
Formal Aspects of Computing (1992) 4:13-47 
@ 1992 BCS Formal Aspects 

of Computing 

Modular Structuring of VDM Specifications 
in VVSL 

C. A. M i d d e l b u r g  

PTT Research, Dr Neher Laboratories, 2260 AK Leidschendam, The Netherlands 

Keywords: Formal specification language; Model-oriented specification; Modular 
structuring; VDM 

Abstract. VVSL is a language for writing modularly structured VDM specifica- 
tions. Its modularisation mechanism permits two modules to have parts of their 
state in common, including hidden parts. Firstly, this paper gives an overview 
of the structuring sublanguage of VVSL and a concise description of its seman- 
tic foundations: DA (a general algebraic model of modules) and 2r~-calculus (a 
variant of  classical lambda calculus). The paper also presents a variation on a 
"challenge problem" of Fitzgerald and Jones as an example of the use of VVSL's 
structuring language. Finally, their modular structuring style and the suggested 
language features to support it are commented upon. 

1. Introduction 

In [Mid90], the author presents a definition of the syntax and semantics of VVSL, 
a language for modularly structured VDM specifications. Important differences 
between VVSL and the main VDM specification languages are: 

The addition of the inter-condition to the usual pre- and post-condition pair of 
operation definitions in VDM style, to support implicit specification of operations 
which interfere through a partially shared state 

The provision of  modularisation and parametrisation mechanisms which are 
adequate for writing large state-based specifications in VDM style and have a 
firm mathematical foundation 
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The inter-condition is a formula from a language of temporal logic. With the use 
of the inter-condition, operations which interfere through a partially shared state 
(called non-atomic operations) can be defined while maintaining as much of the 
VDM style of specification as possible. The modularisation and parametrisation 
mechanisms permit two modules to have parts of their state in common, including 
hidden parts. They also allow requirements to be put on the modules to which a 
parametrised module may be applied. 

In [FiJ90], Fitzgerald and Jones present a challenge for existing specification 
languages with facilities supporting modular structuring. Essentially, they sug- 
gest that a specification language should' supply the ability to create multiple 
instances of imported modules and then to refer to the appropriate instances 
dynamically. Absence of these features means that the language cannot fully cope 
with modularisations in their style. 

VVSL does not supply the above-mentioned features. It is very straightforward 
to show that VVSL supplies all the other main features for modular structuring 
which are suggested in [FiJ90]. This means that it is not very useful to repeat 
the challenge problem for VVSL. Instead, a variation on the challenge problem 
is presented in this paper. This variation resolves satisfactorily the main question 
remaining in [FiJ90], viz. "Where would the specification of the operations of 
relational algebra be placed in a structure such as this?" (The question refers to 
the chosen structuring in [FiJ90].) 

1.1. VVSL and Modular Structuring 

The design of VVSL aimed at obtaining a language with a well-defined semantics 
that, apart from its exte~Jsions for non-atomic operations, can be considered to 
be a language for flat VDM specifications together with a language for mod- 
ularisation and parametrisation that is put on top of it, both syntactically and 
semantically. This is accomplished by means of modularisation and parametri- 
sation constructs like those of COLD-K [Jon89a], using the usual flat VDM 
specifications as basic building blocks. Like any module, these flat VDM specifi- 
cations are essentially interpreted as presentations of logical theories of a special 
kind. For flat VDM specifications, the models of the logical theory coincide with 
the models according to the original interpretation. 

VVSL without its modularisation and parametrisation constructs is referred 
to asflat VVSL. The flat VDM specification language incorporated in flat VVSL 
is roughly a restricted version of the emerging standard VDM specification 
language BSI/VDM SL [BSIgl, Lar90]. It is very similar to the language used 
in [Jon86]. One can define types, functions working on values of these types, state 
variables which can take values of these types, and (atomic) operations which may 
interrogate and modify the state variables. For an introduction to this flat VDM 
specification language, see [Jon86] ([Jon90] is a revision of [Jon86] adapted to 
the proposed concrete syntax of BSI/VDM SL). In Part I of [Midg0], flat VVSL 
has been given a logical semantics by defining a translation to the language of a 
many-sorted infinitary logic of partial functions, called MPL~o [KoR89]. 

The structuring sublanguage of VVSL consists of the modularisation and 
parametrisation constructs complementing flat VVSL. A general algebraic model 
of specification modules suitable for state-based specifications, called Descrip- 
tion Algebra [Jon89b], is used as the semantic foundation of the modularisation 
constructs. Description Algebra is based on the logic MPL~o. A variant of classi- 
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cal lambda calculus with parameter restrictions and a conditional fl-rule, called 
)~Tc-calculus [Fei89], is used as the semantic foundation of the parametrisation 
constructs. MPLo~, Description Algebra and 2~-calculus also constitute the se- 
mantic basis of COLD-K. In Part II of [Midg0], the structuring sublanguage of 
VVSL has been given a semantics by defining a translation to the set of  terms of  
an extended version of the 2rt-calculus for a specialisation of DA. 

Defining types in VDM style introduces subtype relationships with accompa- 
nying implicit conversions. If a type is defined as a subtype of another type, then 
the introduced subtype relationship is pragmatically a relationship between an 
"abstract data type" and its "representation". The modularisation mechanism of 
VVSL hides such representations. 

Actually, only the language for modularly structured VDM specifications 
incorporated in VVSL is considered in the remainder of this paper. In [Mid91], 
the extensions for non-atomic operations are explained. In a way, the somewhat 
sketchy paper [Mid89] is superseded by the current paper and [Mid91]. 

1.2. Semantic Foundations 

The specifics of the main features supplied by the structuring sublanguage of  
VVSL cannot be fully understood without going into details of its semantic foun- 
dations. This paper contains a concise detailed description of the mathematical 
basis for the semantics of VVSL's structuring sublanguage (comprising DA and 
;t~-calculus). However, the description is not more detailed than what it takes 
to make a trustworthy assessment of the usefulness of the main features in this 
language and to grasp the semantic consequences of  additional features. 

1.3. Structure of the Paper 

Section 2 gives an overview of the structuring sublanguage of VVSL. Section 3 
gives a concise description of its semantic foundations: DA and 2re-calculus. 
The necessary refinements for the interpretation of the VVSL's structuring sub- 
language are broadly outlined. An example of its use, which is based on the 
challenge problem of Fitzgerald and Jones in [FiJ90], is presented in Section 4. 
In Section 5, some remarks are made about their modular structuring style and 
the semantic aspects of the special features needed to cope with it. 

2. O v e r v i e w  o f  V V S L ' s  Structuring Sublanguage 

This section describes informally and in broad outline how specifications are 
modularly structured in VVSL. 

The modularisation and parametrisation constructs which complement flat 
VVSL are similar to those of COLD-K. The latter are explained in detail 
in [Jon89a]. The modularisation and parametrisation constructs of VVSL are 
quite different from those proposed in [Bea88] for the forthcoming standard 
VDM specification language BSI/VDM SL [BSIgl]. Inadequacies of the prede- 
cessors of that proposal were the main reason to choose something different for 
VVSL. 

In Section 2.1, a short introduction to the modularisation constructs of VVSL 
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(including a local definition construct for modules) is given. The parametrisation 
constructs are treated in Section 2.2. 

2.1. M o d u l e s  

The modularisation constructs of  VVSL can be informally explained in terms of: 

visible names: a collection of names for types, state variables, functions and 
operations which may be used externally. 

hidden names: a collection of names for types, state variables, functions and 
operations which may not  be used externally. 

formulae: a collection of formulae representing the properties characterising the 
types, state variables, functions and operations denoted by the visible names (both 
the visible and hidden names may occur in these formulae as symbols). 

Together, these collections constitute a so-called descr ipr ion .  
Due to the possibility of  "identifier overloading", the visible and hidden names 

mentioned above must be "typed names" and not just the identifiers which are 
used as names in VVSL (except in signatures and renamings, see below). A typed 
name has one of the following forms: 

t 
v : t  

f : t l  • "'" X tn ~ tn+l 
o p : t l  N "'" N tn ~ tn+l X "'" X tm 

for types 
for state variables 
for functions 
for operations 

In VVSL, the constructs for denoting sets of  typed names are called s igna tures .  

A signature is usually an enumeration of the typed names concerned: 

UI~...,Un~ 

where uj  (1 < j _< n) is a typed name. 
Related to signatures are renamings .  They correspond to mappings from typed 

names to typed names and are used to replace the visible names of a module by 
new ones. A renaming is of  the following form: 

Ul ~ i l , . . . ,un ~ in, 

where uj (1 _< j _< n) is a typed name and ij is the new untyped name for 
it. The translation of the new untyped name to the appropriately typed one is 
straightforward. 

The form and meaning of the modularisation constructs of  VVSL are as 
follows: 

modute ~-- ~ ~ (9 end. The visible names are the names introduced in the type 
definitions from J ,  the variable definitions from ~ ,  the function definitions 
from J and the operation definitions from (9 (see Part I of  [Mid90] for an 
overview of the definition constructs of VVSL). None of these names are hidden. 
The formulae represent the properties characterising the types, state variables, 
functions and operations which may be associated with the names introduced in 
these definitions according to the VVSL interpretation of the definitions. 
import M1 . . . . .  M n  into M. The visible names are the visible names of the " imported" 
modules M1 . . . . .  Mn as well as those of  the "importing" module M. Likewise, the 
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hidden names are the hidden names of all these modules and the formulae are 
the formulae of  all these modules. 

export S from M. The visible names are the visible names of the "exporting" 
module M that are also names of  the "exported" signature S. The hidden names 
are the hidden names of the exporting module M as well as its visible ones that 
are not names of the exported signature S. The formulae are the formulae of the 
exporting module M. 

rename R in M. The visible names are the new names, according to the renaming 
R, for the visible ones of  the module M. The hidden names are the hidden names 
of the module M. The formulae are the formulae of  the module M with all 
occurrences of  its visible names replaced by the new names for them. 

The definitions of  the module construct may be free. A free definition is a definition 
in which the keyword free occurs following its header. A free definition introduces 
a free name and a non-free definition introduces a defined name. Roughly speaking, 
a free name is a name which is supposed to be defined elsewhere (i.e. in another 
module). This means that the body of  the definition (empty in case of  a free 
type name or a free state variable name) does not define the type, function, 
state variable or operation denoted by the free name. In case of  a free function 
or operation name, the body of the definition must be considered to describe 
assumptions about the function or operation denoted by the name. 

In case of  name clashes, the union of the formulae of  the imported modules 
and the importing module of  the import construct may lead to undesirable changes 
in the properties represented by the formulae. Therefore, a restriction applies to 
visible names. Visible names are allowed to clash, provided that the name can 
always be traced back to at most one non-free definition. Name clashes of  hidden 
names can be regarded as being avoided by automatic renamings, in case the 
name can be traced back to more than one non-free definition. Otherwise they 
are not avoided. This makes it possible for two modules to have hidden state 
variables in common!  Without this feature, the modularisation mechanism would 
be unsuited to the modular  structuring of specifications of many existing software 
systems. However, when designing a system hand in hand with a specification, it 
should be used very rarely. It is not used in the example presented in Section 4. 

For the import construct, it is assumed that all visible names of the imported 
modules used but not explicitly introduced in the importing module are implicitly 
introduced in the importing module by a free definition. 

There is also a local definition construct for modules. The form and meaning 
of this construct are straightforward: 

let ml A M1 and ... and mn ~ Mn in M. I f  n = 1, the description denoted by M 
when the module name ml stands for the description denoted by M]. Otherwise, 
the description denoted by let ink2 A Mk2 and ... and ink, A__ Mk, in M when 
the module name mk~ stands for the description denoted by Mk~; where the list 

~ 1<..., k, is some permutat ion of the list 1 . . . . .  n such that if mk~ occurs in Mkj then 
j. I f  such a permutat ion does not exist, the meaning of the local definition 

construct is undefined. 

Actually, all constituent modules of  modularisation constructs may be parametri-  
sed modules (described in Section 2.2). In this section, the meaning of the 
modularisation constructs is only explained for the non-parametrised case. For the 
import  construct and the export construct, the generalisation is straightforward. 
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For the rename construct, it involves renaming of renamings. This is not always 
possible. 

2.2. Parametrised Modules 

An abstraction construct and an application construct constitute the parametrisa- 
tion constructs of VVSL. Abstractions correspond roughly to n-ary functions on 
descriptions. Each of their argument domains consists of the implementations of a 
description. Broadly speaking, a description d' is considered to be an implemen- 
tation of a description d if the visible names of d are also visible names of d' and 
the properties represented by the formulae of d are also properties represented 
by the formulae of d'. Applications describe applications of these functions to 
appropriate arguments. 

The form and meaning of the parametrisation constructs of VVSL are as 
follows: 

abstract ml:M1 . . . . .  rn~:M, of M. The function sending each tuple (dl,. . . ,d~) of 
descriptions, that are implementations of the descriptions denoted by the "para- 
meter restriction" modules M b . . . ,  M~, respectively, to the description denoted by 
the module M when the module names mi stand for di (1 < i _< n). 

apply M to m l  . . . . .  Mn. The description resulting from applying the function 
denoted by M to the tuple (dl . . . .  ,d,) of descriptions denoted by the modules 
M1 . . . . .  M,, respectively, whenever di is in the i-th argument domain of the 
function (1 _ i < n) and undefined otherwise. 

Actually, the parametrisation constructs support higher-order functions on de- 
scriptions. Both arguments and results may be functions on descriptions. This 
means that all constituent modules of an abstraction construct (including the 
parameter restriction modules) may be parametrised modules. Roughly speaking, 
a function on descriptions f '  is considered to be an implementation of a function 
on descriptions f if description f '(d) is an implementation of description f(d) 
for all descriptions d. The implementation relation is extended for higher-order 
functions on descriptions in the same vein. 

3. Semantic Foundations of VVSL's Structuring Sublanguage 

Description Algebra (DA), an algebraic model of specification modules (suitable 
for state-based specifications) introduced by Jonkers in [Jon89b], is used as the 
semantic foundation of the modularisation constructs of VVSL. 2~-calculus, a 
variant of classical lambda calculus (with parameter restriction and a conditional 
/~-rule) introduced by Feijs in [Fei89], is used as the semantic foundation of the 
parametrisation constructs of VVSL. 

Both ingredients of the mathematical basis for the semantics of the structuring 
sublanguage of VVSL are first sketched in Section 3.1. DA and 2~-calculus are 
treated in more detail in Sections 3.3 and 3.4, respectively. Section 3.5 describes 
the VVSL specific refinements of this basis in broad outline. MPL~, which is 
used as the underlying logic of  DA, is treated in Section 3.2. Because the use of  
this logic is not essential, only a brief overview is given. 
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3.1. Short Introduction to the Semantic Foundations 

3.1.1. Description Algebra 

VVSL is a language for model-oriented, state-based specification. Effective sep- 
aration of concerns often motivates the hiding of state variables from a module 
(access to state variables is permitted only via exported operations), in partic- 
ular where a suitable modular structuring of the specification requires that the 
same state variables are accessed from several modules. For the adequacy of 
the modularisation mechanism provided by VVSL for the modular structuring 
of specifications of many existing software systems, it is indispensable that it 
permits two or more modules to have hidden state variables in common. This 
requires a model of specification modules which is more concrete than most 
models proposed for modular property-oriented, algebraic specifications (such as 
the ones presented in [BHKg0, SAT85, WiB89]). Appropriately concrete models 
(e.g. the model presented in [Ber86] and the presentation model from [Wir86]) 
usually treat name clashes in a way which still inhibits modules to have hidden 
state variables in common. DA makes it possible for modules to have hidden 
state variables in common. This is largely due to the way in which it treats 
name clashes. Nevertheless, many algebraic laws holding in the more generally 
accepted models also hold for DA. These laws include most laws of Module 
Algebra [BHKg0]. 

Description Algebra is a heterogeneous algebra. Its main ingredients are: 

Descriptions. The objects of interest are descriptions. A description consists of 
an externally visible signature, an internal signature, a set of formulae and an 
origin partition. It is essentially a presentation of a logical theory extended with 
an encapsulating signature and a component for dealing with name clashes in 
the composition of descriptions. MPL~o [KoR89] is used as the underlying logic 
of DA. As an abstract meaning, an MPL,o theory can be attached to each 
description. 
Operations on descriptions. Descriptions can be adapted and combined by means 
of operations for renaming, importing and exporting. The basic modularisation 
concepts of decomposition and information hiding are supported by importing 
and exporting, respectively. Renaming provides for control of name clashes in the 
composition of modules. 

3.1.2. 2~-Calculus 

For the adequacy of the parametrisation mechanism provided by VVSL for 
practical applications, it is highly desirable that it makes it possible to put 
requirements on the modules to which a parametrised module may be applied. 
This is supported by the parameter restriction feature of 2~z-calculus. Reduction 
for 2~z-calculus resembles reduction for classical lambda calculus. The Church- 
Rosser property is not invalidated by addition of parameter restrictions, and 
the strong normalisation property is inherited from typed lambda calculus. This 
means that reduction of lambda terms always leads in finitely many steps to a 
unique normal form (up to renaming of bound variables). 

There is an instance of 2~z-calculus for every algebraic system with pre-order. 
An algebraic system with pre-order is roughly a heterogeneous algebra together 
with a pre-order on one of its domains, e.g. DA together with an appropriate "im- 
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plementation relation" on descriptions. The algebra may be heterogeneous, which 
means that it may have "secondary domains" (such as domains of  signatures, 
renamings, etc. in case of DA). 

2~-calculus has the following ingredients in addition to those of classical 
lambda calculus: 

Types. Every lambda term has a unique type. Each type corresponds to a domain 
of values or a domain of (higher-order) functions. The types are used to exclude 
the formation of problematic lambda terms, like terms expressing self-application 
of a function. 

Parameter restriction. Lambda abstractions have parameter restrictions. More 
precisely, instead of lambda terms of the form (2x.M), there are lambda terms of 
the form (2x E L.M) (where both L and M are lambda terms). Herein L is called 
a parameter restriction. The intended meaning is the function that maps x to M, 
provided the x and L are in the relation __, and is undefined otherwise. This is 
reflected in the rule 0z) of 2~-calculus, which is a conditional version of the rule 
(/~) of classical lambda calculus. 

The calculus that is obtained by putting 2re-calculus on top of  DA can be extended 
with higher-order generalisations of renaming, importing and exporting. 

3.2. Overview of MPL~ 

MPL~o is the logic used to provide flat VVSL with a semantics. It is a many- 
sorted infinitary first-order logic of partial functions. Its typical features are 
mainly obtained by additions to language and proof system of classical first- 
order logic. Classical reasoning is not invalidated. The language, proof system and 
interpretation of MPL~o are introduced by Koymans and Renardel de Lavalette 
in [KoR89]. 

MPL~ is a logic which handles partial functions. Partial functions give rise 
to non-denoting terms. MPLo~ adopts an approach to solve the problem with 
non-denoting terms in formulae, which stays within the realm of classical, two- 
valued logics. Atomic formulae that contain non-denoting terms are logically 
false - instead of neither-true-nor-false as in three-valued logics. In this way, the 
assumption of the "excluded middle" does not have to be given up. When a 
formula cannot be classified as true, it is inexorably classified as false. No further 
distinction is made. 

However, denoting terms and non-denoting terms can be distinguished. In 
addition to a standard equality predicate symbol =s, there is a standard defined- 
ness predicate symbol ~s for every sort symbol S. t J, s means that t is denoting 
(for terms t of sort S). There is also a standard undefined constant symbol Ts for 
every sort symbol S. Ts is a non-denoting term of sort S. 

If Ao, A1,A2 .... are countably many formulae, then the formula An An can 
be formed. This allows a large class of recursive and inductive definitions of 
functions and predicates to be expressed as formulae of MPL~0. This was first 
sketched in [KoR89] and later worked out in detail by Renardel de Lavalette in 
[Ren89]. 

If A is a formula, then the term zx:S (A) can be formed. Its intended meaning 
is the unique value x of sort S that satisfies A if such a unique value exists 
and undefined otherwise. This means that not every description will be denoting. 
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Descriptions can be eliminated: it is possible to translate formulae containing 
descriptions into logically equivalent formulae without descriptions. 

Free variables may be non-denoting, but in Vx: S (A) and 3x: S (A), x is always 
denoting. So we have tSs ~ 3x: S (x =s t). Owing to the different treatment of 
free variables and bound variables, frequent reasoning about non-denoting terms 
can be avoided. 

The formation rules for MPL~ are the usual formation rules with an additional 
rule for descriptions and with the rule for binary conjunctions replaced by the rule 
for countably infinite conjunctions from classical first-order logic with countably 
infinite conjunctions [Kar64]. 

The proof system of MPLo~ presented in [KoR89] is a Gentzen-type sequent 
calculus that resembles one for infinitary classical first-order logic with equality. 
The usual axioms for equality are slightly adapted, because non-denoting terms 
are never equal. There are additional non-logical axioms for definedness. There 
is also an additional axiom schema for descriptions. The inference rules for the 
quantifiers are slightly adapted. This is due to the treatment of free and bound 
variables. The minor differences from classical reasoning are direct consequences 
of embodying non-denoting terms. 

As usual for a many-sorted logic, every function symbol f has a type St x . . .  x 
Sn ~ Sn+l and every predicate symbol P has a type $1 x .  �9 - x S,, where $1 . . . . .  S,+1 
are sort symbols. We write f :  $1 x . . .  x Sn --* S~+1 and P : $1 x . . .  x S, to indicate 
this. Si corresponds to the i th argument domain (1 _< i _< n) and S,+1 corresponds 
to the result domain. As a matter of course, the types of function and predicate 
symbols must be respected in the formation of terms and atomic formulae. The 
sort of bound variables in description terms and quantified formulae is always 
clear by the presence of a sort indication : S following zx, Vx or 3x. 

A signature is a set of sort, function and predicate symbols which contains 
all sort symbols occurring in the types of the function and predicate symbols 
from the set. For a signature 2;, MPLo~(Y~) is the restriction of MPL~o (i.e. its 
language and proof system) to terms and formulae containing only sort, function 
and predicate symbols from E and the set of standard symbols associated with 
the sort symbols from E. 

It is possible to treat formulae of three-valued logics where the additional 
truth value stands for neither-true-nor-false (as in LPF [BCJ84]) as terms of 
MPL~o. Hence, three-valued reasoning can be taken from being derived from 
two-valued reasoning. This is shown in a forthcoming paper. 

3.3. Description Algebra 

Description Algebra is the heterogeneous algebra with the domains (a domain of 
names, a domain of renamings, a domain of signatures, a domain of descriptions 
and a domain of parameters) and operations introduced below. For each domain 
of DA, all elements of the domain are taken as constants. No special symbols 
are introduced to denote these constants: they are considered to be symbols 
themselves. The symbols used to denote the domains, constants and operations 
of DA constitute the signature of DA. The terms of  DA, i.e. the terms used to 
denote elements of the domains of DA, are constructed from the constant and 
operation symbols in the usual way. 

Actually, only a reduct of DA is presented in this paper. The operations 
introduced below, are merely the operations that are used for providing the 
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modularisation constructs of VVSL with a semantics. The reason for the exclusion 
of the remaining operations is that we want to keep the presentation of DA 
simple. For the same reason the exposition is not overly mathematical: accessory 
definitions are sometimes informal. Mathematically precise definitions can always 
be found in Chapter 9 of [Mid90] and in [Jon89b]. 

3.3.1. Symbols with Origins 

In the definition of MPL~o, only a few assumptions about symbols are made. The 
kind of symbols which are used in descriptions, is presented first. 

Name clashes may occur in the composition of modules. In order to solve 
this name clash problem in a satisfactory way, the origin of each occurrence of a 
name should be available. In general, origins cannot simply be viewed as pointers 
to the definitions of the names. This is mainly due to parametrisation. In addition 
to origin constants, origin variables (which can later be instantiated with fixed 
origins) and composite origins are needed. 

We assume two disjoint countably infinite sets OCon and OVar of origin 
constants and origin variables, respectively. The set Orig of origins is inductively 
defined by 

c E O C o n  ~ c E O r i g  

x ~ O V a r  ~ x e O r i g  

ab . . . , anEOr ig  ~ (al . . . . .  a,) EOrig 

An origin partition is a partition of Orig. A partition of Orig divides the set of 
all origins into disjoint non-empty sets of origins. This is used to indicate which 
origins are considered equal, i.e. must be unifiable. OPar denotes the set of all 
origin partitions. 

For )zl, ~2 E OPar, ~a < ~2, ~1 is a refinement of ~z2, is defined by 

7"Cl _~ 7Z2 2<=> VA1 E ~zl (~A2 E 7c2 (AI ~ A2)) 

(OPar, <) is a complete lattice. We write ~• for the bottom of this lattice. 
For P c OPar, ~ P, the sum of the elements of P, and 1~ P, the product of 

the elements of P, are defined by 

Z P := the least upper bound of P with respect to < 

-I P := the greatest lower bound of  P with respect to < 

We write 7E 1 -~-7[:2, where re1, 7C2 C OPar, for ~{~cx, re2}. 
Symbols are built from identifiers, origins and types. The types of symbols 

are in turn built from indicators for the different kinds of types (sort, obj, func 
and pred) and sort symbols. 

We assume a countably infinite set Ident of identifiers. 
The sets Sort of sort symbols, Obj of object symbols, Func of function symbols 

and Pred of predicate symbols are defined by: 

Sort := {(i,a, sort) ] i E Ident, a E Orig}, 
Obj := {(i, a, (obj, S}) l i c Ident, a E Orig, S E Sort} ,  
Func := {(i,a,(func, S1 . . . . .  Sn, Sn+I}) I 

i C Ident, a ~ Orig, Sb . . . ,  Sn+I E Sort}, 
Pred := {(i,a, (pred, S1 . . . . .  Sn)) I i E Ident, a E Orig, S1 . . . . .  Sn ~ Sort}. 
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Object symbols serve as variable symbols in MPLo). 
The set Sym of symbols is defined by 

Sym := SortUObjUFuncUPred. 

We write l(w), co(w) and ~(w), where w = (i,a, t) is a symbol, for i, a and t, 
respectively. We write t(S1 . . . .  , Sn) to indicate that t is a type in which the sort 
symbols $1 . . . .  , Sn occur (in that order). 

Symbols from gym are interpreted as symbols in MPLo~ according to the 
following rules: 

each S = (i, a, sort) is a sort symbol in MPLo~ 

each x = (i, a, (obj, S)) is a variable symbol of  sort S in MPL~o 

each f = (i, a, (func, S1,..., S,, S~+1)) is a function symbol f :  $1 x . . .  x 

S~ ~ S,+1 in MPL~o 

each P = (i, a, (pred, S1 . . . . .  S~)) is a predicate symbol P:S1  x . . .  x Sn 

in MPL~o 

This actualisation of symbols for MPL~ is implicit in the remainder of  this paper. 
I f  Sort, Func and Pred are used as sets of  sort symbols, function symbols 

and predicate symbols, respectively, signatures are defined as follows. A symbol  
signature Z is a subset of  S o r t u  FuncU Pred such that 

Vw E E ( w  = (i,a,t(S1 . . . . .  S,))  ~ S b . . . , S ~  c Z)  

I f  symbol signatures are used as signatures, the language of a given signature is 
defined as follows. For symbol signature E, 5r the language of E, is the set of  
MPLo) formulae defined by 

2,e(E) := {q~ I (P is a formula of  MPLo~(E)} 

3.3.2. Names  

Symbols are considered to have the same name if they are the same except for the 
origins occurring in them. This means roughly that, for function and predicate 
symbols, their type is considered to be a part  of  the name. Symbols with the same 
name are called name equivalent. 

The name equivalence relation = on Sym is inductively defined by 

S I = - S (  . . . .  , S n - S ~  ~ ( i , a , t ( S 1 , . . . , S n ) ) = ( i , a ' , t ( S ~ , . . . , S ~ ) )  

A name is an equivalence class of  the name equivalence relation ----- on Sym. Nam 
denotes the set all names with representatives that are sort, function or predicate 
symbols. 

The names of DA are very similar to the typed names of  VVSL. All repre- 
sentatives of  a name are symbols with the same identifier and the same kind of 
type. Their types need not be the same, but the corresponding sort symbols in 
their types are representatives of  the same name. We write 

N, where w E Sym, for the name with representative w 

W, where W __ Sym, for the set of names {wl w 6 W} 
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3.3.3. Renamings 

A renaming is a total mapping from symbols to symbols that maps symbols with 
the same name to symbols with the same name, leaves the origins of symbols 
unaffected and changes the types of symbols consistently. 

A renaming is a mapping p :Sym ~ Sym such that 

w = w '  ~ p ( w )  - p ( w ' )  

~ ( p ( w ) )  = ~ ( w )  

z(w) = t(S1 . . . . .  S,) ~ v(p(w)) = t(p(St) . . . . .  p(S,)) 

Ren denotes the set of all renamings. 
It is assumed that renamings are extended to MPLo~ formulae in the usual 

homomorphic way. Renaming of an MPL~ formula may involve renaming of 
variable symbols (not necessarily bound) occurring in the formula. However, in 
DA a renaming can only be applied (by means of  renaming operations) such that 
renamed variable symbols are only affected in the usual way, viz. their sorts are 
changed according to the renaming. So renaming does not really lead to a kind 
of a-conversion. 

3.3.4. Signatures 

Name signatures result from forgetting about the origins in symbol signatures. 
A name signature is a set of names Z, where Z is a symbol signature. Sig 

denotes the set of all name signatures. 
The operations of DA include the following operations on name signatures: 

renaming, union and intersection. Renaming on name signatures amounts to 
application of a renaming to representatives of the names in a name signature (it 
follows immediately from the definition of  renamings that the particular choice 
of representatives is irrelevant). Union and intersection of  signatures is just set 
union and set intersection. 

The renaming operation e: Ren x Sig -+ Sig, the union operation +:  Sig x Sig 
--+ Sig, and the intersection operation [] : Sig x Sig --+ Sig are defined by 

p-~  := p(Z) (ZESig) 
2 ~ + Z 2  := ]StUs 

Y'I [] ~"~2 : =  Z l  ("1 Z 2 

3.3.5. Descriptions 

A description can be viewed as a presentation of an MPL~0 theory, together 
with an encapsulating signature for supporting the concept of information hiding 
and an origin partition indicating which origins of the symbols used in the 
description are considered equal (e.g. origins of visible symbols with the same 
name). A description is origin consistent if the elements of its origin partition are 
simultaneously unifiable. This is the case if there exists an instantiation of origin 
variables that identifies all origins in each of the elements of the partition. As 
an abstract meaning, an MPLo~ theory in which names are used as symbols of 
MPL~o can be attached to each origin consistent description. 

A description is a quadruple (Z, F, ~, ~), where Z and F are symbol signatures, 
E __ F, �9 ___ s and ~z c OPar. We write Ex, Fx, @x and nx,  where 
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X = (Z, F, q), n) is a description, for Z, F, q5 and n, respectively. Des denotes the 
set of all descriptions. 

The operations of DA include the following operations on descriptions: taking 
the signature, renaming, importing and exporting. Taking the signature of a 
description yields the name signature that consists precisely of the visible names 
of the description. The names of symbols in a description can be changed by 
applying a renaming to the description. Two descriptions can be combined into 
a new one by means of importing. The visible signature of a description can be 
restricted by means of exporting. 

The signature operation E : Des ~ Sig, the renaming operation * : Ren x Des 
Des, the importing operation +:  Des x Des --. Des, and the exporting opera- 

tion [] : Sig x Des ~ Des are defined by 

E(X) := Zx 
p o x  := (p(zx),p(rx),p(~,x),~x) 
X1 + X2 := (Ex 1 UEx2,Fx, UFx2,@x, U~x2,nx, +nx2) 
z [] x := <{w ~Zxl~Z},rx,+x,~x> 

These operations on descriptions have counterparts in MA [BHK90]. The 
following algebraic laws concerning these operations are satisfied: 

ZCp -X)  = p - E C X )  

]~(X 1 --[- X2) = ~,(Xl) -]- ~(X2) 

~ ( z  [] x )  = z [] ~ ( x )  

Pl "(P2 -X)  = (ploP2) -X  

p " (Xl  -t- X2) ---~ (p OXl) --]- (p oX2) 

p .(y~ [] x )  = (p , z )  [] (p . x )  

x + (z  [] x )  = x 

Xl ~-X2 = X  2 --]-X 1 

(xl  + x2) + x3 = x l  + (x2 + x3) 

r . ( x )  [] x = x 

z [] (Xl + x2) = (z [] x l )  + (x [] x2) * 

El [] (Y~2 [] X) = (E 1 [] E2) [] X 

They are axioms of MA, except the laws followed by * (which are similar to 
axioms of MA). 

3.3.6. Parameters 

2n-calculus is the basis for the semantics of the parametrisation constructs of 
VVSL. 2n-calculus supports descriptions which are parametrised over entire de- 
scriptions rather than over names, signatures, etc. However, when a parametrised 
description is instantiated for a given description, the origins of certain visible 
symbols of the latter one should be substituted for the corresponding origin vari- 
ables in the parametrised description. This is achieved by the origin substitution 
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operation c~ defined below. This operation requires a dummy description, called 
a parameter. Only the externally visible signature of a parameter is relevant. The 
origin of any symbol from this signature either is an origin variable or contains no 
origin variables. Besides there are no two symbols with the same origin variable 
as their origins. 

A parameter is a quadruple (Z,Z, { },r~• where Vw E Z (co(w) ~ OVar V 
OV(w) = {}), and Vw, w' E Z(co(w) E OVarAco(w) = co(w') ~ w = w'). Par 
denotes the set of all parameters. The notation O V(w) is used for the set of origin 
variables occurring in the origin and type of the symbol w. 

The operations of DA include the following operations on parameters: origin 
substitution and renaming. When a parametrised description is instantiated for a 
given description, the origins of certain visible symbols of the latter one can be 
substituted for the corresponding origin variables in the parametrised description 
by means of origin substitution. The names of  symbols in a parameter can be 
changed by applying a renaming. 

An origin substitution is a mapping fl:OVar ~ Orig. OSub denotes the set 
of all origin substitutions. An origin substitution is an instanfiation of origin 
variables. 

The set of  all origin variables that are changed by an origin substitution is 
considered to be its domain. For an origin substitution fl, dom(fl), the domain of 
fl, is defined by 

dom(fl) := {x  E OVar I/~(x) 4 = x} 
Origin substitutions are component-wise/homomorphically extended to origins, 
symbols, formulae and descriptions. An origin substitution fl on origins is ex- 
tended to origin partitions by the following rule: 

fl(~) = l-I{~' E OPar [ VA E ~ (3A' E ~z' ({fl(a) [ a E A} ___ A'))} 

The origin substitution operation e: Par x Des x Des -+ Des, and the renaming 
operation . :  Ren x Par --+ Par are defined by 

c~(P,XI,X2) := ~-'~{fl(X2) l fl e OSub Adom(fl) c_ OV(Zx,)  Afl(Zx,) _ Zx,} 

where X'  = Z(X1) [] 5(P) 

p - P  := p . a ( P )  

The notation 0 V(Z) is used for the set of origin variables occurring in the origins 
of the symbols from the symbol signature Z. The notation 5(P) is used for the 
embedding of the parameter P in Des (this embedding is just an inclusion). It is 
easy to verify that p . P  is indeed a parameter. 

The following algebraic laws are satisfied: 

~:(c~(p, x~, x2)) = ~(x2) 
o:(P,XI,p "X2) = p �9 o:(P,X1,X2) 
o~(P,XI,X2 q-X3) =-o~(P, XI,X2) q-g(P,XI,X3) 
~(P,XI,s  [] X2) = •  [] o:(P,XI,X2) 

3.3.7. Abstract Meaning of  Descriptions 

As an abstract meaning, an MPL~ theory in which names are used as symbols of 
MPLo, can be attached to each origin consistent description. A mathematically 
precise definition of the theory of descriptions is given in Chapter 9 of [Mid90]. It 
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requires several tedious auxiliary definitions, e.g. definitions concerning unification 
of origin partitions. Instead, it is only informally described here how the theory 
of an origin consistent description X can be obtained: 

Let ~ be the origin partition indicating that the origins of symbols in Zx with the 
same name are considered equal. First of all, apply the most general simultaneous 
unifier of the elements of nx + n~ to X. Thus, symbols from the externally visible 
signature with the same name are actually identified. 

Let X' be the resulting description. Secondly, take the set of all formulae from 
~(Fx, )  that the formulae from q)x, entail (according to the proof system of 
MPLo~) and restrict the result to s162 Thus, the set of all the visible conse- 
quences of the axioms ~x, is obtained. 

Finally, replace the occurrences of symbols w by their name N. Thus, an origin 
independent meaning of X, called the theory of X, is obtained. 

The definition of the theory of descriptions can be extended to non-origin- 
consistent descriptions in a way which is suggested by a characterisation of the 
theory of an origin-consistent description. This extension is required for technical 
reasons. It is not intended to give an appropriate meaning to non-origin-consistent 
descriptions. Intuitively, non-origin-consistent descriptions are meaningless. 

Th(X) denotes the theory of the description X. 

3.3.8. Implementation Relation 

An implementation relation for descriptions is also defined. This implementation 
relation plays a crucial role in the semantic foundation of the parametrisation 
constructs of VVSL in Section 3. 

In the case that Description Algebra is used to provide the modularisation 
constructs of a particular specification language with a semantics, a subalgebra 
of DA is usually needed. Therefore, a notion of an implementation relation is 
presented, which is defined with respect to the domains of a subalgebra of DA. 
It is defined in terms of theories of descriptions. 

Let N _~ Nam, R _c Ren, S _ Sig, D ~ Des, and P ~ Par be the domains of 
a subalgebra of DA. Then for X~,X2 ~ D, X1 E_ X2, Xt is an implementation of 
X2, is defined by 

X 1 E X 2 :~=~ ~ ( X l )  ~ ~_~(X2)/~ Th(X1) ~_ Th(X2) 

The relation ___ on D is called the implementation relation of the subalgebra of 
DA. The relation _E is a pre-order and the operation Z is monotonic with respect 
to r- (and 2). 

Monotonicity does not generally hold for the other operations. Restriction 
to origin consistent descriptions is sufficient for monotonicity of n. Further 
restrictions are required for the operations -, + and c~. 

Des has ({ }, { }, { }, ~• as maximal element with respect to the implementation 
relation of DA. For an arbitrary subalgebra of DA, it does not generally hold 
that its domain of descriptions (a subset of Des) has a maximal element with 
respect to the implementation relation of the subalgebra. 
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3.4. 2~-Calculus 

c. A. Middelburg 

2re-calculus is a variant of classical lambda calculus with terms and rules as 
introduced below. In order to keep the presentation of 2~-calculus simple, it is 
not overly mathematical:  usual definitions are mostly informal. Mathematically 
precise definitions can be found in Chapter t0 of  [Mid90] and in [Fei89]. 

3.4.1. Algebraic Systems with Pre-order 

2rc-calculus is put "on top" of  an algebraic system with pre-order. Algebraic 
systems with pre-order are introduced first. An algebraic system with pre-order 
is a heterogeneous algebra together with a pre-order on one of its domains, such 
that the domain has a maximal element with respect to the pre-order, e.g. DA 
together with its implementation relation is an algebraic system with pre-order. 
The pre-ordered domain is called the domain of interest of the algebraic system 
with pre-order. The other domains are called secondary domains. In this paper, 
we shall be somewhat sloppy about the secondary domains. Secondary domains 
are dealt with formally in Chapter 10 of [Mid90]. 

The restriction to a single domain of interest is not fundamental, but gener- 
alisation leads to loss of  uniformity in the treatment of  parameter  restrictions in 
2~z-calculus. 

We have to distinguish between the elements of  the domains of  an algebraic 
system with pre-order and the terms denoting them. Therefore, we assume that 
there is an alphabet to be used for constructing terms associated with each 
algebraic system with pre-order d and that this alphabet consists of constant 
symbols (one for each constant of  d), function symbols (one for each operation 
of d ) ,  and variable symbols (countably many). 

Given the alphabet of  d ,  terms of d can be constructed as usual. Con- 
ventionally, we use the same notation for the constant symbols and the values 
denoted by them. Because terms can contain symbols only, this cannot cause any 
confusion. 

From terms L and M, atomic formulae of the forms L = M and L E M can 
be constructed. From these atomic formulae, conjunctions and implications can 
be constructed as usual. It is assumed that validity of these formulae is defined as 
usual, with E corresponding to the pre-order of  d .  We write d ~ ~o, where ~o is 
a formula of  one of the above-mentioned forms, to indicate that (p is valid in d .  

3.4.2. Terms and Rules of the 2~-Calculus 

The terms of the 2~-calculus obtained for a given algebraic system with pre-order, 
say s / ,  are called the terms of 2~ for d .  The corresponding rules are analogously 
called the rules of  27c for d .  

The types of the terms are as usual for typed lambda terms. Every type is of  
the form 0 or (o- ~ r), where o- and r are types. 

Given the alphabet of  d ,  terms of 2~z for d can be constructed as usual 
for typed lambda terms, except that a parameter  restriction has to be added 
to lambda abstractions. More precisely, lambda abstractions are of the form 
(2x E L.M) - instead of (2x.M) - where L and M are terms of 2~z. 

2~z-calculus is formulated as a derivation system for statements of  the form 
F ~- cp, where: 
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(p is an (atomic) formula of the form L = M or L E M, where L and M are 
lambda terms of the same type. 
F is a finite set of assumptions, each of the form [(01], where q; is a formula of 
one of the above-mentioned forms. 

These statements are called sequents. Intuitively, a sequent F F- ~o indicates that 
the formulae in the set of assumptions F entail the formula ~0. 

Sequents are derived by means of the derivation rules given below. They make 
it possible to compare not only terms that can be interpreted in d ,  but also to 
compare (in a syntactic way) terms that can only be interpreted in extensions of 
d with function domains. 

In the derivation rules given below, F, F' stand for finite sets of  assumptions, 
(o stands for a formula, and L,M,  La ,MbL2,M2, . . .  stand for lambda terms. 
Furthermore, we write F, [q~] for F U { [~o]} and we write x ~ F to indicate that x 
is not free in any q~ for which [(0] E F. [x :=L]M denotes the result of replacing 
L for the free occurrences of x in M, avoiding that free variables in L become 
bound by means of renaming of bound variables. The notation Ix :=L]cp is 
defined analogously. In the rule ( h ) ,  we write " f  monotonic" for the formula 
stating that the function f is monotonic (with respect to the pre-order r-). 

The derivation system of 2re for s~r is defined by the following derivation rules: 

F [- Li V- Mi 
(~1) F l- f (  . . . .  Li . . . .  ) E_ f (  . . . .  Mi . . . .  ) provided s~ M f monotonic 

( ~ 2 )  - -  provided d ~ (p, (p closed 
F~-cp 

(cxt) 
F, [~o] ~ ~0 

(refl=) 

(subst) 

F P L = L  

Ft - [y :=L]q~  F k - L = M  

F F- [y :=M](o 

(refl) F k- L r- L 

F k Lt r- L2 F ~- L2 E L3 
(trans) 

F~-L1 ___L3 

Fk -LI  E_L2 
(appl) 

F b (L1M) r- (L2M) 

F, [x E L] ~- Mt E_ M2 
(211) F I- (2x _ L.MO E_ (2x __. L.M2) provided x ~ F 

FF-L1 E L 2  
(212) 

F ~- (2x r- L2.M) E_ (2x _E L1.M) 

F, [x __. L] ~- M1 - - - =  M2 
(213) F ~- (2x E_ L.MO = (2x _E L.M2) provided x ~ F 

2 F A  C 4 
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(~) F ~- L2 __. L1 
F ~ (2x V- L1.M)L2 = [x :=L2]M 

A sequent F ~- qo is derivable if it is the conclusion of one of the derivation rules, 
all premises of this derivation rule (none, for the cases of (~2), (cxt), (refl=) and 
(refl)) are derivable, and all side-conditions are satisfied (for the cases of (~l),  
(~2), (210 and (Ms)). We write )~7r[~r F F- q~ (and sometimes just F ~- q)) to 
indicate that F ~- q) is derivable. 

The rule ( h )  is a monotonicity rule for the monotonic functions of the 
algebraic system with pre-order sO. Thus, for each monotonic function of d ,  its 
monotonicity can be used in the calculus. The rule (~2) expresses that simple 
formulae (closed atomic formulae which have been constructed from terms of 
d )  valid in d can be derived in any context. The rule (cxt) expresses that 
assumptions from a context can be derived in that context. 

The rules (refl=) and (subst) are the usual rules for =. The rules (refl) and 
(trans) are a reflexivity rule and a transitivity rule for _E. 

Each lambda term of the form ()ox r- L.M) can be viewed as a function with a 
restriction on its argument: the argument must be an "implementation" of L. The 
rule (appl) expresses that application is monotonic with respect to __ in its first 
argument. This rule reflects the intuition that if one function implements another 
function then for any argument the result of the one function implements the 
result of the other function. The rules (211) and (212) express that abstraction is 
monotonic with respect to U__ in its second argument and anti-monotonic in its first 
argument. The rule (213) expresses that abstraction is monotonic with respect to = 
in its second argument. Because an assumption [x ___ L] is discharged, this rule is 
not redundant. The rule ()all) reflects the intuition that for two functions with the 
same argument restriction, the one function implements the other function if for 
every acceptable argument the result of  the one function implements the result of 
the other function. The rule (212) reflects the intuition that for two functions with 
the same function body and with comparable argument restrictions, the function 
with the "weakest" restriction implements the other function. The rule (213) 
reflects the intuition that for two functions with the same argument restriction, 
the one function equals the other function if for every acceptable argument the 
result of the one function equals the result of the other function. The rule (~) is 
a conditional version of the rule (fi) of classical lambda calculus. It reflects the 
intuition that the result of a function is undefined for every argument that does 
not meet the argument restriction. 

In Chapter 10 of [Mid90] and in [Fei89], a model of 27z for d is constructed. 
Thus, the intuition, that a term of the form (2x E L.M) denotes a function, can be 
made more precise. The model is obtained there as an extension of  the underlying 
algebraic system with pre-order d .  

In 2~z-calculus, terms can be reduced with respect to a context, i.e. a finite set 
of  assumptions, in a meaning preserving way to a form not containing subterms 
of the form (2x ~ L1.M)L2, where L1 and L2 are such that L2 _E L1 in that 
context. Such subterms are contracted corresponding to the rule (n). Reduction 
for 27c-calculus is similar to reduction for classical lambda calculus. The main 
difference is that it is defined with respect to a context F. Not every lambda term 
of the form (2x E_ L1.M)L2 can be contracted. Whether this is the case, depends 
upon the context. For 27r-calculus, reduction always leads in finitely many steps 
to a unique fully reduced form. 
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3.5. Refinements for the Interpretation of VVSL 

3.5.1. Module Description Algebra and Module Description Calculus 

For the interpretation of VVSL, there are VVSL specific restrictions on the ways in 
which symbols may be built from identifiers, origins and types. These restrictions 
on symbols also leads to restrictions on symbol signatures and renamings and 
ultimately it leads to a subalgebra of DA, called Module Description Algebra 
(MDA). MDA is precisely defined in Chapter 9 of [Midg0]. It differs considerably 
from Class Algebra (CA), which is the subalgebra of DA used for COLD-K 
in [FJK89]. 

Amongst the symbols used for the interpretation of VVSL, symbols corre- 
sponding to user-defined names, symbols corresponding to pre-defined names, 
symbols corresponding to constructed types and special symbols (not corre- 
sponding to either user-defined names, pre-defined names or constructed types) 
are distinguished, One of the special symbols is a special sort symbol for the 
state space. It allows function symbols and predicate symbols which correspond 
to names of state variables and operations, respectively. Amongst the special 
symbols are also function symbols which are used for implicit conversion from 
subtype to type and vice versa. 

In order to provide the structuring sublanguage of VVSL with a semantics, 
2~z-calculus is put on top of a specific algebraic system with pre-order, viz. MDA 
together with the implementation relation of MDA. The 2~-calculus obtained in 
this way is called module description calculus. 

3.5.2. Extended Module Description Calculus 

In VVSL, all constituent modules of modularisation constructs may be parametri- 
sed modules. This necessitates generalisations of renaming, importing, exporting, 
and origin substitution, that can be applied to description terms which denote 
functions on descriptions (including higher-order ones). The generalisations are 
straightforward except for renaming, but unfortunately none of them can be 
treated as an abbreviation. They must all be treated as extensions. The intention 
is that, with the introduction of the extensions, renaming, importing, exporting 
and origin substitution become interchangeable with application. For generalised 
renaming, this means that it has to yield functions which when applied to 
renamed arguments deliver results as if renaming has been applied to the value of 
the original function for the original arguments. Unlike with the other operations, 
renaming does not have the suitable properties to make this derivable by a simple 
additional rule. The rule concerned has to be very explicit about how terms 
with generalised renamings are to be "unfolded". Origin substitution yields the 
description provided as third argument except that the origins of symbols may be 
different. The sole purpose of the description provided as second argument is to 
provide for the origins to be substituted for certain origin variables in the third 
argument. Therefore, the above-mentioned interchangeability only applies to the 
third argument of generalised origin substitution. 

Extended module description calculus is module description calculus extended 
with the generalisations of renaming, importing, exporting and origin substitu- 
tion. The rules of extended module description calculus and the accompanying 
unfolding are given in Chapter 10 of [Midg0]. 

2~2 
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3.5.3. Connections with VVSL's Structuring Sublanguage 

The interpretation of modules is defined by a function J which maps module 
M, MDA symbol context C, and 2n variable symbol context F to the term of 
extended module description calculus representing the meaning of the module M 
in a context where we have visible MDA symbols as given by C, and visible 2re 
variable symbols with associated restrictions as given by F. The MDA symbols 
correspond to VVSL names of types, functions, state variables and operations. 
The 2re variable symbols correspond to VVSL names of modules. Instead of 
J ( M ,  C, F), we write [[m]]r c. 

The interpretation of modules is compositional in the sense that for every 
module the corresponding term is composed of the terms corresponding to its 
constituents (in perhaps different contexts). The correspondence is very straight- 
forward (modules of the form rename R in M correspond to description terms of 
the form p .L ,  etc.), except for modules of the form import M1 into M2. The reason 
for this exception is that it is assumed that all visible names of  M1 which are 
used but not defined in M2, are implicitly introduced in M2 by a free definition. 
This is reflected in the interpretation by means of origin substitution: 

[[import M1 into M2]] C : :  [[M~]] c + ~(par(C'), [[M1]] C, [[M2]} CUC') 

where C' is an appropriate enrichment of the MDA symbol context C for the 
implicitly introduced names and par(C') is the corresponding parameter. 

A precise definition of the interpretation of modules is given in Chapter 11 
of [Mid90]. 

4. Example of the Use of VVSL's Structuring Sublanguage 

In this section, the following basic concepts of the widely known "Relational 
Data Model" (RDM) [Cod70, BrS81, Ul188] are formalised: tuple, relation, tuple 
structure and relation schema. The concepts attribute and value are regarded as 
primitive concepts about which a few assumptions have to be made. The presented 
modules include a module concerning tuples (containing the definitions of tuples 
and basic functions on tuples), a module concerning relations (containing the 
definitions of relations and basic functions on relations), etc. Relations together 
with the defined functions for constructing new relations from old ones constitute 
a version of relational algebra. The concepts relation and relation schema are 
connected through a boolean-valued function "is valid instance of"  on relations 
and relation schemas. 

A concept of typed relation, which is similar to the concept with the same 
name in [FiJ90], is also formalised. This is done in a module that imports the 
module concerning relations and the module concerning relation schemas. Thus a 
variation on the challenge problem in [FiJ90] is given. Its presentation is followed 
by a discussion on this variation. 

4.1. Assumptions: Attribute and Value 

Tuples are built from attributes and values, relations are built from tuples, etc. 
Attributes are usually identifiers. Values are usually numbers from some finite 
range of integers and strings over a finite alphabet up to some finite length. 
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However, the definitions of  tuples, relations, and other R D M  concepts do not 
rely on any property of  attributes and rely on only a few properties of  values. 
Therefore, we do not commit ourselves to a particular choice of  attributes and 
values. 

Value in the sense of the R D M  should not be confused with value in the sense 
of  VVSL. Only the values (in the sense of VVSL) of the assumed type Value are 
values in the sense of the RDM. In this section, value is mainly used in the sense 
of  the RDM. Where it is used in the sense of  VVSL and confusion may occur, it 
is explicitly mentioned that it is used in the other sense. 

In the module ATTRIBUTE is expressed that it is assumed that there is a type 
Attribute with no a priori properties. For values, it does not suffice to assume that 
there is a type Value. The module VALUE contains the following assumptions 
about values: 

There is a type Value with no a priori properties. 

There is a type Domain; its values (in the sense of  VVSL) must be the finite sets 
of  values. 

There is a truth-valued function member on values and domains; which must be 
set membership. 

There is a natural-number-valued function card on domains; which must be set 
cardinality. 

There is a constant all of  type Domain with no a priori properties. 

There is a binary truth-valued function It on values with no a priori properties. 

Most modules in this section are parametrised ones. The modules AT- 
TRIBUTE and VALUE are used as parameter  restriction modules for these 
parametrised modules. Thus, the parametrised modules allow to concentrate on 
what is particularly relational in nature. 

ATTRIBUTE is 
module 

types 

Attribute free 

end 
and 

VALUE is 
module 

types 

Value free 

Domain = set of Value 

functions 

member (v: Value, d : Domain)B 
A _ v E d  

card (d " Domain)N 
card d 

all ()Domain free 

It (Vl : Value, v2 : Value)b : B free 
end 
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Finite sets of  attributes, bijections between these attribute sets, and finite 
sets of  these attribute sets are often used (e.g. as arguments of  functions on 
tuples, relations, etc.). Therefore, the type and function definitions concerned are 
collected in a general module which is imported into the other modules. The 
name of this module is ATTR_SUPPL.  It is parametrised by a module X with 
parameter  restriction ATTRIBUTE.  The module X is imported. This means that 
the module ATTR_SUPPL is based on assumptions with respect to attributes. 
It contains only the trivial definitions of  several usual functions to generate and 
analyse attribute sets, etc. This simple module is not given in this paper (the 
interested reader can find it in Chapter 14 of [Mid90]). 

4.2. Tuple 

In the module TUPLE,  tuples are defined to be maps from attributes to values. 
A tuple can be thought of  as a record, with the attributes corresponding to fields. 
In the following subsection, it is mentioned that a relation can be perceived as a 
table. In that case a tuple is like a row of a table. 

It is not uncommon to define tuples to be sequences of  values, which is in 
accordance with Codd's original definition [Cod70]. The consequences of  choosing 
one definition over the other are illustrated in [Bjo82]. 

Tuple predicates are defined to be maps from tuples to truth values. A tuple 
predicate holds for a tuple if this map associates with the tuple the truth value 
true. A tuple predicate is like a property that tuples can have. 

The module T U P L E  is based on assumptions with respect to attributes and 
values and on definitions regarding attribute sets, etc. 

The role of  all is that of  a finite universe of  values for the attributes of  tuples. 
The restriction to a finite universe of  values for the attributes of  tuples allows 
extensive use of  maps in formalising R D M  concepts. The assumptions made 
about values in the module VALUE, except the ones concerning the functions 
card and lt, are used in the module T U P L E  to enforce this restriction. 

The functions defined in the module T U P L E  are used in the module RELA- 
TION.  

T U P L E  is 
abstract 

X: ATTRIBUTE,  
Y : VALUE 

of 

import 

apply ATTR_SUPPL to X,  
Y 

into 

module 

types 

Tuple = map Attribute to Value 
where inv(t) 

dora t @ { } /k Va C Attribute.a E dom t ~ member(t(a), all) 



Modular Structuring of VDM Specifications in VVSL 35 

Tuple_predicate = map Tuple to B 
where inv(tp) A 

Vtl ~ Tuple, t2 G Tuple. 
tl C dom tp A t2 E dom tp attributes ( t l )  = attributes (t2) 

functions 
singleton(a :Attribute, v : Value)Tuple 

s  v} 

merge (tl ' Tuple, t2 : Tuple) Tuple 
pre disjoint (attributes (tl), attributes (t2)) 
A t l  U t2 

restrict (t : Tuple, as : Attribute_set) Tuple 
pre included(as, attributes(t)) 
A a s < l t  

rename (t : Tuple, ab : Attribute_ bijection) Tuple 
pre attributes (t ) = dora (ab ) 
A {apply(ab, a) ~ value(t,a) [ 

a E Attribute; member(a,attributes(t))} 

holds (tp" Tuple_predicate, t : Tuple)B 
pre defined (tp, t) 
~_ tp(t) 

defined (tp " Tuple_predicate, t : Tuple)B 
Am t E dom tp 

attributes ( t " Tuple )Attribute_set 
A d o m  t 

end 

value(t : Tuple, a :Attribute) Value 
pre member ( a, attributes ( t ) ) 
A t(a) 

4.3. Relation 

In the module RELATION, relations are defined to be sets of tuples with the 
same set of attributes as domain. A relation can be thought of  as a file of records 
with the same fields. A relation can also be perceived as a table. In that case the 
tuples are called rows and the attributes are called column names. However, note 
that such a table is an unordered collection of rows. Moreover, the order of the 
columns does not matter. 

Roughly speaking, relations together with the defined functions for construct- 
ing a new relation from old ones constitute a version of relational algebra. These 
functions comprise traditional set operators (modified slightly since relations are 
not arbitrary sets) and special relational operators. Relational algebra as origi- 
nally defined by Codd in [Cod72] reflects the set-of-sequences view of relations. 
Besides, it contains additional functions which can be defined in terms of the 
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others. A renaming funct ion as present  in our  version is not  extant  in the or iginal  
one, since it does not  make  much sense in the set-of-sequences view. 

The modu le  R E L A T I O N  is based  on assumpt ions  with respect  to a t t r ibutes  
and values and  on definit ions regarding  a t t r ibu te  sets, etc. and  tuples. 

Note  tha t  the funct ions union and difference on two relat ions are  no rma l  set 
union and set difference on rela t ions with the same a t t r ibu te  set. I f  they do not  
have the same a t t r ibu te  set, then the set union or  set difference does not  yield a 
re la t ion as result. 

The funct ions on re la t ions  under ly ing  the query l anguage  ISBL of  the 
P R T V  [Tod76] resemble the cons t ruc tor  funct ions for relat ions defined here. 

Perceiving rela t ions as tables these funct ions can be informal ly  expla ined as 
follows: 

empty creates an empty  table,  that  is a table  with no rows. 

singleton creates a table  with one given row only. 

union adds  to a given table  the rows in ano ther  one, forming a new table  with more  
rows. In the case that  the result ing table  conta in  some rows that  are identical ,  all 
but  one o f  them are discarded.  Both tables must  have the same co lumn names.  

difference removes f rom a given table the rows tha t  are also in ano the r  one, 
forming a new table  with fewer rows. Both tables must  have the same co lumn 
names. 

product puts  each row in a given table  and each row in ano ther  one together,  
forming a new table with one row for each combina t ion  o f  rows f rom the old 
ones. The tables  must  have no co lumn name in common.  

projection selects cer tain columns  in a given table, forming a new table with fewer 
columns.  A collect ion o f  co lumn names  is given to indicate  the columns  to be 
selected. In  the case that  the result ing table conta ins  some rows that  are identical ,  
all but  one o f  them are discarded.  

selection selects cer tain rows in a given table, forming a new table  with fewer 
rows. A p rope r ty  o f  rows is given to indicate  the rows to be selected. A selection 
p roper ty  m a y  be, for example,  that  one or  more  entries have a specific value. 

rename changes the names of  the columns in a given table, leaving everything else 
the same. A cor respondence  between old co lumn names and new co lumn names 
is given to indicate  the name change. 

The non-cons t ruc to r  funct ions are used in the modules  R E L A T I O N _ S C H E M A .  
In tha t  module ,  they are used to define a funct ion is_valid_instance th rough  which 
rela t ions and re la t ion schemas are connected.  

R E L A T I O N  is 
abstract 

X : A T T R I B U T E ,  
Y : V A L U E  

of 

import 
apply A T T R _ S U P P L  to X, 
apply T U P L E  to X, Y 

into 
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module 
types 

Relation = set of Tuple 
where inv(r) A 

Vtl E Tuple, t2 E Tuple. 
tl E r A t2 @ r ~ attributes(t1) = attributes(t2) 

functions 

empty ()Relation 
A{} 

singleton(t" Tuple)Relation 
A{t} 

union (rl :Relation, r2 : Relation)Relation 
pre rl @ empty A r2 @ empty ~ attributes(r1) = attributes(r2) 
A r t  Ur2 

difference (r~ : Relation, r2" Relation) Relation 
pre rl ~ empty A r2 @ empty ~ attributes(r1) = attributes(r2) 
A rl -- r2 

product (r l :Relation, r2 " Relation)Relation 
pre rl @ empty A r2 @ empty => disjoint (attributes (rl), attributes(r2)) 
A {merge(t1, t2) ] 

tl E Tuple, t2 E Tuple; member (tl, rl) A member(t2, r2)} 

projection (r" Relation, as" Attribute_set)Relation 
pre r @ empty => included(as, attributes(r)) 
A {restrict (t, as) [ t E Tuple ; member (t, r)} 

selection (r "Relation, tp " Tuple_predicate)Relation 
pre Vt E Tuple.member(t ,r)  ~ defined(tp, t) 
A {t [ t E Tuple ; member (t, r) A holds (tp, t)} 

rename(r" Relation, ab : Attribute_bijection )Relation 
pre r (= empty => attributes(r) = dom(ab) 
A { rename( t ,ab ) ] t  E Tuple; member(t ,r)}  

attributes (r :Relation)as: Attribute_set 
pre r 5L empty 
post 3t E Tuple.member (t, r) A attributes (t) = as 

values (r : Relation, a : Attribute)d :Domain 
pre r ~ empty A member(a, attributes(r)) 
post Vv E Value.member(v,d) <* 

3t E Tuple.member(t ,r)  A value(t,a) = v 

member (t : TupIe, r" Relation)B 
A t E r  

end 
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4.4. Tuple Structure 

In the module TUPLE_STRUCTURE,  tuple structures are defined to be maps 
from attributes to domains. A tuple structure can be thought of as a record type, 
with the attributes corresponding to fields and the domains corresponding to the 
types of the fields. A tuple structure is a kind of "meta-object" connected with 
tuples. It is used to present structural constraints which must be obeyed by certain 
tuples. It presents structural constraints on a tuple as follows: the attributes of 
the tuple and the attributes to which a dom.ain of values is associated by the tuple 
structure must be the same and the value of the tuple for each of these attributes 
must belong to the corresponding domain of values. 

The module TUPLE_STRUCTURE is based on assumptions with respect to 
attributes and values and on definitions regarding attribute sets, etc. 

As pointed out by Fagin [Fag81], tuple structures with domains that violate the 
restriction that the cardinality must be greater than one are unreasonable. Besides, 
this cardinality restriction allows that some well-known normal forms (viz. Boyce- 
Codd normal form, fourth normal form and projection-join normal form) are 
simply connected to domain-key normal form. For an introduction to normal 
forms, see e.g. [Ul188]. The assumption made about values in the module VALUE 
concerning the function card is used in the module TU P LE_ S TRU CTU RE to 
enforce this restriction. 

The constructor functions for tuple structures are intended for "type checking" 
of queries. Note the resemblance with the constructor functions for tuples. An 
empty tuple structure is not used to present structural constraints on the tuples 
of some relation (tuples with an empty attribute set are excluded). However, an 
empty tuple structure can be useful for type checking of queries. 

The non-constructor functions are used in the module RELATION_SCHEMA. 

TUPLE_STRUCTURE is 
abstract 

X: ATTRIBUTE, 
Y : VALUE 

of 

import 
apply A T T R _ S U P P L  to X ,  
Y 

into 

module 
types 

Tuple_structure = map Attribute to Domain 
where inv(tstr) A-- 

Va E Attribute. 
a C dom tstr 

card (tstr (a)) >_ 2 A 
Vv E Value.member(v,tstr(a))  ~ member(v,al l )  

functions 
empty 0 Tuple_structur e 

_A{} 
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singleton (a :At tr ibute ,  d : Domain)  Tuple_ structure 
A {a ~-* d} 

merge ( tstr t " Tuple_structure,  tstr2 : Tuple_structure ) Tuple_structur e 
ore disjoint (attributes ( tstr t ), attributes ( tstr 2 ) ) 
A tstrl U tstr2 

restrict (tstr " Tuple_structure,  as : At tr ibute_set )  Tuple_structure 
A as <l tstr 

rename ( tstr " Tuple_structure,  ab : At tr ibute_bi ject ion ) Tuple_structure 
pre attributes (tstr ) = dora (ab ) 
A {apply(ab,  a) ~ domain( ts tr ,  a) I 

a C At tr ibute  ; member (a, attributes (tstr))} 

attributes ( tstr : Tuple_structure ) A t tribute_set  
Adom tstr 

end 

domain (tstr : Tuple_structure,  a : A t t r ibu te)Domain  
pre member (a, attributes ( tstr ) ) 
A tstr (a) 

4.5. Relation Schema 

In the module RELATION_SCHEMA,  relation schemas are defined to be com- 
posite values with a tuple structure and a set of  attribute sets as components. A 
relation schema is a kind of  meta-object connected with relations, like a tuple 
structure is a kind of meta-object connected with tuples. A relation schema is 
used to present intra-relational constraints which must be obeyed by certain rela- 
tions. Its tuple structure presents structural constraints on the tuples of  a relation 
and each of  the attribute sets, called keys, presents a uniqueness constraint on 
the relation as follows: no two distinct tuples of  the relation may have the same 
value for each of  the attributes from a key. The relations that obey the constraints 
presented by a given relation schema are its valid instances. 

A relation schema is often defined to be simply an attribute set; e.g. in [Ul188]. 
In [Fag81] it is defined to be a composite value with an attribute set and a set 
of relation constraints as components. These concepts of  a relation schema are 
regarded as extremes. Here, a concept of a relation schema is formalised which is 
similar to the one envisaged in [BrS81]. It is between the two extremes. 

The module R E L A T I O N _ S C H E M A  is based on assumptions with respect to 
attributes and values and on definitions regarding attribute sets, etc. relations, 
and tuple structures. 

R E L A T I O N _ S C H E M A  is 
abstract 

X: ATTRIBUTE, 
Y: VALUE 

of 
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import 
apply ATTR_SUPPL to X,  
apply RELATION to X, Y,  
apply TUPLE_STRUCTURE to X, Y 

into 

module 
types 

Relation_schema :: structure : Tuple_structure keys : Attributes_set 
where inv(rsch ) A 

attributes (structure(rsch ) ) ~ empty A 
Vas c Attribute_set. 

member (as, keys (rsch ) ) 
included (as, attributes (structure (rsch ) ) ) 

functions 
is_ valid_ instance (r : Relation, rsch : Relation_ schema )B 

A r @ empty => 
attributes (r ) = attributes (rsch ) A 
(Va E Attribute. 

member ( a, attributes(r)) =~ 
Vv c Value. 

member (v, values (r, a)) ~ member (v, domain (rsch, a))) A 
(Vas E Attribute_set. 

member (as, keys (r sch ) ) 
Vtt c Tuple, t2 E Tuple. 

member(t l ,r)  A member(t2,r) 
(restrict (tb as) = restrict (t2, as) => 

restrict (q, difference (attributes (r ), as)) = 
restrict (t2, difference(attributes (r ), as)))) 

attributes (rsch : Relation_schema)Attribute_set 
A attributes (structure(rsch)) 

domain (rsch : Relation_ schema, a : Attribute)Domain 
pre member ( a, attributes (rsch ) ) 
A domain (structure (rsch), a) 

end 

4.6. Typed Relation 

In the module TYPED_RELATION,  typed relations are defined to be relations 
that are valid instances of  a given relation schema. In other words, typed relation 
is a generic concept with an instance for each relation schema. The valid instances 
of a given relation schema can be viewed as "relations of the same type". This 
explains the name of the concept. 

The functions defined on typed relations are restrictions of corresponding 
functions defined on relations in module RELATION. Note that not all construc- 
tor functions for relations defined there make sense here. 

The module TYPED_RELATION is based on assumptions with respect to 
attributes and values and on definitions regarding relations and relation schemas. 



Modular Structuring of VDM Specifications in VVSL 41 

Additionally, it is based on the assumption that there is a constant rsch of type 
Relation_schema with no a priori properties. 

T Y P E D _ R E L A T I O N  is 

abstract 
X : ATTRIBUTE,  
Y : VALUE 

of 

abstract 
Z:  

export 
rsch : -+ Relation_schema 

from 
import 

apply R E L A T I O N _ S C H E M A  to X, Y 
into 

module 
functions 

rsch O Relation_schema free 
end 

of 

export 
ty_empty : -+ Typed_relation, 
ty_singleton: TupIe ~ Typed_relation, 
ty_union : Typed_relation x Typed_relation --~ 
ty_difference: Typed_relation x Typed_relation 
ty_selection : Typed_relation x Tuple_predicate 
ty_attributes : Typed_relation --~ Attribute_set, 
ty_values: Typed_relation x Attribute ~ Domain, 
ty_member: Tuple x Typed_relation --~ B 

from 

Typed _relation, 
--* Typed_relation, 
--* Typed_relation, 

import 
apply R E L A T I O N  to X, Y, 
apply R E L A T I O N _ S C H E M A  to X, Y, 
Z 

into 

module 

types 
Typed_relation = Relation 

where inv(r) is_valid_instance(r, rsch ) 

functions 

ty_empty 0 Typed _relation 
A empty 

ty_singleton (t : Tuple) Typed_relation 
pre is_valid_instance(singleton(t), rsch ) 
A singleton (t) 
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ty_ union (r l : Typed _ relation, r2 : Typed _ relation) Typed _ relation 
union (rb r2) 

ty_ dif ference (r l : Typed_ relation, r2 : Typed _ r e l a t i o n )  T y p e d  _ relation 
di f ference(rb  r2) 

ty_ selection (r : Typed _ relation, tp : Tuple_predicate  ) Typed_ relation 
pre Vt ~ T u p l e . m e m b e r ( t , r )  =~ def ined(tp ,  t) 

selection (r , tp ) 

ty _ at tr ibutes (r : Typed _ relation) as : A ttribu re_ set  
at tr ibutes  (rsch ) 

ty_values  (r : Typed_relat ion,  a : A t t r ibu te )d  : Domain  
pre r • t y_empty  A member (a ,  ty_at t r ibutes(r  ) ) 
~-- values (r, a) 

end 

t y _ m e m b e r ( t  : Tuple,  r: Typed_re la t ion)B  
& member  (t, r) 

4.7. Discussion 

All modules presented in this section, except the last one, have been copied from 
the modularly structured specification of an interface of a relational database 
management system (RDBMS) in Chapters 14 and 15 of [Mid90]. The interface 
concerned comprises commands for data manipulation and data definition ac- 
cording to the RDM concepts. It should be regarded as an external interface: the 
commands are made available directly to the users of the RDBMS. It is abstract 
in the sense that it does not deal with details of actual interfaces like concrete 
syntax of commands, their embedding in a host language, concrete representation 
of the data objects yielded by query commands, etc. 

The specification in [Midg0] covers many of the basic concepts of the RDM, 
including the ones which are considered fundamental in [BrSS1]. Its modular 
structure isolates the formalisation of the RDM concepts from the formalisation 
of the external RDBMS interface. This means that large parts of the specification 
can be re-used in specifications of other possible external RDBMS interfaces and 
even various internal RDBMS interfaces. 

In this paper, parts are also re-used in the module TYPED_RELATION.  
This is a module concerning a concept of typed relation, which is similar to the 
concept with the same name introduced by Fitzgerald and Jones in [FiJ90]. In a 
way, the introduction of this concept is responsible for their modular structuring 
of  a specification of "Norman's Database" (NDB). VVSL does not supply the 
ability to create multiple instances of imported modules and then to refer to 
the appropriate instances dynamically, which is essential to complete a NDB 
specification in their style. 

The module TYPED_RELATION arises in a different way than the cor- 
responding module in [FiJ90]. First, relations together with the operations of 
relational algebra are specified in the module RELATION and relation schemas 
together with the predicate "is valid instance of"  connecting relation schemas 
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with relations are specified in the module RELATION_SCHEMA. The specifica- 
tion of typed-relations is naturally placed in the resulting structure. There do not 
remain questions like the one remaining for Fitzgerald and Jones: "Where would 
the specification of the operations of relational algebra be placed in a structure 
such as this?". 

The inability to repeat their NDB specification does not seem very serious, 
because the modules RELATION and RELATION_SCHEMA can be used 
directly in an NDB module. In the state invariant a condition like is_valid_ 
instance(r,rsch) has to be used instead of a condition like r E Typed_relation[rsch] 
(where Typed_relation[rsch] would refer to the type Typed_relation from the 
instance of TYPED_RELATION for the relation schema rsch) which has to be 
used in a NDB specification in the style of Fitzgerald and Jones. rsch should be 
viewed as being extracted from components of the NDB state. So, a dynamic 
reference to an instance of a module is avoided. 

A consequence of the outlined modularisation is an increase of the number 
of hypotheses in the statements of theorems about the NDB module. It is ques- 
tionable whether this should be regarded as an increase of the complexity of the 
module. Furthermore, this modularisation involves the two modules RELATION 
and RELATION_SCHEMA instead of the module TYPED_RELATION.  The 
greater generality and wider applicability of the concepts described in the former 
two modules is beyond dispute. It is difficult to assess, whether the different mod- 
ularisation makes the whole specification more comprehensible. In any case, it 
is clear that introducing a module TYPED_RELATION is actually a digression. 
In [FiJ90], it is justified by the self-appointed need to develop a theory about this 
module. At the least, it seems more useful to develop theories about the modules 
RELATION and RELATION_SCHEMA. 

5. Closing Remarks 

In this final section, some remarks are made about the modular structuring style 
in [FiJ90] and the semantic consequences of the special features needed to cope 
with that style. 

5.1. The Modular Structuring Style of Fitzgerald and Jones 

In [FiJ90], Fitzgerald and Jones emphasise one aspect of modular structuring of 
specifications: the ability to develop theories about separate modules. This em- 
phasis originates partly from the issue of formal proofs to establish the correctness 
of design steps, but also from the issue of module re-usability. In order to clarify 
the concepts described in a module, a theory about the module is very useful. 
This means that in general the potential re-usability of a module is enhanced by 
the availability of an accompanying theory. However, there are other aspects of 
modular structuring of specifications. 

A mathematically precise specification of what is required of a software system 
that is to be developed provides a reference point against which the correctness 
of the ultimate software system can be established, and not forgetting, guided by 
which it can be constructed. This is regarded as the most important aspect of 
software specification by most theoreticians and practitioners. However, for the 
time being, (professional) practitioners will mainly establish correctness by precise 
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informal arguments, whereas theoreticians are usually exploring formal proofs of 
correctness. Besides, it should not be overlooked that a precise specification 
also makes it possible to analyse a software system before its development is 
undertaken. This opens up a way to increase the confidence that the specified 
system conforms to the requirements for it. For the actual practice of software 
engineering, all this means that a precise specification is the obvious basis of a 
contractual agreement between the software engineer and his client as well as the 
right starting-point for the development of a satisfactory software system. 

These roles of a precise specification give rise to an aspect of modular struc- 
turing of specifications which is the primary one in practice: the potentialities 
to aid comprehension of specifications. The comprehensibility of a whole specifi- 
cation depends on the comprehensibility of its separate modules. Unfortunately, 
reduced complexity of a module, in the sense of decreased number of hypotheses 
in the statements of theorems about it, does not always imply enhanced com- 
prehensibility of the module (and vice versa). Should the case arise, reducing 
complexity in the above sense should be weighted against the desirability to aid 
comprehension. Viewed in that light, it may be important when applying the 
criterion of Fitzgerald and Jones concerning complexity to a modularly struc- 
tured specification, to take into account whether or not the re-usability of the 
separate modules is actually considered to be a side-effect of the development of 
the specified system. 

Of course, there are still other aspects of modular structuring of specifications 
which are in practice more important than the ability to develop theories about 
separate modules, e.g. the possibility to control changes in specifications. Cases 
requiring weighting one against another are also found with respect to the aspects 
in question. 

5.2. Semantic Aspects of the Special Features Needed 

VVSL cannot fully cope with the modular structuring style of Fitzgerald and 
Jones in [FiJ90]. The main point is that VVSL does not provide the ability to 
create multiple instances of imported modules and then to refer to the appropriate 
instances dynamically. As a matter of fact, their style has suggested these features. 
They consider it desirable in solving the modular structuring problem which is 
treated in [FiJ90]. Viewed in the light of their emphasis on the ability to develop 
theories about separate modules, it seems to be a matter of secondary importance. 
Consequently, the point of the semantic consequences of the provision of these 
special features arises naturally. 

First some salient effects of the approach to the semantic matters of VVSL 
is dwelled upon. The mathematical basis for the semantics of VVSL has three 
ingredients: the logic MPL~o, the algebra DA, and 2~-calculus. MPL~ is used 
as the semantic foundation of flat VVSL. DA and 27c-calculus are used as 
the semantic foundations of the modularisation constructs and parametrisation 
constructs complementing flat VVSL. In that way, a high degree of semantic 
orthogonality is reached: the features of flat VVSL can be well understood 
without any understanding of the modularisation and parametrisation features 
of VVSL, the modularisation features of VVSL can be well understood without 
any understanding of the features of flat VVSL and the parametrisation features 
of VVSL, etc. 

Indeed, the high degree of orthogonality is more relevant to the points that 
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are made in the following than the particular ingredients used. It supports the 
development of proof rules which allow to prove theorems about a module from 
theorems about the modules from which it has been constructed. Such proof rules 
naturally suggest general proof strategies which exploit the modular structure of 
specifications, which matters to the issue of  formal correctness proofs of  design 
steps (i.e. verified design). Besides, they enable compositional development of  
theories about modules, which seems essential to the issue of module re-usability. 
The proof rules concerned can be devised without understanding of the features of 
flat VVSL. If  efficiency is an issue, it seems rarely possible to maintain the modular 
structure of  a specification in the ultimate software system (see also [FiJg0]). This 
justifies the supply of conversion rules which allow to transform a specification to 
another specification with a different modular structure in a meaning preserving 
way. Such conversion rules can also be devised without understanding of  the 
features of flat VVSL. 

Pursuing the point of the semantic consequences of the provision of the 
special features needed to cope with the modular structuring style in [FiJ90], just 
a few general remarks will do. Without going into the details of the semantic 
consequences, important resulting effects are clear. It seems to be not very useful 
to maintain a mathematical basis with three ingredients as above: if such a 
basis can be maintained then the ingredients will be rather interdependent. The 
above-mentioned high degree of orthogonality gets lost anyhow. 

A main problem is that the qualified names used in definitions - in order to 
relate names for types, state Variables, functions and operations to the appropri- 
ate instances of parametrised modules - may contain expressions whose value 
depends upon the environment (i.e. the assignment of values to value names) or 
even the state(s) in which they are evaluated. Therefore, it is possible that even 
the qualifier of one particular occurrence of  a qualified name does not constantly 
refer to the same instance of the parametrised module concerned. This means 
that qualified names cannot be regarded as names with structure that is irrelevant 
for the interpretation of definitions. The mathematical basis for the semantics of 
flat VVSL (MPLo~) does no longer suffice for the interpretation of definitions. 
Even the complete mathematical basis for the semantics of VVSL is not ade- 
quate for it. At least the basis for parametrisation (2re-calculus) needs non-trivial 
adaptations, because it only supports parametrisation of modules over modules 
and (collections of) names for types, state variables, functions and operations. 
The special features require support of parametrisation over values. This seems 
to cause a strong dependence upon the model theory of  MPL~. 

So, the special features make it much more difficult to devise proof rules and 
conversion rules as intended in one of the previous paragraphs. The conjecture is 
that the proof rules concerned and the conversion rules concerned will become 
too complex to be actually used. Another obvious effect is that the special features 
impede comprehension of all features of the language. 
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