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Abstract

We prove that for every constant δ > 0 the chromatic number of the random graph G(n, p)
with p = n−1/2−δ is asymptotically almost surely concentrated in two consecutive values. This
implies that for any β < 1/2 and any integer valued function r(n) ≤ O(nβ) there exists a function
p(n) such that the chromatic number of G(n, p(n)) is precisely r(n) asymptotically almost surely.

1 Introduction

Let G(n, p) denote the random graph on n labeled vertices in which every edge is chosen randomly
and independently with probability p = p(n). We say that G(n, p) has a property A asymptotically
almost surely (a.a.s.) if the probability it satisfies A tends to 1 as n tends to infinity.

One of the most interesting early discoveries in the study of random graphs is that of the fact
that many natural graph invariants are highly concentrated. One of the first striking results of this
type was proved by Matula [9] and strengthened by various researchers; for fixed values of p almost
all graphs G(n, p) have the same clique number. The proof of this result is not difficult, and is based
on the second moment method.

In this paper we study the concentration of the chromatic number of the random graph G(n, p).
This parameter is far more complicated than the clique number, and its asymptotic behavior is
much less understood, despite the results of Bollobás [3] and  Luczak [7] that provide an asymptotic
formula for its expectation. Shamir and Spencer [10] proved that there is always a choice of an interval
I = I(n, p) of length roughly

√
n, such that the chromatic number of G(n, p) lies, asymptotically

almost surely, in I. More surprisingly, they proved that for every constant α > 1/2, if p = n−α then
the chromatic number of G(n, p) is asymptotically almost surely concentrated in some fixed number
of values. That is, there exists a function t = t(n, p) and a constant s = s(α) which is at most the
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smallest integer strictly larger than (2α + 1)/(2α − 1), such that a.a.s. t ≤ χ(G(n, p)) ≤ t + s. A
further step in this direction was made by  Luczak [8] who showed that if α > 5/6, then χ(G(n, p)) is
a.a.s. two point concentrated. It is not difficult to see that the two point width of the concentration
interval is best possible for a general p. Additional results on this problem were given in [6].

Here we extend the two point concentration result of  Luczak by proving the following result which
shows that the bound of [10] for s(α) mentioned above can, in fact, be improved to 1 for all α > 1/2.

Theorem 1.1 For every positive constants ε, δ there exists an integer n0 = n0(ε, δ) such that for
every n > n0 and probability p = n−1/2−δ there is an integer t = t(n, p, ε) such that

Pr[t ≤ χ(G(n, p)) ≤ t+ 1] ≥ 1− ε .

In other words, for every constant α > 1/2 the chromatic number of G(n, p) with p = n−α takes
a.a.s. one of two consecutive values.

The above result and its proof imply the following.

Proposition 1.2 For every fixed β < 1/2, ε > 0 and every integer valued function r(n) satisfying
1 ≤ r(n) ≤ nβ, there exists an n0 and a function p(n) such that the chromatic number of G(n, p(n))
is precisely r(n) with probability at least 1− ε for all n > n0.

Therefore, for such values of p(n), almost all graphs G(n, p(n)) have the same chromatic number !
Our proof uses a martingale approach much in the spirit of the papers of Shamir and Spencer

[10] and of  Luczak [8], combined with additional probabilistic and combinatorial arguments. The
presentation of the basic ideas follows closely that of [2], Chapter 7.

The rest of this paper is organized as follows. In the next section we prove several technical
lemmas required for the proof of the main result. This proof is presented in Section 3. The final
Section 4 contains a discussion of some related questions and open problems.

2 Preliminaries

The proof of Theorem 1.1 requires several preparations. We assume, whenever this is needed, that
the number of vertices n is sufficiently large. Relying on the result of  Luczak, we may assume that,
say, δ ≤ 3/8. Denote d = np = n1/2−δ. In the course of the proof floor and ceiling signs are
occasionally omitted for the sake of convenience.

In the proof we apply some simple properties of the concept of k-choosability (see, e.g., [1], or [5],
pp. 18–21). A graph G = (V,E) is called k-choosable if for every family of lists {S(v) ⊆ Z, |S(v)| =
k; v ∈ V } there exists a proper vertex-coloring f : V → Z of G such that f(v) ∈ S(v) for every
v ∈ V . Clearly, the k-choosability of a graph G implies its k-colorability, but the converse is not
true in general. A graph is d-degenerate if every subgraph of it contains a vertex of degree at most
d. The following is a simple, well known fact (c.f., e.g., [1]):
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Proposition 2.1 Every d-degenerate graph is (d+ 1)-choosable. 2

In the proof of our main result we need the following simple though somewhat technical lemma.

Lemma 2.2

• (i) For every δ > 0 there exists a constant r = r(δ) > 0 such that for every C > 0, a.a.s.
every i ≤ C

√
n vertices of the random graph G(n, p) with p = n−1/2−δ span less than ri edges.

Therefore, any subgraph of this graph induced by a subset V0 ⊂ V of size |V0| ≤ C
√
n, is

2r-choosable.

• (ii) Let δ > 1/5. Then for every constant C > 0, a.a.s. every i ≤ Cn1−δ vertices of the random
graph G(n, p) with p = n−1/2−δ span less than in1/10 edges.

• (iii) The random graph G(n, p) with p = n−1/2−δ, 0 < δ ≤ 3/8, has a.a.s. the following
properties:

1. Every vertex v ∈ V (G) has degree at most 3d = 3np;

2. χ(G) ≥ d/2 lnn;

3. If δ ≥ 1/6, then the number of paths of length three (edges) between any two (not neces-
sarily distinct) vertices of G is at most lnn; if 0 < δ < 1/6, then the number of paths of
length three between any two vertices of G is at most d3 lnn/n.

Proof.
(i) Fix r =

⌈
1
δ

⌉
. Then the probability of existence of a subset V0 ⊂ V violating the assertion of the

lemma is at most

C
√
n∑
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C
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n∑
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The additional claim about the choosability now follows from Proposition 2.1.
(ii) The probability of existence of a subset V0 ⊂ V violating the claim of the lemma is at most
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(iii) 1. Indeed,

Pr[∃v : d(v) > 3d] ≤ n
(
n− 1

3d

)
p3d

≤ n
(
en

3d

)3d

p3d = n

(
en

3d
d

n

)3d

= o(1).

(iii) 2. The probability that G has an independent set of size s = 2n lnn/d is at most(
n

s

)
(1− p)(

s
2) ≤

[
O(1)

d

lnn
e−p

n lnn
d

]s

=
[
O(1)

d

lnn
1
n

] 2n lnn
d

= o(1) .

Therefore the chromatic number of G is a.a.s. at least n/(2n lnn/d) = d/2 lnn;
(iii) 3. Let us first show that for every δ > 0 a.a.s. any two vertices of the random graph G(n, p)
with p = n−1/2−δ are connected by less than c0 = d2/δe paths of length two. The probability that
this is not so can be bounded from above by(

n

2

)(
n− 2
c0

)
p2c0 ≤ n2[O(1)np2]c0 = n2[O(1)n−2δ]c0 = o(1) .

Therefore a.a.s. every edge e = (w1, w2) of G(n, p) participates in at most c0 paths of length three
between any two vertices u, v ∈ V (G). Indeed, if {w1, w2} ∩ {u, v} = ∅, then there are only two
potential paths of length three from u to v, containing (w1, w2), i.e., the paths uw1w2v and uw2w1v.
If, say, w1 = u, w2 6= v, then every path of length three from u to v starting with e corresponds to
a path of length two between w2 and v, and the number of such paths is a.a.s. bounded from above
by c0. We conclude that a.a.s. every path of length three between any pair of vertices u, v has an
edge in common with at most 3c0 other such paths.

Now, let Xu,v be the number of paths of length three between u and v, then a.a.s. the number of
edge disjoint paths of length three between u and v is at least Xu,v/(3c0 + 1). (This can be seen by
defining an auxiliary graph A whose vertices correspond to the paths of length three between u and v
and whose edges connect paths sharing an edge in G(n, p). This graph has maximum degree at most
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3c0 and therefore is (3c0 +1)-colorable, thus it has an independent set of size at least Xu,v/(3c0 +1)).
Hence we get that Pr[Xu,v ≥ l] is asymptotically at most the probability that the number of edge
disjoint paths of length three between u and v is at least l0 = l/(3c0 + 1). The latter probability is
at most (

n

l0

)2

l0!p3l0 (1)

(first choose l0 neighbors of u and l0 neighbors of v, then fix a bijection between the vertices of the
chosen sets, and then require all 3l0 edges of the chosen paths to be present in G(n, p)).

The probability in (1) is at most[
O(1)

n2

l2
lp3

]l0
=

[
O(1)

n2p3

l

] l
3c0+1

.

Taking l = lnn for the case n2p3 ≤ 1 (δ ≥ 1/6) or l = n2p3 lnn = d3 lnn/n for the case n2p3 ≥ 1
(δ ≤ 1/6), we get Pr[Xu,v ≥ l] = o(n−2). 2

Our final preliminary lemma utilizes the idea used in the paper [8] of  Luczak (who attributes it
to Frieze).

Lemma 2.3 For every ε0 > 0 define t = t(n, p, ε0) to be the least integer for which

Pr[χ(G) ≤ t] ≥ ε0. (2)

Let X be the random variable whose value is the minimum number of vertices that have to be deleted
from V (G) to get a t-colorable graph. Let, further, λ be defined by e−λ

2/2 = ε0, then

Pr[X ≥ 2λ
√
n] < ε0 .

Proof.
By the definition of t

Pr[χ(G) < t] < ε0 . (3)

It is easy to see that the random variable X satisfies the vertex Lipschitz condition, that is, if
two graphs G and G′ differ from each other only in edges containing some fixed vertex v, then
|X(G)−X(G′)| ≤ 1. Therefore by considering the vertex exposure martingale on G(n, p) as in, e.g.,
[2], Chapter 7, and by letting µ = EX, we conclude that for every λ > 0

Pr[X ≤ µ− λ
√
n] < e−

λ2

2 , P r[X ≥ µ+ λ
√
n] < e−

λ2

2 .

In particular, since for our choice of λ, e−λ
2/2 = ε0, it follows that these tail events both have

probability less than ε0. On the other hand, Pr[X = 0] ≥ ε0, hence we derive from the first
inequality that µ ≤ λ

√
n. Therefore, by the second inequality,

Pr[X ≥ 2λ
√
n] < ε0 . 2
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Denoting c = 2λ, we summarize the above arguments as follows: with probability at least 1− ε the
random graph G = G(n, p) = (V,E) has all the properties stated in Lemma 2.2, satisfies χ(G) ≥ t

and also contains a subset U0 ⊂ V of size |U0| ≤ c
√
n such that G[V \ U0] is t-colorable. Note also

that by Lemma 2.2, part (iii) 2, t ≥ d/2 lnn.

3 The proof of the main result

Having finished all the necessary preparations, we are now ready to complete the proof of Theorem
1.1. In view of the last paragraph of the previous section it suffices to prove the following deterministic
statement.

Proposition 3.1 Let G = (V,E) be a graph on n vertices satisfying all properties in the assertions
of Lemma 2.2. Suppose, further, that χ(G) ≥ t ≥ d/2 lnn and there is a subset U0 ⊂ V of size
|U0| ≤ c

√
n such that G[V \ U0] is t-colorable. Then G is (t+ 1)-colorable.

We prove this (fully deterministic) proposition using probabilistic techniques.
As the first stage of the proof we find a subset U ⊂ V of size |U | = O(

√
n) including U0, such

that every vertex v ∈ V \U has at most 10r neighbors in U , with r from Lemma 2.2. A similar idea
plays a crucial role in the proof of  Luczak. (Note that the number 10 can be easily reduced, and we
make no attempt to optimize the multiplicative constants here and in what follows.) To find U as
above, start with U = U0, and as long as there exists a vertex v ∈ V \U having at least 10r neighbors
in U , join it to U and update U by defining U := U ∪ {v}. This process stops with |U | ≤ 2c

√
n

because otherwise we would get a subset U ⊂ V of size |U | = d2c
√
ne, containing at least 10rc

√
n

edges, thus contradicting the assertion of Lemma 2.2, part (i).
Let U = {u1, . . . , uk} with k = O(

√
n). Note that by Lemma 2.2, part (i), the subgraph G[U ] is

2r-choosable. For every i, 1 ≤ i ≤ k, put N(ui) = {v ∈ V \U : (v, ui) ∈ E(G)} and let N(U) denote
the union N(U) =

⋃k
i=1N(ui). Define an auxiliary graph H, whose vertex set W is a disjoint union

of k sets W1, . . . ,Wk, where |Wi| = |N(ui)|. For each vertex v ∈ N(U) and each neighborhood N(ui)
in which it participates there is a vertex in Wi corresponding to v. For every edge (v, w) ∈ E(G)
with v, w ∈ N(U) and for each copy of v and each copy of w in W , there is an edge in H between
these two copies. Note that since every v ∈ N(U) has at most 10r neighbors in U , there are at most
10r copies of v in H and thus each edge in G yields at most (10r)2 edges in H. Note also that by
our choice of H each stable set in H corresponds to a stable set in N(U).

Let f : V \U → {1, . . . , t} be a fixed proper t-coloring of the subgraph G[V \U ]. Then f induces
a t-coloring f ′ : W → {1, . . . , t} of the vertices of H in a natural way.

The crucial idea is as follows. For every 1 ≤ i ≤ k we aim to recolor 2r color classes in N(ui)
(or equivalently, in Wi) by a fresh color t+ 1, thus making 2r colors available for ui for a coloring of
G[U ]. We need to show that such a recoloring is possible, that is, 2r color classes for each vertex ui
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can be chosen in such a way that their union is a stable set in G. Once this task is accomplished,
we would be able to color G[U ] using the lists of available colors for each u ∈ U and exploiting the
fact that G[U ] is 2r-choosable.

Let us first consider the case δ ≤ 1/5. In this case we apply an argument similar to the one in the
proof of Proposition 5.3 in [2], Chapter 5. For each 1 ≤ i ≤ k choose randomly and independently
2r numbers from {1, . . . , t} without repetitions, and denote the chosen set by Ii. We claim that
with positive probability the subset W0 =

⋃k
i=1{w ∈ Wi : f ′(w) ∈ Ii} is stable in H. This will

imply that the subset of vertices of N(U) with at least one copy in W0 is also stable, thus making
2r colors available for each vertex u ∈ U . To prove this claim, we use the Lovász Local Lemma (c.f.,
e.g., [2], Chapter 5). Consider an edge e = (w1, w2) ∈ E(H) with w1 ∈ Wi1 and w2 ∈ Wi2 (where
possibly i1 = i2). Denote by Ae the event (f(w1) ∈ Ii1 and f(w2) ∈ Ii2), that is, ”the colors of
both w1 in Wi1 and w2 in Wi2 are chosen”. The probability of Ae is at most (2r/t)2 = O(ln2 n/d2).
Also, Ae is mutually independent of all other events Ae′ but those for which e′ ∩ (Wi1 ∪Wi2) 6= ∅.
By the assertion of Lemma 2.2, part (iii) 1, for every 1 ≤ i ≤ k |N(ui)| = O(d) = o(

√
n) and

therefore by the assertion of Lemma 2.2, part (i), the number of edges spanned by N(ui) and thus
by Wi is O(d). Also, by Lemma 2.2, part (iii) 3, the number of edges between N(ui) and N(uj)
is at most lnn for δ ≥ 1/6 and is at most d3 lnn/n for 0 < δ < 1/6, implying that the number
of edges between any two color classes in H is at most (10r)2 lnn = O(lnn) for δ ≥ 1/6 and is at
most (10r)2d3 lnn/n = O(d3 lnn/n) for 0 < δ < 1/6. Therefore, for every part Wi the number of
edges of H incident with Wi is at most O(d) + k ·O(lnn) = O(n1/2 lnn) for δ ≥ 1/6 and is at most
O(d) + k · O(d3 lnn/n) = O(d3 lnn/n1/2) for 0 < δ < 1/6. Returning to the ”bad” event Ae we see
that it is mutually independent of all but O(n1/2 lnn) events Ae′ for the case δ ≥ 1/6 and of all but
O(d3 lnn/n1/2) events Ae′ for 0 < δ < 1/6. Hence in both cases (since d ≥ n2/5)

Pr[Ae] · |{e′ : e′ ∩ (Wi1 ∪Wi2) 6= ∅}| = o(1) . (4)

Therefore, applying the symmetric version of the Lovász Local Lemma (see, e.g., [2], Chapter 5,
Corollary 1.2), we get the desired result.

Now we treat the case δ > 1/5. For this case the Local Lemma cannot be applied directly since
the estimate (4) is not necessarily valid. Therefore we use a different approach.

For every s ≤ k subsets Wi1 , . . . ,Wis , their union, according to the assertion of Lemma 2.2,
part (iii) 1, has m ≤ s · 3d = O(n1−δ) vertices and thus, by the assertion of Lemma 2.2(ii),
spans at most (10r)2mn1/10 edges in H. Therefore there exists a subset Wil , connected by at
most 2(10r)2mn1/10/s = O(dn1/10) edges to the rest of the subsets. This implies that the vertices
u1, . . . , uk can be reordered in such a way that for every 1 < i ≤ k there are O(dn1/10) edges from Wi

to
⋃
i′<iWi′ . We assume in the sequel that u1, . . . , uk are indeed ordered to satisfy this restriction.

Now, we choose sequentially for every i from 1 to k a set Ji of 2 lnn + 2r colors from {1, . . . , t}
at random without repetitions. Each set Ji is chosen from the set of colors available for i, where a
color j is available for i, if the corresponding color class in Wi has no connections with color classes
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having been chosen for previous indices. More formally, j is available for i if there does not exist an
edge (w1, w2) ∈ E(H) with w1 ∈Wi, f ′(w1) = j, w2 ∈Wi′ for some i′ < i and f ′(w2) ∈ Ji′ .

Denote by xi, 1 ≤ i ≤ k, the probability that for some i′ ≤ i while choosing the set Ji′ there
are less than t/2 colors available for i′. Clearly, if xk < 1, then there exists a family {Ji : 1 ≤ i ≤
k, |Ji| = 2 lnn+ 2r} for which there are no edges between the corresponding color classes of distinct
subsets Wi′ ,Wi. Once such a family is indeed found, for every 1 ≤ i ≤ k we delete from Ji those
colors for which the corresponding color class in Wi is incident with some edge inside Wi. By Lemma
2.2, part (iii) 3, every ui participates in at most lnn triangles, hence the number of edges spanned
by Wi is at most lnn. Therefore, after this deletion we get a family {Ii : 1 ≤ i ≤ k, |Ii| ≥ 2r} for
which the union

⋃k
i=1{w ∈Wi : f ′(w) ∈ Ii} is stable in H, and can complete the proof as before.

In order to estimate xi, 1 ≤ i ≤ k, note first that x1 = 0. Also, according to our reordering of
the sets Wi, for each 1 ≤ i ≤ k there are at most O(dn1/10) edges from Wi to the previous parts
Wi′ , i′ < i. By Lemma 2.2, part (iii) 3, there are O(lnn) edges between Wi′ and Wi, therefore each
color chosen to be included in Ji′ causes O(lnn) colors to become unavailable for i. The probability
of each color to be chosen into Ji′ is at most 2 lnn+ 2r divided by the number of available colors for
i′ at the moment of choosing Ji′ . Hence,

xi ≤ xi−1 + (1− xi−1)

(
O(dn

1
10 )

t
2

O(lnn)

)(
2 lnn+ 2r

t
2

) t
2

O(lnn)

≤ xi−1 +

[
O(1)

dn
1
10 ln2 n

t2

]Ω( t
lnn

)

≤ xi−1 +

[
O(1)

n
1
10 ln4 n

d

]Ω( d
ln2 n

)

< xi−1 + e−n
1
10

(the next to last inequality uses the assertion of Lemma 2.2, part (iii) 2, while the last inequality
uses the assumption that δ ≤ 3/8 and thus d = np ≥ n1/8).

Therefore xk ≤ ke−n
1/10

<< 1, establishing the desired result. This completes the proof of the
proposition and hence also the proof of Theorem 1.1. 2

Proof of Proposition 1.2. Let p(n) be a real so that the probability that the chromatic number
of G(n, p(n)) is strictly smaller than r(n) is precisely ε/2 (such a p(n) clearly exists by continuity,
as for every fixed n the above probability is simply a polynomial in p). By Theorem 1.1 (and the
fact that from its proof it follows that n0(ε, δ) can be uniformly bounded for all δ > δ0), there exists
an n0 = n0(β, ε) such that if n > n0 the chromatic number of G(n, p(n)) is one of two consecutive
values with probability that exceeds 1 − ε/2. It follows that these two consecutive values must be
r(n)− 1 and r(n), and the desired result follows, since the probability that the chromatic number is
r(n)− 1 is at most ε/2. 2
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4 Concluding remarks and open problems

• By continuity, for any n, any ε ≤ 1/2 and any two consecutive integers t, t + 1 ≤ n there
are values of the probability p such that the chromatic number of G(n, p) is at most t with
probability at least ε and at least t + 1 with probability at least ε. Therefore, the two-point
concentration result is optimal. It seems that for most values of the probability p in the range
covered by Theorem 1.1 the chromatic number is in fact concentrated in one point; this is
certainly the case for some values of p, as shown in Proposition 1.2. It would be interesting to
decide if indeed, in an appropriately defined sense, a one point concentration is more typical
in this range than a two-point concentration, and this question remains open.

• The problem of determining or estimating the correct behavior of the concentration of the
chromatic number of the random graphs G(n, p) for values of p that exceed n−1/2−δ remains
open, and seems to be very interesting. The case p = 1/2 is of particular interest. It seems
plausible that there is some fixed µ > 0 so that for infinitely many values of n there is no
interval I(n) of length smaller than nµ so that the chromatic number of G(n, 1/2) is in I(n)
a.a.s. It is also possible, however, that this is indeed the case, and yet for any such µ > 0 there
are infinitely many values of n for which such an interval does exist. Although there are some
heuristic arguments that suggest that both these statements may well hold simultaneously, we
are unable to prove any of them.

• The arguments in our proof of Theorem 1.1 imply the following result about the non-uniqueness
of optimal vertex colorings of random graphs. Suppose ε > 0, α > 1/2, p = n−α and t =
t(n, p, ε) is the least integer for which the probability that the chromatic number of G = G(n, p)
is at most t, exceeds ε. Suppose, further, that the above mentioned probability is not greater
than, say, 1− ε. Then, if n is sufficiently large (as a function of ε and α), the probability that
G has (much) more than one proper (t + 1)-vertex coloring exceeds 1 − ε/10. Note that this
implies that with probability greater than ε/2 the chromatic number of G is t + 1 and it has
many proper (t+ 1)-vertex colorings.

• For values of p(n) which are very close to 1 (e.g., p(n) = 1 − 1/(10n)), there is no interval of
length smaller than Ω(

√
n) for which the chromatic number of G(n, p(n)) lies in the interval

a.a.s. This follows from some simple facts about the distribution of the size of the largest
matching in the complement of G(n, p(n)). Thus the concentration result of [10] mentioned in
the introduction cannot be improved in general, but it will be interesting to decide how close
to the truth it is for values of p up to 1/2.

• The problem of understanding the correct concentration of the chromatic number of the random
graph is equivalent to that of understanding the concentration of the minimum number of
cliques that cover all its vertices, since such a covering by cliques corresponds to a coloring of
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the complement. A related quantity is the clique cover number of a graph G, denoted cc(G),
which is the minimum number of cliques required to cover all its edges. Frieze and Reed [4]
proved that this quantity, for G(n, p) for fixed values of p, is, a.a.s., Θ(n2/ ln2 n). For this
quantity, we have an argument that shows that for some values of p between, say, 0.001 and
0.999, it is not concentrated in any interval of length n/ ln2 n. (It is not difficult to see that this
is tight, up to a logarithmic factor.) This argument does not seem to provide any information
for the concentration of the chromatic number, but since it is simple and applies to any graph
invariant whose expectation changes considerably for G(n, p) as p changes from ε to 1 − ε we
close this paper with a sketch of this proof. The idea is that if p = p(n) is bounded away from
0 and 1, say, ε < p < 1 − ε, then there is a positive δ = δ(ε), such that any family of graphs
on n vertices whose total probability is at least 1− δ in G(n, p(n)) has probability at least 2δ
in G(n, p(n) + 1/n). This implies that if for every edge probability p = p(n) between ε and
1− ε there is an interval Ip, for which the probability that cc(G(n, p)) lies in Ip is larger than
1− δ, then for values of p between ε and 1− ε, Ip must intersect Ip+1/n. Since the mid-point of
the interval Iε differs from that of I1−ε by Ω(n2/ log2 n) (as follows from the proof in [4]), the
desired result follows.

References

[1] N. Alon, Restricted colorings of graphs, in ”Surveys in Combinatorics”, Proc. 14th British Combi-
natorial Conference, London Mathematical Society Lecture Notes Series 187, edited by K. Walker,
Cambridge University Press, 1993, 1-33.

[2] N. Alon and J. H. Spencer, The probabilistic method, Wiley, New York, 1992.

[3] B. Bollobás, The chromatic number of random graphs, Combinatorica 8 (1988), 49-55.

[4] A. Frieze and B. Reed, Covering the edges of a random graph by cliques, Combinatorica 15 (1995),
489–497.

[5] T. R. Jensen and B. Toft, Graph coloring problems, Wiley, New York, 1995.

[6] M. Krivelevich, On the minimal number of edges in color-critical graphs, Combinatorica, to
appear.

[7] T.  Luczak, The chromatic number of random graphs, Combinatorica 11 (1991), 45–54.

[8] T.  Luczak, A note on the sharp concentration of the chromatic number of random graphs, Com-
binatorica 11 (1991), 295–297.

[9] D. W. Matula, On the complete subgraph of a random graph, Combinatory Mathematics and its
Applications, Chapel Hill, North Carolina (1970), 356–369.

10



[10] E. Shamir and J. Spencer, Sharp concentration of the chromatic number of random graphs Gn,p,
Combinatorica 7 (1987), 124–129.

11


