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Abstract. A case study in the modular specification and refinement of a small 
database system is presented in Extended ML. Two similar requirements specifi- 
cations are given and a program development step from each these is presented. 
The structure resulting from the first program development step is similar to that 
given in [FiJ90] and is presented as an answer to the challenge problem given in 
that paper, while the second development step is presented as a possible alterna- 
tive which is more suited to the Extended ML style of program development. In 
the context of these two development steps the module facilities of Extended ML, 
their role in specification and program development and their ability to meet the 
challenge of [FiJ90] are examined. 

1. Introduction 

Formal program specifications serve many purposes in software engineering, for 
example, in defining precisely what a program must do (but not how it must do 
it) in order to solve a particular problem, or in the detailed design of a program 
module. The goal of program development is then to provide a program which 
will m e e t  the specification (and by doing so solve the original problem). 

Specifications, just as programs, can be large and unwieldy making them 
difficult to understand or reason about. Specification languages with facilities for 
structuring specifications have been developed to cope with the large specifications 
which may arise in practice (see for example [GOB80, EhM85, EhM90, FiJ90, 
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San89]). From a clean structuring of a specification we may, for example, see 
the consequences of our definitions and axioms more readily. This is not only 
important from the perspective of the specification writer but also of the many 
parties who may come to rely on the specification during the course of a system's 
lifetime. In addition, module facilities enhance the flexibility of a specification 
language by limiting the scope of the consequence of changes, or by facilitating 
the re-use of previously developed modules in different contexts. 
Two proposed goals of a module system for structuring specifications are (see 
[Par72, FiJ90, EhM90]): 

1. Separation of Concerns, by which we mean the ability to concentrate on the 
specification of one aspect of a system without being hindered by details 
of irrelevant parts of the same specification and, in the context of program 
development, the ability to develop modules without reference to other parts 
of the same system; 

2. Module Generality, by which we mean that modules may be defined with 
sufficient generality to enable them to be used in a variety of contexts. 

A means of achieving (1) is to surround each module with well defined 
interfaces which isolate it from any context in which it may be used. Interfaces 
around each module are also important in defining the precise nature of the 
interaction between the module and its environment [SST90]. An important 
corollary of this is that the structure of a specification can be used to limit the 
search space for proofs of theorems about that specification (see, for example 
[SaB83, SAT88] where theorem proving in structured specifications is addressed). 

Module generality should provide for the re-use of modules in a variety of 
contexts. This is important not only for the sake of convenience but also since 
time spent on getting one module "right" should not be wasted in redeveloping 
what is essentially the same specification again in every new context (with all the 
attendant possibility of error). 

In [FiJ90] a case study in the modular specification of a simple database system 
was presented. The specification language used was VDM [Jon86] augmented 
with a number of facilities for writing modular VDM specifications. In particular 
parameterised modules, nested modules and dependent types were used to create 
parameterised specifications. The paper concluded with a challenge for other 
specification languages which provide facilities for structuring specifications to 
specify the database using the same structure as in [FiJ90] 2. 

The aim of this paper is then twofold: first, to answer the challenge problem 
by performing the case study using Extended ML [SAT89, San89] and second, 
to examine the ability of Extended ML's module system to meet this challenge 
in the light of the two general goals outlined above. Extended ML has many of 
the module facilities mentioned above but in Extended ML they play a dual role 
in both structuring specifications and the resulting programs (or combinations of 
the two). In particular in Extended ML we wish to specify parameterised programs 
and formally develop Standard ML programs from these. We present two similar 
requirements specifications and perform a single program development step, using 
the Extended ML methodology, from each of these. The first of these results in 
an analogue of the structure of the specification in [FiJ90] while the second is 
given in a style more suited to program development in Extended ML. 

2 See [FiJ90], appendix C 
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The remainder of the paper is organised as follows. In section 2 we briefly 
review Extended ML by giving some simple examples while in section 3 we 
give an overview of the database system that forms the subject of our case 
study. In section 4 we present the first requirements specification in some more 
detail as the specification of a parameterised program which will eventually 
implement the data base. The two different modular specification structures are 
then investigated by performing a single program development step from this 
requirements specification and from the second similar requirements specification 
in section 6. The first development step given in section 5, uses coding to give 
a similar structure to that in [FiJ90] 3 while the second is presented in section 
6 and uses functor decomposition to achieve an alternative structuring of the 
specification. Our conclusions are presented in section 7. 

2. Extended ML 

Extended ML is a wide-spectrum language for specifying and developing pa- 
rameterised programs in the functional programming language Standard ML 
[Har86, Tof89, HMTg0, MiT90]. Standard ML is a functional programming 
language with the ability to define data types by just giving the constructors 
for that type, polymorphic data types [Mi177, DAM82, CAW85] and higher order 
functions as well as providing a powerful module system for "programming in the 
large". It also has a completely formal mathematical definition [HMT90, MiTg0] 
which makes it an extremely good target language for program development of 
the kind which requires formal proof. 

Extended ML is an extension of Standard ML obtained by allowing axioms 
in modules and module interfaces and using the modules facilities already present 
in Standard ML to structure specifications [San89, SAT89]. Specifications in Ex- 
tended ML are of parameterised program modules, rather than the more usual 
parameterised specifications (of programs) found in other algebraic specification 
languages, for example, [GOB80, EhM85, EhMg0]. Program development is by 
stepwise refinement (described below) from algebraic specifications of a (param- 
eterised) module's interfaces. We briefly overview the salient features of both the 
Extended ML specification language and the program development methodology 
below. 

2.1. Structures, Functors and Signatures 

Specifications in Extended ML are written in a higher order, polymorphic, 
equational logic and are structured using the modules system of Standard ML 
[HMT90, MiT90, Har86, Mac86, Tof89] which is composed of Signatures, Struc- 
tures and Functors. Structures, in Standard ML, are program modules which 
contain definitions of types, functions and substructures. Signatures, in Standard 
ML, are interfaces to structures which specify what components of a structure 
are externally visible. In Extended ML, signatures and structures may include 
axioms which makes them specifications, for example, a signature P0 specifying 
a partial order is given in Fig. 1. 

3 See [FiJ90] appendix C 
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signature PO = 

sig 

eqtype elem 

val le : elem . elem -> bool 

axiom forall x => le(x,x) 

axiom forall x => forall y => 

le(x,y) andalso le(y,x) 

axiom forall x => forall y => 

le(x,y) andalso le(y,z) 

end; 

implies x=y 

forall z => 

implies le(x,z) 

Fig. 1. A signature specifying a partial order 

A structure which matches PO must include at least a type called elem, which 
must have equality defined on it 4 (as required by the specification e q t y p e )  and a 
function l e  with the type e l e m  . e l e m  ->  b o o l .  Two examples of  structures 
which will match the signature lzO of Fig. 1 are given Fig. 2. The first uses the 
predefined type of  integers and the predefined operation <= (less than or equal 
to) defined on integers to give a structure matching PO. The second uses natural 
numbers which are generated by a data type definition: each member  of  the type 
e l e m  is either a term ZERO or SUC(x)  where x is a term of type e lem.  The 
functions l e  and p l u s  in the structure E l e m e n t '  are both defined by cases 
on the data type e lem.  Note that we can have more components in a structure 
which matches P0 than is required by PO, for example, p l u s  in the structure 
E l e m e n t ' ,  but the extra components are hidden by the signature. 

As well as just flat signatures like the partial order in Fig. 1 signatures 
may exhibit internal structure which includes local (and therefore hidden) func- 
tions. Signatures may refer to other signatures which are to be included or to 
substructures whose visible components are specified by yet another signature. 
Substructures and locally specified functions are present in the signature SORT of 
Fig. 3. The local functions are p e r m u t a t i o n ,  member  and o r d e r e d  and are 
only used in the signature but are not required of any structure matching this 
signature: they are local to the signature SORT. 

Note also that in Fig. 3 quantifiers may range over polymorphic types. Polymor- 
phic types are distinguished by a leading quote, for example, the type ' a 1 i s t 
in Fig. 3 is a polymorphic type. A function with polymorphic types in its domain, 
such as member  in Fig. 3, may be applied to arguments of  many different types. 
For example, member  may be applied to pairs of type i n t  . ( i n t  l i s t )  
or b o o l  . ( b o o l  l i s t )  but no matter  what type of argument is supplied 
to member  the specification is the same. Polymorphic types which which admit 
equality (equality types) are distinguished by a double leading quote, for example, 
the type ' ' a S e t in appendix A.1. 

Functors are parameterised modules. They are specified by two signatures, one 
for the parameter  and one for the result. The parameter  signature specifies the 
class of  Standard ML structures which can be actual parameters to the functor 
while the result signature specifies the class of  Extended ML structures which 

4 Not all types in Standard ML have equality defined on them, for example, function types do not 
have an equality [HMT90]. Those types which do have equality defined on them are called Equality 
Types [HMT90, MiT90] 
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structure Element:P0 = 

struct 

type elem = int 

val le = op <= 

end; 

structure Element':P0 = 

struct 

datatype elem = ZERO I SUC of elem 

fun Ie(ZER0, ZER0) : true 

l Ie(ZER0, SUC(x)) = true 

I Ie(SUC(x),ZER0) = false 

11e(SUC(x),SUC(y)) : le(x,y) 

fun plus (ZERO, x) = x 

I plus(SUC(x),y) = 

end 

SUC(plus(x,y)) 

Fig. 2. Two structures which match the signature P0 

can result and this may depend upon the actual parameter. Intuitively Extended 
ML functors can be thought of  as functions from Standard ML structures to 
Extended ML structures. For example, a sorting functor may be presented as in 
Fig. 4. The phrase i n c l u d e  SORT again means that the resulting interface in 
Fig. 4 includes all the declarations and axioms of SORT. The sharing constraint 
s h a r i n g  X = E l e m e n t s  states that the substructure E l e m e n t s  of  S o r t  
must be identical to the parameter  X and is similar to the sharing constraints of  
Standard ML. 

Sharing is important in Standard ML because it is required in deducing the 
correct types in modules. It is important in Extended ML because it is often used 
to express the dependence of axioms in the result signature on types and values in 
the actual parameter. In Fig. 4 for example, the sharing constraint specifies that 
the type E l e m e n t s .  e l e m  in SORT is the same as the type X. e l e m  in the (actual) 
parameter  thus making the result dependent upon the actual parameter. Without 
this sharing constraint the type E l e m e n t s .  e l e m  and the value E l e m e n t s .  l e  
need not be the same as those of  the parameter  X, and so the axioms would not 
explicitly require us to sort lists of  type X. e l e m  nor compare their values using 
the partial order X. l e  in the parameter. 

2.2. Constructing Standard ML Programs 

One proceeds from a requirements specification to a program by a series of  
development steps. Each development step results in a program which is correct (in 
the sense described below) with respect to the results of  the previous development 
step if all the proof  obligations associated with that step are formally discharged. 
We may think of each development step as filling in some detail left open in the 
previous step, for example, making an abstract type within a structure concrete, or 
providing an algorithm for some function which hitherto has only been specified 
using axioms. Once the results of  a development step includes no axioms, all 
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signature SORT = 

sig 

structure Elements : P0 

val sort : Elements. elem list -> Elements. elem list 

local 

val count : 'a . 'a list -> int 

and permutation : 'a list . 'a list -> bool 

and ordered : Elements. elem list -> bool 

axiom forall x : 'a = >  count(x, nil) = 0 

and forall x : 'a => 

forall I : 'a list => 

x = y implies 

eount(x,y::l) = I + count(x,l) 

and forall x : 'a => 

forall I : 'a list => 

not(x = y) implies 

eount(x,y::l) = count(x,l) 

axiom forall x : 'a = >  

forall I : 'a list = >  

forall I' : 'a list = >  

count(x,l) = count(x,l') 

implies permutation(l,l') 

axiom forall a : Elements. elem :> 

ordered(a :: nil) = true 

and forall a : Elements. elem => 

forall b : Elements. elem => 

forall I : Elements. elem list => 

ordered(a::b::l) =(Elements. le(a,b)) 

andalso ordered(b::l) 

in 

axiom forall I : Elements. elem list => 

permutation(l, sort(1)) 

andalso ordered(sort(l)) 

end 

end; 

Fig. 3. A signature with substructures and hidden functions 
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functor Sort(X:ELEMENT):sig 

include SORT 

sharing X = Elements 

end = ? 

Fig. 4. Specification of a Sorting Functor 

the types are concrete and all the functions are defined by Standard ML code 
then the development process is complete. If all the proof obligations have been 
discharged then this final program satisfies the original requirements specification 
by construction. 

There are three possible kinds of development step in the Extended ML 
program development methodology [San89]. 

Functor Decomposition 

Intuitively functor decomposition is used to break a task into subtasks. Suppose 
we are given the following specification: 

f u n c t o r  F(X : ~) : ~' = ?  

The first of the development steps allows us to define the functor F in terms of 
the composition of a number of other functors, for example, in the simple case 
of two new functors G and H we have: 

f u n c t o r  F(X : r.) :~ '  = G(H(X)) 

where 

f u n c t o r  G(Y " NG) " NrG = ? 
f u n c t o r  H(Z : NH) " N?t = ~ 

and r~ H, r,~, NG and r ~  are all appropriately defined Extended ML signatures. 
The task of finding a solution to F has been broken up into the subtasks of  
finding solutions to G and H. This decomposition is correct if: 

1. All structures matching the parameter signature of F also match the parameter 
signature of  H, that is, r, ~ r. H; 

2. All structures matching the result signature of H can be used as an argument 
for G, that is, ~,~ ~ r,G; 

3. All structures matching the result signature of G also match the result signature 
of F, that is, r.b ~ r,'. 

The development of  the functors H and G may now proceed separately. 

Coding 

Given a specification of the form: 

s t r u c t u r e  A : ~ = ?  

o r  

f u n c t o r  F(X :N) :N' = ?  

coding is used to replace the qmark  by an actual structure body to give 
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structure A : ~ = strexp 

or in the case of  functors 

f u n c t o r  ~Y(X : P,) : ~t = strexp 

A coding development step is correct if 

strexp ~ 7, 

in the case of  structures and 

~, U strexp ~ r,' 

in the case of functors. A structure body need not be all Standard ML code 
and indeed the possibility of  fixing only some design details exists since axioms 
are allowed within Extended ML structure bodies. For example, a value which 
is left specified in this way can be written as v a l  v = ?, (or in the case of 
functions f u n  f(x) =? )  while types may be made abstract within structure 
bodies by writing t y p e  t =? .  Axioms may also be added to specify more 
detailed properties of such unrefined values. 

Refinement 

Refinement is the third kind of development step used to fill in design choices left 
open by a coding step or by another refinement step. Refinement is most often 
used in choosing concrete types for abstract types or in filling in the details of  a 
function with an actual algorithm. Given a functor of  the form: 

f u n c t o r  F(X : ~) : P,' = strexp 

we can replace strexp by strexp' in a refinement step to give: 

f u n c t o r  F(X : r,) : ~' = strexp' 

A refinement step is correct if 

E U strexp I ~ strexp 

The rules for coding structures are similar. 

3. The "Non-Programmer Database" 

The "Non-Programmer  Database"  (NDB) which forms the subject of  the chal- 
lenge problem is a simple existing database system described in [FiJ90, Wal90, 
WiS79]. The salient features of  the NDB system are given below. 

The data base stores information about entities and (binary) relations between 
them. Each entity is identified by a unique entity identifier (Eid) and is usually 
associated with a value (although this need not be the case). Entities (and 
their values) are grouped into entity sets (Esetnm) for the purpose of imposing 
constraints. Relations in the database are binary relations between two sets of  
entities and may be named or unnamed [FiJ90, Wal90]. In addition each relation 
has an associated pair of  entity set names specifying the domain and codomain of 
that relation as well as information stating the kind of relationship which exists 
between the two sets of  entities, whether one to one, many to one, one to many or 
many to many. This latter information is referred to as the functional dependency 
information of a relation (see [Dat86] for more about relational databases). 
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To maintain the integrity of  the data the following two constraints are imposed 
on the database. 

1. Sets of  tuples within a relation must respect the functional dependency of 
that relation. This is a constraint on relations and is referred to in the sequel 
as the "functional dependency constraint". 

2. The first and second components of  a tuple in a relation must be drawn from 
the entity sets named by the domain and codomain of the relation. This is a 
form of Typing constraint placed on relations and is referred to in the sequel 
as the "type checking constraint ''5. 

An example taken from [Wa190] is the following relation: 

Country Currency 

Scotland pound 
China yuan 
Australia dollar 

which is a relation between the two entity sets Country and Currency and entities 
with values Scotland, China and Australia (each drawn from the Country entity 
set) and pound, yuan and dollar (each drawn from the Currency entity set). 

Finally there are the operations which update the database, ADDES, DELES, 
ADD~.NT, D~.LENT, ADDTUP, DELTUP, ADDRI~L and DELREL. ADDI~S is used to 
add a new entity set name to the database and ADDENT adds a new entity 
identifier to each one of a number of  entity sets. ADDRET, and ADDTUP are 
used to add relations and tuples respectively to the database. The remaining 
operations DELES, DELENT, DELREL and DELTUP delete various elements from 
the database, for example, DELES deletes an entity set name and DELENT deletes 
an entity identifier. 

4. A Specification of the Programming Task 

The requirements specification for a parameterised version of NDB is outlined 
below while the full specification is given in appendix A. Specifications are 
given in an algebraic style. For the sake of brevity we omit quantifiers in the 
specifications and assume that all axioms are universally quantified outermost 
over their free variables unless otherwise stated. The specification which is the 
result signature of  the functor implementing NDB can be naturally broken up 
into several substructures, one for the basic objects, a second for relations and a 
third for the update operations. 

The four basic sets of  objects in the data base, entity identifiers, entity set 
names, relation names and values, are specified by the four (abstract) types E id ,  
E s e t n m ,  Rnm and V a l u e  respectively in the signature BASICS of Fig. 5. Each 
of these must admit equality as designated by the e q t y p e  keyword. 

The signature BINARY__RELATION in appendix A.2 introduces two abstract 

5 In [FiJ90] two more constraints on the database are given but these are concerned with the 
properties of maps which do not feature in our axiomatic specification 
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signature BASICS = 

sig 
eqtype Eid and Esetnm and Value and Rnm 

end 

Fig. 5. Basic Types 

signature BINARY_RELATION = 
sig 

include BASICS 

include SET 

end; 

Fig. 6. 

types, Tuple and BinaryRel, as well as the operations for these. A third con- 
crete data type Maptp  is also introduced for the purposes of  handling the func- 
tional dependency information for binary relations. This signature also includes 
two substructures: B, a substructure for the basic objects, and S a substructure 
for sets. To refer to components of these we prefix the identifiers in the signature 
with the name of  the structure to which they belong, for example, B. E i d  is 
used to refer to the type E i d  in the substructure B. Also since relations can be 
named or unnamed two operations are used to construct new relations, one for 
anonymous relations and the other for named relations: 

val mk rel : Maptp . B. Esetnm . B. Esetnm -> BinaryRel 
val mk_rel' : B. Rnm . Maptp . B. Esetnm . B. Esetnm 

-> BinaryRel 

Using substructures to structure a signature, such as BINARY_RELATION means 
that the final program will need to contain substructures matching the signatures 
BASICS and SET respectively. An alternative would have been to i n c l u d e  the 
signatures BASICS and SET as in Fig. 6. We have used substructures, however, 
because they allow us to specify some necessary sharing later (see section 5). 

Note also that the types and functions in the signature SET (of appendix A.1) 
are polymorphic which means that the operations specified there can be applied 
to arguments of  many different types. Polymorphic types provide one way of  
creating signatures whose components can be re-used in a variety of contexts, for 
example, SET is one such signature which is used in (at least) two different ways: 
to specify sets of  tuples in BINARY_RELATION (see appendix A.2) and to specify 
sets of  entity set names in NDB (see appendix A.3). 

The signature NDB now introduces the remaining update operations. To impose 
similar constraints on the final program to those in [FiJ90] several hidden auxiliary 
operations are introduced, for example, e sin, em and rm (see appendix A.3). These 
auxiliary functions are used to capture the "state" of the database in our algebraic 
specifications much as the maps esm, em and rm define the state in the VDM 

5 FAC4 
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specification of [FiJ90]. In the VDM specification A D D E S  is specified as in Fig. 7 
while using the auxiliary functions the Extended ML analogue would be: 

A D D E S ( e s  :Esetnm) 
m 

ext wr esm : Esetnm --, Eid-set 
pre es q~ dora esm 

post esm = e s m  U{es ~ {}} 

Fig. 7. 

axiom not(Es_in(es, ndb)) 
implies 
(Es in(es,ADDES(es,ndb)) 
andal s o e sm ( e s, ADDES ( e s, ndb ) ) 

=Binary. S. empty set 
andal s o 

(forall eid : Binary. B. Eid => 
Eid_in(eid, ndb) implies 
em(eid, ADDES(es, ndb)) = em(eid, ndb)) 

andal s o 
(forall es' : Binary. B. Esetnm => 
forall es'' : Binary. B. Esetnm => 

Es in(es',ndb) 
andalso Es in(es'',ndb) 
andalso Rel_in(es',es'',ndb) 
implies rm(es',es'',ADI)ES(es, ndb)) 

= rm(es' , es' ' ,ndb) ) ) 

The only question which now remains is where to formulate the two database 
constraints. The "functional dependency constraint" is a property of relations in 
the database and since it depends only upon the types and operations pertaining 
to relations it is given in the signature dealing with relations. The placement 
of the type checking constraint influences the structure of the program design 
specifications which we give. In section 5 it is a constraint on N-ary relations 
while in section 6 it is to be a constraint on relations in the database (but not 
necessarily on N-ary relations). 

The first requirements specification is now given in Fig. 8. The sharing con- 
straint again states that the substructure Binary. B of the final functor must be 
the same as the formal parameter of the functor: in other words, the types Eid ,  
Ese tnm,  V a l u e  and Rnm appearing in the output signature must be the same 
as in the actual parameter of the functor. 

5. Modularisation with Typing and Functional Dependencies 

Recall from section 4 that the requirements specification in Fig. 8 is of a pa- 
rameterised program (and not a parameterised specification). Below we give the 
first of our program design specifications which is obtained by coding from this 
requirements specification. The structure of our program design specification is 
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functor Ndb(B : BASICS): 
sig 

include NDB 
sharing B = 

end = ? 
Binary. B 

Fig. 8. The specification of the database module to be developed 

intended to be an algebraic analogue of that given in [FiJ90] where the type 
checking constraint is imposed on N-ary relations. 

5.1. Generalising Binary Relations 

The observation in [FiJ90] that binary relations are just a special case of N-ary 
relations is used to motivate a specification module for N-ary relations. In terms 
of our parameterised program specifications these modifications can be stated as 
follows. 

1. Relations are now to be considered as N-ary relations for some fixed but 
arbitrary N. The elements of the type Attr are the acceptable field names of 
tuples. A functional correspondence between elements of the type A t t r  and 
values (Eids) defines a tuple. 

2. The functional dependency information must also be generalised appropri- 
ately. In appendix B.2 the type Norm is used for this information. The means 
of constructing values of this type is through the function ink_norm where the 
domain ofmk_normis  a type ( A t t r  S. S e t  . A t t r )  S. Se t .  If ( s ,  f )  is 
an element of type ( A t t r  S. S e t  . A t t r )  S. S e t  then s is to be thought 
of as a set of attributes which functionally determine the attribute f. 

3. Tuples in relations are to satisfy the type checking constraint and this is to be 
a property of the module for N-ary relations. 

In [FiJ90] three parameterised specification modules are used: 

1. TYPED-RELA TION which encapsulates the specification for N-ary relations; 
2. NDBRELATION which specialises the specification of N-ary relations in 

TYPED-RELATION to a specification of binary relations; 
3. it NDB which is a specification of the database based upon the specification 

module NDBRELATION which introduces binary relations and operations 
on binary relations. 

To achieve a similar program design specification structure we use three functors 
which correspond in broad terms to the specification modules above: 

1. T y p e d _ R e l a t i o n  which is the module for N-ary relations is specified in 
Fig. 9; 

2. NDB__Relation which is a functor that specialises N-ary relations to binary 
relations is specified in Fig. 10 (see appendix C.2) 

3. Ndb which is the database module (see appendix C.3). 

One feature of the module system in [FiJ90] is that theories can be dynamically 
created by passing parameters to specification modules, for example, in Fig. 11 a 

5-2 
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functor Typed_Relation(E : ESM) : sig 
include TYPED_RELATION 
sharing E = ESM 

end = ? 

Fig. 9. Requirements Specification for TYPED_RELATION 

functor NDB_Relation(Tpm : TPM) : 
sig 

include BINARY_RELATION 

(. Type Checking Constraint .) 

axiom Tpm. S. member(t, tuples(r)) 
implies 
Tpm. S. member(fv(t),Tpm, esm(fs(r),ndb)) 
andalso Tpm. S. member(tv(t),Tpm, esm(ts(r),ndb)) 

end = 

Fig. 10. Requirements Specification for NDB_Relation 

new instantiation of  the module N D B R E L A T I O N  is created for each value of rk 
in the domain of rm. 

In Extended ML structures and not theories are created when functors are 
applied to actual parameters. The properties which are observable in the resulting 
structure, or class of  structures, is given in the result interface of the functor. 
For example, all that is known about the class of structures resulting from the 
application of  the functor Typed_Relation in Fig. 12 is that which can be 
deduced from the signature TYPED_RELATION (provided that every structure 
which can result on right hand side also matches this signature). 

Signatures are not explicitly parameterised and sharing is only a form 
of dependent typing and not parameterisation. In the case of the functor 
Typed_Relation in Fig. 9 the result signature depends on the function esm in 
the parameter but since no axioms are given in the parameter signature constrain- 
ing esm then there are also no constraints on esm visible in the result signature. 
Apart from the dependence of the result interface of  T y p e d _ _ R e l a t i o n  on 
the parameter this means that the interfaces to T y p e d _ R e l a t i o n  are fixed 

inv mk-Ndb(esm,em,rm) 
dom em = Urng esm A 
Vrk e dom rm. 
let mk-Rkey(nm, fs , t s )  = rk in 
let mk-Rinf( tp ,r)  = rm(rk )  in 
{fs, ts} ~_ dom esmA 
r E N D B R E L A T I O N  [fs, ts, esm, tp].Relation 

Fig. 11. 
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structure T : TYPED RELATION = 

Typed Relation(struct 

structure S = Set 

structure B = Basics 

eqtype Attr = Attr 

type NDB = NDB 

end) 

val esm = Tpm. esm 

Fig. 12. Applying a functor 

and consequently the development of Typed_Relation can be carried out in 
isolation. 

5.2. N-ary Relations 

To achieve the generalisations above we need to formulate the type check- 
ing and functional dependency constraints in the result signature of the functor 
Typed__Rela t  i on. If  this is done then the body of  the functor T y p e d _ _ ~ e l a t i  on 
must be formally developed to satisfy these two properties. 

For the purposes of enforcing the type checking constraint attributes (elements 
of the type A t t r )  must be related to actual entity set names. Since each relation 
may associate attributes to entity set names in a different way this association 
depends upon relations themselves. This is done in appendix B.2 by including a 
function mapping attributes to entity set names in the two constructor functions 
for relations which consequently have the following types, 

val empty : Norm , (Esm. Attr -> Esm. B. Esetnm) 

-> Relation 

and empty' : Esm. B. Rnm 

, Norm 

, (Esm. Attr -> Esm. B. Esetnm) -> Relation 

Notice as well that the corresponding axioms are consequently higher order. 
The dependence of the association between attributes and entity set names upon 
relations is also the reason it is given in the signature TYPED__RELATION rather 
than being passed as a parameter as in [FiJ90]. 

The functional dependency constraint is now easy to formulate in TYPED__REL- 
ATlONbut the type checking constraint still requires an external component. We 
do not use a type checking function 

tpc : E i d  • E s e t n m  - o  bool  

as in [FiJ90] since the formulation of the type checking constraint depends 
more precisely on the association between entity set names and the set of en- 
tity identifiers which they denote. This must come from outside the functor 
T y p e d - - R e l a t i o n  and it is done by the function esm in our specifications. The 
sharing constraint ensures that the component e sm of  the result signature which 
is used in the type checking constraint is the same as that in the parameter. 
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Since we can make very few assumptions as to the form or use of e sm it is left 
unconstrained. 

5.3. Speeialising N-ary Relations to Binary Relations 

At this point we do not need to develop TypedA~elation further. All that we 
need to know about T y p e d _ 2 ~ e l a t i o n  for the purpose of specialising N-ary 
relations to binary relations is given in the requirements specification of Fig. 9. 

We use a functor NDB._Re la t ion  to specialise N-ary relations to binary 
relations. Recall now from section 2 that it is possible to mix programs and spec- 
ifications in Extended ML. The translation from N-ary to binary relations can be 
described by a Standard M L  program just as well as by an axiomatic description 
and in appendix C.2 we give such a program. To ensure the type correctness of  
the functor body with respect to the signature BINARY_RELATION we need to 
include a function u n c o n v  which maps the representation of  functional depen- 
dencies in terms of  the type Norm back into functional dependencies represented 
in terms of the data type ~Iaptp.  

5.4. NDB_Relation in Ndb 

In the body of the functor Ndb a structure Binary is created by applying 
NDB__Relat ion to an actual parameter  structure. The result is an Extended M L  
structure 6. To give an actual parameter  for N D B _ R e l a t i o n  we need a function 
e sm to associate entity set names with sets of  entity identifiers and this is done 
with the specification of  a local function in the body of the functor (see appendix 
C.3) 

fun esm(es :B.Esetnm, ndb : NDB) : Eid Set.Set = ? 

which is not required in any further development of  Ndb. 
The function e sm is local and therefore not required in any further develop- 

ments of  the functor Ndb. For the next development step to result in a correct 
refinement of  the functor body in appendix C.3 the substructure B i n a r y  in 
the refinement needs only to be observationally equivalent [SAT87, SAT89] to the 
substructure B i n a r y  in appendix C.3. 

We still need to show that the proof  obligations for this step are met, that is, 

BASICS U BodYNd b ~ NDB 

which is straight forward but notice that the type checking constraint is hidden 
by the signature NDB. 

I f  the type checking constraint were included in the signature NDB 7 then 
the proof  obligation for this coding step would not be met. Since signatures 
are not parameterised there is no means for extending the result interface of  
Typed_Relation or NBB_Relation with a theory of esm local to the body 
of Ndb. Consequently the version of the type checking constraint visible in the 
substructure B i n a r y  in appendix C.3 will be weaker than that in the signature 
NDB and so the proof  obligation for this step could not be discharged. 

6 Which specifies a class of Standard ML structures. 
7 See appendix D.2 where this is done. 
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functor Ndb(B : BASICS): 
sig 

include NDB' 
sharing B =Binary. B 

end = ? 

Fig. 13. 

functor Ndb(B : BASICS): sig 
include NDB' 
sharing B =Binary. B 

end = 
Database(NDB Relation'(Typed_Relation'(B))) 

Fig. 14. 

6. Modularisation by Functor Decomposition 

Some criticisms about the program design specifications in section 5 are as 
follows: 

1. NDB_Relation is intended to specialise N-ary relations to binary relations 
but there is nothing in the requirements specification which expresses this; 

2. The type checking constraint is not a visible consequence in the signature NDB 
which may be useful knowledge for later users of this module; 

3. The function e sm which is used to formulate the type checking constraint 
is "under-specified" in the context of binary relations (this was necessary in 
order to meet all the proof obligations). 

An alternative is to start with the requirements specification in Fig. 13 and 
use functor decomposition as in Fig. 14 to avoid some of  these criticisms. The 
dependence of the type checking constraint on the association between entity 
identifiers and entity set names (given by e sm) is best expressed in the NDB 
signature and this leads to a new signature NDB' given in appendix D.2. NDB' 
is identical to NDB except that it contains the type checking constraint previously 
given in the signature TYPED_RELATION. The requirements specifications for 
the three new functors in Fig. 14 are given in Fig. 15 while the signature 
TYPED~ELATION' is given in appendix D.1. 

The resulting program structure is one in which the original task has been 
decomposed into three independent subtasks which interact only through the 
module interfaces. This means making the Type  d_Y{e l a t  i o n '  functor indepen- 
dent of its environment which we do by giving an abstract the type A t t r  in the 
signature TYI~ ' . The idea is that now, unlike TYPED~RELATION, 
TYPED__RELATION' does not depend on any external functions or types another 
than those given in the signature BASICS. To avoid the second criticism we no 
longer wish to impose the type checking constraint on Type  d_2:{elat • on '  and 
consequently the parameter e sm to Type  d__Rela t i  on is also no longer needed. 

The functor NDB_R e 2 a t i o n ' now takes any structure matching TYPED 2 E L -  
ATION' and results in a structure matching BINARY_,RELATION. The require- 
ments specification clearly states that NDB__Relation is to accept a module 
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Basics : BASICS ) : 
sig 

include TYPED_RELATION' 
sharing B = Basics 

end = ? 

functor NDB_Relation'( R : TYPED_RELATION') : 
sig 

include BINARY RELATION 
sharing R.B = B 

and R.S = S 
end = ? 

functor DataBase( B : BINARY_RELATION) 

sig 
include NDB' 
sharing B = Binary 

end = ? 

Fig. 15. 

for N-ary relations and construct a module matching BINARY_RELATION from 
it. The final functor D a t a b a s e ,  given in appendix D.3, then constructs the 
operations for updating the database from those of BINARY_RELATION. 

The drawback to this structuring is that type checking constraint is no longer 
imposed on the interfaces of the module T y p e d . R e l a t i o n '  which was one 
of the goals of the generalisation from binary relations. What has been gained 
however, is a cleaner structuring of the program design specification in which the 
interfaces specify more clearly what each functor is to do in order to implement 
the original requirements specification. 

7. C o n c l u s i o n  

In this paper we have considered the specification in Extended ML of the database 
described in [Wal90, FiJ90, WiS79] and a single program development step from 
each of  two similar requirements specification. In section 5 a program design 
structure based on the structure of the specification in [FiJ90] was given by a 
coding development step while in section 6 an alternative program design given 
by a functor decomposition step was given. 

The problem with our solution to the challenge problem in section 5 is that 
the type checking constraint, as given in the interface to Typed.Relation, is 
independent of context while to solve the challenge problem properly we would 
need to pass in axioms describing e sm from whatever context T y p e d . R e l a t i  on 
is used. This is not possible directly in Extended ML because there is no mech- 
anism for explicitly parameterising a signature and sharing is only a mechanism 
for dependent typing in Extended ML. 

Signatures in Extended ML are not parameterised for the reason that modules 
are to be developed, using the methodology outlined in section 2, without reference 
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to other parts of  the system. All that is required for the development of  a module 
is specified in the interfaces to that module. I f  the signatures were parameterised 
we may still develop a program in isolation to meet that signature but each time 
an actual parameter  was substituted for the formal parameter  of  the signature 
the complicated process of  verifying the body of the module against the new 
signature would need to be done. This also effects the re-use of  modules. 

Extended ML meets the two criteria given in the introduction (as far as 
separation of  program development concerns and module re-use are concerned) 
precisely because all the information one knows about a module is specified in 
the interfaces and this does not change in any contexts. 

Finally, the program design specification in section 6 is given as the compo- 
sition of three parameterised programs. Each functor builds on the operations 
of  its argument to realise the original requirements specification of Fig. 14. A 
question that may be asked here is if the V D M  structuring mechanisms can be 
used to give a compositional specification structure analogous to our functor 
decomposition described in section 6. 

It is known that the class programs satisfying a parameterised specification is 
not generally the same as the class programs satisfying a parameterised program 
specification [SST90, SaT91]. The problems encountered when trying to formulate 
the type checking constraint are a consequence of this distinction and are chiefly 
due to the fact that signatures are not parameterised. The gain from this restriction 
is that once a parameterised program has been developed it can be simply treated 
as a black box where all that we need to know about it is captured in its interfaces. 
For example, we did not need to develop T y p e d ~ l e l a t  i on further in order to 
construct the parts of  the Ndb functor in which we were interested. The Extended 
M L  approach is still very much in its infancy but with the completion of more 
examples using the Extended ML methodology we anticipate a better practical 
understanding of the particular strengths and weaknesses of  this approach. 
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Appendixes 

A. The Database Signature 

A.1. Preliminaries 

signature SET = 

sig 

(. Types *) 

type ''a Set 

(. Operators .) 

val empty_set : 
val insert 

val delete 

val member 

val is_empty : 

val equals 

a Set 

a . ''a Set -> ''a Set 

a . ''a Set -> ''a Set 

a . ''a Set -> bool 

a Set -> bool 

a Set . ''a Set -> bool 

(. Axioms .) 

axiom is empty(empty set) = true 

and is_empty(insert(e,S)) = false 

axiom member(e, empty_set) = false 

and e = e' implies member(e, insert e',S)) = true 

and e <> e' 

i m p l i e s  m e m b e r ( e ,  i n s e r t ( e ' , S ) )  = m e m b e r ( e , S )  

axiom e = e' implies member(e, delete e',S)) = false 

and e <> e' 

implies member(e',delete(e,S)) = member(e',S) 

axiom equals(empty_set, empty_set) 

and forall e : ''a => 

forall e' : ''a => 

member(e,S) implies member(e,S') 

andalso 

member(e',S') implies member(e',S)) 

implies equals(S,S') 

end; 

A.2. Binary Relations 

signature BINARY RELATION = 

sig 

structure B : BASICS 

6-2 
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(. Types .) 

eqtype Tuple and BinaryRel 

datatype Maptp = ONE_ONE J MANY_0NE I 
0N~_MANY J MANY_MANY 

(. Operations for Tuples .) 

val mk_tuple : B. Eid . B. Eid -> Tuple 
val fv : Tuple -> B. Eid 
val tv : Tuple -> B. Eid 

(. Axioms for Tuples .) 

axiom tv(mk tuple(eid, eid')) = eid' 
axiom fv(mk_tuple(eid, eid')) = eid 
axiom mk_tuple(fv(t),tv(t)) = t 

(. Operations for Binary Relations .) 

val mk_rel : Maptp . B. Esetnm . B. Esetnm 
-> BinaryRel 

val mk rel' : B. Rnm . Maptp . B. Esetnm . B. Esetnm 

val add 
val map 
val fs 
val ts 
val tuples 

-> BinaryRel 

: Tuple . BinaryRel -> BinaryRel 
: BinaryRel -> Maptp 
: BinaryRel -> B. Esetnm 
: BinaryRel -> B. Esetnm 
: BinaryRel -> Tuple S. Set 

(. Axioms for Binary Relations .) 

axiom map(mk_rel(mp, es,es')) = mp 
and map(mk_rel'(rnm, mp, es, es')) = mp 
and map(add(t,r)) = map(r) 

axiom fs(mk_rel(mp, es, es')) = es 
and fs(mk_rel' (rnm, mp, es, es' ) ) = es 
and fs(add(t,r)) = fs(r) 

axiom ts(mk_rel(mp, es, es')) = es' 
and ts(mk_rel' (rnm, mp, es, es' )) = es' 
and ts(add(t,r)) = ts(r) 

local 
val tuples of : Relation -> Tuple Esm. S. Set 
axiom tuples_of(empty) = Esm. S. empty_set 
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in 
and tuples_of(add(t,r)) = Esm. S. insert(t,r) 

axiom tuples(mk_rel(mp, es, es')) = S. empty_set 
and tuples(mk_rel'(rnm, mp, es, es')) = S. empty_set 

(. Constraints on adding Tuples to a Relation .) 

end 
end; 

and (S.member(t',tuples_of(add(t,r))) andalso 
S. member(t'',tuples of(add(t,r))) 
implies 
case map(r) of 

ONE_ONE => fv(t') = fv(t'') 
iff tv(t') = tv(t'') 

I MANY_ONE => fv(t') = fv(t'') 
implies tv(t') = tv(t'') 

l 0NE_MANY => tv(t') = tv(t'') 
implies fv(t') = fv(t'') 

I ~ANY_~ANY => true) 
iff 
(tuples(add(t,r)) = S. insert(t, tuples(r)) 
andalso map(add(t,r)) = map(r) 
andalso fs(add(t,r)) = fs(r) 
andalso ts(add(t,r)) = ts(r)) 

A.3. The Data Base 

signature NDB = 
sig 

structure Binary : BINARY RELATION 

(. The Data Base .) 

type NDB 

(. Operations .) 

val NewDB : NDB 
val ADDES : Binary. B. Esetnm . NDB -> NDB 
val ADDENT : Binary. B. Esetnm Binary. S. Set 

.Binary. B. Value 

.Binary. B. Eid 

. NDB -> NDB 
val ADDTUP : Binary. Tuple 

.Binary. B. Esetnm 

.Binary. B. Esetnm 
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. NDB -> NDB 
val ADDREL : Binary. BinaryRel . NDB -> NDB 
val DELES : Binary. B. Esetnm . NDB -> NDB 
val D~LENT : ~inary. B.~id . NDB -> NDB 
val DELTUP : Binary. Tuple 

.Binary. B. Esetnm 

.Binary. B. Esetnm 

. NDB -> NDB 
val DELREL : Binary. B. Esetnm 

.Binary. B. Esetnm 

. NDB -> NDB 

(. Axioms .) 

loca2 

(. Auxiliary Functions .) 

val isNewDB : NDB -> bool 

axiom isNewDB(NewDB) = true 
and isNewDB(ADDES(es,ndb)) = false 
and isNewDB(ADDENT(memb, value, eid, ndb)) = false 
and isNewDB(ADDR~L(r, ndb)) = false 
and isNewDB(ADDTUP(t, es, es',ndb)) = false 

val Es_in : Binary. B. Esetnm . NDB -> bool 

axiom ~s_in(es, NewDB) = false 
and Es_in(es, ADD~S(es',ndb)) = 

(es = es' orelse Es in(es,ndb)) 
and ~.s_in(es, ADDENT(memb, value, eid, ndb)) = 

~.s_in ( es, ndb ) 

and Es_in(es, ADDR~L(r, ndb)) = Es_in(es,ndb) 
and ~s_in(es, ADDTUP(t, es, es',ndb)) = 

~.s_in (e s, ndb) 

val Eid in : Binary. B. Eid . NDB -> bool 

axiom Eid in(eid, NewDB) = false 
and Eid_in(eid, ADD~S(es, ndb)) = Eid_in(eid, ndb) 
and Eid_in(eid, ADDENT(memb, value, eid',ndb)) = 

(eid = eid' ) orelse ~id_in(eid, ndb) 
and Binary. S. member(t, Binary. Tuples (r)) 

implies 
Eid in(eid, ADDREL(r, ndb)) = 

eid = Binary. fv(t) 
orelse eid = Binary. tv(t) 
orelse Eid_in (eid, ndb) 

and ~.id_in(eid, ADDTUP(t, es, es',ndb)) = 
eid = Binary. fv(t) 
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orelse eid =Binary. tv(t) 
orelse Eid in(eid, ndb) 

val Rel in : Binary. B. Esetnm 
.Binary. B. Esetnm 
. NDB -> bool 

axiom Rel_in(es, es', NewDB) = false 
and Rel in(es, es', ADDES(es'',ndb)) 

= Rel_in(es, es',ndb) 
and Rel_in(es, es', ADDENT(memb, value, eid, ndb)) 

= Rel_in(es, es' , ndb) 
and Rel in(es, es', ADDREL(r, ndb)) = 

(es =Binary. fs(r) andalso es' = 
Binary. ts(r)) 
orelse Rel in(es, es', ndb) 

and Rel_in(es, es', ADDTUP(t, esl, es2, ndb)) 
= Rel_in(es, es',ndb) 

(. A local function associating entities 
with entity sets .) 

val esm : Binary. B. Esetnm . NDB 
-> Binary. B. Eid Binary. S. Set 

axiom esm(es,NewDB) =Binary. S. empty_set 
and esm(es,ADDES(es',ndb)) = esm(es,ndb) 
and Binary. S. member(es,memb) implies 

e sm ( e s, ADDENT (memb, value, e i d, ndb ) ) = 
Binary. S. insert (eid, esm(es, ndb) ) 

and esm(es,ADDREL(r, ndb)) = esm(es,ndb) 
and esm(es,ADDTUP(t, es',es'',ndb)) = esm(es,ndb) 

(. A local function for associating 
Entity Identifiers with Values .) 

val em : Binary. B. Eid . NDB -> Binary. B. Value 

axiom em(eid, ADDES(es, ndb)) = em(eid, ndb) 
and eid = eid' implies 

em(eid, ADDENT(memb,value, eid',ndb)) = value 
and eid <> eid' implies 

em( eid, ADDENT (memb, value, eid', ndb ) ) 
= em(eid, ndb) 

and em(eid, ADDREL(r, ndb)) = em(eid, ndb) 
and em(eid, ADDTUP(t, es,es',ndb)) = em(eid, ndb) 

(. A local function for associating Entity 
set names with a relation .) 

val rm : Binary. B. Esetnm 
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axiom 
and 

and 

and 

and 

.Binary. B. Esetnm 

. NDB ->Binary. BinaryRel 
rm(es, es', ADDES(es,ndb)) = rm(es, es',ndb) 
rm(es, es', ADDENT(memb,value, eid, ndb)) 
= rm(es, es',ndb) 
(es =Binary. fs(r) andalso es' 
=Binary. ts(r)) 
implies 
rm(es, es', ADDREL(r, ndb)) = r 
(es = esl andalso es' = es2) 
implies 
rm(es, es', ADDTUP(t, esl, es2, ndb ) = 

Binary. add(t, rm(es, es',ndb) 
(es<>esl) andalso (es<>es2) 
implies 
rm(es, es', ADDTUP(t, esl, es2, ndb ) = 

rm(es, es',ndb) 

in 

(. Operations for Constructing the Data Base .) 

(. ADDES .) 

axiom not(Es in(es,ndb)) 
implies 

Es_in(es,ADDES(es, ndb)) 
andalso 

esm(es,ADDES(es,ndb)) =Binary. S. empty_set 
andalso 

forall eid : Binary. B. Eid => 
(Eid_in(eid, ndb) 
implies 
em(eid, ADDES(es,ndb)) = em(eid, ndb)) 

andalso 
forall 
forall 

es' : Binary. B. Esetnm => 
es'' : Binary. B. Esetnm => 
Es in(es',ndb) 
andalso Es_in(es'',ndb) 
andalso Rel_in(es',es'',ndb) 
implies 
rm(es',es'',ADDES(es,ndb)) 
= rm(es',es'',ndb)) 

(. ADDENT .) 

axiom Binary. S.member(es,memb) 
andalso ~s_in(es,ndb) 
andalso not(~id_in(eid, ndb)) 
implies 

esm(es,ADDENT(memb, val, eid, ndb)) = 
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Binary. S. insert (eid, esm(es, ndb) ) 
andalso em(eid, ADDENT(memb,val, eid, ndb)) 

= val 
andalso 

forall es' : Binary. B. Esetnm => 
forall es'': Binary. B. Esetnm => 

Es_in(es',ndb) andalso Es in(es'',ndb) 
implies 
rm(es',es'',ADDENT(memb, val, eid, ndb) 

= rm(es',es'',ndb))) 

(. ADDREL .) 

axiom Es_in(Binary. fs(r),ndb) 
andalso Es_in(Binary. ts(r),ndb) 
andalso Binary. S. is_empty(Binary. Tuples(r)) 
andalso not(Rel_in(Binary, fs(r), 

Binary. ts(r),ndb)) 
implies 
Rel_in(Binary. fs(r),Binary, ts(r), 

ADDREL(r, ndb)) 
andalso 
Binary. S. is_empty( 

Binary. Tuples( 
rm(Binary, fs(r), 
Binary. ts(r),ADDREL(r, ndb)))) 

andalso 
forall eid : Binary. B. Eid => 

Eid_in(eid, ADDREL(r, ndb)) 
implies 
em(eid, ADDREL (r, ndb) ) 

= em(eid, ndb) 
andal s o 

forall es : Binary. B. Esetnm => 
Es in(es,ADDREL(r, ndb)) 
implies 
esm(es,ADDREL(r, ndb)) 

= esm(es,ndb)) 
andalso 

forall es' : Binary. B. Esetnm => 
forall es'' : Binary. B. Esetnm => 

es' <>Binary. fs(r) 
andalso es'' <>Binary. ts(r) 
implies 
rm(es',es'',ADDREL(r, ndb)) 

= rm(es',es'',ndb) 
andalso 

forall es' : Binary. B. Esetnm => 
forall es'' : Binary. B. Esetnm => 

es' <>Binary. fs(r) 
andalso es'' <>Binary. ts(r) 
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implies 
rm(es' , es' ' , ADDREL(r, ndb) ) 

= rm(es' , es' ' , ndb) 

(. ADDTUP .) 

axiom Rel in(es, es',ndb) 
andalso Binary. Tuples( 

rm(es, es' , ADDTUP (t, es, es' , ndb) ) ) 
Binary. Tuples ( 
Binary. add(t, rm(es, es', ndb) ) ) 

implies 
rm(es, es' , ADDTUP(t, es, es' , ndb) ) = 

Binary. add(t, rm(es, es' , ndb) ) 
andal s o 

forall es : Binary. B. Esetnm --> 
Es_in(es, ADDTUP (t, es', es' ', ndb) ) 
implies 
esm(es, ADDTUP (t, es', es' ', ndb) ) 

= esm(es, ndb) 
andal s o 

forall eid : Binary. B. Eid => 
Eid_in(eid, ndb) implies 
em(eid, ADDTUP (t, es', es' ' , ndb) ) 

= em(eid, ndb) 

(. Operations for Deleting from the Data Base .) 

(. DELES .) 

axiom Binary. S. is_empty(esm(es, ndb)) 
andalso 
forall r : Binary. BinaryRel => 

Rel_in(Binary. fs(r),Binary, ts(r),ndb) 
implies 
Binary. fs(r)<>es 
andalso Binary. ts(r)<>es) 

implies 
Es in(es,DELES(es,ndb)) = false 
andalso 

forall eid : Binary. B. Eid => 
em(eid, DELES(es,ndb)) = em(eid, ndb) 

andalso 
forall r : Binary. BinaryRel => 

Eel_in(Binary. fs(r),Binary, ts(r),ndb) 
implies 
rm(Binary, fs(r), 

Binary. ts(r),DELES(es,ndb)) = 
rm(Binary, fs(r),Binary, ts(r),ndb)) 
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(. DELENT .) 

axiom (forall es : 
forall es' : 

Rel_in(es, 
forall t : 

Binary. 

Binary. B. Esetnm => 
Binary. B. Esetnm => 
es',ndb) implies 
Binary. Tuple => 

S. member(t, 
Binary. tuples(rm(es, es',ndb))) 

implies 
Binary. fv(t)<>eid 
andalso Binary. tv(t)<>eid) 

implies 
(Eid in(eid, DELENT(eid, ndb)) = false 
andalso 

forall eid' : Binary. B. Eid => 
eid<>eid' implies 
em(eid',DELENT(eid, ndb)) 

= em(eid',ndb) 
andalso 

forall es'' : Binary. B. Esetnm => 
esm(es'',DELENT(eid, ndb)) = 
Binary. B. delete(eid, esm(es'',ndb)) 

andalso 
forall es : Binary. B. Esetnm => 
forall es' : Binary. B. Esetnm => 

Rel_in(es,es',ndb) 
implies 
rm(es, es',DELENT(eid, ndb)) 

= rm(es, es',ndb) 

(. DELREL .) 

axiom (Rel_in(es, es',ndb) 
andalso Binary. S. is empty(Binary, tuples(r))) 

implies 
(Rel_in(es, es',DELREL(es, es',ndb)) = false 
andal s o 

forall es'' : Binary. B. Esetnm => 
Es_in(es' ' , ndb) 
implies 
esm(es' ', DELREL (es, es' , ndb) ) 

= esm(es, ndb) 
andal s o 

forall Eid : Binary. B. Eid => 
Eid_in ( eid, ndb ) 
implies 
em(eid, DELREL (es, es' , ndb) ) 

= em(eid, ndb) ) 
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(. DELTUP .) 

axiom Rel in(es, es',ndb) 
implies 
(Binary. Tuples ( 
rm(es, es' , DELTUP(t, es, es' , ndb) ) ) = 
Binary. S. delete( 
t, Binary. tuples (rm(es, es' , ndb) ) ) 
andal s o 

forall es'' �9 Binary. B. Esetnm => 
Es_in(es' ', ndb) 
implies 
esm(es' ', DELTUP (t, es, es', ndb)) 

= esm(es, ndb) 
andal s o 

forall Eid : Binary. B. Eid => 
Eid in(eid, ndb) 
implies 
em(eid, DELREL (es, es' , ndb) ) 

= em(eid, ndb) ) 
end 

end; 

B. N-ary Relations with Type Checking 

B.I. Preliminaries 

signature ESM = 
sig 

structure S : SET 
structure B : BASICS 

eqtype Attr 
type NDB 

val esm : B. Esetnm . NDB -> B. Eid S. Set 
end; 

B.2. N-ary Relations 

signature TYPED_RELATION 
sig 

structure Esm : ESM 

(. Tuples .) 

eqtype Tuple 
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(. Operations and Axioms for Tuples .) 

val create : (Esm. Attr . Esm. B. Eid) list -> Tuple 

and value : Tuple . Esm. Attr -> Esm. B. Eid 

local 

val member : 'a . 'a list -> bool 

axiom member(a, nil) = false 

and member(a,a'::l) = (a = a') orelse member(a,l) 

val function : ('a . 'b) list -> bool 

axiom member((a,v),l) andalso member((a,v'),l) 

implies v = v' 

in 

axiom member((a, eid),ae) andalso function(ae) 

implies value(create(ae),a) = eid 

end 

(. Functional Dependencies .) 

type Norm 

val mk norm : (Esm. Attr Esm. S. Set. Esm. Attr) 

Esm. S. Set -> Norm 

and attrs : Norm -> (Esm. Attr Esm. S. Set. Esm. Attr) 

Esm. S. Set 

axiom attrs(mk norm(s)) = s 

and mk_norm(attrs(n)) = n 

(. Relations .) 

eqtype Relation 

(. Operations and Axioms for Relations .) 

val empty : Norm . (Esm. Attr -> Esm. B. Esetnm) 

- >  Relation 

and empty' : Esm. B. Rnm 

. Norm 

. (Esm. Attr -> Esm. B. Esetnm) 

-> Relation 

and add : Tuple . Relation -> Relation 

(. Projection functions .) 

and norm : Relation -> Norm 

and tpm : Relation -> (Esm. Attr -> Esm. B. Esetnm) 

and name : Relation -> Esm. B. Rnm 
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(. Other operators on relations .) 

and rem : Tuple . Relation -> Relation 
and tuples : Relation -> Tuple Esm. S. Set 

local 
val dom : Tuple -> Esm. Attr S. Set 

axiom dom(create(nil)) = Esm. S. empty_set 
and dom(create((a, eid)::t)) 

= Esm. S. imsert(a, dom(create(t))) 

val restrict : Tuple . Esm. Attr Esm. S. Set -> Tuple 

axiom forall a : Esm. Attr => 
forall s : Esm. Attr Esm. S. Set => 

Esm. S.member(a,s) 
andalso Esm. S. member(a, dom(t)) 
implies 
value(a, restrict(t,s)) = value(a,t) 

val tuples of : Relation -> Tuple Esm. S. Set 

axiom tuples of(empty(nm, tm) = Esm. S. empty_set 
and tuples_of(empty'(rnm, nm, tm)) 

= Esm. S. empty set 
and tuples_of(add(t,r) = Esm. S. insert(t,r) 

in 

(. axioms for the projectlons .) 

axiom norm(empty(nm, tm)) =nm 
and norm(empty' (rnm, nm, tm)) =nm 

axiom tpm(empty'(rnm, nm, tm)) = tm 
and tpm(empty(nm, tm)) = tm 

axiom name(empty'(rnm, nm, tm)) = rnm 

(. rem .) 

axiom t = t' implies rem(t, add(t',r)) = r 
and t <> t' 

implies rem(t, add(t',r)) = add(t',rem(t,r) 

(. tuples - incorporating the functional 
dependency constraint .) 

axiom tuples(empty(nm, tm)) = Esm. S. empty_set 
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and tuples(empty'(rnm, nm, tm)) = Esm. S. empty_set 

axiom forall r : Relation =>  

forall t : Tuple => 
forall t' : Tuple => 
forall (s,f) : 

(Esm. Attr Esm. S. Set. Esm. Attr) => 
(Esm. S.member((s,f),norm(r)) 
andalso Esm. S.member(t, tuples_of(add(t,r)) 
andalso Esm. S.member(t',tuples_of(add(t,r) 
andalso restrict(t,s) = restrict(t's) 
implies value(t,f) = value(t',f) 

) 
implies 

tuples(add(t,r)) 
= Esm. S. insert(t, tuples(r)) 

(. ... and the type checking constraint .) 

axiom 

end 
end; 

forall r : Relation => 
forall t : Tuple => 
forall a : Esm. Attr => 
Esm. S. member(t, tuples(r)) 
andalso Esm. S. member(a, dom(t)) 
implies 
Esm. S.member(value(a,t),esm. esm(tpm(a),ndb) 

C. Binary Relations in the Body of in Ndb 

C.1. The Signature TPM 

signature TPM = 
sig 

structure Set : SET 
structure Basics : BASICS 
type NDB 
val esm : Basics. Esetnm . 

end; 
NDB - >  Basics. Eid Set. Set 

C.2. The Functor NDB_Relation 

functor NDB Relation(Tpm : TPM) 
sig 

include BINARY_RELATION 
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(. Type Checking Constraint .) 

axiom Tpm. S. member(t, tuples(r)) 
implies 
Tpm. S.member(fv(t),Tpm. esm(fs(r),ndb)) 
andalso Tpm. S. member(tv(t),Tpm, esm(ts(r),ndb) 

end = 
struet 

(. Relation Kinds .) 

datatype Maptp = ONE_ONE [ MANY ONE i 
ONE_MANY I MANY_MANY 

(. Attribute Names .) 

datatype Attr = Fs i Ts 

(. Conversion to Functional Dependencies .) 

fun conv(ty) = 
let 

val insert = Tpm. Set. insert 
val empty set = Tpm. Set. empty_set 

in 
case ty of 

MANY_MANY => 
insert((insert(Ts, empty_set),Fs), 

insert((insert(Fs, empty_set),Ts), 
emptyset)) 

f MANY ONE = >  

insert((insert(Fs, empty_set),Ts), empty set 
r ONE_MANY => 

insert((insert(Ts, empty_set),Fs), empty_set 
I ONE_ONE => empty_set 

end 

structure T : TYPED RELATION = 
Typed_Relation(struct 

structure S = Set 
structure B = Basics 

eqtype Attr = Attr 
type NDB = NDB 

end) 
val esm = Tpm. esm 

(. Converting norms back into map types .) 

fun unconv( n : T. Norm) : Maptp = ? 



Modularising the Specification of a Small Database System in Extended ML 133 

local 
val insert = Tpm. Set. insert 
val empty_set = Tpm. Set. empty_set 
val Fs_set = insert(Fs, empty_set) 
val Ts_set = insert(Ts, empty_set) 

in 
axiom 

unconv(T, mk_norm(insert((Ts_set,Fs), 
insert((Fs_set, Ts), 

= MANY MANY 

end 

empty_set))) 

and unconv(T, mk_norm(insert((Fs_set, Ts), 
empty_set))) = MANY_0NE 

and unconv(T, mk_norm(insert((Ts_set,Fs), 
empty set))) = 0NE_MANY 

and unconv(T, mk_norm(empty_set)) = 0NE_0NE 

(. Concrete Programs for Tuples .) 

eqtype Tuple = T. Tuple 

fun mk_tuple(eid, eid' ) 
= T. create([(Fs, eid), (Ts, eid')]) 

fun fv(t) = T. value(t,Fs) 
fun tv(t) = T. value(t, Ts) 

(. Concrete Programs for Binary Relations .) 

eqtype BinaryRel = T. Relation 

fun mk_rel(mtp, es, es' ) = 
let 

val tm= fn Fs => es 
in 

T. empty(conv(mtp), tm) 
end 

I Ts = >  es' 

fun mk_rel' (rnm, mtp, es, es' ) = 
let 

val tm = fn Fs => es i Ts => 
in 

T. empty' (rnm, conv(mtp), tm) 
end 

e s '  

fun add(t,r) = T. add(t,r) 

fun tuples(r) = T. tuples(r) 

fun fs(r) = T. tpm(r)(Fs) 

fun ts(r) = T. tpm(r)(Ts) 
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fun map(r) = unconv(T, norm(r)) 

end; 

C.3. The NDB Functor 

functor Ndb( B : BASICS' 

struct 

: sig 
include NDB 
sharing B =Binary. B 

end = 

structure Set : SET = ? 

(. The Data Base .) 

type NDB = ? 

local 

(. A local function associating 
entities with entity sets .) 

fun esm(es : Esetnm, ndb : NDB) : Eid Set = ? 

in 

(. A structure for binary relations .) 

structure Binary : 
sig 

include BINARY RELATION 

end 

axiom Set.member(t, tuples(r)) 
implies 
(Set.member(fv(t),esm(fs(r),ndb)) 
andalso Set. member(tv(t), 

esm(ts(r),ndb))) 
end = 
Ndb_Relation( struct 

structure Set = Set 
structure Basics = B 
type NDB = NDB 
val esm = esm 

end ) 

local 



Modularis ingtheSpecif icat ionofaSmallDatabaseSystemin Extended ML 135 

(. Auxiliary Functions .) 

fun isNewDB(ndb : NDB) : bool = ? 

axiom . 

fun Es_in(es : B.~setnm, ndb : NDB) : bool = ? 

axiom . 

fun Eid in(eid : B. Eid, ndb : NDB) : bool = ? 

axiom . 

fun Rel_in(rel : Binary. BinaryRel, 

ndb : NDB) : bool = ? 

axiom . 

(. A local function for associating 

Entity Identifiers with Values .) 

val em : Binary. B. Eid . NDB -> Binary. B. Value 

(. A local function for extracting 

the set of tuples in a relation .) 

fun rm(rel : Binary. BinaryRel, ndb : NDB) : NDB = ? 

in 

(. Operations for Constructing the Data Base .) 

val NewDB : NDB = ? 

fun ADDES( es : B. Esetnm, ndb : NDB) : NDB = ? 

fun ADDENT( memb : B. Esetnm Set. Set, 

value : B. Value, 

eid : B. Eid, 

ndb : NDB) : NDB = ? 

fun ADDTUP(tuple : Binary. Tuple, 

rel : Binary. BinaryRel, 

ndb : NDB) : NDB = ? 

fun ADDREL( mp : Binary. Maptp, 

ndb : NDB) : NDB = ? 

fun DELES( es : B. Esetnm, 

ndb : NDB) : NDB = ? 
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fun DEL~NT(eid : B. Eid, 
ndb : NDB) : NDB = ? 

fun DELTUP(eid : B.Eid, 
eid' : B. Eid, 
rel : Binary. BinaryRel, 
ndb : NDB) : NDB = ? 

fun DELRNL(rel : Binary. BinaryRel, 
ndb : NDB) : NDB = ? 

(. Axioms for the update operations .) 

end 
end; 

D. The DataBase Functor 

D.1. The Signature TYPED~RELATION'  

signature TYPED_R~LATION' = 
sig 

structure ~ : BASICS 
structure S : SET 

(. A type for attributes .) 

type Attr 

val first : Attr 
and next : Attr - >  Attr 

axiom not(first = next(first)) 

(* Tuples .) 

eqtype Tuple 

(. Operations and Axioms for Tuples .) 

val create : (Attr . B. Eid) list -> Tuple 
and value : Tuple . Attr -> B.~id 

local 
val member : 'a . 'a list -> bool 
axiom member(a, nil) = false 
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and member(a,a'::l) = a = a' orelse member(a,l) 

val function : ('a . 'b) list -> bool 

axiom (member((a,v),l) and also member((a,v'),l)) 

implies v = v' 

in 

axiom member((a, eid),ae) andalso function(ae) 

implies value(create(ae),a) = eid 

end 

(. Functional Dependencies .) 

type Norm 

val mk_norm : (Attr S. Set. Attr) S. Set -> Norm 

and attrs : Norm -> (Attr S. Set. Attr) S. Set 

axiom attrs(mk norm(s)) = s 

and mk_norm(attrs(n)) = n 

(. Relations .) 

eqtype Relation 

(. Operations and Axioms for Relations .) 

va2 empty 

and empty' 

and add 

and norm 

and tpm 

and name 

and rem 

and tuples 

: Norm . Attr -> B.~setnm) -> Relation 

: B. Rnm . Norm . (Attr -> B. Esetnm) 

- >  Relation 

: Tuple . Relation -> Relation 

: Relation -> Norm 

: Relation -> (Attr -> B. Esetnm) 

: Relation -> B. Rnm 

: Tuple . Relation -> Relation 

: Relation -> Tuple S. Set 

local 

val dom : Tuple -> Attr S. Set 

axiom dom(create(nil)) = S. empty_set 

and dom(create((a, eid)::t)) 

= S. insert(a, dom(ereate(t))) 

val restrict : Tuple . Attr S. Set-> Tuple 

axiom forall a : Attr => 

forall s : Attr S. Set=> 

S. member(a,s) andalso S.member(a, dom(t)) 

implies 

value(a, restrict(t,s)) = value(a,t) 
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val tuples_of : Relation -> Tuple S. Set 

axiom tuples of(empty(nm, tm) = S. empty_set 
and tuples_of(empty'(rnm, nm, tm)) = S. empty_set 
and tuples of(add(t,r) = S. insert(t,r) 

in 

(. axioms for the project ons .) 

axiom norm(empty(nm, tm)) =nm 
and norm(empty'(rnm, nm, tm)) =nm 

axiom tpm(empty'(rnm, nm, tm)) = tm 
and tpm(empty(nm, tm)) = tm 

axiom name(empty' (rnm, nm, tm)) = rnm 

(* rem .) 

axiom t = t' implies rem(t, add(t',r)) = r 
and t <> t' 

implies rem(t, add(t',r)) = add(t',rem(t,r 

(* tuples *) 

axiom tuples(empty(nm, tm)) = S. empty_set 
and tuples(empty'(rnm, nm, tm)) = S. empty_set 

axiom forall r : Relation :> 
forall t : Tuple => 
forall t' : Tuple => 
forall (s,f) : (Attr S. Set. Attr) => 

(S.member((s,f),norm(r)) 
andalso S.member(t, tuples_of(add(t,r)) 
andalso S.member(t',tuples of(add(t,r) 
andalso restrict(t,s) = restrict(t's) 
implies value(t,f) = value(t',f) 

mmplies 
tuples(add(t,r)) = S. insert(t, tuples(r)) 

end 
end; 

D.2. The Signature NDB' 

signature NDB' : 
sig 
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structure Binary : BINARY_RELATION 
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(. The Data Base .) 

type NDB 

(. Operations .) 

val NewDB : NDB 
val ADDES : Binary. B. Esetnm . NDB -> NDB 
val ADDENT : Binary. B. Esetnm Binary. S. Set 

.Binary. B. Value 

.Binary. B. Eid 

. NDB -> NDB 
val ADDTUP : Binary. Tuple 

.Binary. B. Nsetnm 

.Binary. B. Esetnm 

. NDB -> NDB 
val ADDREL : Binary. BinaryRel . NDB -> NDB 
val DELES : Binary. B. Esetnm . NDB -> NDB 
val D~LENT : Binary. B. Eid . NDB -> NDB 
val DELTUP : Binary. Tuple 

.Binary. B. Esetnm 

.Binary. B. Esetnm 

. NDB -> NDB 
val D~LREL :Binary. B. Nsetnm 

.Binary. B.~setnm 

. NDB -> NDB 

(. Axioms .) 

local 

(. Auxiliary Functions .) 

val isNewDB : NDB -> bool 

val Es in : Binary. B. Esetnm . NDB -> bool 

val Eid_in : Binary. B. Eid . NDB -> bool 

val Rel_in : Binary. B. Esetnm 
.Binary. B. Esetnm 
. NDB -> bool 
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(. A local function associating 
entities with entity sets .) 

val esm : Binary. B. Esetnm . NDB 
- >  Binary. B. Eid Binary. S. Set 

(. A local function for associating 
Entity Identifiers with Values .) 

val em : Binary. B. Eid . NDB -> Binary. B. Value 

(. A local function for associating 
Entity set names with a relation .) 

val rm : Binary. B.~setnm 
.Binary. B. Esetnm 
. NDB ->Binary. BinaryRel 

in 

(. Operations for Constructing the Data Base .) 

(. Type Checking Constraint .) 

axiom Rel_in(r, ndb) 
andalso Binary. S. member(t, Binary. tuples(r)) 
implies 

Binary. S.member(Binary. fv(t), 
esm(Binary, fs(r),ndb)) 

andalso 
Binary. S. member(Binary, tv(t), 

esm(Binary, ts(r),ndb)) 
end 

end; 

D.3. The Functor DataBase 

functor DataBase( B : BINARY_RELATION) : 
sig 

include NDB 
sharing B = Binary 

end = 
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struct 

structure Set : SET = ? 

structure Binary = B 

open B Set 

(. The Data Base .) 

type NDB = ? 

(. Operations .) 

val NewDB : NDB = ? 

fun ADDES(es : Esetnm, ndb : NDB) : NDB = ? 

fun ADDENT( memb : Esetnm set, 

value : Value, 

eid : Eid, 

ndb : NDB) : NDB = ? 

fun ADDTUP(tuple : B. Tuple, 

rel : B. BinaryRel, 

ndb : NDB) : NDB = ? 

fun ADDREL(mp : Maptp, ndb : NDB) : NDB = ? 

fun DELES(es : Esetnm, ndb : NDB) : NDB = ? 

fun DELENT(eid : Eid, ndb : NDB) : NDB = ? 

fun DELTUP(eid : Eid, 

eid' : Eid, 

rel : B. BinaryRel, 

ndb : NDB) : NDB = ? 

fun DELREL(reI: B. BinaryRel, ndb : NDB) : NDB = ? 

(. Axioms ~) 

local 

(. Auxiliary Functions .) 

val isNewDB : NDB = ? 

axiom 

fun Es_in(es : Binary. B. Esetnm, 

ndb : NDB) : bool = ? 
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axiom . 

val Eid_in(eid : Binary. B. Eid, 

ndb : NDB) : bool = ? 

axiom . 

val Rel in(r : 'b, ndb : NDB) : bool = ? 

axiom . 

(. A local function for extracting 

the set of tuples in a relation .) 

val rm(r : 'b, nbd : NDB) : NDB = ? 

axiom . 

(. A local function associating 

entities with entity sets .) 

val esm(es : Esetnm, ndb : NDB) : Eid Set : ? 

axiom . 

in 

(. Operations for Constructing the Data Base .) 

end 

end; 
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