
Formal Aspects of Computing (1992) 4:100-142
@ 1992 BCS Formal Aspects

of Computing

Modularising the Specification of a Small
Database System in Extended ML 1

Edmund Kazmierczak
Department of Computer Science, University of Edinburgh, Edinburgh

Keywords: Extended ML; Specification; Modular program development; Param-
eterised specifications; Parameterised programs

Abstract. A case study in the modular specification and refinement of a small
database system is presented in Extended ML. Two similar requirements specifi-
cations are given and a program development step from each these is presented.
The structure resulting from the first program development step is similar to that
given in [FiJ90] and is presented as an answer to the challenge problem given in
that paper, while the second development step is presented as a possible alterna-
tive which is more suited to the Extended ML style of program development. In
the context of these two development steps the module facilities of Extended ML,
their role in specification and program development and their ability to meet the
challenge of [FiJ90] are examined.

1. Introduction

Formal program specifications serve many purposes in software engineering, for
example, in defining precisely what a program must do (but not how it must do
it) in order to solve a particular problem, or in the detailed design of a program
module. The goal of program development is then to provide a program which
will m e e t the specification (and by doing so solve the original problem).

Specifications, just as programs, can be large and unwieldy making them
difficult to understand or reason about. Specification languages with facilities for
structuring specifications have been developed to cope with the large specifications
which may arise in practice (see for example [GOB80, EhM85, EhM90, FiJ90,

1 This research was supported by SERC grant GR/E 78463
Correspondence and offprint requests to: Edmund Kazmierczak, Department of Computer Science,
University of Edinburgh, Edinburgh, EH9 3JZ, UK. email : eka@lfcs.ed.ac.uk

Modularising the Specification of a Small Database System in Extended ML 101

San89]). From a clean structuring of a specification we may, for example, see
the consequences of our definitions and axioms more readily. This is not only
important from the perspective of the specification writer but also of the many
parties who may come to rely on the specification during the course of a system's
lifetime. In addition, module facilities enhance the flexibility of a specification
language by limiting the scope of the consequence of changes, or by facilitating
the re-use of previously developed modules in different contexts.
Two proposed goals of a module system for structuring specifications are (see
[Par72, FiJ90, EhM90]):

1. Separation of Concerns, by which we mean the ability to concentrate on the
specification of one aspect of a system without being hindered by details
of irrelevant parts of the same specification and, in the context of program
development, the ability to develop modules without reference to other parts
of the same system;

2. Module Generality, by which we mean that modules may be defined with
sufficient generality to enable them to be used in a variety of contexts.

A means of achieving (1) is to surround each module with well defined
interfaces which isolate it from any context in which it may be used. Interfaces
around each module are also important in defining the precise nature of the
interaction between the module and its environment [SST90]. An important
corollary of this is that the structure of a specification can be used to limit the
search space for proofs of theorems about that specification (see, for example
[SaB83, SAT88] where theorem proving in structured specifications is addressed).

Module generality should provide for the re-use of modules in a variety of
contexts. This is important not only for the sake of convenience but also since
time spent on getting one module "right" should not be wasted in redeveloping
what is essentially the same specification again in every new context (with all the
attendant possibility of error).

In [FiJ90] a case study in the modular specification of a simple database system
was presented. The specification language used was VDM [Jon86] augmented
with a number of facilities for writing modular VDM specifications. In particular
parameterised modules, nested modules and dependent types were used to create
parameterised specifications. The paper concluded with a challenge for other
specification languages which provide facilities for structuring specifications to
specify the database using the same structure as in [FiJ90] 2.

The aim of this paper is then twofold: first, to answer the challenge problem
by performing the case study using Extended ML [SAT89, San89] and second,
to examine the ability of Extended ML's module system to meet this challenge
in the light of the two general goals outlined above. Extended ML has many of
the module facilities mentioned above but in Extended ML they play a dual role
in both structuring specifications and the resulting programs (or combinations of
the two). In particular in Extended ML we wish to specify parameterised programs
and formally develop Standard ML programs from these. We present two similar
requirements specifications and perform a single program development step, using
the Extended ML methodology, from each of these. The first of these results in
an analogue of the structure of the specification in [FiJ90] while the second is
given in a style more suited to program development in Extended ML.

2 See [FiJ90], appendix C

102 E. Kazmierczak

The remainder of the paper is organised as follows. In section 2 we briefly
review Extended ML by giving some simple examples while in section 3 we
give an overview of the database system that forms the subject of our case
study. In section 4 we present the first requirements specification in some more
detail as the specification of a parameterised program which will eventually
implement the data base. The two different modular specification structures are
then investigated by performing a single program development step from this
requirements specification and from the second similar requirements specification
in section 6. The first development step given in section 5, uses coding to give
a similar structure to that in [FiJ90] 3 while the second is presented in section
6 and uses functor decomposition to achieve an alternative structuring of the
specification. Our conclusions are presented in section 7.

2. Extended ML

Extended ML is a wide-spectrum language for specifying and developing pa-
rameterised programs in the functional programming language Standard ML
[Har86, Tof89, HMTg0, MiT90]. Standard ML is a functional programming
language with the ability to define data types by just giving the constructors
for that type, polymorphic data types [Mi177, DAM82, CAW85] and higher order
functions as well as providing a powerful module system for "programming in the
large". It also has a completely formal mathematical definition [HMT90, MiTg0]
which makes it an extremely good target language for program development of
the kind which requires formal proof.

Extended ML is an extension of Standard ML obtained by allowing axioms
in modules and module interfaces and using the modules facilities already present
in Standard ML to structure specifications [San89, SAT89]. Specifications in Ex-
tended ML are of parameterised program modules, rather than the more usual
parameterised specifications (of programs) found in other algebraic specification
languages, for example, [GOB80, EhM85, EhMg0]. Program development is by
stepwise refinement (described below) from algebraic specifications of a (param-
eterised) module's interfaces. We briefly overview the salient features of both the
Extended ML specification language and the program development methodology
below.

2.1. Structures, Functors and Signatures

Specifications in Extended ML are written in a higher order, polymorphic,
equational logic and are structured using the modules system of Standard ML
[HMT90, MiT90, Har86, Mac86, Tof89] which is composed of Signatures, Struc-
tures and Functors. Structures, in Standard ML, are program modules which
contain definitions of types, functions and substructures. Signatures, in Standard
ML, are interfaces to structures which specify what components of a structure
are externally visible. In Extended ML, signatures and structures may include
axioms which makes them specifications, for example, a signature P0 specifying
a partial order is given in Fig. 1.

3 See [FiJ90] appendix C

Modularising the Specification of a Small Database System in Extended ML 103

signature PO =

sig

eqtype elem

val le : elem . elem -> bool

axiom forall x => le(x,x)

axiom forall x => forall y =>

le(x,y) andalso le(y,x)

axiom forall x => forall y =>

le(x,y) andalso le(y,z)

end;

implies x=y

forall z =>

implies le(x,z)

Fig. 1. A signature specifying a partial order

A structure which matches PO must include at least a type called elem, which
must have equality defined on it 4 (as required by the specification e q t y p e) and a
function l e with the type e l e m . e l e m -> b o o l . Two examples of structures
which will match the signature lzO of Fig. 1 are given Fig. 2. The first uses the
predefined type of integers and the predefined operation <= (less than or equal
to) defined on integers to give a structure matching PO. The second uses natural
numbers which are generated by a data type definition: each member of the type
e l e m is either a term ZERO or SUC(x) where x is a term of type e lem. The
functions l e and p l u s in the structure E l e m e n t ' are both defined by cases
on the data type e lem. Note that we can have more components in a structure
which matches P0 than is required by PO, for example, p l u s in the structure
E l e m e n t ' , but the extra components are hidden by the signature.

As well as just flat signatures like the partial order in Fig. 1 signatures
may exhibit internal structure which includes local (and therefore hidden) func-
tions. Signatures may refer to other signatures which are to be included or to
substructures whose visible components are specified by yet another signature.
Substructures and locally specified functions are present in the signature SORT of
Fig. 3. The local functions are p e r m u t a t i o n , member and o r d e r e d and are
only used in the signature but are not required of any structure matching this
signature: they are local to the signature SORT.

Note also that in Fig. 3 quantifiers may range over polymorphic types. Polymor-
phic types are distinguished by a leading quote, for example, the type ' a 1 i s t
in Fig. 3 is a polymorphic type. A function with polymorphic types in its domain,
such as member in Fig. 3, may be applied to arguments of many different types.
For example, member may be applied to pairs of type i n t . (i n t l i s t)
or b o o l . (b o o l l i s t) but no matter what type of argument is supplied
to member the specification is the same. Polymorphic types which which admit
equality (equality types) are distinguished by a double leading quote, for example,
the type ' ' a S e t in appendix A.1.

Functors are parameterised modules. They are specified by two signatures, one
for the parameter and one for the result. The parameter signature specifies the
class of Standard ML structures which can be actual parameters to the functor
while the result signature specifies the class of Extended ML structures which

4 Not all types in Standard ML have equality defined on them, for example, function types do not
have an equality [HMT90]. Those types which do have equality defined on them are called Equality
Types [HMT90, MiT90]

104 E. Kazmierczak

structure Element:P0 =

struct

type elem = int

val le = op <=

end;

structure Element':P0 =

struct

datatype elem = ZERO I SUC of elem

fun Ie(ZER0, ZER0) : true

l Ie(ZER0, SUC(x)) = true

I Ie(SUC(x),ZER0) = false

11e(SUC(x),SUC(y)) : le(x,y)

fun plus (ZERO, x) = x

I plus(SUC(x),y) =

end

SUC(plus(x,y))

Fig. 2. Two structures which match the signature P0

can result and this may depend upon the actual parameter. Intuitively Extended
ML functors can be thought of as functions from Standard ML structures to
Extended ML structures. For example, a sorting functor may be presented as in
Fig. 4. The phrase i n c l u d e SORT again means that the resulting interface in
Fig. 4 includes all the declarations and axioms of SORT. The sharing constraint
s h a r i n g X = E l e m e n t s states that the substructure E l e m e n t s of S o r t
must be identical to the parameter X and is similar to the sharing constraints of
Standard ML.

Sharing is important in Standard ML because it is required in deducing the
correct types in modules. It is important in Extended ML because it is often used
to express the dependence of axioms in the result signature on types and values in
the actual parameter. In Fig. 4 for example, the sharing constraint specifies that
the type E l e m e n t s . e l e m in SORT is the same as the type X. e l e m in the (actual)
parameter thus making the result dependent upon the actual parameter. Without
this sharing constraint the type E l e m e n t s . e l e m and the value E l e m e n t s . l e
need not be the same as those of the parameter X, and so the axioms would not
explicitly require us to sort lists of type X. e l e m nor compare their values using
the partial order X. l e in the parameter.

2.2. Constructing Standard ML Programs

One proceeds from a requirements specification to a program by a series of
development steps. Each development step results in a program which is correct (in
the sense described below) with respect to the results of the previous development
step if all the proof obligations associated with that step are formally discharged.
We may think of each development step as filling in some detail left open in the
previous step, for example, making an abstract type within a structure concrete, or
providing an algorithm for some function which hitherto has only been specified
using axioms. Once the results of a development step includes no axioms, all

Modularising the Specification of a Small Database System in Extended ML 105

signature SORT =

sig

structure Elements : P0

val sort : Elements. elem list -> Elements. elem list

local

val count : 'a . 'a list -> int

and permutation : 'a list . 'a list -> bool

and ordered : Elements. elem list -> bool

axiom forall x : 'a = > count(x, nil) = 0

and forall x : 'a =>

forall I : 'a list =>

x = y implies

eount(x,y::l) = I + count(x,l)

and forall x : 'a =>

forall I : 'a list =>

not(x = y) implies

eount(x,y::l) = count(x,l)

axiom forall x : 'a = >

forall I : 'a list = >

forall I' : 'a list = >

count(x,l) = count(x,l')

implies permutation(l,l')

axiom forall a : Elements. elem :>

ordered(a :: nil) = true

and forall a : Elements. elem =>

forall b : Elements. elem =>

forall I : Elements. elem list =>

ordered(a::b::l) =(Elements. le(a,b))

andalso ordered(b::l)

in

axiom forall I : Elements. elem list =>

permutation(l, sort(1))

andalso ordered(sort(l))

end

end;

Fig. 3. A signature with substructures and hidden functions

106 E. Kazmierczak

functor Sort(X:ELEMENT):sig

include SORT

sharing X = Elements

end = ?

Fig. 4. Specification of a Sorting Functor

the types are concrete and all the functions are defined by Standard ML code
then the development process is complete. If all the proof obligations have been
discharged then this final program satisfies the original requirements specification
by construction.

There are three possible kinds of development step in the Extended ML
program development methodology [San89].

Functor Decomposition

Intuitively functor decomposition is used to break a task into subtasks. Suppose
we are given the following specification:

f u n c t o r F(X : ~) : ~' = ?

The first of the development steps allows us to define the functor F in terms of
the composition of a number of other functors, for example, in the simple case
of two new functors G and H we have:

f u n c t o r F(X : r.) :~ ' = G(H(X))

where

f u n c t o r G(Y " NG) " NrG = ?
f u n c t o r H(Z : NH) " N?t = ~

and r~ H, r,~, NG and r ~ are all appropriately defined Extended ML signatures.
The task of finding a solution to F has been broken up into the subtasks of
finding solutions to G and H. This decomposition is correct if:

1. All structures matching the parameter signature of F also match the parameter
signature of H, that is, r, ~ r. H;

2. All structures matching the result signature of H can be used as an argument
for G, that is, ~,~ ~ r,G;

3. All structures matching the result signature of G also match the result signature
of F, that is, r.b ~ r,'.

The development of the functors H and G may now proceed separately.

Coding

Given a specification of the form:

s t r u c t u r e A : ~ = ?

o r

f u n c t o r F(X :N) :N' = ?

coding is used to replace the qmark by an actual structure body to give

Modularising the Specification of a Small Database System in Extended ML 107

structure A : ~ = strexp

or in the case of functors

f u n c t o r ~Y(X : P,) : ~t = strexp

A coding development step is correct if

strexp ~ 7,

in the case of structures and

~, U strexp ~ r,'

in the case of functors. A structure body need not be all Standard ML code
and indeed the possibility of fixing only some design details exists since axioms
are allowed within Extended ML structure bodies. For example, a value which
is left specified in this way can be written as v a l v = ?, (or in the case of
functions f u n f(x) =?) while types may be made abstract within structure
bodies by writing t y p e t =? . Axioms may also be added to specify more
detailed properties of such unrefined values.

Refinement

Refinement is the third kind of development step used to fill in design choices left
open by a coding step or by another refinement step. Refinement is most often
used in choosing concrete types for abstract types or in filling in the details of a
function with an actual algorithm. Given a functor of the form:

f u n c t o r F(X : ~) : P,' = strexp

we can replace strexp by strexp' in a refinement step to give:

f u n c t o r F(X : r,) : ~' = strexp'

A refinement step is correct if

E U strexp I ~ strexp

The rules for coding structures are similar.

3. The "Non-Programmer Database"

The "Non-Programmer Database" (NDB) which forms the subject of the chal-
lenge problem is a simple existing database system described in [FiJ90, Wal90,
WiS79]. The salient features of the NDB system are given below.

The data base stores information about entities and (binary) relations between
them. Each entity is identified by a unique entity identifier (Eid) and is usually
associated with a value (although this need not be the case). Entities (and
their values) are grouped into entity sets (Esetnm) for the purpose of imposing
constraints. Relations in the database are binary relations between two sets of
entities and may be named or unnamed [FiJ90, Wal90]. In addition each relation
has an associated pair of entity set names specifying the domain and codomain of
that relation as well as information stating the kind of relationship which exists
between the two sets of entities, whether one to one, many to one, one to many or
many to many. This latter information is referred to as the functional dependency
information of a relation (see [Dat86] for more about relational databases).

108 E. Kazmierczak

To maintain the integrity of the data the following two constraints are imposed
on the database.

1. Sets of tuples within a relation must respect the functional dependency of
that relation. This is a constraint on relations and is referred to in the sequel
as the "functional dependency constraint".

2. The first and second components of a tuple in a relation must be drawn from
the entity sets named by the domain and codomain of the relation. This is a
form of Typing constraint placed on relations and is referred to in the sequel
as the "type checking constraint ''5.

An example taken from [Wa190] is the following relation:

Country Currency

Scotland pound
China yuan
Australia dollar

which is a relation between the two entity sets Country and Currency and entities
with values Scotland, China and Australia (each drawn from the Country entity
set) and pound, yuan and dollar (each drawn from the Currency entity set).

Finally there are the operations which update the database, ADDES, DELES,
ADD~.NT, D~.LENT, ADDTUP, DELTUP, ADDRI~L and DELREL. ADDI~S is used to
add a new entity set name to the database and ADDENT adds a new entity
identifier to each one of a number of entity sets. ADDRET, and ADDTUP are
used to add relations and tuples respectively to the database. The remaining
operations DELES, DELENT, DELREL and DELTUP delete various elements from
the database, for example, DELES deletes an entity set name and DELENT deletes
an entity identifier.

4. A Specification of the Programming Task

The requirements specification for a parameterised version of NDB is outlined
below while the full specification is given in appendix A. Specifications are
given in an algebraic style. For the sake of brevity we omit quantifiers in the
specifications and assume that all axioms are universally quantified outermost
over their free variables unless otherwise stated. The specification which is the
result signature of the functor implementing NDB can be naturally broken up
into several substructures, one for the basic objects, a second for relations and a
third for the update operations.

The four basic sets of objects in the data base, entity identifiers, entity set
names, relation names and values, are specified by the four (abstract) types E id ,
E s e t n m , Rnm and V a l u e respectively in the signature BASICS of Fig. 5. Each
of these must admit equality as designated by the e q t y p e keyword.

The signature BINARY__RELATION in appendix A.2 introduces two abstract

5 In [FiJ90] two more constraints on the database are given but these are concerned with the
properties of maps which do not feature in our axiomatic specification

Modularising the Specification of a Small Database System in Extended ML 109

signature BASICS =

sig
eqtype Eid and Esetnm and Value and Rnm

end

Fig. 5. Basic Types

signature BINARY_RELATION =
sig

include BASICS

include SET

end;

Fig. 6.

types, Tuple and BinaryRel, as well as the operations for these. A third con-
crete data type Maptp is also introduced for the purposes of handling the func-
tional dependency information for binary relations. This signature also includes
two substructures: B, a substructure for the basic objects, and S a substructure
for sets. To refer to components of these we prefix the identifiers in the signature
with the name of the structure to which they belong, for example, B. E i d is
used to refer to the type E i d in the substructure B. Also since relations can be
named or unnamed two operations are used to construct new relations, one for
anonymous relations and the other for named relations:

val mk rel : Maptp . B. Esetnm . B. Esetnm -> BinaryRel
val mk_rel' : B. Rnm . Maptp . B. Esetnm . B. Esetnm

-> BinaryRel

Using substructures to structure a signature, such as BINARY_RELATION means
that the final program will need to contain substructures matching the signatures
BASICS and SET respectively. An alternative would have been to i n c l u d e the
signatures BASICS and SET as in Fig. 6. We have used substructures, however,
because they allow us to specify some necessary sharing later (see section 5).

Note also that the types and functions in the signature SET (of appendix A.1)
are polymorphic which means that the operations specified there can be applied
to arguments of many different types. Polymorphic types provide one way of
creating signatures whose components can be re-used in a variety of contexts, for
example, SET is one such signature which is used in (at least) two different ways:
to specify sets of tuples in BINARY_RELATION (see appendix A.2) and to specify
sets of entity set names in NDB (see appendix A.3).

The signature NDB now introduces the remaining update operations. To impose
similar constraints on the final program to those in [FiJ90] several hidden auxiliary
operations are introduced, for example, e sin, em and rm (see appendix A.3). These
auxiliary functions are used to capture the "state" of the database in our algebraic
specifications much as the maps esm, em and rm define the state in the VDM

5 FAC4

110 E. Kazmierczak

specification of [FiJ90]. In the VDM specification A D D E S is specified as in Fig. 7
while using the auxiliary functions the Extended ML analogue would be:

A D D E S (e s :Esetnm)
m

ext wr esm : Esetnm --, Eid-set
pre es q~ dora esm

post esm = e s m U{es ~ {}}

Fig. 7.

axiom not(Es_in(es, ndb))
implies
(Es in(es,ADDES(es,ndb))
andal s o e sm (e s, ADDES (e s, ndb))

=Binary. S. empty set
andal s o

(forall eid : Binary. B. Eid =>
Eid_in(eid, ndb) implies
em(eid, ADDES(es, ndb)) = em(eid, ndb))

andal s o
(forall es' : Binary. B. Esetnm =>
forall es'' : Binary. B. Esetnm =>

Es in(es',ndb)
andalso Es in(es'',ndb)
andalso Rel_in(es',es'',ndb)
implies rm(es',es'',ADI)ES(es, ndb))

= rm(es' , es' ' ,ndb)))

The only question which now remains is where to formulate the two database
constraints. The "functional dependency constraint" is a property of relations in
the database and since it depends only upon the types and operations pertaining
to relations it is given in the signature dealing with relations. The placement
of the type checking constraint influences the structure of the program design
specifications which we give. In section 5 it is a constraint on N-ary relations
while in section 6 it is to be a constraint on relations in the database (but not
necessarily on N-ary relations).

The first requirements specification is now given in Fig. 8. The sharing con-
straint again states that the substructure Binary. B of the final functor must be
the same as the formal parameter of the functor: in other words, the types Eid ,
Ese tnm, V a l u e and Rnm appearing in the output signature must be the same
as in the actual parameter of the functor.

5. Modularisation with Typing and Functional Dependencies

Recall from section 4 that the requirements specification in Fig. 8 is of a pa-
rameterised program (and not a parameterised specification). Below we give the
first of our program design specifications which is obtained by coding from this
requirements specification. The structure of our program design specification is

Modularising the Specification of a Small Database System in Extended ML 111

functor Ndb(B : BASICS):
sig

include NDB
sharing B =

end = ?
Binary. B

Fig. 8. The specification of the database module to be developed

intended to be an algebraic analogue of that given in [FiJ90] where the type
checking constraint is imposed on N-ary relations.

5.1. Generalising Binary Relations

The observation in [FiJ90] that binary relations are just a special case of N-ary
relations is used to motivate a specification module for N-ary relations. In terms
of our parameterised program specifications these modifications can be stated as
follows.

1. Relations are now to be considered as N-ary relations for some fixed but
arbitrary N. The elements of the type Attr are the acceptable field names of
tuples. A functional correspondence between elements of the type A t t r and
values (Eids) defines a tuple.

2. The functional dependency information must also be generalised appropri-
ately. In appendix B.2 the type Norm is used for this information. The means
of constructing values of this type is through the function ink_norm where the
domain ofmk_normis a type (A t t r S. S e t . A t t r) S. Se t . If (s , f) is
an element of type (A t t r S. S e t . A t t r) S. S e t then s is to be thought
of as a set of attributes which functionally determine the attribute f.

3. Tuples in relations are to satisfy the type checking constraint and this is to be
a property of the module for N-ary relations.

In [FiJ90] three parameterised specification modules are used:

1. TYPED-RELA TION which encapsulates the specification for N-ary relations;
2. NDBRELATION which specialises the specification of N-ary relations in

TYPED-RELATION to a specification of binary relations;
3. it NDB which is a specification of the database based upon the specification

module NDBRELATION which introduces binary relations and operations
on binary relations.

To achieve a similar program design specification structure we use three functors
which correspond in broad terms to the specification modules above:

1. T y p e d _ R e l a t i o n which is the module for N-ary relations is specified in
Fig. 9;

2. NDB__Relation which is a functor that specialises N-ary relations to binary
relations is specified in Fig. 10 (see appendix C.2)

3. Ndb which is the database module (see appendix C.3).

One feature of the module system in [FiJ90] is that theories can be dynamically
created by passing parameters to specification modules, for example, in Fig. 11 a

5-2

112 E. Kazmierczak

functor Typed_Relation(E : ESM) : sig
include TYPED_RELATION
sharing E = ESM

end = ?

Fig. 9. Requirements Specification for TYPED_RELATION

functor NDB_Relation(Tpm : TPM) :
sig

include BINARY_RELATION

(. Type Checking Constraint .)

axiom Tpm. S. member(t, tuples(r))
implies
Tpm. S. member(fv(t),Tpm, esm(fs(r),ndb))
andalso Tpm. S. member(tv(t),Tpm, esm(ts(r),ndb))

end =

Fig. 10. Requirements Specification for NDB_Relation

new instantiation of the module N D B R E L A T I O N is created for each value of rk
in the domain of rm.

In Extended ML structures and not theories are created when functors are
applied to actual parameters. The properties which are observable in the resulting
structure, or class of structures, is given in the result interface of the functor.
For example, all that is known about the class of structures resulting from the
application of the functor Typed_Relation in Fig. 12 is that which can be
deduced from the signature TYPED_RELATION (provided that every structure
which can result on right hand side also matches this signature).

Signatures are not explicitly parameterised and sharing is only a form
of dependent typing and not parameterisation. In the case of the functor
Typed_Relation in Fig. 9 the result signature depends on the function esm in
the parameter but since no axioms are given in the parameter signature constrain-
ing esm then there are also no constraints on esm visible in the result signature.
Apart from the dependence of the result interface of T y p e d _ _ R e l a t i o n on
the parameter this means that the interfaces to T y p e d _ R e l a t i o n are fixed

inv mk-Ndb(esm,em,rm)
dom em = Urng esm A
Vrk e dom rm.
let mk-Rkey(nm, fs , t s) = rk in
let mk-Rinf(tp ,r) = rm(rk) in
{fs, ts} ~_ dom esmA
r E N D B R E L A T I O N [fs, ts, esm, tp].Relation

Fig. 11.

Modularising the Specification of a Small Database System in Extended ML 113

structure T : TYPED RELATION =

Typed Relation(struct

structure S = Set

structure B = Basics

eqtype Attr = Attr

type NDB = NDB

end)

val esm = Tpm. esm

Fig. 12. Applying a functor

and consequently the development of Typed_Relation can be carried out in
isolation.

5.2. N-ary Relations

To achieve the generalisations above we need to formulate the type check-
ing and functional dependency constraints in the result signature of the functor
Typed__Rela t i on. If this is done then the body of the functor T y p e d _ _ ~ e l a t i on
must be formally developed to satisfy these two properties.

For the purposes of enforcing the type checking constraint attributes (elements
of the type A t t r) must be related to actual entity set names. Since each relation
may associate attributes to entity set names in a different way this association
depends upon relations themselves. This is done in appendix B.2 by including a
function mapping attributes to entity set names in the two constructor functions
for relations which consequently have the following types,

val empty : Norm , (Esm. Attr -> Esm. B. Esetnm)

-> Relation

and empty' : Esm. B. Rnm

, Norm

, (Esm. Attr -> Esm. B. Esetnm) -> Relation

Notice as well that the corresponding axioms are consequently higher order.
The dependence of the association between attributes and entity set names upon
relations is also the reason it is given in the signature TYPED__RELATION rather
than being passed as a parameter as in [FiJ90].

The functional dependency constraint is now easy to formulate in TYPED__REL-
ATlONbut the type checking constraint still requires an external component. We
do not use a type checking function

tpc : E i d • E s e t n m - o bool

as in [FiJ90] since the formulation of the type checking constraint depends
more precisely on the association between entity set names and the set of en-
tity identifiers which they denote. This must come from outside the functor
T y p e d - - R e l a t i o n and it is done by the function esm in our specifications. The
sharing constraint ensures that the component e sm of the result signature which
is used in the type checking constraint is the same as that in the parameter.

114 E. Kazmierczak

Since we can make very few assumptions as to the form or use of e sm it is left
unconstrained.

5.3. Speeialising N-ary Relations to Binary Relations

At this point we do not need to develop TypedA~elation further. All that we
need to know about T y p e d _ 2 ~ e l a t i o n for the purpose of specialising N-ary
relations to binary relations is given in the requirements specification of Fig. 9.

We use a functor NDB._Re la t ion to specialise N-ary relations to binary
relations. Recall now from section 2 that it is possible to mix programs and spec-
ifications in Extended ML. The translation from N-ary to binary relations can be
described by a Standard M L program just as well as by an axiomatic description
and in appendix C.2 we give such a program. To ensure the type correctness of
the functor body with respect to the signature BINARY_RELATION we need to
include a function u n c o n v which maps the representation of functional depen-
dencies in terms of the type Norm back into functional dependencies represented
in terms of the data type ~Iaptp.

5.4. NDB_Relation in Ndb

In the body of the functor Ndb a structure Binary is created by applying
NDB__Relat ion to an actual parameter structure. The result is an Extended M L
structure 6. To give an actual parameter for N D B _ R e l a t i o n we need a function
e sm to associate entity set names with sets of entity identifiers and this is done
with the specification of a local function in the body of the functor (see appendix
C.3)

fun esm(es :B.Esetnm, ndb : NDB) : Eid Set.Set = ?

which is not required in any further development of Ndb.
The function e sm is local and therefore not required in any further develop-

ments of the functor Ndb. For the next development step to result in a correct
refinement of the functor body in appendix C.3 the substructure B i n a r y in
the refinement needs only to be observationally equivalent [SAT87, SAT89] to the
substructure B i n a r y in appendix C.3.

We still need to show that the proof obligations for this step are met, that is,

BASICS U BodYNd b ~ NDB

which is straight forward but notice that the type checking constraint is hidden
by the signature NDB.

I f the type checking constraint were included in the signature NDB 7 then
the proof obligation for this coding step would not be met. Since signatures
are not parameterised there is no means for extending the result interface of
Typed_Relation or NBB_Relation with a theory of esm local to the body
of Ndb. Consequently the version of the type checking constraint visible in the
substructure B i n a r y in appendix C.3 will be weaker than that in the signature
NDB and so the proof obligation for this step could not be discharged.

6 Which specifies a class of Standard ML structures.
7 See appendix D.2 where this is done.

Modularising the Specification of a Small Database System in Extended ML 115

functor Ndb(B : BASICS):
sig

include NDB'
sharing B =Binary. B

end = ?

Fig. 13.

functor Ndb(B : BASICS): sig
include NDB'
sharing B =Binary. B

end =
Database(NDB Relation'(Typed_Relation'(B)))

Fig. 14.

6. Modularisation by Functor Decomposition

Some criticisms about the program design specifications in section 5 are as
follows:

1. NDB_Relation is intended to specialise N-ary relations to binary relations
but there is nothing in the requirements specification which expresses this;

2. The type checking constraint is not a visible consequence in the signature NDB
which may be useful knowledge for later users of this module;

3. The function e sm which is used to formulate the type checking constraint
is "under-specified" in the context of binary relations (this was necessary in
order to meet all the proof obligations).

An alternative is to start with the requirements specification in Fig. 13 and
use functor decomposition as in Fig. 14 to avoid some of these criticisms. The
dependence of the type checking constraint on the association between entity
identifiers and entity set names (given by e sm) is best expressed in the NDB
signature and this leads to a new signature NDB' given in appendix D.2. NDB'
is identical to NDB except that it contains the type checking constraint previously
given in the signature TYPED_RELATION. The requirements specifications for
the three new functors in Fig. 14 are given in Fig. 15 while the signature
TYPED~ELATION' is given in appendix D.1.

The resulting program structure is one in which the original task has been
decomposed into three independent subtasks which interact only through the
module interfaces. This means making the Type d_Y{e l a t i o n ' functor indepen-
dent of its environment which we do by giving an abstract the type A t t r in the
signature TYI~ ' . The idea is that now, unlike TYPED~RELATION,
TYPED__RELATION' does not depend on any external functions or types another
than those given in the signature BASICS. To avoid the second criticism we no
longer wish to impose the type checking constraint on Type d_2:{elat • on ' and
consequently the parameter e sm to Type d__Rela t i on is also no longer needed.

The functor NDB_R e 2 a t i o n ' now takes any structure matching TYPED 2 E L -
ATION' and results in a structure matching BINARY_,RELATION. The require-
ments specification clearly states that NDB__Relation is to accept a module

116

functor Typed_Relation'(

E. Kazmierczak

Basics : BASICS) :
sig

include TYPED_RELATION'
sharing B = Basics

end = ?

functor NDB_Relation'(R : TYPED_RELATION') :
sig

include BINARY RELATION
sharing R.B = B

and R.S = S
end = ?

functor DataBase(B : BINARY_RELATION)

sig
include NDB'
sharing B = Binary

end = ?

Fig. 15.

for N-ary relations and construct a module matching BINARY_RELATION from
it. The final functor D a t a b a s e , given in appendix D.3, then constructs the
operations for updating the database from those of BINARY_RELATION.

The drawback to this structuring is that type checking constraint is no longer
imposed on the interfaces of the module T y p e d . R e l a t i o n ' which was one
of the goals of the generalisation from binary relations. What has been gained
however, is a cleaner structuring of the program design specification in which the
interfaces specify more clearly what each functor is to do in order to implement
the original requirements specification.

7. C o n c l u s i o n

In this paper we have considered the specification in Extended ML of the database
described in [Wal90, FiJ90, WiS79] and a single program development step from
each of two similar requirements specification. In section 5 a program design
structure based on the structure of the specification in [FiJ90] was given by a
coding development step while in section 6 an alternative program design given
by a functor decomposition step was given.

The problem with our solution to the challenge problem in section 5 is that
the type checking constraint, as given in the interface to Typed.Relation, is
independent of context while to solve the challenge problem properly we would
need to pass in axioms describing e sm from whatever context T y p e d . R e l a t i on
is used. This is not possible directly in Extended ML because there is no mech-
anism for explicitly parameterising a signature and sharing is only a mechanism
for dependent typing in Extended ML.

Signatures in Extended ML are not parameterised for the reason that modules
are to be developed, using the methodology outlined in section 2, without reference

Modnlarising the Specification of a Small Database System in Extended ML 117

to other parts of the system. All that is required for the development of a module
is specified in the interfaces to that module. I f the signatures were parameterised
we may still develop a program in isolation to meet that signature but each time
an actual parameter was substituted for the formal parameter of the signature
the complicated process of verifying the body of the module against the new
signature would need to be done. This also effects the re-use of modules.

Extended ML meets the two criteria given in the introduction (as far as
separation of program development concerns and module re-use are concerned)
precisely because all the information one knows about a module is specified in
the interfaces and this does not change in any contexts.

Finally, the program design specification in section 6 is given as the compo-
sition of three parameterised programs. Each functor builds on the operations
of its argument to realise the original requirements specification of Fig. 14. A
question that may be asked here is if the V D M structuring mechanisms can be
used to give a compositional specification structure analogous to our functor
decomposition described in section 6.

It is known that the class programs satisfying a parameterised specification is
not generally the same as the class programs satisfying a parameterised program
specification [SST90, SaT91]. The problems encountered when trying to formulate
the type checking constraint are a consequence of this distinction and are chiefly
due to the fact that signatures are not parameterised. The gain from this restriction
is that once a parameterised program has been developed it can be simply treated
as a black box where all that we need to know about it is captured in its interfaces.
For example, we did not need to develop T y p e d ~ l e l a t i on further in order to
construct the parts of the Ndb functor in which we were interested. The Extended
M L approach is still very much in its infancy but with the completion of more
examples using the Extended ML methodology we anticipate a better practical
understanding of the particular strengths and weaknesses of this approach.

Acknowledgements

We would like to thank Arantxa Zatarain for reading over some of the earlier
drafts of of the specifications and also to Don Sannella for his keen interest, many
helpful suggestions and valuable comments on earlier versions of this paper. Also
to Andrjez Tarlecki for his help with Extended ML and to Stephen Gilmore for his
help with the VDM notation. Finally our thanks to the Science and Engineering
Research Council for supporting this research and to the anonymous referees for
their suggestions.

References

[CAW85]

[Dat86]
[DAM82]

[EhM85]

[EhM90]

Cardelli, L. and Wegner, R: On Understanding Types, Data Abstraction and Polymor-
phism. Computing Surveys, 17(4) 471-522, 1985.
Date, C.J.: An Introduction to Database Systems. Addison-Wesley, 1986.
Damas, L. and Milner, R.: Principle Type Schemes and Functional Programs. In Prin-
ciples of Programming Languages, 207-212, 1982.
Ehrig, H. and Mahr. B. : Fundamentals of Algebraic Specification I. EATCS: Monographs
on Theoretical Computer Science. Springer-Verlag, 1985.
Ehrig, H. and Mahr, B. : Fundamentals of Algebraic Specification 2 : Module Specifications
and Constraints. EATCS: Monographs on Theoretical Computer Science. Springer-
Verlag, 1990.

6 F A C 4

118 E. Kazmierczak

[FiJ90]

[GOB80]

[Har86]

[HMT90]

[Jon86]

[Mac86]

[Mi177]

[MiT90]
[Par72]

[San89]

[SaB83]

[SST9~

[SAT87]

[SAT88]

[SAT89]

[SAT91]

[Tof89]

[Wal90]

[WiS79]

Fitzgerald, J. S. and Jones, C. B.: Modularising the Formal Description of a Database
System. Technical Report UMCS-90-1-1, University of Manchester, January I990.
Gognen, J. A. and Burstall, R. M.: The Semantics of Clear, A Specification Language.
In Abstract Software Specifications, LNCS 86. Springer-Verlag, 1980.
Harper, R.: Introduction to Standard ML. Technical Report ECS-LFCS-86-14, Univer-

sity of Edinburgh, November 1986.
Harper, R., Milner, R. and Tofte, M.: The Definition of Standard ML. The MIT Press,
1990.
Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall International
Series in Computer Science. Prentice-Hall International, 1986.
MacQueen, D.: Modules for Standard ML. Technical Report ECS-LFCS-86-2, Univer-
sity of Edinburgh, March 1986.
Milner, R.: A Theory of Type Polymorphism in Programming. Internal Report CSR-9-
77, University of Edinburgh, Department of Computer Science, September 1977.
Milner, R. and Tofte, M.: Commentary on Standard ML. MIT Press, 1990.
Parnas, D.: On the Criteria to be Used in Decomposing Systems into Modules. Com-
munications of the ACM, 5(12) 1053-1058, 1972.
Sannella, D.: Formal Program Development in Extended ML for the Working Pro-
grammer. Technical Monograph ECS-LFCS-89-102, Laboratory for the Foundations of
Computer Science, December 1989.
Sannella, D. and Burstall, R. : Structured Theories in LCF. In Proceedings of the 8th
Colloq. on Trees in Algebra and Programming, LNCS 159, 377-391. Springer Verlag,
1983.
Sannella, D., Sokolowski, S. and Tarlecki, A.: Toward Formal Development of Programs
from Algebraic Specifications : Parameterisation Revisited. Technical Report Report
6/90, University of Bremen, 1990.
Sannella, D. T. and Tarlecki, A.: On Observational Equivalence and Algebraic Specifi-
cation. Journal of Computer and System Sciences, 34:150-178, 1987.
Sannella, D. and Tarlecki, A.: Building Specifications in an Arbitrary Institution. Infor-
mation and Control, 76:165-210, February 1988.
Sannella, D. and Tarlecki, A.: Toward Formal Development of ML Programs: Foun-
dations and Methodology:0 - Extended Abstract. In Proceedings of the Colloquium on
Current Issues in Programming Languages, LNCS 352, 375-389. Springer Verlag, 1989.
Sannella, D. and Tarlecki, A.: A Kernel Specification Formalism with Higher Order
Parameterisation . In 7th Workshop on Specification of Abstract Data Types. Lecture
Notes in Computer Science, to appear. Springer Verlag, 1991.
ToRe, M.: Four Lectures on ML Technical Report ECS-LFCS-89-73, University of
Edinburgh, March 1989.
Walshe, A.: NDB: The formal specification and rigorous design of a single user database.
In: C. B. Jones and R. E C. Shaw, (eds), Case Studies in Systematic Software Development,
12-45. Prentice Hall International, 1990.
Winterbottom, N. and Sharman, G. C. H.: NDB:Non-programmer database facility.
Technical Report IBM TR.12.179, IBM Hursley Laboratory, England, September 1979.

Modularising the Specification of a Small Database System in Extended ML 119

Appendixes

A. The Database Signature

A.1. Preliminaries

signature SET =

sig

(. Types *)

type ''a Set

(. Operators .)

val empty_set :
val insert

val delete

val member

val is_empty :

val equals

a Set

a . ''a Set -> ''a Set

a . ''a Set -> ''a Set

a . ''a Set -> bool

a Set -> bool

a Set . ''a Set -> bool

(. Axioms .)

axiom is empty(empty set) = true

and is_empty(insert(e,S)) = false

axiom member(e, empty_set) = false

and e = e' implies member(e, insert e',S)) = true

and e <> e'

i m p l i e s m e m b e r (e , i n s e r t (e ' , S)) = m e m b e r (e , S)

axiom e = e' implies member(e, delete e',S)) = false

and e <> e'

implies member(e',delete(e,S)) = member(e',S)

axiom equals(empty_set, empty_set)

and forall e : ''a =>

forall e' : ''a =>

member(e,S) implies member(e,S')

andalso

member(e',S') implies member(e',S))

implies equals(S,S')

end;

A.2. Binary Relations

signature BINARY RELATION =

sig

structure B : BASICS

6-2

120

s t r u c t u r e S : S E T

E. Kazmierczak

(. Types .)

eqtype Tuple and BinaryRel

datatype Maptp = ONE_ONE J MANY_0NE I
0N~_MANY J MANY_MANY

(. Operations for Tuples .)

val mk_tuple : B. Eid . B. Eid -> Tuple
val fv : Tuple -> B. Eid
val tv : Tuple -> B. Eid

(. Axioms for Tuples .)

axiom tv(mk tuple(eid, eid')) = eid'
axiom fv(mk_tuple(eid, eid')) = eid
axiom mk_tuple(fv(t),tv(t)) = t

(. Operations for Binary Relations .)

val mk_rel : Maptp . B. Esetnm . B. Esetnm
-> BinaryRel

val mk rel' : B. Rnm . Maptp . B. Esetnm . B. Esetnm

val add
val map
val fs
val ts
val tuples

-> BinaryRel

: Tuple . BinaryRel -> BinaryRel
: BinaryRel -> Maptp
: BinaryRel -> B. Esetnm
: BinaryRel -> B. Esetnm
: BinaryRel -> Tuple S. Set

(. Axioms for Binary Relations .)

axiom map(mk_rel(mp, es,es')) = mp
and map(mk_rel'(rnm, mp, es, es')) = mp
and map(add(t,r)) = map(r)

axiom fs(mk_rel(mp, es, es')) = es
and fs(mk_rel' (rnm, mp, es, es')) = es
and fs(add(t,r)) = fs(r)

axiom ts(mk_rel(mp, es, es')) = es'
and ts(mk_rel' (rnm, mp, es, es')) = es'
and ts(add(t,r)) = ts(r)

local
val tuples of : Relation -> Tuple Esm. S. Set
axiom tuples_of(empty) = Esm. S. empty_set

Modularising the Specification of a Small Database System in Extended ML 121

in
and tuples_of(add(t,r)) = Esm. S. insert(t,r)

axiom tuples(mk_rel(mp, es, es')) = S. empty_set
and tuples(mk_rel'(rnm, mp, es, es')) = S. empty_set

(. Constraints on adding Tuples to a Relation .)

end
end;

and (S.member(t',tuples_of(add(t,r))) andalso
S. member(t'',tuples of(add(t,r)))
implies
case map(r) of

ONE_ONE => fv(t') = fv(t'')
iff tv(t') = tv(t'')

I MANY_ONE => fv(t') = fv(t'')
implies tv(t') = tv(t'')

l 0NE_MANY => tv(t') = tv(t'')
implies fv(t') = fv(t'')

I ~ANY_~ANY => true)
iff
(tuples(add(t,r)) = S. insert(t, tuples(r))
andalso map(add(t,r)) = map(r)
andalso fs(add(t,r)) = fs(r)
andalso ts(add(t,r)) = ts(r))

A.3. The Data Base

signature NDB =
sig

structure Binary : BINARY RELATION

(. The Data Base .)

type NDB

(. Operations .)

val NewDB : NDB
val ADDES : Binary. B. Esetnm . NDB -> NDB
val ADDENT : Binary. B. Esetnm Binary. S. Set

.Binary. B. Value

.Binary. B. Eid

. NDB -> NDB
val ADDTUP : Binary. Tuple

.Binary. B. Esetnm

.Binary. B. Esetnm

122 E. Kazmierczak

. NDB -> NDB
val ADDREL : Binary. BinaryRel . NDB -> NDB
val DELES : Binary. B. Esetnm . NDB -> NDB
val D~LENT : ~inary. B.~id . NDB -> NDB
val DELTUP : Binary. Tuple

.Binary. B. Esetnm

.Binary. B. Esetnm

. NDB -> NDB
val DELREL : Binary. B. Esetnm

.Binary. B. Esetnm

. NDB -> NDB

(. Axioms .)

loca2

(. Auxiliary Functions .)

val isNewDB : NDB -> bool

axiom isNewDB(NewDB) = true
and isNewDB(ADDES(es,ndb)) = false
and isNewDB(ADDENT(memb, value, eid, ndb)) = false
and isNewDB(ADDR~L(r, ndb)) = false
and isNewDB(ADDTUP(t, es, es',ndb)) = false

val Es_in : Binary. B. Esetnm . NDB -> bool

axiom ~s_in(es, NewDB) = false
and Es_in(es, ADD~S(es',ndb)) =

(es = es' orelse Es in(es,ndb))
and ~.s_in(es, ADDENT(memb, value, eid, ndb)) =

~.s_in (es, ndb)

and Es_in(es, ADDR~L(r, ndb)) = Es_in(es,ndb)
and ~s_in(es, ADDTUP(t, es, es',ndb)) =

~.s_in (e s, ndb)

val Eid in : Binary. B. Eid . NDB -> bool

axiom Eid in(eid, NewDB) = false
and Eid_in(eid, ADD~S(es, ndb)) = Eid_in(eid, ndb)
and Eid_in(eid, ADDENT(memb, value, eid',ndb)) =

(eid = eid') orelse ~id_in(eid, ndb)
and Binary. S. member(t, Binary. Tuples (r))

implies
Eid in(eid, ADDREL(r, ndb)) =

eid = Binary. fv(t)
orelse eid = Binary. tv(t)
orelse Eid_in (eid, ndb)

and ~.id_in(eid, ADDTUP(t, es, es',ndb)) =
eid = Binary. fv(t)

Modularising the Specification of a Small Database System in Extended ML 123

orelse eid =Binary. tv(t)
orelse Eid in(eid, ndb)

val Rel in : Binary. B. Esetnm
.Binary. B. Esetnm
. NDB -> bool

axiom Rel_in(es, es', NewDB) = false
and Rel in(es, es', ADDES(es'',ndb))

= Rel_in(es, es',ndb)
and Rel_in(es, es', ADDENT(memb, value, eid, ndb))

= Rel_in(es, es' , ndb)
and Rel in(es, es', ADDREL(r, ndb)) =

(es =Binary. fs(r) andalso es' =
Binary. ts(r))
orelse Rel in(es, es', ndb)

and Rel_in(es, es', ADDTUP(t, esl, es2, ndb))
= Rel_in(es, es',ndb)

(. A local function associating entities
with entity sets .)

val esm : Binary. B. Esetnm . NDB
-> Binary. B. Eid Binary. S. Set

axiom esm(es,NewDB) =Binary. S. empty_set
and esm(es,ADDES(es',ndb)) = esm(es,ndb)
and Binary. S. member(es,memb) implies

e sm (e s, ADDENT (memb, value, e i d, ndb)) =
Binary. S. insert (eid, esm(es, ndb))

and esm(es,ADDREL(r, ndb)) = esm(es,ndb)
and esm(es,ADDTUP(t, es',es'',ndb)) = esm(es,ndb)

(. A local function for associating
Entity Identifiers with Values .)

val em : Binary. B. Eid . NDB -> Binary. B. Value

axiom em(eid, ADDES(es, ndb)) = em(eid, ndb)
and eid = eid' implies

em(eid, ADDENT(memb,value, eid',ndb)) = value
and eid <> eid' implies

em(eid, ADDENT (memb, value, eid', ndb))
= em(eid, ndb)

and em(eid, ADDREL(r, ndb)) = em(eid, ndb)
and em(eid, ADDTUP(t, es,es',ndb)) = em(eid, ndb)

(. A local function for associating Entity
set names with a relation .)

val rm : Binary. B. Esetnm

124 E. Kazmierczak

axiom
and

and

and

and

.Binary. B. Esetnm

. NDB ->Binary. BinaryRel
rm(es, es', ADDES(es,ndb)) = rm(es, es',ndb)
rm(es, es', ADDENT(memb,value, eid, ndb))
= rm(es, es',ndb)
(es =Binary. fs(r) andalso es'
=Binary. ts(r))
implies
rm(es, es', ADDREL(r, ndb)) = r
(es = esl andalso es' = es2)
implies
rm(es, es', ADDTUP(t, esl, es2, ndb) =

Binary. add(t, rm(es, es',ndb)
(es<>esl) andalso (es<>es2)
implies
rm(es, es', ADDTUP(t, esl, es2, ndb) =

rm(es, es',ndb)

in

(. Operations for Constructing the Data Base .)

(. ADDES .)

axiom not(Es in(es,ndb))
implies

Es_in(es,ADDES(es, ndb))
andalso

esm(es,ADDES(es,ndb)) =Binary. S. empty_set
andalso

forall eid : Binary. B. Eid =>
(Eid_in(eid, ndb)
implies
em(eid, ADDES(es,ndb)) = em(eid, ndb))

andalso
forall
forall

es' : Binary. B. Esetnm =>
es'' : Binary. B. Esetnm =>
Es in(es',ndb)
andalso Es_in(es'',ndb)
andalso Rel_in(es',es'',ndb)
implies
rm(es',es'',ADDES(es,ndb))
= rm(es',es'',ndb))

(. ADDENT .)

axiom Binary. S.member(es,memb)
andalso ~s_in(es,ndb)
andalso not(~id_in(eid, ndb))
implies

esm(es,ADDENT(memb, val, eid, ndb)) =

Modularising the Specification of a Small Database System in Extended ML 125

Binary. S. insert (eid, esm(es, ndb))
andalso em(eid, ADDENT(memb,val, eid, ndb))

= val
andalso

forall es' : Binary. B. Esetnm =>
forall es'': Binary. B. Esetnm =>

Es_in(es',ndb) andalso Es in(es'',ndb)
implies
rm(es',es'',ADDENT(memb, val, eid, ndb)

= rm(es',es'',ndb)))

(. ADDREL .)

axiom Es_in(Binary. fs(r),ndb)
andalso Es_in(Binary. ts(r),ndb)
andalso Binary. S. is_empty(Binary. Tuples(r))
andalso not(Rel_in(Binary, fs(r),

Binary. ts(r),ndb))
implies
Rel_in(Binary. fs(r),Binary, ts(r),

ADDREL(r, ndb))
andalso
Binary. S. is_empty(

Binary. Tuples(
rm(Binary, fs(r),
Binary. ts(r),ADDREL(r, ndb))))

andalso
forall eid : Binary. B. Eid =>

Eid_in(eid, ADDREL(r, ndb))
implies
em(eid, ADDREL (r, ndb))

= em(eid, ndb)
andal s o

forall es : Binary. B. Esetnm =>
Es in(es,ADDREL(r, ndb))
implies
esm(es,ADDREL(r, ndb))

= esm(es,ndb))
andalso

forall es' : Binary. B. Esetnm =>
forall es'' : Binary. B. Esetnm =>

es' <>Binary. fs(r)
andalso es'' <>Binary. ts(r)
implies
rm(es',es'',ADDREL(r, ndb))

= rm(es',es'',ndb)
andalso

forall es' : Binary. B. Esetnm =>
forall es'' : Binary. B. Esetnm =>

es' <>Binary. fs(r)
andalso es'' <>Binary. ts(r)

126 E. Kazmierczak

implies
rm(es' , es' ' , ADDREL(r, ndb))

= rm(es' , es' ' , ndb)

(. ADDTUP .)

axiom Rel in(es, es',ndb)
andalso Binary. Tuples(

rm(es, es' , ADDTUP (t, es, es' , ndb)))
Binary. Tuples (
Binary. add(t, rm(es, es', ndb)))

implies
rm(es, es' , ADDTUP(t, es, es' , ndb)) =

Binary. add(t, rm(es, es' , ndb))
andal s o

forall es : Binary. B. Esetnm -->
Es_in(es, ADDTUP (t, es', es' ', ndb))
implies
esm(es, ADDTUP (t, es', es' ', ndb))

= esm(es, ndb)
andal s o

forall eid : Binary. B. Eid =>
Eid_in(eid, ndb) implies
em(eid, ADDTUP (t, es', es' ' , ndb))

= em(eid, ndb)

(. Operations for Deleting from the Data Base .)

(. DELES .)

axiom Binary. S. is_empty(esm(es, ndb))
andalso
forall r : Binary. BinaryRel =>

Rel_in(Binary. fs(r),Binary, ts(r),ndb)
implies
Binary. fs(r)<>es
andalso Binary. ts(r)<>es)

implies
Es in(es,DELES(es,ndb)) = false
andalso

forall eid : Binary. B. Eid =>
em(eid, DELES(es,ndb)) = em(eid, ndb)

andalso
forall r : Binary. BinaryRel =>

Eel_in(Binary. fs(r),Binary, ts(r),ndb)
implies
rm(Binary, fs(r),

Binary. ts(r),DELES(es,ndb)) =
rm(Binary, fs(r),Binary, ts(r),ndb))

Modularising the Specification of a Small Database System in Extended ML 127

(. DELENT .)

axiom (forall es :
forall es' :

Rel_in(es,
forall t :

Binary.

Binary. B. Esetnm =>
Binary. B. Esetnm =>
es',ndb) implies
Binary. Tuple =>

S. member(t,
Binary. tuples(rm(es, es',ndb)))

implies
Binary. fv(t)<>eid
andalso Binary. tv(t)<>eid)

implies
(Eid in(eid, DELENT(eid, ndb)) = false
andalso

forall eid' : Binary. B. Eid =>
eid<>eid' implies
em(eid',DELENT(eid, ndb))

= em(eid',ndb)
andalso

forall es'' : Binary. B. Esetnm =>
esm(es'',DELENT(eid, ndb)) =
Binary. B. delete(eid, esm(es'',ndb))

andalso
forall es : Binary. B. Esetnm =>
forall es' : Binary. B. Esetnm =>

Rel_in(es,es',ndb)
implies
rm(es, es',DELENT(eid, ndb))

= rm(es, es',ndb)

(. DELREL .)

axiom (Rel_in(es, es',ndb)
andalso Binary. S. is empty(Binary, tuples(r)))

implies
(Rel_in(es, es',DELREL(es, es',ndb)) = false
andal s o

forall es'' : Binary. B. Esetnm =>
Es_in(es' ' , ndb)
implies
esm(es' ', DELREL (es, es' , ndb))

= esm(es, ndb)
andal s o

forall Eid : Binary. B. Eid =>
Eid_in (eid, ndb)
implies
em(eid, DELREL (es, es' , ndb))

= em(eid, ndb))

128 E. Kazmierczak

(. DELTUP .)

axiom Rel in(es, es',ndb)
implies
(Binary. Tuples (
rm(es, es' , DELTUP(t, es, es' , ndb))) =
Binary. S. delete(
t, Binary. tuples (rm(es, es' , ndb)))
andal s o

forall es'' �9 Binary. B. Esetnm =>
Es_in(es' ', ndb)
implies
esm(es' ', DELTUP (t, es, es', ndb))

= esm(es, ndb)
andal s o

forall Eid : Binary. B. Eid =>
Eid in(eid, ndb)
implies
em(eid, DELREL (es, es' , ndb))

= em(eid, ndb))
end

end;

B. N-ary Relations with Type Checking

B.I. Preliminaries

signature ESM =
sig

structure S : SET
structure B : BASICS

eqtype Attr
type NDB

val esm : B. Esetnm . NDB -> B. Eid S. Set
end;

B.2. N-ary Relations

signature TYPED_RELATION
sig

structure Esm : ESM

(. Tuples .)

eqtype Tuple

ModularisingtheSpecificationofaSmallDatabaseSysteminExtended ML 129

(. Operations and Axioms for Tuples .)

val create : (Esm. Attr . Esm. B. Eid) list -> Tuple

and value : Tuple . Esm. Attr -> Esm. B. Eid

local

val member : 'a . 'a list -> bool

axiom member(a, nil) = false

and member(a,a'::l) = (a = a') orelse member(a,l)

val function : ('a . 'b) list -> bool

axiom member((a,v),l) andalso member((a,v'),l)

implies v = v'

in

axiom member((a, eid),ae) andalso function(ae)

implies value(create(ae),a) = eid

end

(. Functional Dependencies .)

type Norm

val mk norm : (Esm. Attr Esm. S. Set. Esm. Attr)

Esm. S. Set -> Norm

and attrs : Norm -> (Esm. Attr Esm. S. Set. Esm. Attr)

Esm. S. Set

axiom attrs(mk norm(s)) = s

and mk_norm(attrs(n)) = n

(. Relations .)

eqtype Relation

(. Operations and Axioms for Relations .)

val empty : Norm . (Esm. Attr -> Esm. B. Esetnm)

- > Relation

and empty' : Esm. B. Rnm

. Norm

. (Esm. Attr -> Esm. B. Esetnm)

-> Relation

and add : Tuple . Relation -> Relation

(. Projection functions .)

and norm : Relation -> Norm

and tpm : Relation -> (Esm. Attr -> Esm. B. Esetnm)

and name : Relation -> Esm. B. Rnm

130 E. Kazmierczak

(. Other operators on relations .)

and rem : Tuple . Relation -> Relation
and tuples : Relation -> Tuple Esm. S. Set

local
val dom : Tuple -> Esm. Attr S. Set

axiom dom(create(nil)) = Esm. S. empty_set
and dom(create((a, eid)::t))

= Esm. S. imsert(a, dom(create(t)))

val restrict : Tuple . Esm. Attr Esm. S. Set -> Tuple

axiom forall a : Esm. Attr =>
forall s : Esm. Attr Esm. S. Set =>

Esm. S.member(a,s)
andalso Esm. S. member(a, dom(t))
implies
value(a, restrict(t,s)) = value(a,t)

val tuples of : Relation -> Tuple Esm. S. Set

axiom tuples of(empty(nm, tm) = Esm. S. empty_set
and tuples_of(empty'(rnm, nm, tm))

= Esm. S. empty set
and tuples_of(add(t,r) = Esm. S. insert(t,r)

in

(. axioms for the projectlons .)

axiom norm(empty(nm, tm)) =nm
and norm(empty' (rnm, nm, tm)) =nm

axiom tpm(empty'(rnm, nm, tm)) = tm
and tpm(empty(nm, tm)) = tm

axiom name(empty'(rnm, nm, tm)) = rnm

(. rem .)

axiom t = t' implies rem(t, add(t',r)) = r
and t <> t'

implies rem(t, add(t',r)) = add(t',rem(t,r)

(. tuples - incorporating the functional
dependency constraint .)

axiom tuples(empty(nm, tm)) = Esm. S. empty_set

Modularising the Specification of a Small Database System in Extended ML 131

and tuples(empty'(rnm, nm, tm)) = Esm. S. empty_set

axiom forall r : Relation =>

forall t : Tuple =>
forall t' : Tuple =>
forall (s,f) :

(Esm. Attr Esm. S. Set. Esm. Attr) =>
(Esm. S.member((s,f),norm(r))
andalso Esm. S.member(t, tuples_of(add(t,r))
andalso Esm. S.member(t',tuples_of(add(t,r)
andalso restrict(t,s) = restrict(t's)
implies value(t,f) = value(t',f)

)
implies

tuples(add(t,r))
= Esm. S. insert(t, tuples(r))

(. ... and the type checking constraint .)

axiom

end
end;

forall r : Relation =>
forall t : Tuple =>
forall a : Esm. Attr =>
Esm. S. member(t, tuples(r))
andalso Esm. S. member(a, dom(t))
implies
Esm. S.member(value(a,t),esm. esm(tpm(a),ndb)

C. Binary Relations in the Body of in Ndb

C.1. The Signature TPM

signature TPM =
sig

structure Set : SET
structure Basics : BASICS
type NDB
val esm : Basics. Esetnm .

end;
NDB - > Basics. Eid Set. Set

C.2. The Functor NDB_Relation

functor NDB Relation(Tpm : TPM)
sig

include BINARY_RELATION

132 E. Kazmierczak

(. Type Checking Constraint .)

axiom Tpm. S. member(t, tuples(r))
implies
Tpm. S.member(fv(t),Tpm. esm(fs(r),ndb))
andalso Tpm. S. member(tv(t),Tpm, esm(ts(r),ndb)

end =
struet

(. Relation Kinds .)

datatype Maptp = ONE_ONE [MANY ONE i
ONE_MANY I MANY_MANY

(. Attribute Names .)

datatype Attr = Fs i Ts

(. Conversion to Functional Dependencies .)

fun conv(ty) =
let

val insert = Tpm. Set. insert
val empty set = Tpm. Set. empty_set

in
case ty of

MANY_MANY =>
insert((insert(Ts, empty_set),Fs),

insert((insert(Fs, empty_set),Ts),
emptyset))

f MANY ONE = >

insert((insert(Fs, empty_set),Ts), empty set
r ONE_MANY =>

insert((insert(Ts, empty_set),Fs), empty_set
I ONE_ONE => empty_set

end

structure T : TYPED RELATION =
Typed_Relation(struct

structure S = Set
structure B = Basics

eqtype Attr = Attr
type NDB = NDB

end)
val esm = Tpm. esm

(. Converting norms back into map types .)

fun unconv(n : T. Norm) : Maptp = ?

Modularising the Specification of a Small Database System in Extended ML 133

local
val insert = Tpm. Set. insert
val empty_set = Tpm. Set. empty_set
val Fs_set = insert(Fs, empty_set)
val Ts_set = insert(Ts, empty_set)

in
axiom

unconv(T, mk_norm(insert((Ts_set,Fs),
insert((Fs_set, Ts),

= MANY MANY

end

empty_set)))

and unconv(T, mk_norm(insert((Fs_set, Ts),
empty_set))) = MANY_0NE

and unconv(T, mk_norm(insert((Ts_set,Fs),
empty set))) = 0NE_MANY

and unconv(T, mk_norm(empty_set)) = 0NE_0NE

(. Concrete Programs for Tuples .)

eqtype Tuple = T. Tuple

fun mk_tuple(eid, eid')
= T. create([(Fs, eid), (Ts, eid')])

fun fv(t) = T. value(t,Fs)
fun tv(t) = T. value(t, Ts)

(. Concrete Programs for Binary Relations .)

eqtype BinaryRel = T. Relation

fun mk_rel(mtp, es, es') =
let

val tm= fn Fs => es
in

T. empty(conv(mtp), tm)
end

I Ts = > es'

fun mk_rel' (rnm, mtp, es, es') =
let

val tm = fn Fs => es i Ts =>
in

T. empty' (rnm, conv(mtp), tm)
end

e s '

fun add(t,r) = T. add(t,r)

fun tuples(r) = T. tuples(r)

fun fs(r) = T. tpm(r)(Fs)

fun ts(r) = T. tpm(r)(Ts)

134 E. Kazmierczak

fun map(r) = unconv(T, norm(r))

end;

C.3. The NDB Functor

functor Ndb(B : BASICS'

struct

: sig
include NDB
sharing B =Binary. B

end =

structure Set : SET = ?

(. The Data Base .)

type NDB = ?

local

(. A local function associating
entities with entity sets .)

fun esm(es : Esetnm, ndb : NDB) : Eid Set = ?

in

(. A structure for binary relations .)

structure Binary :
sig

include BINARY RELATION

end

axiom Set.member(t, tuples(r))
implies
(Set.member(fv(t),esm(fs(r),ndb))
andalso Set. member(tv(t),

esm(ts(r),ndb)))
end =
Ndb_Relation(struct

structure Set = Set
structure Basics = B
type NDB = NDB
val esm = esm

end)

local

Modularis ingtheSpecif icat ionofaSmallDatabaseSystemin Extended ML 135

(. Auxiliary Functions .)

fun isNewDB(ndb : NDB) : bool = ?

axiom .

fun Es_in(es : B.~setnm, ndb : NDB) : bool = ?

axiom .

fun Eid in(eid : B. Eid, ndb : NDB) : bool = ?

axiom .

fun Rel_in(rel : Binary. BinaryRel,

ndb : NDB) : bool = ?

axiom .

(. A local function for associating

Entity Identifiers with Values .)

val em : Binary. B. Eid . NDB -> Binary. B. Value

(. A local function for extracting

the set of tuples in a relation .)

fun rm(rel : Binary. BinaryRel, ndb : NDB) : NDB = ?

in

(. Operations for Constructing the Data Base .)

val NewDB : NDB = ?

fun ADDES(es : B. Esetnm, ndb : NDB) : NDB = ?

fun ADDENT(memb : B. Esetnm Set. Set,

value : B. Value,

eid : B. Eid,

ndb : NDB) : NDB = ?

fun ADDTUP(tuple : Binary. Tuple,

rel : Binary. BinaryRel,

ndb : NDB) : NDB = ?

fun ADDREL(mp : Binary. Maptp,

ndb : NDB) : NDB = ?

fun DELES(es : B. Esetnm,

ndb : NDB) : NDB = ?

136 E. K a z m i e r c z a k

fun DEL~NT(eid : B. Eid,
ndb : NDB) : NDB = ?

fun DELTUP(eid : B.Eid,
eid' : B. Eid,
rel : Binary. BinaryRel,
ndb : NDB) : NDB = ?

fun DELRNL(rel : Binary. BinaryRel,
ndb : NDB) : NDB = ?

(. Axioms for the update operations .)

end
end;

D. The DataBase Functor

D.1. The Signature TYPED~RELATION'

signature TYPED_R~LATION' =
sig

structure ~ : BASICS
structure S : SET

(. A type for attributes .)

type Attr

val first : Attr
and next : Attr - > Attr

axiom not(first = next(first))

(* Tuples .)

eqtype Tuple

(. Operations and Axioms for Tuples .)

val create : (Attr . B. Eid) list -> Tuple
and value : Tuple . Attr -> B.~id

local
val member : 'a . 'a list -> bool
axiom member(a, nil) = false

Modularising the Specification of a Small Database System in Extended ML 137

and member(a,a'::l) = a = a' orelse member(a,l)

val function : ('a . 'b) list -> bool

axiom (member((a,v),l) and also member((a,v'),l))

implies v = v'

in

axiom member((a, eid),ae) andalso function(ae)

implies value(create(ae),a) = eid

end

(. Functional Dependencies .)

type Norm

val mk_norm : (Attr S. Set. Attr) S. Set -> Norm

and attrs : Norm -> (Attr S. Set. Attr) S. Set

axiom attrs(mk norm(s)) = s

and mk_norm(attrs(n)) = n

(. Relations .)

eqtype Relation

(. Operations and Axioms for Relations .)

va2 empty

and empty'

and add

and norm

and tpm

and name

and rem

and tuples

: Norm . Attr -> B.~setnm) -> Relation

: B. Rnm . Norm . (Attr -> B. Esetnm)

- > Relation

: Tuple . Relation -> Relation

: Relation -> Norm

: Relation -> (Attr -> B. Esetnm)

: Relation -> B. Rnm

: Tuple . Relation -> Relation

: Relation -> Tuple S. Set

local

val dom : Tuple -> Attr S. Set

axiom dom(create(nil)) = S. empty_set

and dom(create((a, eid)::t))

= S. insert(a, dom(ereate(t)))

val restrict : Tuple . Attr S. Set-> Tuple

axiom forall a : Attr =>

forall s : Attr S. Set=>

S. member(a,s) andalso S.member(a, dom(t))

implies

value(a, restrict(t,s)) = value(a,t)

138 E. Kazmierczak

val tuples_of : Relation -> Tuple S. Set

axiom tuples of(empty(nm, tm) = S. empty_set
and tuples_of(empty'(rnm, nm, tm)) = S. empty_set
and tuples of(add(t,r) = S. insert(t,r)

in

(. axioms for the project ons .)

axiom norm(empty(nm, tm)) =nm
and norm(empty'(rnm, nm, tm)) =nm

axiom tpm(empty'(rnm, nm, tm)) = tm
and tpm(empty(nm, tm)) = tm

axiom name(empty' (rnm, nm, tm)) = rnm

(* rem .)

axiom t = t' implies rem(t, add(t',r)) = r
and t <> t'

implies rem(t, add(t',r)) = add(t',rem(t,r

(* tuples *)

axiom tuples(empty(nm, tm)) = S. empty_set
and tuples(empty'(rnm, nm, tm)) = S. empty_set

axiom forall r : Relation :>
forall t : Tuple =>
forall t' : Tuple =>
forall (s,f) : (Attr S. Set. Attr) =>

(S.member((s,f),norm(r))
andalso S.member(t, tuples_of(add(t,r))
andalso S.member(t',tuples of(add(t,r)
andalso restrict(t,s) = restrict(t's)
implies value(t,f) = value(t',f)

mmplies
tuples(add(t,r)) = S. insert(t, tuples(r))

end
end;

D.2. The Signature NDB'

signature NDB' :
sig

ModularisingtheSpecificationofaSmallDatabaseSysteminExtended ML

structure Binary : BINARY_RELATION

139

(. The Data Base .)

type NDB

(. Operations .)

val NewDB : NDB
val ADDES : Binary. B. Esetnm . NDB -> NDB
val ADDENT : Binary. B. Esetnm Binary. S. Set

.Binary. B. Value

.Binary. B. Eid

. NDB -> NDB
val ADDTUP : Binary. Tuple

.Binary. B. Nsetnm

.Binary. B. Esetnm

. NDB -> NDB
val ADDREL : Binary. BinaryRel . NDB -> NDB
val DELES : Binary. B. Esetnm . NDB -> NDB
val D~LENT : Binary. B. Eid . NDB -> NDB
val DELTUP : Binary. Tuple

.Binary. B. Esetnm

.Binary. B. Esetnm

. NDB -> NDB
val D~LREL :Binary. B. Nsetnm

.Binary. B.~setnm

. NDB -> NDB

(. Axioms .)

local

(. Auxiliary Functions .)

val isNewDB : NDB -> bool

val Es in : Binary. B. Esetnm . NDB -> bool

val Eid_in : Binary. B. Eid . NDB -> bool

val Rel_in : Binary. B. Esetnm
.Binary. B. Esetnm
. NDB -> bool

140 E. K a z m i e r c z a k

(. A local function associating
entities with entity sets .)

val esm : Binary. B. Esetnm . NDB
- > Binary. B. Eid Binary. S. Set

(. A local function for associating
Entity Identifiers with Values .)

val em : Binary. B. Eid . NDB -> Binary. B. Value

(. A local function for associating
Entity set names with a relation .)

val rm : Binary. B.~setnm
.Binary. B. Esetnm
. NDB ->Binary. BinaryRel

in

(. Operations for Constructing the Data Base .)

(. Type Checking Constraint .)

axiom Rel_in(r, ndb)
andalso Binary. S. member(t, Binary. tuples(r))
implies

Binary. S.member(Binary. fv(t),
esm(Binary, fs(r),ndb))

andalso
Binary. S. member(Binary, tv(t),

esm(Binary, ts(r),ndb))
end

end;

D.3. The Functor DataBase

functor DataBase(B : BINARY_RELATION) :
sig

include NDB
sharing B = Binary

end =

ModularisingtheSpecificationofaSmallDatabaseSysteminExtended ML

struct

structure Set : SET = ?

structure Binary = B

open B Set

(. The Data Base .)

type NDB = ?

(. Operations .)

val NewDB : NDB = ?

fun ADDES(es : Esetnm, ndb : NDB) : NDB = ?

fun ADDENT(memb : Esetnm set,

value : Value,

eid : Eid,

ndb : NDB) : NDB = ?

fun ADDTUP(tuple : B. Tuple,

rel : B. BinaryRel,

ndb : NDB) : NDB = ?

fun ADDREL(mp : Maptp, ndb : NDB) : NDB = ?

fun DELES(es : Esetnm, ndb : NDB) : NDB = ?

fun DELENT(eid : Eid, ndb : NDB) : NDB = ?

fun DELTUP(eid : Eid,

eid' : Eid,

rel : B. BinaryRel,

ndb : NDB) : NDB = ?

fun DELREL(reI: B. BinaryRel, ndb : NDB) : NDB = ?

(. Axioms ~)

local

(. Auxiliary Functions .)

val isNewDB : NDB = ?

axiom

fun Es_in(es : Binary. B. Esetnm,

ndb : NDB) : bool = ?

141

142 E. K a z m i e r c z a k

axiom .

val Eid_in(eid : Binary. B. Eid,

ndb : NDB) : bool = ?

axiom .

val Rel in(r : 'b, ndb : NDB) : bool = ?

axiom .

(. A local function for extracting

the set of tuples in a relation .)

val rm(r : 'b, nbd : NDB) : NDB = ?

axiom .

(. A local function associating

entities with entity sets .)

val esm(es : Esetnm, ndb : NDB) : Eid Set : ?

axiom .

in

(. Operations for Constructing the Data Base .)

end

end;

Received December 1990
Accepted in revised form September 1991 by B. T. Denvir

