that reduction of lambda terms always leads in finitely many steps to a
unique normal form (up to renaming of bound variables).

There is an instance of 2~z-calculus for every algebraic system with pre-order.
An algebraic system with pre-order is roughly a heterogeneous algebra together
with a pre-order on one of its domains, e.g. DA together with an appropriate "im-

20 c.A. Middelburg

plementation relation" on descriptions. The algebra may be heterogeneous, which
means that it may have "secondary domains" (such as domains of signatures,
renamings, etc. in case of DA).

2~-calculus has the following ingredients in addition to those of classical
lambda calculus:

Types. Every lambda term has a unique type. Each type corresponds to a domain
of values or a domain of (higher-order) functions. The types are used to exclude
the formation of problematic lambda terms, like terms expressing self-application
of a function.

Parameter restriction. Lambda abstractions have parameter restrictions. More
precisely, instead of lambda terms of the form (2x.M), there are lambda terms of
the form (2x E L.M) (where both L and M are lambda terms). Herein L is called
a parameter restriction. The intended meaning is the function that maps x to M,
provided the x and L are in the relation __, and is undefined otherwise. This is
reflected in the rule 0z) of 2~-calculus, which is a conditional version of the rule
(/~) of classical lambda calculus.

The calculus that is obtained by putting 2re-calculus on top of DA can be extended
with higher-order generalisations of renaming, importing and exporting.

3.2. Overview of MPL~

MPL~o is the logic used to provide flat VVSL with a semantics. It is a many-
sorted infinitary first-order logic of partial functions. Its typical features are
mainly obtained by additions to language and proof system of classical first-
order logic. Classical reasoning is not invalidated. The language, proof system and
interpretation of MPL~o are introduced by Koymans and Renardel de Lavalette
in [KoR89].

MPL~ is a logic which handles partial functions. Partial functions give rise
to non-denoting terms. MPLo~ adopts an approach to solve the problem with
non-denoting terms in formulae, which stays within the realm of classical, two-
valued logics. Atomic formulae that contain non-denoting terms are logically
false - instead of neither-true-nor-false as in three-valued logics. In this way, the
assumption of the "excluded middle" does not have to be given up. When a
formula cannot be classified as true, it is inexorably classified as false. No further
distinction is made.

However, denoting terms and non-denoting terms can be distinguished. In
addition to a standard equality predicate symbol =s, there is a standard defined-
ness predicate symbol ~s for every sort symbol S. t J, s means that t is denoting
(for terms t of sort S). There is also a standard undefined constant symbol Ts for
every sort symbol S. Ts is a non-denoting term of sort S.

If Ao, A1,A2 are countably many formulae, then the formula An An can
be formed. This allows a large class of recursive and inductive definitions of
functions and predicates to be expressed as formulae of MPL~0. This was first
sketched in [KoR89] and later worked out in detail by Renardel de Lavalette in
[Ren89].

If A is a formula, then the term zx:S (A) can be formed. Its intended meaning
is the unique value x of sort S that satisfies A if such a unique value exists
and undefined otherwise. This means that not every description will be denoting.

Modular Structuring of VDM Specifications in VVSL 21

Descriptions can be eliminated: it is possible to translate formulae containing
descriptions into logically equivalent formulae without descriptions.

Free variables may be non-denoting, but in Vx: S (A) and 3x: S (A), x is always
denoting. So we have tSs ~ 3x: S (x =s t). Owing to the different treatment of
free variables and bound variables, frequent reasoning about non-denoting terms
can be avoided.

The formation rules for MPL~ are the usual formation rules with an additional
rule for descriptions and with the rule for binary conjunctions replaced by the rule
for countably infinite conjunctions from classical first-order logic with countably
infinite conjunctions [Kar64].

The proof system of MPLo~ presented in [KoR89] is a Gentzen-type sequent
calculus that resembles one for infinitary classical first-order logic with equality.
The usual axioms for equality are slightly adapted, because non-denoting terms
are never equal. There are additional non-logical axioms for definedness. There
is also an additional axiom schema for descriptions. The inference rules for the
quantifiers are slightly adapted. This is due to the treatment of free and bound
variables. The minor differences from classical reasoning are direct consequences
of embodying non-denoting terms.

As usual for a many-sorted logic, every function symbol f has a type St x . . . x
Sn ~ Sn+l and every predicate symbol P has a type $1 x . �9 - x S,, where $1 S,+1
are sort symbols. We write f : $1 x . . . x Sn --* S~+1 and P : $1 x . . . x S, to indicate
this. Si corresponds to the i th argument domain (1 _< i _< n) and S,+1 corresponds
to the result domain. As a matter of course, the types of function and predicate
symbols must be respected in the formation of terms and atomic formulae. The
sort of bound variables in description terms and quantified formulae is always
clear by the presence of a sort indication : S following zx, Vx or 3x.

A signature is a set of sort, function and predicate symbols which contains
all sort symbols occurring in the types of the function and predicate symbols
from the set. For a signature 2;, MPLo~(Y~) is the restriction of MPL~o (i.e. its
language and proof system) to terms and formulae containing only sort, function
and predicate symbols from E and the set of standard symbols associated with
the sort symbols from E.

It is possible to treat formulae of three-valued logics where the additional
truth value stands for neither-true-nor-false (as in LPF [BCJ84]) as terms of
MPL~o. Hence, three-valued reasoning can be taken from being derived from
two-valued reasoning. This is shown in a forthcoming paper.

3.3. Description Algebra

Description Algebra is the heterogeneous algebra with the domains (a domain of
names, a domain of renamings, a domain of signatures, a domain of descriptions
and a domain of parameters) and operations introduced below. For each domain
of DA, all elements of the domain are taken as constants. No special symbols
are introduced to denote these constants: they are considered to be symbols
themselves. The symbols used to denote the domains, constants and operations
of DA constitute the signature of DA. The terms of DA, i.e. the terms used to
denote elements of the domains of DA, are constructed from the constant and
operation symbols in the usual way.

Actually, only a reduct of DA is presented in this paper. The operations
introduced below, are merely the operations that are used for providing the

22 C.A. Middelburg

modularisation constructs of VVSL with a semantics. The reason for the exclusion
of the remaining operations is that we want to keep the presentation of DA
simple. For the same reason the exposition is not overly mathematical: accessory
definitions are sometimes informal. Mathematically precise definitions can always
be found in Chapter 9 of [Mid90] and in [Jon89b].

3.3.1. Symbols with Origins

In the definition of MPL~o, only a few assumptions about symbols are made. The
kind of symbols which are used in descriptions, is presented first.

Name clashes may occur in the composition of modules. In order to solve
this name clash problem in a satisfactory way, the origin of each occurrence of a
name should be available. In general, origins cannot simply be viewed as pointers
to the definitions of the names. This is mainly due to parametrisation. In addition
to origin constants, origin variables (which can later be instantiated with fixed
origins) and composite origins are needed.

We assume two disjoint countably infinite sets OCon and OVar of origin
constants and origin variables, respectively. The set Orig of origins is inductively
defined by

c E O C o n ~ c E O r i g

x ~ O V a r ~ x e O r i g

ab . . . , anEOr ig ~ (al a,) EOrig

An origin partition is a partition of Orig. A partition of Orig divides the set of
all origins into disjoint non-empty sets of origins. This is used to indicate which
origins are considered equal, i.e. must be unifiable. OPar denotes the set of all
origin partitions.

For)zl, ~2 E OPar, ~a < ~2, ~1 is a refinement of ~z2, is defined by

7"Cl _~ 7Z2 2<=> VA1 E ~zl (~A2 E 7c2 (AI ~ A2))

(OPar, <) is a complete lattice. We write ~• for the bottom of this lattice.
For P c OPar, ~ P, the sum of the elements of P, and 1~ P, the product of

the elements of P, are defined by

Z P := the least upper bound of P with respect to <

-I P := the greatest lower bound of P with respect to <

We write 7E 1 -~-7[:2, where re1, 7C2 C OPar, for ~{~cx, re2}.
Symbols are built from identifiers, origins and types. The types of symbols

are in turn built from indicators for the different kinds of types (sort, obj, func
and pred) and sort symbols.

We assume a countably infinite set Ident of identifiers.
The sets Sort of sort symbols, Obj of object symbols, Func of function symbols

and Pred of predicate symbols are defined by:

Sort := {(i,a, sort)] i E Ident, a E Orig},
Obj := {(i, a, (obj, S}) l i c Ident, a E Orig, S E Sort} ,
Func := {(i,a,(func, S1 Sn, Sn+I}) I

i C Ident, a ~ Orig, Sb . . . , Sn+I E Sort},
Pred := {(i,a, (pred, S1 Sn)) I i E Ident, a E Orig, S1 Sn ~ Sort}.

Modular Structuring of VDM Specifications in VVSL 23

Object symbols serve as variable symbols in MPLo).
The set Sym of symbols is defined by

Sym := SortUObjUFuncUPred.

We write l(w), co(w) and ~(w), where w = (i,a, t) is a symbol, for i, a and t,
respectively. We write t(S1 , Sn) to indicate that t is a type in which the sort
symbols $1 , Sn occur (in that order).

Symbols from gym are interpreted as symbols in MPLo~ according to the
following rules:

each S = (i, a, sort) is a sort symbol in MPLo~

each x = (i, a, (obj, S)) is a variable symbol of sort S in MPL~o

each f = (i, a, (func, S1,..., S,, S~+1)) is a function symbol f : $1 x . . . x

S~ ~ S,+1 in MPL~o

each P = (i, a, (pred, S1 S~)) is a predicate symbol P:S1 x . . . x Sn

in MPL~o

This actualisation of symbols for MPL~ is implicit in the remainder of this paper.
I f Sort, Func and Pred are used as sets of sort symbols, function symbols

and predicate symbols, respectively, signatures are defined as follows. A symbol
signature Z is a subset of S o r t u FuncU Pred such that

Vw E E (w = (i,a,t(S1 S,)) ~ S b . . . , S ~ c Z)

I f symbol signatures are used as signatures, the language of a given signature is
defined as follows. For symbol signature E, 5r the language of E, is the set of
MPLo) formulae defined by

2,e(E) := {q~ I (P is a formula of MPLo~(E)}

3.3.2. Names

Symbols are considered to have the same name if they are the same except for the
origins occurring in them. This means roughly that, for function and predicate
symbols, their type is considered to be a part of the name. Symbols with the same
name are called name equivalent.

The name equivalence relation = on Sym is inductively defined by

S I = - S (. . . . , S n - S ~ ~ (i , a , t (S 1 , . . . , S n)) = (i , a ' , t (S ~ , . . . , S ~))

A name is an equivalence class of the name equivalence relation ----- on Sym. Nam
denotes the set all names with representatives that are sort, function or predicate
symbols.

The names of DA are very similar to the typed names of VVSL. All repre-
sentatives of a name are symbols with the same identifier and the same kind of
type. Their types need not be the same, but the corresponding sort symbols in
their types are representatives of the same name. We write

N, where w E Sym, for the name with representative w

W, where W __ Sym, for the set of names {wl w 6 W}

24 C.A. Middelburg

3.3.3. Renamings

A renaming is a total mapping from symbols to symbols that maps symbols with
the same name to symbols with the same name, leaves the origins of symbols
unaffected and changes the types of symbols consistently.

A renaming is a mapping p :Sym ~ Sym such that

w = w ' ~ p (w) - p (w ')

~ (p (w)) = ~ (w)

z(w) = t(S1 S,) ~ v(p(w)) = t(p(St) p(S,))

Ren denotes the set of all renamings.
It is assumed that renamings are extended to MPLo~ formulae in the usual

homomorphic way. Renaming of an MPL~ formula may involve renaming of
variable symbols (not necessarily bound) occurring in the formula. However, in
DA a renaming can only be applied (by means of renaming operations) such that
renamed variable symbols are only affected in the usual way, viz. their sorts are
changed according to the renaming. So renaming does not really lead to a kind
of a-conversion.

3.3.4. Signatures

Name signatures result from forgetting about the origins in symbol signatures.
A name signature is a set of names Z, where Z is a symbol signature. Sig

denotes the set of all name signatures.
The operations of DA include the following operations on name signatures:

renaming, union and intersection. Renaming on name signatures amounts to
application of a renaming to representatives of the names in a name signature (it
follows immediately from the definition of renamings that the particular choice
of representatives is irrelevant). Union and intersection of signatures is just set
union and set intersection.

The renaming operation e: Ren x Sig -+ Sig, the union operation +: Sig x Sig
--+ Sig, and the intersection operation [] : Sig x Sig --+ Sig are defined by

p-~ := p(Z) (ZESig)
2 ~ + Z 2 :=]StUs

Y'I [] ~"~2 : = Z l ("1 Z 2

3.3.5. Descriptions

A description can be viewed as a presentation of an MPL~0 theory, together
with an encapsulating signature for supporting the concept of information hiding
and an origin partition indicating which origins of the symbols used in the
description are considered equal (e.g. origins of visible symbols with the same
name). A description is origin consistent if the elements of its origin partition are
simultaneously unifiable. This is the case if there exists an instantiation of origin
variables that identifies all origins in each of the elements of the partition. As
an abstract meaning, an MPLo~ theory in which names are used as symbols of
MPL~o can be attached to each origin consistent description.

A description is a quadruple (Z, F, ~, ~), where Z and F are symbol signatures,
E __ F, �9 ___ s and ~z c OPar. We write Ex, Fx, @x and nx, where

Modular Structuring of VDM Specifications in VVSL 25

X = (Z, F, q), n) is a description, for Z, F, q5 and n, respectively. Des denotes the
set of all descriptions.

The operations of DA include the following operations on descriptions: taking
the signature, renaming, importing and exporting. Taking the signature of a
description yields the name signature that consists precisely of the visible names
of the description. The names of symbols in a description can be changed by
applying a renaming to the description. Two descriptions can be combined into
a new one by means of importing. The visible signature of a description can be
restricted by means of exporting.

The signature operation E : Des ~ Sig, the renaming operation * : Ren x Des
Des, the importing operation +: Des x Des --. Des, and the exporting opera-

tion [] : Sig x Des ~ Des are defined by

E(X) := Zx
p o x := (p(zx),p(rx),p(~,x),~x)
X1 + X2 := (Ex 1 UEx2,Fx, UFx2,@x, U~x2,nx, +nx2)
z [] x := <{w ~Zxl~Z},rx,+x,~x>

These operations on descriptions have counterparts in MA [BHK90]. The
following algebraic laws concerning these operations are satisfied:

ZCp -X) = p - E C X)

]~(X 1 --[- X2) = ~,(Xl) -]- ~(X2)

~ (z [] x) = z [] ~ (x)

Pl "(P2 -X) = (ploP2) -X

p " (Xl -t- X2) ---~ (p OXl) --]- (p oX2)

p .(y~ [] x) = (p , z) [] (p . x)

x + (z [] x) = x

Xl ~-X2 = X 2 --]-X 1

(xl + x2) + x3 = x l + (x2 + x3)

r . (x) [] x = x

z [] (Xl + x2) = (z [] x l) + (x [] x2) *

El [] (Y~2 [] X) = (E 1 [] E2) [] X

They are axioms of MA, except the laws followed by * (which are similar to
axioms of MA).

3.3.6. Parameters

2n-calculus is the basis for the semantics of the parametrisation constructs of
VVSL. 2n-calculus supports descriptions which are parametrised over entire de-
scriptions rather than over names, signatures, etc. However, when a parametrised
description is instantiated for a given description, the origins of certain visible
symbols of the latter one should be substituted for the corresponding origin vari-
ables in the parametrised description. This is achieved by the origin substitution

26 C.A. Middelburg

operation c~ defined below. This operation requires a dummy description, called
a parameter. Only the externally visible signature of a parameter is relevant. The
origin of any symbol from this signature either is an origin variable or contains no
origin variables. Besides there are no two symbols with the same origin variable
as their origins.

A parameter is a quadruple (Z,Z, { },r~• where Vw E Z (co(w) ~ OVar V
OV(w) = {}), and Vw, w' E Z(co(w) E OVarAco(w) = co(w') ~ w = w'). Par
denotes the set of all parameters. The notation O V(w) is used for the set of origin
variables occurring in the origin and type of the symbol w.

The operations of DA include the following operations on parameters: origin
substitution and renaming. When a parametrised description is instantiated for a
given description, the origins of certain visible symbols of the latter one can be
substituted for the corresponding origin variables in the parametrised description
by means of origin substitution. The names of symbols in a parameter can be
changed by applying a renaming.

An origin substitution is a mapping fl:OVar ~ Orig. OSub denotes the set
of all origin substitutions. An origin substitution is an instanfiation of origin
variables.

The set of all origin variables that are changed by an origin substitution is
considered to be its domain. For an origin substitution fl, dom(fl), the domain of
fl, is defined by

dom(fl) := {x E OVar I/~(x) 4 = x}
Origin substitutions are component-wise/homomorphically extended to origins,
symbols, formulae and descriptions. An origin substitution fl on origins is ex-
tended to origin partitions by the following rule:

fl(~) = l-I{~' E OPar [VA E ~ (3A' E ~z' ({fl(a) [a E A} ___ A'))}

The origin substitution operation e: Par x Des x Des -+ Des, and the renaming
operation . : Ren x Par --+ Par are defined by

c~(P,XI,X2) := ~-'~{fl(X2) l fl e OSub Adom(fl) c_ OV(Zx,) Afl(Zx,) _ Zx,}

where X' = Z(X1) [] 5(P)

p - P := p . a (P)

The notation 0 V(Z) is used for the set of origin variables occurring in the origins
of the symbols from the symbol signature Z. The notation 5(P) is used for the
embedding of the parameter P in Des (this embedding is just an inclusion). It is
easy to verify that p . P is indeed a parameter.

The following algebraic laws are satisfied:

~:(c~(p, x~, x2)) = ~(x2)
o:(P,XI,p "X2) = p �9 o:(P,X1,X2)
o~(P,XI,X2 q-X3) =-o~(P, XI,X2) q-g(P,XI,X3)
~(P,XI,s [] X2) = • [] o:(P,XI,X2)

3.3.7. Abstract Meaning of Descriptions

As an abstract meaning, an MPL~ theory in which names are used as symbols of
MPLo, can be attached to each origin consistent description. A mathematically
precise definition of the theory of descriptions is given in Chapter 9 of [Mid90]. It

Modular Structuring of VDM Specifications in VVSL 27

requires several tedious auxiliary definitions, e.g. definitions concerning unification
of origin partitions. Instead, it is only informally described here how the theory
of an origin consistent description X can be obtained:

Let ~ be the origin partition indicating that the origins of symbols in Zx with the
same name are considered equal. First of all, apply the most general simultaneous
unifier of the elements of nx + n~ to X. Thus, symbols from the externally visible
signature with the same name are actually identified.

Let X' be the resulting description. Secondly, take the set of all formulae from
~(Fx,) that the formulae from q)x, entail (according to the proof system of
MPLo~) and restrict the result to s162 Thus, the set of all the visible conse-
quences of the axioms ~x, is obtained.

Finally, replace the occurrences of symbols w by their name N. Thus, an origin
independent meaning of X, called the theory of X, is obtained.

The definition of the theory of descriptions can be extended to non-origin-
consistent descriptions in a way which is suggested by a characterisation of the
theory of an origin-consistent description. This extension is required for technical
reasons. It is not intended to give an appropriate meaning to non-origin-consistent
descriptions. Intuitively, non-origin-consistent descriptions are meaningless.

Th(X) denotes the theory of the description X.

3.3.8. Implementation Relation

An implementation relation for descriptions is also defined. This implementation
relation plays a crucial role in the semantic foundation of the parametrisation
constructs of VVSL in Section 3.

In the case that Description Algebra is used to provide the modularisation
constructs of a particular specification language with a semantics, a subalgebra
of DA is usually needed. Therefore, a notion of an implementation relation is
presented, which is defined with respect to the domains of a subalgebra of DA.
It is defined in terms of theories of descriptions.

Let N _~ Nam, R _c Ren, S _ Sig, D ~ Des, and P ~ Par be the domains of
a subalgebra of DA. Then for X~,X2 ~ D, X1 E_ X2, Xt is an implementation of
X2, is defined by

X 1 E X 2 :~=~ ~ (X l) ~ ~_~(X2)/~ Th(X1) ~_ Th(X2)

The relation ___ on D is called the implementation relation of the subalgebra of
DA. The relation _E is a pre-order and the operation Z is monotonic with respect
to r- (and 2).

Monotonicity does not generally hold for the other operations. Restriction
to origin consistent descriptions is sufficient for monotonicity of n. Further
restrictions are required for the operations -, + and c~.

Des has ({ }, { }, { }, ~• as maximal element with respect to the implementation
relation of DA. For an arbitrary subalgebra of DA, it does not generally hold
that its domain of descriptions (a subset of Des) has a maximal element with
respect to the implementation relation of the subalgebra.

28

3.4. 2~-Calculus

c. A. Middelburg

2re-calculus is a variant of classical lambda calculus with terms and rules as
introduced below. In order to keep the presentation of 2~-calculus simple, it is
not overly mathematical: usual definitions are mostly informal. Mathematically
precise definitions can be found in Chapter t0 of [Mid90] and in [Fei89].

3.4.1. Algebraic Systems with Pre-order

2rc-calculus is put "on top" of an algebraic system with pre-order. Algebraic
systems with pre-order are introduced first. An algebraic system with pre-order
is a heterogeneous algebra together with a pre-order on one of its domains, such
that the domain has a maximal element with respect to the pre-order, e.g. DA
together with its implementation relation is an algebraic system with pre-order.
The pre-ordered domain is called the domain of interest of the algebraic system
with pre-order. The other domains are called secondary domains. In this paper,
we shall be somewhat sloppy about the secondary domains. Secondary domains
are dealt with formally in Chapter 10 of [Mid90].

The restriction to a single domain of interest is not fundamental, but gener-
alisation leads to loss of uniformity in the treatment of parameter restrictions in
2~z-calculus.

We have to distinguish between the elements of the domains of an algebraic
system with pre-order and the terms denoting them. Therefore, we assume that
there is an alphabet to be used for constructing terms associated with each
algebraic system with pre-order d and that this alphabet consists of constant
symbols (one for each constant of d), function symbols (one for each operation
of d) , and variable symbols (countably many).

Given the alphabet of d , terms of d can be constructed as usual. Con-
ventionally, we use the same notation for the constant symbols and the values
denoted by them. Because terms can contain symbols only, this cannot cause any
confusion.

From terms L and M, atomic formulae of the forms L = M and L E M can
be constructed. From these atomic formulae, conjunctions and implications can
be constructed as usual. It is assumed that validity of these formulae is defined as
usual, with E corresponding to the pre-order of d . We write d ~ ~o, where ~o is
a formula of one of the above-mentioned forms, to indicate that (p is valid in d .

3.4.2. Terms and Rules of the 2~-Calculus

The terms of the 2~-calculus obtained for a given algebraic system with pre-order,
say s / , are called the terms of 2~ for d . The corresponding rules are analogously
called the rules of 27c for d .

The types of the terms are as usual for typed lambda terms. Every type is of
the form 0 or (o- ~ r), where o- and r are types.

Given the alphabet of d , terms of 2~z for d can be constructed as usual
for typed lambda terms, except that a parameter restriction has to be added
to lambda abstractions. More precisely, lambda abstractions are of the form
(2x E L.M) - instead of (2x.M) - where L and M are terms of 2~z.

2~z-calculus is formulated as a derivation system for statements of the form
F ~- cp, where:

Modular Structuring of VDM Specifications in VVSL 29

(p is an (atomic) formula of the form L = M or L E M, where L and M are
lambda terms of the same type.
F is a finite set of assumptions, each of the form [(01], where q; is a formula of
one of the above-mentioned forms.

These statements are called sequents. Intuitively, a sequent F F- ~o indicates that
the formulae in the set of assumptions F entail the formula ~0.

Sequents are derived by means of the derivation rules given below. They make
it possible to compare not only terms that can be interpreted in d , but also to
compare (in a syntactic way) terms that can only be interpreted in extensions of
d with function domains.

In the derivation rules given below, F, F' stand for finite sets of assumptions,
(o stands for a formula, and L,M, La ,MbL2,M2, . . . stand for lambda terms.
Furthermore, we write F, [q~] for F U { [~o]} and we write x ~ F to indicate that x
is not free in any q~ for which [(0] E F. [x :=L]M denotes the result of replacing
L for the free occurrences of x in M, avoiding that free variables in L become
bound by means of renaming of bound variables. The notation Ix :=L]cp is
defined analogously. In the rule (h) , we write " f monotonic" for the formula
stating that the function f is monotonic (with respect to the pre-order r-).

The derivation system of 2re for s~r is defined by the following derivation rules:

F [- Li V- Mi
(~1) F l- f (. . . . Li) E_ f (. . . . Mi) provided s~ M f monotonic

(~ 2) - - provided d ~ (p, (p closed
F~-cp

(cxt)
F, [~o] ~ ~0

(refl=)

(subst)

F P L = L

Ft - [y :=L]q~ F k - L = M

F F- [y :=M](o

(refl) F k- L r- L

F k Lt r- L2 F ~- L2 E L3
(trans)

F~-L1 ___L3

Fk -LI E_L2
(appl)

F b (L1M) r- (L2M)

F, [x E L] ~- Mt E_ M2
(211) F I- (2x _ L.MO E_ (2x __. L.M2) provided x ~ F

FF-L1 E L 2
(212)

F ~- (2x r- L2.M) E_ (2x _E L1.M)

F, [x __. L] ~- M1 - - - = M2
(213) F ~- (2x E_ L.MO = (2x _E L.M2) provided x ~ F

2 F A C 4

30 C.A. Middelburg

(~) F ~- L2 __. L1
F ~ (2x V- L1.M)L2 = [x :=L2]M

A sequent F ~- qo is derivable if it is the conclusion of one of the derivation rules,
all premises of this derivation rule (none, for the cases of (~2), (cxt), (refl=) and
(refl)) are derivable, and all side-conditions are satisfied (for the cases of (~l),
(~2), (210 and (Ms)). We write)~7r[~r F F- q~ (and sometimes just F ~- q)) to
indicate that F ~- q) is derivable.

The rule (h) is a monotonicity rule for the monotonic functions of the
algebraic system with pre-order sO. Thus, for each monotonic function of d , its
monotonicity can be used in the calculus. The rule (~2) expresses that simple
formulae (closed atomic formulae which have been constructed from terms of
d) valid in d can be derived in any context. The rule (cxt) expresses that
assumptions from a context can be derived in that context.

The rules (refl=) and (subst) are the usual rules for =. The rules (refl) and
(trans) are a reflexivity rule and a transitivity rule for _E.

Each lambda term of the form ()ox r- L.M) can be viewed as a function with a
restriction on its argument: the argument must be an "implementation" of L. The
rule (appl) expresses that application is monotonic with respect to __ in its first
argument. This rule reflects the intuition that if one function implements another
function then for any argument the result of the one function implements the
result of the other function. The rules (211) and (212) express that abstraction is
monotonic with respect to U__ in its second argument and anti-monotonic in its first
argument. The rule (213) expresses that abstraction is monotonic with respect to =
in its second argument. Because an assumption [x ___ L] is discharged, this rule is
not redundant. The rule ()all) reflects the intuition that for two functions with the
same argument restriction, the one function implements the other function if for
every acceptable argument the result of the one function implements the result of
the other function. The rule (212) reflects the intuition that for two functions with
the same function body and with comparable argument restrictions, the function
with the "weakest" restriction implements the other function. The rule (213)
reflects the intuition that for two functions with the same argument restriction,
the one function equals the other function if for every acceptable argument the
result of the one function equals the result of the other function. The rule (~) is
a conditional version of the rule (fi) of classical lambda calculus. It reflects the
intuition that the result of a function is undefined for every argument that does
not meet the argument restriction.

In Chapter 10 of [Mid90] and in [Fei89], a model of 27z for d is constructed.
Thus, the intuition, that a term of the form (2x E L.M) denotes a function, can be
made more precise. The model is obtained there as an extension of the underlying
algebraic system with pre-order d .

In 2~z-calculus, terms can be reduced with respect to a context, i.e. a finite set
of assumptions, in a meaning preserving way to a form not containing subterms
of the form (2x ~ L1.M)L2, where L1 and L2 are such that L2 _E L1 in that
context. Such subterms are contracted corresponding to the rule (n). Reduction
for 27c-calculus is similar to reduction for classical lambda calculus. The main
difference is that it is defined with respect to a context F. Not every lambda term
of the form (2x E_ L1.M)L2 can be contracted. Whether this is the case, depends
upon the context. For 27r-calculus, reduction always leads in finitely many steps
to a unique fully reduced form.

Modular Structuring of VDM Specifications in VVSL 31

3.5. Refinements for the Interpretation of VVSL

3.5.1. Module Description Algebra and Module Description Calculus

For the interpretation of VVSL, there are VVSL specific restrictions on the ways in
which symbols may be built from identifiers, origins and types. These restrictions
on symbols also leads to restrictions on symbol signatures and renamings and
ultimately it leads to a subalgebra of DA, called Module Description Algebra
(MDA). MDA is precisely defined in Chapter 9 of [Midg0]. It differs considerably
from Class Algebra (CA), which is the subalgebra of DA used for COLD-K
in [FJK89].

Amongst the symbols used for the interpretation of VVSL, symbols corre-
sponding to user-defined names, symbols corresponding to pre-defined names,
symbols corresponding to constructed types and special symbols (not corre-
sponding to either user-defined names, pre-defined names or constructed types)
are distinguished, One of the special symbols is a special sort symbol for the
state space. It allows function symbols and predicate symbols which correspond
to names of state variables and operations, respectively. Amongst the special
symbols are also function symbols which are used for implicit conversion from
subtype to type and vice versa.

In order to provide the structuring sublanguage of VVSL with a semantics,
2~z-calculus is put on top of a specific algebraic system with pre-order, viz. MDA
together with the implementation relation of MDA. The 2~-calculus obtained in
this way is called module description calculus.

3.5.2. Extended Module Description Calculus

In VVSL, all constituent modules of modularisation constructs may be parametri-
sed modules. This necessitates generalisations of renaming, importing, exporting,
and origin substitution, that can be applied to description terms which denote
functions on descriptions (including higher-order ones). The generalisations are
straightforward except for renaming, but unfortunately none of them can be
treated as an abbreviation. They must all be treated as extensions. The intention
is that, with the introduction of the extensions, renaming, importing, exporting
and origin substitution become interchangeable with application. For generalised
renaming, this means that it has to yield functions which when applied to
renamed arguments deliver results as if renaming has been applied to the value of
the original function for the original arguments. Unlike with the other operations,
renaming does not have the suitable properties to make this derivable by a simple
additional rule. The rule concerned has to be very explicit about how terms
with generalised renamings are to be "unfolded". Origin substitution yields the
description provided as third argument except that the origins of symbols may be
different. The sole purpose of the description provided as second argument is to
provide for the origins to be substituted for certain origin variables in the third
argument. Therefore, the above-mentioned interchangeability only applies to the
third argument of generalised origin substitution.

Extended module description calculus is module description calculus extended
with the generalisations of renaming, importing, exporting and origin substitu-
tion. The rules of extended module description calculus and the accompanying
unfolding are given in Chapter 10 of [Midg0].

2~2

32 C.A. Middelburg

3.5.3. Connections with VVSL's Structuring Sublanguage

The interpretation of modules is defined by a function J which maps module
M, MDA symbol context C, and 2n variable symbol context F to the term of
extended module description calculus representing the meaning of the module M
in a context where we have visible MDA symbols as given by C, and visible 2re
variable symbols with associated restrictions as given by F. The MDA symbols
correspond to VVSL names of types, functions, state variables and operations.
The 2re variable symbols correspond to VVSL names of modules. Instead of
J (M , C, F), we write [[m]]r c.

The interpretation of modules is compositional in the sense that for every
module the corresponding term is composed of the terms corresponding to its
constituents (in perhaps different contexts). The correspondence is very straight-
forward (modules of the form rename R in M correspond to description terms of
the form p .L , etc.), except for modules of the form import M1 into M2. The reason
for this exception is that it is assumed that all visible names of M1 which are
used but not defined in M2, are implicitly introduced in M2 by a free definition.
This is reflected in the interpretation by means of origin substitution:

[[import M1 into M2]] C : : [[M~]] c + ~(par(C'), [[M1]] C, [[M2]} CUC')

where C' is an appropriate enrichment of the MDA symbol context C for the
implicitly introduced names and par(C') is the corresponding parameter.

A precise definition of the interpretation of modules is given in Chapter 11
of [Mid90].

4. Example of the Use of VVSL's Structuring Sublanguage

In this section, the following basic concepts of the widely known "Relational
Data Model" (RDM) [Cod70, BrS81, Ul188] are formalised: tuple, relation, tuple
structure and relation schema. The concepts attribute and value are regarded as
primitive concepts about which a few assumptions have to be made. The presented
modules include a module concerning tuples (containing the definitions of tuples
and basic functions on tuples), a module concerning relations (containing the
definitions of relations and basic functions on relations), etc. Relations together
with the defined functions for constructing new relations from old ones constitute
a version of relational algebra. The concepts relation and relation schema are
connected through a boolean-valued function "is valid instance of" on relations
and relation schemas.

A concept of typed relation, which is similar to the concept with the same
name in [FiJ90], is also formalised. This is done in a module that imports the
module concerning relations and the module concerning relation schemas. Thus a
variation on the challenge problem in [FiJ90] is given. Its presentation is followed
by a discussion on this variation.

4.1. Assumptions: Attribute and Value

Tuples are built from attributes and values, relations are built from tuples, etc.
Attributes are usually identifiers. Values are usually numbers from some finite
range of integers and strings over a finite alphabet up to some finite length.

Modular Structuring of VDM Specifications in VVSL 33

However, the definitions of tuples, relations, and other R D M concepts do not
rely on any property of attributes and rely on only a few properties of values.
Therefore, we do not commit ourselves to a particular choice of attributes and
values.

Value in the sense of the R D M should not be confused with value in the sense
of VVSL. Only the values (in the sense of VVSL) of the assumed type Value are
values in the sense of the RDM. In this section, value is mainly used in the sense
of the RDM. Where it is used in the sense of VVSL and confusion may occur, it
is explicitly mentioned that it is used in the other sense.

In the module ATTRIBUTE is expressed that it is assumed that there is a type
Attribute with no a priori properties. For values, it does not suffice to assume that
there is a type Value. The module VALUE contains the following assumptions
about values:

There is a type Value with no a priori properties.

There is a type Domain; its values (in the sense of VVSL) must be the finite sets
of values.

There is a truth-valued function member on values and domains; which must be
set membership.

There is a natural-number-valued function card on domains; which must be set
cardinality.

There is a constant all of type Domain with no a priori properties.

There is a binary truth-valued function It on values with no a priori properties.

Most modules in this section are parametrised ones. The modules AT-
TRIBUTE and VALUE are used as parameter restriction modules for these
parametrised modules. Thus, the parametrised modules allow to concentrate on
what is particularly relational in nature.

ATTRIBUTE is
module

types

Attribute free

end
and

VALUE is
module

types

Value free

Domain = set of Value

functions

member (v: Value, d : Domain)B
A _ v E d

card (d " Domain)N
card d

all ()Domain free

It (Vl : Value, v2 : Value)b : B free
end

34 C.A. Middelburg

Finite sets of attributes, bijections between these attribute sets, and finite
sets of these attribute sets are often used (e.g. as arguments of functions on
tuples, relations, etc.). Therefore, the type and function definitions concerned are
collected in a general module which is imported into the other modules. The
name of this module is ATTR_SUPPL. It is parametrised by a module X with
parameter restriction ATTRIBUTE. The module X is imported. This means that
the module ATTR_SUPPL is based on assumptions with respect to attributes.
It contains only the trivial definitions of several usual functions to generate and
analyse attribute sets, etc. This simple module is not given in this paper (the
interested reader can find it in Chapter 14 of [Mid90]).

4.2. Tuple

In the module TUPLE, tuples are defined to be maps from attributes to values.
A tuple can be thought of as a record, with the attributes corresponding to fields.
In the following subsection, it is mentioned that a relation can be perceived as a
table. In that case a tuple is like a row of a table.

It is not uncommon to define tuples to be sequences of values, which is in
accordance with Codd's original definition [Cod70]. The consequences of choosing
one definition over the other are illustrated in [Bjo82].

Tuple predicates are defined to be maps from tuples to truth values. A tuple
predicate holds for a tuple if this map associates with the tuple the truth value
true. A tuple predicate is like a property that tuples can have.

The module T U P L E is based on assumptions with respect to attributes and
values and on definitions regarding attribute sets, etc.

The role of all is that of a finite universe of values for the attributes of tuples.
The restriction to a finite universe of values for the attributes of tuples allows
extensive use of maps in formalising R D M concepts. The assumptions made
about values in the module VALUE, except the ones concerning the functions
card and lt, are used in the module T U P L E to enforce this restriction.

The functions defined in the module T U P L E are used in the module RELA-
TION.

T U P L E is
abstract

X: ATTRIBUTE,
Y : VALUE

of

import

apply ATTR_SUPPL to X,
Y

into

module

types

Tuple = map Attribute to Value
where inv(t)

dora t @ { } /k Va C Attribute.a E dom t ~ member(t(a), all)

Modular Structuring of VDM Specifications in VVSL 35

Tuple_predicate = map Tuple to B
where inv(tp) A

Vtl ~ Tuple, t2 G Tuple.
tl C dom tp A t2 E dom tp attributes (t l) = attributes (t2)

functions
singleton(a :Attribute, v : Value)Tuple

s v}

merge (tl ' Tuple, t2 : Tuple) Tuple
pre disjoint (attributes (tl), attributes (t2))
A t l U t2

restrict (t : Tuple, as : Attribute_set) Tuple
pre included(as, attributes(t))
A a s < l t

rename (t : Tuple, ab : Attribute_ bijection) Tuple
pre attributes (t) = dora (ab)
A {apply(ab, a) ~ value(t,a) [

a E Attribute; member(a,attributes(t))}

holds (tp" Tuple_predicate, t : Tuple)B
pre defined (tp, t)
~_ tp(t)

defined (tp " Tuple_predicate, t : Tuple)B
Am t E dom tp

attributes (t " Tuple)Attribute_set
A d o m t

end

value(t : Tuple, a :Attribute) Value
pre member (a, attributes (t))
A t(a)

4.3. Relation

In the module RELATION, relations are defined to be sets of tuples with the
same set of attributes as domain. A relation can be thought of as a file of records
with the same fields. A relation can also be perceived as a table. In that case the
tuples are called rows and the attributes are called column names. However, note
that such a table is an unordered collection of rows. Moreover, the order of the
columns does not matter.

Roughly speaking, relations together with the defined functions for construct-
ing a new relation from old ones constitute a version of relational algebra. These
functions comprise traditional set operators (modified slightly since relations are
not arbitrary sets) and special relational operators. Relational algebra as origi-
nally defined by Codd in [Cod72] reflects the set-of-sequences view of relations.
Besides, it contains additional functions which can be defined in terms of the

36 C.A. Middelburg

others. A renaming funct ion as present in our version is not extant in the or iginal
one, since it does not make much sense in the set-of-sequences view.

The modu le R E L A T I O N is based on assumpt ions with respect to a t t r ibutes
and values and on definit ions regarding a t t r ibu te sets, etc. and tuples.

Note tha t the funct ions union and difference on two relat ions are no rma l set
union and set difference on rela t ions with the same a t t r ibu te set. I f they do not
have the same a t t r ibu te set, then the set union or set difference does not yield a
re la t ion as result.

The funct ions on re la t ions under ly ing the query l anguage ISBL of the
P R T V [Tod76] resemble the cons t ruc tor funct ions for relat ions defined here.

Perceiving rela t ions as tables these funct ions can be informal ly expla ined as
follows:

empty creates an empty table, that is a table with no rows.

singleton creates a table with one given row only.

union adds to a given table the rows in ano ther one, forming a new table with more
rows. In the case that the result ing table conta in some rows that are identical , all
but one o f them are discarded. Both tables must have the same co lumn names.

difference removes f rom a given table the rows tha t are also in ano the r one,
forming a new table with fewer rows. Both tables must have the same co lumn
names.

product puts each row in a given table and each row in ano ther one together,
forming a new table with one row for each combina t ion o f rows f rom the old
ones. The tables must have no co lumn name in common.

projection selects cer tain columns in a given table, forming a new table with fewer
columns. A collect ion o f co lumn names is given to indicate the columns to be
selected. In the case that the result ing table conta ins some rows that are identical ,
all but one o f them are discarded.

selection selects cer tain rows in a given table, forming a new table with fewer
rows. A p rope r ty o f rows is given to indicate the rows to be selected. A selection
p roper ty m a y be, for example, that one or more entries have a specific value.

rename changes the names of the columns in a given table, leaving everything else
the same. A cor respondence between old co lumn names and new co lumn names
is given to indicate the name change.

The non-cons t ruc to r funct ions are used in the modules R E L A T I O N _ S C H E M A .
In tha t module , they are used to define a funct ion is_valid_instance th rough which
rela t ions and re la t ion schemas are connected.

R E L A T I O N is
abstract

X : A T T R I B U T E ,
Y : V A L U E

of

import
apply A T T R _ S U P P L to X,
apply T U P L E to X, Y

into

Modular Structuring of VDM Specifications in VVSL 37

module
types

Relation = set of Tuple
where inv(r) A

Vtl E Tuple, t2 E Tuple.
tl E r A t2 @ r ~ attributes(t1) = attributes(t2)

functions

empty ()Relation
A{}

singleton(t" Tuple)Relation
A{t}

union (rl :Relation, r2 : Relation)Relation
pre rl @ empty A r2 @ empty ~ attributes(r1) = attributes(r2)
A r t Ur2

difference (r~ : Relation, r2" Relation) Relation
pre rl ~ empty A r2 @ empty ~ attributes(r1) = attributes(r2)
A rl -- r2

product (r l :Relation, r2 " Relation)Relation
pre rl @ empty A r2 @ empty => disjoint (attributes (rl), attributes(r2))
A {merge(t1, t2)]

tl E Tuple, t2 E Tuple; member (tl, rl) A member(t2, r2)}

projection (r" Relation, as" Attribute_set)Relation
pre r @ empty => included(as, attributes(r))
A {restrict (t, as) [t E Tuple ; member (t, r)}

selection (r "Relation, tp " Tuple_predicate)Relation
pre Vt E Tuple.member(t ,r) ~ defined(tp, t)
A {t [t E Tuple ; member (t, r) A holds (tp, t)}

rename(r" Relation, ab : Attribute_bijection)Relation
pre r (= empty => attributes(r) = dom(ab)
A { rename(t ,ab)] t E Tuple; member(t ,r)}

attributes (r :Relation)as: Attribute_set
pre r 5L empty
post 3t E Tuple.member (t, r) A attributes (t) = as

values (r : Relation, a : Attribute)d :Domain
pre r ~ empty A member(a, attributes(r))
post Vv E Value.member(v,d) <*

3t E Tuple.member(t ,r) A value(t,a) = v

member (t : TupIe, r" Relation)B
A t E r

end

38 C.A. Middelburg

4.4. Tuple Structure

In the module TUPLE_STRUCTURE, tuple structures are defined to be maps
from attributes to domains. A tuple structure can be thought of as a record type,
with the attributes corresponding to fields and the domains corresponding to the
types of the fields. A tuple structure is a kind of "meta-object" connected with
tuples. It is used to present structural constraints which must be obeyed by certain
tuples. It presents structural constraints on a tuple as follows: the attributes of
the tuple and the attributes to which a dom.ain of values is associated by the tuple
structure must be the same and the value of the tuple for each of these attributes
must belong to the corresponding domain of values.

The module TUPLE_STRUCTURE is based on assumptions with respect to
attributes and values and on definitions regarding attribute sets, etc.

As pointed out by Fagin [Fag81], tuple structures with domains that violate the
restriction that the cardinality must be greater than one are unreasonable. Besides,
this cardinality restriction allows that some well-known normal forms (viz. Boyce-
Codd normal form, fourth normal form and projection-join normal form) are
simply connected to domain-key normal form. For an introduction to normal
forms, see e.g. [Ul188]. The assumption made about values in the module VALUE
concerning the function card is used in the module TU P LE_ S TRU CTU RE to
enforce this restriction.

The constructor functions for tuple structures are intended for "type checking"
of queries. Note the resemblance with the constructor functions for tuples. An
empty tuple structure is not used to present structural constraints on the tuples
of some relation (tuples with an empty attribute set are excluded). However, an
empty tuple structure can be useful for type checking of queries.

The non-constructor functions are used in the module RELATION_SCHEMA.

TUPLE_STRUCTURE is
abstract

X: ATTRIBUTE,
Y : VALUE

of

import
apply A T T R _ S U P P L to X ,
Y

into

module
types

Tuple_structure = map Attribute to Domain
where inv(tstr) A--

Va E Attribute.
a C dom tstr

card (tstr (a)) >_ 2 A
Vv E Value.member(v,tstr(a)) ~ member(v,al l)

functions
empty 0 Tuple_structur e

_A{}

Modular Structuring of VDM Specifications in VVSL 39

singleton (a :At tr ibute , d : Domain) Tuple_ structure
A {a ~-* d}

merge (tstr t " Tuple_structure, tstr2 : Tuple_structure) Tuple_structur e
ore disjoint (attributes (tstr t), attributes (tstr 2))
A tstrl U tstr2

restrict (tstr " Tuple_structure, as : At tr ibute_set) Tuple_structure
A as <l tstr

rename (tstr " Tuple_structure, ab : At tr ibute_bi ject ion) Tuple_structure
pre attributes (tstr) = dora (ab)
A {apply(ab, a) ~ domain(ts tr , a) I

a C At tr ibute ; member (a, attributes (tstr))}

attributes (tstr : Tuple_structure) A t tribute_set
Adom tstr

end

domain (tstr : Tuple_structure, a : A t t r ibu te)Domain
pre member (a, attributes (tstr))
A tstr (a)

4.5. Relation Schema

In the module RELATION_SCHEMA, relation schemas are defined to be com-
posite values with a tuple structure and a set of attribute sets as components. A
relation schema is a kind of meta-object connected with relations, like a tuple
structure is a kind of meta-object connected with tuples. A relation schema is
used to present intra-relational constraints which must be obeyed by certain rela-
tions. Its tuple structure presents structural constraints on the tuples of a relation
and each of the attribute sets, called keys, presents a uniqueness constraint on
the relation as follows: no two distinct tuples of the relation may have the same
value for each of the attributes from a key. The relations that obey the constraints
presented by a given relation schema are its valid instances.

A relation schema is often defined to be simply an attribute set; e.g. in [Ul188].
In [Fag81] it is defined to be a composite value with an attribute set and a set
of relation constraints as components. These concepts of a relation schema are
regarded as extremes. Here, a concept of a relation schema is formalised which is
similar to the one envisaged in [BrS81]. It is between the two extremes.

The module R E L A T I O N _ S C H E M A is based on assumptions with respect to
attributes and values and on definitions regarding attribute sets, etc. relations,
and tuple structures.

R E L A T I O N _ S C H E M A is
abstract

X: ATTRIBUTE,
Y: VALUE

of

40 C.A. Middelburg

import
apply ATTR_SUPPL to X,
apply RELATION to X, Y,
apply TUPLE_STRUCTURE to X, Y

into

module
types

Relation_schema :: structure : Tuple_structure keys : Attributes_set
where inv(rsch) A

attributes (structure(rsch)) ~ empty A
Vas c Attribute_set.

member (as, keys (rsch))
included (as, attributes (structure (rsch)))

functions
is_ valid_ instance (r : Relation, rsch : Relation_ schema)B

A r @ empty =>
attributes (r) = attributes (rsch) A
(Va E Attribute.

member (a, attributes(r)) =~
Vv c Value.

member (v, values (r, a)) ~ member (v, domain (rsch, a))) A
(Vas E Attribute_set.

member (as, keys (r sch))
Vtt c Tuple, t2 E Tuple.

member(t l ,r) A member(t2,r)
(restrict (tb as) = restrict (t2, as) =>

restrict (q, difference (attributes (r), as)) =
restrict (t2, difference(attributes (r), as))))

attributes (rsch : Relation_schema)Attribute_set
A attributes (structure(rsch))

domain (rsch : Relation_ schema, a : Attribute)Domain
pre member (a, attributes (rsch))
A domain (structure (rsch), a)

end

4.6. Typed Relation

In the module TYPED_RELATION, typed relations are defined to be relations
that are valid instances of a given relation schema. In other words, typed relation
is a generic concept with an instance for each relation schema. The valid instances
of a given relation schema can be viewed as "relations of the same type". This
explains the name of the concept.

The functions defined on typed relations are restrictions of corresponding
functions defined on relations in module RELATION. Note that not all construc-
tor functions for relations defined there make sense here.

The module TYPED_RELATION is based on assumptions with respect to
attributes and values and on definitions regarding relations and relation schemas.

Modular Structuring of VDM Specifications in VVSL 41

Additionally, it is based on the assumption that there is a constant rsch of type
Relation_schema with no a priori properties.

T Y P E D _ R E L A T I O N is

abstract
X : ATTRIBUTE,
Y : VALUE

of

abstract
Z:

export
rsch : -+ Relation_schema

from
import

apply R E L A T I O N _ S C H E M A to X, Y
into

module
functions

rsch O Relation_schema free
end

of

export
ty_empty : -+ Typed_relation,
ty_singleton: TupIe ~ Typed_relation,
ty_union : Typed_relation x Typed_relation --~
ty_difference: Typed_relation x Typed_relation
ty_selection : Typed_relation x Tuple_predicate
ty_attributes : Typed_relation --~ Attribute_set,
ty_values: Typed_relation x Attribute ~ Domain,
ty_member: Tuple x Typed_relation --~ B

from

Typed _relation,
--* Typed_relation,
--* Typed_relation,

import
apply R E L A T I O N to X, Y,
apply R E L A T I O N _ S C H E M A to X, Y,
Z

into

module

types
Typed_relation = Relation

where inv(r) is_valid_instance(r, rsch)

functions

ty_empty 0 Typed _relation
A empty

ty_singleton (t : Tuple) Typed_relation
pre is_valid_instance(singleton(t), rsch)
A singleton (t)

42 C.A. Middelburg

ty_ union (r l : Typed _ relation, r2 : Typed _ relation) Typed _ relation
union (rb r2)

ty_ dif ference (r l : Typed_ relation, r2 : Typed _ r e l a t i o n) T y p e d _ relation
di f ference(rb r2)

ty_ selection (r : Typed _ relation, tp : Tuple_predicate) Typed_ relation
pre Vt ~ T u p l e . m e m b e r (t , r) =~ def ined(tp , t)

selection (r , tp)

ty _ at tr ibutes (r : Typed _ relation) as : A ttribu re_ set
at tr ibutes (rsch)

ty_values (r : Typed_relat ion, a : A t t r ibu te)d : Domain
pre r • t y_empty A member (a , ty_at t r ibutes(r))
~-- values (r, a)

end

t y _ m e m b e r (t : Tuple, r: Typed_re la t ion)B
& member (t, r)

4.7. Discussion

All modules presented in this section, except the last one, have been copied from
the modularly structured specification of an interface of a relational database
management system (RDBMS) in Chapters 14 and 15 of [Mid90]. The interface
concerned comprises commands for data manipulation and data definition ac-
cording to the RDM concepts. It should be regarded as an external interface: the
commands are made available directly to the users of the RDBMS. It is abstract
in the sense that it does not deal with details of actual interfaces like concrete
syntax of commands, their embedding in a host language, concrete representation
of the data objects yielded by query commands, etc.

The specification in [Midg0] covers many of the basic concepts of the RDM,
including the ones which are considered fundamental in [BrSS1]. Its modular
structure isolates the formalisation of the RDM concepts from the formalisation
of the external RDBMS interface. This means that large parts of the specification
can be re-used in specifications of other possible external RDBMS interfaces and
even various internal RDBMS interfaces.

In this paper, parts are also re-used in the module TYPED_RELATION.
This is a module concerning a concept of typed relation, which is similar to the
concept with the same name introduced by Fitzgerald and Jones in [FiJ90]. In a
way, the introduction of this concept is responsible for their modular structuring
of a specification of "Norman's Database" (NDB). VVSL does not supply the
ability to create multiple instances of imported modules and then to refer to
the appropriate instances dynamically, which is essential to complete a NDB
specification in their style.

The module TYPED_RELATION arises in a different way than the cor-
responding module in [FiJ90]. First, relations together with the operations of
relational algebra are specified in the module RELATION and relation schemas
together with the predicate "is valid instance of" connecting relation schemas

Modular Structuring of VDM Specifications in VVSL 43

with relations are specified in the module RELATION_SCHEMA. The specifica-
tion of typed-relations is naturally placed in the resulting structure. There do not
remain questions like the one remaining for Fitzgerald and Jones: "Where would
the specification of the operations of relational algebra be placed in a structure
such as this?".

The inability to repeat their NDB specification does not seem very serious,
because the modules RELATION and RELATION_SCHEMA can be used
directly in an NDB module. In the state invariant a condition like is_valid_
instance(r,rsch) has to be used instead of a condition like r E Typed_relation[rsch]
(where Typed_relation[rsch] would refer to the type Typed_relation from the
instance of TYPED_RELATION for the relation schema rsch) which has to be
used in a NDB specification in the style of Fitzgerald and Jones. rsch should be
viewed as being extracted from components of the NDB state. So, a dynamic
reference to an instance of a module is avoided.

A consequence of the outlined modularisation is an increase of the number
of hypotheses in the statements of theorems about the NDB module. It is ques-
tionable whether this should be regarded as an increase of the complexity of the
module. Furthermore, this modularisation involves the two modules RELATION
and RELATION_SCHEMA instead of the module TYPED_RELATION. The
greater generality and wider applicability of the concepts described in the former
two modules is beyond dispute. It is difficult to assess, whether the different mod-
ularisation makes the whole specification more comprehensible. In any case, it
is clear that introducing a module TYPED_RELATION is actually a digression.
In [FiJ90], it is justified by the self-appointed need to develop a theory about this
module. At the least, it seems more useful to develop theories about the modules
RELATION and RELATION_SCHEMA.

5. Closing Remarks

In this final section, some remarks are made about the modular structuring style
in [FiJ90] and the semantic consequences of the special features needed to cope
with that style.

5.1. The Modular Structuring Style of Fitzgerald and Jones

In [FiJ90], Fitzgerald and Jones emphasise one aspect of modular structuring of
specifications: the ability to develop theories about separate modules. This em-
phasis originates partly from the issue of formal proofs to establish the correctness
of design steps, but also from the issue of module re-usability. In order to clarify
the concepts described in a module, a theory about the module is very useful.
This means that in general the potential re-usability of a module is enhanced by
the availability of an accompanying theory. However, there are other aspects of
modular structuring of specifications.

A mathematically precise specification of what is required of a software system
that is to be developed provides a reference point against which the correctness
of the ultimate software system can be established, and not forgetting, guided by
which it can be constructed. This is regarded as the most important aspect of
software specification by most theoreticians and practitioners. However, for the
time being, (professional) practitioners will mainly establish correctness by precise

44 c.A. Middelburg

informal arguments, whereas theoreticians are usually exploring formal proofs of
correctness. Besides, it should not be overlooked that a precise specification
also makes it possible to analyse a software system before its development is
undertaken. This opens up a way to increase the confidence that the specified
system conforms to the requirements for it. For the actual practice of software
engineering, all this means that a precise specification is the obvious basis of a
contractual agreement between the software engineer and his client as well as the
right starting-point for the development of a satisfactory software system.

These roles of a precise specification give rise to an aspect of modular struc-
turing of specifications which is the primary one in practice: the potentialities
to aid comprehension of specifications. The comprehensibility of a whole specifi-
cation depends on the comprehensibility of its separate modules. Unfortunately,
reduced complexity of a module, in the sense of decreased number of hypotheses
in the statements of theorems about it, does not always imply enhanced com-
prehensibility of the module (and vice versa). Should the case arise, reducing
complexity in the above sense should be weighted against the desirability to aid
comprehension. Viewed in that light, it may be important when applying the
criterion of Fitzgerald and Jones concerning complexity to a modularly struc-
tured specification, to take into account whether or not the re-usability of the
separate modules is actually considered to be a side-effect of the development of
the specified system.

Of course, there are still other aspects of modular structuring of specifications
which are in practice more important than the ability to develop theories about
separate modules, e.g. the possibility to control changes in specifications. Cases
requiring weighting one against another are also found with respect to the aspects
in question.

5.2. Semantic Aspects of the Special Features Needed

VVSL cannot fully cope with the modular structuring style of Fitzgerald and
Jones in [FiJ90]. The main point is that VVSL does not provide the ability to
create multiple instances of imported modules and then to refer to the appropriate
instances dynamically. As a matter of fact, their style has suggested these features.
They consider it desirable in solving the modular structuring problem which is
treated in [FiJ90]. Viewed in the light of their emphasis on the ability to develop
theories about separate modules, it seems to be a matter of secondary importance.
Consequently, the point of the semantic consequences of the provision of these
special features arises naturally.

First some salient effects of the approach to the semantic matters of VVSL
is dwelled upon. The mathematical basis for the semantics of VVSL has three
ingredients: the logic MPL~o, the algebra DA, and 2~-calculus. MPL~ is used
as the semantic foundation of flat VVSL. DA and 27c-calculus are used as
the semantic foundations of the modularisation constructs and parametrisation
constructs complementing flat VVSL. In that way, a high degree of semantic
orthogonality is reached: the features of flat VVSL can be well understood
without any understanding of the modularisation and parametrisation features
of VVSL, the modularisation features of VVSL can be well understood without
any understanding of the features of flat VVSL and the parametrisation features
of VVSL, etc.

Indeed, the high degree of orthogonality is more relevant to the points that

Modular Structuring of VDM Specifications in VVSL 45

are made in the following than the particular ingredients used. It supports the
development of proof rules which allow to prove theorems about a module from
theorems about the modules from which it has been constructed. Such proof rules
naturally suggest general proof strategies which exploit the modular structure of
specifications, which matters to the issue of formal correctness proofs of design
steps (i.e. verified design). Besides, they enable compositional development of
theories about modules, which seems essential to the issue of module re-usability.
The proof rules concerned can be devised without understanding of the features of
flat VVSL. If efficiency is an issue, it seems rarely possible to maintain the modular
structure of a specification in the ultimate software system (see also [FiJg0]). This
justifies the supply of conversion rules which allow to transform a specification to
another specification with a different modular structure in a meaning preserving
way. Such conversion rules can also be devised without understanding of the
features of flat VVSL.

Pursuing the point of the semantic consequences of the provision of the
special features needed to cope with the modular structuring style in [FiJ90], just
a few general remarks will do. Without going into the details of the semantic
consequences, important resulting effects are clear. It seems to be not very useful
to maintain a mathematical basis with three ingredients as above: if such a
basis can be maintained then the ingredients will be rather interdependent. The
above-mentioned high degree of orthogonality gets lost anyhow.

A main problem is that the qualified names used in definitions - in order to
relate names for types, state Variables, functions and operations to the appropri-
ate instances of parametrised modules - may contain expressions whose value
depends upon the environment (i.e. the assignment of values to value names) or
even the state(s) in which they are evaluated. Therefore, it is possible that even
the qualifier of one particular occurrence of a qualified name does not constantly
refer to the same instance of the parametrised module concerned. This means
that qualified names cannot be regarded as names with structure that is irrelevant
for the interpretation of definitions. The mathematical basis for the semantics of
flat VVSL (MPLo~) does no longer suffice for the interpretation of definitions.
Even the complete mathematical basis for the semantics of VVSL is not ade-
quate for it. At least the basis for parametrisation (2re-calculus) needs non-trivial
adaptations, because it only supports parametrisation of modules over modules
and (collections of) names for types, state variables, functions and operations.
The special features require support of parametrisation over values. This seems
to cause a strong dependence upon the model theory of MPL~.

So, the special features make it much more difficult to devise proof rules and
conversion rules as intended in one of the previous paragraphs. The conjecture is
that the proof rules concerned and the conversion rules concerned will become
too complex to be actually used. Another obvious effect is that the special features
impede comprehension of all features of the language.

Acknowledgements

Originally, DA and An-calculus have been developed as ingredients of the math-
ematical basis for the semantics of COLD-K [FJK89]. This paper owes an
enormous debt to Hans Jonkers' [Jon89b] and Loe Feijs' [Fei89]: many defini-
tions in Sections 3.3 and 3.4 were taken from these sources. This paper simplifies
and expands material from [Mid90] that grew out of the author's work in the

46 C.A. Middelburg

ESPRIT project 1283: VIP (see [Mid89] or its precursor [Mid88]). It is a pleasure
to be able to acknowledge here the help that I have received from Jan Bergstra
and Cliff Jones with the creation of [Mid90].

Re ferences

[BCJ841

[Bea88]

[Ber86]

[BHKg0]

[Bjo82]

[BrS81]

[USI91]
[Cod70]

[Cod72]

[Fag81]

[Fei89]

[FJK89]

[FiJ90]

[Jon86]
[Jon90]

[Jon89a]

[Jon89b]

[Kar64]
[KoR89]

[Lar90]

[Mid88]

[Mid89]

[Mid90]

[Midgl]

[Ren89]

Barringer, H, Cheng, H. and Jones, C.B.: A Logic Covering Undefinedness in Program
Proofs. Acta Informatica, 21, 251-269 (1984).
Bear, S.: Structuring for the VDM Specification Language. In: VDM '88, R. Bloomfield,
L. Marshall and R. Jones (eds), LNCS 328, Springer-Verlag, pp. 2-25, 1988.
Bergstra, J.A. : Module Algebra for Relational Specifications, Technical Report LGPS
16, University of Utrecht, Logic Group, 1986.
Bergstra, J.A., Heering, J. and Klint, E: Module Algebra. Journal of the ACM, 37,
335-372 (1990).
Bjorner, D.: Formalization of Data Models. In: Formal Specification and Software De-
velopment, D. Bjorner and C.B. Jones (eds), ch. 12, Prentice-Hall, 1982.
Brodie, M.L. and Schmidt, J.W.: Final Report of the ANSI/X3/SPARC DBS-SG
Relational Database Task Group, Doc. SPARC-81-690, 1981.
BSI IST/5/50: VDM Specification Language Proto-Standard (draft), BSI, 1991.
Codd, E.F.: A Relational Model for Large Shared Data Banks. Communications of the
ACM, 13, 377-387 (1970).
Codd, E.F.: Relational Completeness of Data Base Sublanguages. In: Data Base Systems,
R. Rustin (ed.), pp. 65-98, Prentice-Hall, 1972.
Fagin, R. : A Normal Form for Relational Databases that is Based on Domains and
Keys. ACM Transactions on Database Systems, 6, 387-415 (1981).
Feijs, L.M.G.. The calculus 2~. In: Algebraic Methods: Theory, Tools and Applications,
M. Wirsing and J.A. Bergstra (eds), LNCS 394, Springer-Verlag, pp. 307-328, 1989.
Feijs, L.M.G., 3onkers, H.B.M., Koymans, C.P.J. and Renardel de Lavalette, G.R.:
Formal Definition of the Design Language COLD-K (revised edn), Technical Report,
Philips Research Laboratories Eindhoven, 1989.
Fitzgerald, J.S .nd Jones, C.B.: Modularizing the formal description of a database
system. In: VDM "90, D. Bjorner, C.A.R. Hoare and H. Langmaack (eds), LNCS 428,
Springer-Verlag, pp. 189-210, 1990.
Jones, C.B.: Systematic Software Development Using VDM (ist edn), Prentice-Hall, 1986.
Jones, C.B.: Systematic Software Development Using VDM (2nd edn), Prentice-Hall,
1990.
Jonkers, H.B.M.: An introduction to COLD-K. In: Algebraic Methods: Theory, Tools
and Applications, M. Wirsing and J.A. Bergstra (eds), LNCS 394, Springer-Verlag,
pp. 139-205, 1989.
Jonkers, H.B.M.: Description Algebra. In: Algebraic Methods: Theory, Tools and Appli-
cations, M. Wirsing and J.A. Bergstra (eds), LNCS 394, Springer-Verlag, pp. 283-305,
1989.
Karp, C.: Languages with Expressions of Infinite Length, North-Holland, 1964.
Koymans, C.RJ. and Renardel de Lavalette, G.R.: The logic MPL~,. In: Algebraic
Methods: Theory, Tools and Applications, M. Wirsing and J.A. Bergstra (eds), LNCS 394,
Springer-Verlag, pp. 247 282, 1989.
Larsen, RG.: The Dynamic Semantics of the BSI/VDM Specification Language, Tech-
nical Report, IFAD, August 1990.
Middelburg, C.A.: The VIP VDM Specification Language. In: VDM '88, R. Bloomfield,
L. Marshall and R. Jones (eds), LNCS 328, pp. 187-201, Springer-Verlag, 1988.
Middelburg, C.A.: VVSL: A Language for Structured VDM Specifications. Formal
Aspects of Computing, 1, 115-135 (1989).
Middelburg, C.A.: Syntax and Semantics of VVSL A Language for Structured VDM
Specifications, PhD thesis, University of Amsterdam, 1990. Available from PTT Re-
search, Dr. Neher Laboratories.
Middelburg, C.A.: Specification of Interfering Programs Based on Inter-conditions,
Pub. 166/91, PTT Research, 1991.
Renardel de Lavalette, G.R.: COLD-K 2, the static kernel of COLD-K, Report
RP/mod-89/8, Software Engineering Research Centrum, 1989.

Modular Structuring of VDM Specifications in VVSL 47

[SAT85]

[Tod76]

fut188]

[Wir86]

[WiB89]

Sannella, D. and Tarlecki, A.: Building Specifications in an Arbitrary Institution. In:
Semantics of Data Types, G. Kahn, D.B. MacQueen and G. Plotkin (eds), LNCS 173,
Springer-Verlag, pp. 337-356, 1985.
Todd, SJ.R: The Peterlee Relational Test Vehicle - a System Overview. IBM Systems
Journal, 15, 285-308 (1976).
Ullman, J.D.: Principles o f Database and Knowledge-base Systems, Vol. I, Computer
Science Press, 1988.
Wirsing, M.: Structured Algebraic Specifications: A Kernel Language. Theoretical Com-
puter Science, 42, 123-249 (1986).
Wirsing, M. and Broy, M.: A Modular Framework for Specification and Implementation.
In: TAPSOFT '89, VoI. 1, J. Diaz and F. Orejas (eds), pp. 42-73, LNCS 351, Springer-
Verlag, pp. 42-73, 1989.

Received November 1990
Accepted in revised form March 1991 by B. T. Denvir

