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Knowledge-Based Spatiotemporal Linear Abstraction

Abstract

We present a theoretical framework and a case study for reusing the same conceptual and computational

methodology for both temporal abstraction and linear (unidimensional) space abstraction, in a domain

(evaluation of traffic-control actions) significantly different from the one (clinical medicine) in which the method

was originally used.  The method, known as knowledge-based temporal abstraction, abstracts high-level concepts

and patterns from time-stamped raw data using a formal theory of domain-specific temporal-abstraction

knowledge.

We applied this method, originally used to interpret time-oriented clinical data, to the domain of traffic control,

in which the monitoring task requires linear pattern matching along both space and time.  First, we reused the

method for creation of unidimensional spatial abstractions over highways, given sensor measurements along each

highway measured at the same time point.  Second, we reused the method to create temporal abstractions of the

traffic behavior, for the same space segments, but during consecutive time points.  We defined the corresponding

temporal-abstraction and spatial-abstraction domain-specific knowledge.

Our results suggest that (1) the knowledge-based temporal-abstraction method is reusable over time and

unidimensional space as well as over significantly different domains; (2) the method can be generalized into a

knowledge-based linear-abstraction method, which solves tasks requiring abstraction of data along any linear

distance measure; and (3) a spatiotemporal-abstraction method can be assembled from two copies of the

generalized method and a spatial-decomposition mechanism, and is applicable to tasks requiring abstraction of

time-oriented data into meaningful spatiotemporal patterns over a linear, decomposable space, such as traffic

over a set of highways.

Key Words: Temporal abstraction, Spatial abstraction, Traffic control, Knowledge-based systems
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Knowledge-Based Spatiotemporal Linear Abstraction

1.  Introduction: Spatiotemporal Abstraction and knowledge reuse

In this paper, we present a case study with both theoretical and experimental aspects.  The case illustrates the

reuse of a conceptual and computational methodology, originally used for the task of interpretation of time-

stamped data in a clinical domain, for the purpose of solving a task involving both temporal and

(unidimensional) spatial pattern matching in a very different domain, monitoring of traffic- control actions.  The

method we reused is the knowledge-based temporal-abstraction method [1], which solves the task of abstraction

of high-level concepts and patterns from time-oriented data, and which was applied previously mainly to clinical

domains [2].  We first show how we have applied that method to solve both the temporal- and spatial-abstraction

tasks in the traffic-control domain.  We then generalize our results by showing how, using an existing

methodology for construction of knowledge-based systems, a spatiotemporal–abstraction method can be

configured from a generalized (linear) version of the temporal-abstraction method and a spatial-decomposition

mechanism.

1.1 A guide to the paper

In Section 2, we present the domain of traffic control and the task of monitoring control-actions.  Section 3

summarizes briefly the knowledge-based temporal-abstraction method.  Section 4 shows how the knowledge-

based temporal-abstraction method was reused to perform two different subtasks: spatial reasoning and temporal

reasoning.  Section 5 describes how we can configure the spatiotemporal–abstraction method from a more

general version of the knowledge-based temporal-abstraction method, the knowledge-based linear-abstraction

method.  Section 6 summarizes the experiment and its conclusions.

2.  The Traffic-Control Domain

The past two decades have experienced a significant demand for advanced information technology in road-

transport management. Control centers for traffic management are connected on-line to devices such as detectors

on roads, cameras, traffic lights, etc.  Thus, operators can supervise the state of the road by consulting data bases

with recent information from detectors and can affect the state of various control devices.  The use of these

traffic monitoring and management facilities requires sophisticated support tools for on-line operators, to help

them in dealing with the information complexity and diversity of sensors and control devices.  In particular,

expert systems for decision support have recently been successfully introduced in this field.  Existing systems

include for example TRYS [3], KITS [4], ARTIST [5],  SAPPORO [6], which employs a blackboard system

specialized to the representation of traffic knowledge, CLAIRE [7], a context-free supervisor for traffic control,

and other systems focused on traffic monitoring and control [8,9].  A useful collection of work in the first half of

the 1990s on applications of Artificial Intelligence to traffic engineering can be found in Bielli, Ambrosino, and

Boero’s book [10].
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The goal of a real-time traffic decision-support system is to propose, to traffic management center operators,

control actions to eliminate or reduce problems according to the global state of the traffic.  The particular traffic

network we used for the modeling phase was the one used in major cities in Spain, such as in Madrid.

The type of traffic-control decision-support systems we had analyzed receive as input the following input:

1.  Data from sensors that are located on all major roads, recording several traffic-oriented magnitudes such as

speed (km/h), flow (vehicle/h) and occupancy (percentage of time the sensor is occupied).  The distance

between successive sensors on a freeway is around 500m.  Information arrives periodically (e.g., every

minute).  Some of the sensors, however, might not be working all the time, so missing data at certain spatial

or temporal points is a possibility.

2.  Information about the current state of control devices.  Control devices (or control actions) include traffic

signals at intersections, traffic signals at sideways on-ramps, changeable message signs that present different

messages to motorists (e.g., warning about existing congestions or alternative path advice), radio advisory

systems to broadcast messages to motorists, and reversible lanes (i.e. freeway lanes whose direction can be

selected according to the current and expected traffic demand).

The system supplies, as output, answers to the following questions:

1. What happens?  The system interprets sensor data and detects the presence of a problem and a possible

cause.  Problems are congestions at certain locations caused by lack of capacity due to accidents, excess of

demand (like rush hours), etc.  The system might also supply complementary information such as the

severity of a problem, the number of lanes blocked, etc., which helps to understand the problem.

2. What to do?  The system proposes recommendations how to solve or reduce the problem.  For instance it

may recommend increasing the duration of a phase (e.g., green time) at a traffic signal, or it may suggest

showing certain messages on some message signs to divert traffic.  The system also gives explanations about

why it recommends those control actions.

3. What if?  The system answers what would happen if the operator choose to implement a particular action.

The operator may propose a control action and the system suggests whether the control action might have

some influence on an existing problem.

Typically, a city network is divided into two different but related subnetworks, which are supervised by different

control centers: the surface streets and the freeways. In this paper the focus will be on freeway management. The

expert system supervising the whole freeway network analyzes each direction of each freeway separately in such

a way that the whole knowledge model is divided into submodels.  Each submodel is specialized for detecting

and solving problems in the particular area under control.  Thus, the global expert system is composed of

different specialists, called traffic-control agents, coordinated by an additional agent, called the coordinator, that

integrates local proposals.
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2.1.  The Traffic Control-Action Monitoring Task

One of the tasks of the system is to monitor current control actions (e.g., warnings or path recommendations) to

be sure that they are performing as expected and they are consistent with the traffic state.  The reason is that

when a problem occurs, the system proposes solutions making heuristic assumptions about the effect of the

proposed control actions, but once the control action is implemented, its real effect may be different.

For example, consider the recommendation of alternative paths.  In congested locations, the system might

propose presenting messages to drivers recommending an alternative path.  The system assumes that a certain

percentage of traffic (e.g., 10% to 30%) will be diverted to the new path.  However, once the messages are

implemented different situations may happen due to unexpected conditions.  For instance, if only few drivers

follow the recommendation, it is better to remove the messages to come up with another solution.  Alternatively,

if the number of drivers following the recommendation is bigger than expected, a new congestion may appear as

a consequence of the massive diversion.  In this case, it is important to remove immediately the messages.

The task of monitoring effects of traffic control actions is called control-action monitoring and receives as input

the recent evolution of different road parameters (speed, flow and occupancy at every sensor location) and recent

control actions.  It returns answers about the adequacy of particular control actions.  Output answers include: (1)

the effect of the control action is appropriate and the action must be maintained on the road because it is

working properly, (2) the control action is useless because since the control action was implemented, traffic has

not changed its behavior, (3) the control action has a negative side effect because a new problem has appeared as

a consequence of the action, (4) the effect of the control action is still unknown because the action was recently

implemented and it needs some more time to act, (5) the control action has already solved the problem and must

be removed, and (6) the action has some effect but is insufficient to solve the problem.

Typical reasoning includes whether the number of drivers taking a certain exit is decreasing, whether the length

of an existing queue is increasing, whether in a nearby location (such as related surface streets) the flow is close

to a critical value and a new problem may be expected, etc.  Solving this task requires temporal reasoning (e.g.,

about durations, rates, and trends) as well as one-dimensional spatial reasoning (e.g., about queue lengths) and a

limited amount of two-dimensional spatial reasoning (e.g., about crossing of highways).  Thus, control-action

monitoring requires both spatial and temporal reasoning.

3. The Knowledge-Based Temporal  Abstraction Method

Many domains require the collection of substantial numbers of data over time and the abstraction of those data

into higher-level concepts, meaningful for that domain.  The temporal-abstraction (TA) task concerns the

specific temporal-reasoning task of context-sensitive abstraction and interpretation of time-stamped data.

For instance, in the domain of medical care, most clinical tasks require measurement and capture of numerous

time-oriented patient data.  It is highly desirable for an automated knowledge-based decision-support tool that

assists physicians who monitor patients over significant periods to provide short, informative, context-sensitive

summaries of time-oriented clinical data stored on electronic media.  Such a tool should be able to answer

queries at various levels of abstraction about abstract concepts that summarize the data.  Data summaries are



Knowledge-based spatiotemporal linear abstraction

6

valuable to the physician, support diagnostic or therapeutic recommendations by an automated system, and

monitor plans suggested by the physician or by the decision-support system.  A meaningful summary cannot use

only time points, such as data-collection dates; it must be able to characterize significant features over periods of

time, such as "2 weeks of grade-II bone-marrow toxicity in the context of therapy for potential complications of

a bone-marrow transplantation event” (Figure 1) and more complex patterns.  The TA task is thus an

interpretation task: given time-stamped data and external events, produce context-specific, interval–based,

relevant abstractions of the data (a somewhat more formal definition of the task is given later on in this section).

The TA task implies several conceptual and computational requirements:

1. both the  input data and the required output abstractions might include several data types (e.g., symbolic,

numeric) and can exist at various abstraction levels;

2. input data might arrive out of temporal order, and existing interpretations must be revised

nonmonotonically;

3. several alternate interpretations might need to be maintained and followed over time;

4. parameters have context-specific temporal properties, such as expected persistence of measured values and

classification functions (e.g., the meaning of the value LOW of the hemoglobin-state abstraction depends on

the context);
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Figure 1:  Abstraction of platelet and granulocyte values during administration of the PAZ clinical protocol for
treating patients who have chronic graft-versus-host disease (CGVHD).  The time line starts with a bone-marrow
transplantation (BMT) event.  The platelet and granulocyte count primitive (raw-data) parameters and the PAZ
event are typical inputs to the temporal-abstraction task.  The abstraction intervals and context intervals are
typically part of the output.  Intermediate-level abstractions such as platelet-state and granulocyte-state
abstractions are not shown in this figure.  • = platelet counts; ®⇤ ⇤JUDQXORF\WH⇤FRXQWV�⇤  = event;  =
open context interval;  = closed abstraction interval; M[n] = myelotoxicity (bone-marrow–toxicity) grade n.
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5. acquisition of knowledge from domain experts and maintenance of that knowledge should be facilitated.

The method should enable reusing its domain-independent  knowledge for solving the TA task in other

domains, and enable sharing  of domain-specific knowledge with other tasks in the same domain.

The framework we have chosen for solving the TA task is a general problem-solving method [11; 12] for

interpreting data in time-oriented domains, with clear semantics for both the method and its domain-specific

knowledge requirements: the knowledge-based temporal-abstraction (KBTA) method [1].  In this section, we

describe briefly the fundamental principles of the KBTA method, focusing mainly on its input and output data

and its required knowledge, but not on its underlying theoretical model and computational mechanisms [1],

implementation [13], or evaluation [2].

The KBTA method comprises a knowledge-level representation of the TA task and of the knowledge required to

solve that task.  The KBTA method has a formal model of input and output entities, their relations, and their

properties—the KBTA ontology [1].

In the TA ontology, input entities (see Figure 1) include external event propositions (e.g., administration of

medications) interpreted over time intervals (i.e., event intervals), and measurable (primitive) or computed

(abstract)parameter values (e.g., hemoglobin values), also interpreted over intervals, possibly zero-length

intervals (i.e., time points).  Parameters are not under control directly, and are modifiable only through external

events that have an affect on them.  Events can be of several types; each type can have a list of arguments that

can be instantiated with values (e.g., dose).  Output (and sometimes, input) entities include also abstractions of

parameters, which may be of type state, gradient, rate or the more general pattern.  An abstraction of a

parameter also is a parameter (e.g., the state of the hemoglobin value).  Abstractions must be defined within an

interpretation context (e.g., the effect of administration of insulin or therapy by chemotherapy).  Parameter

propositions include a parameter (e.g., hemoglobin level), an abstraction type (e.g., state) a value (e.g.,

grade_II_toxicity) and an interpretation context (e.g., being treated by the CCTG-522 AIDS-therapy protocol).

Parameter propositions are interpreted over some time interval (an ordered pair of time stamps), thus forming a

parameter interval.  Interpretation contexts are induced by external events, by certain parameter propositions, by

the abstraction process’s goals, and by certain combinations of these entities, but are not necessarily

contemporaneous to the inducing entities [14].

The TA task is thus the following: Given a set of event, parameter, and goal intervals and the domain’s TA

ontology, produce an interpretation—a set of new abstractions that can answer any temporal query about all the

abstractions derivable from the transitive closure of the input data and the domain’s TA ontology.  (A temporal

query is a set of temporal and value constraints over a set of parameter, event, and context intervals.)

The KBTA method decomposes an external TA task internally into five parallel subtasks (Figure 2):
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Figure 2:  The knowledge-based temporal-abstraction method.  The temporal-abstraction task is solved by this
method by decomposing it into five parallel subtasks.  Each subtask can be solved by one of five temporal-
abstraction mechanisms.  The temporal-abstraction mechanisms depend on four domain- and task-specific
knowledge types.  —> = DECOMPOSED-INTO relation;  = SOLVED-BY relation; --> = USED-BY
relation.

1. temporal-context restriction: creation of contexts relevant for data interpretation (e.g., effect of a drug), to

focus and limit the scope of the inference.  The computational mechanism that solves this task assumes that

the temporal scope of the interval-based interpretation contexts induced by various parameter and event

propositions is represented as a set of distance constraints relative to the temporal scope of the proposition

inducing the interpretation context [14].

2. vertical temporal inference: inference from values of contemporaneous input data or abstractions (e.g.,

results of several blood tests conducted during the same day) into values of higher-level concepts (e.g.,

classification into bone-marrow toxicity Grade II).  The computational mechanism that solves this task

assumes that classification functions are given.

3. horizontal temporal inference: inference from similar-type propositions that hold over different time

intervals (e.g., joining different-value abstractions of the same parameter that hold over two meeting time

intervals and computing the new abstraction’s value).  The computational mechanism that solves this task

assumes access to knowledge about certain types of temporal-semantic constraints, such as what types of
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propositions can be joined, and when does the truth of a proposition over a time interval imply the truth of

that proposition during every subinterval of the original interval.

4. temporal interpolation: bridging of gaps between similar-type but temporally disjoint point- or interval-

based propositions to create longer intervals (e.g., joining two disjoint episodes of anemia, occurring during

different days, into a longer episode).  The computational mechanism that solves this task assumes, in

addition to other knowledge types, that part of the input is a set of domain-specific and context-specific

persistence functions.  Each function denotes (given the parameter, its value, and a context), for each length

of parameter interval before a gap and length of parameter interval after a gap, the maximal allowed length of

the gap between the two intervals that can be bridged when data are missing (usually, when no measurements

exist) [15].

5. temporal-pattern matching: creation of intervals by matching patterns over a set of disjoint intervals over

which hold propositions of various types.  Patterns encode constraints regarding values, temporal relations,

and temporal distances.  Constraints are typically local and global constraints on parameter and event

intervals.  Local constraints specify, for each interval, the earliest starting shift (ESS), the latest starting shift

(LSS), the earliest finishing shift (EFS), the latest finishing shift (LFS), the minimal duration (MinDu) and

the maximal duration (MaxDu).  Temporal shifts are measured in time units from a given absolute or relative

reference time point (the default is the start of the current time line).  Thus, a local temporal constraint is

written as ([ESS, LSS], [EFS, LFS], [MinDu, MaxDu], REFERENCE).  Local constraints include also

restrictions over the parameter’s value or the event’s arguments’ values.  Global constraints specify

qualitative temporal relations among the pattern’s input intervals, such as that one interval overlaps another,

quantitative constraints such as that the first interval ends at least 100 days before the second starts, and value

constraints involving more than one interval, such as that the values of the bone-marrow toxicity grades in the

second and third parameter intervals are both greater than that of the first parameter interval.

The five subtasks of the KBTA method are solved by five temporal-abstraction mechanisms
(nondecomposable computational modules) (see Figure 2).  The TA mechanisms depend on four well-defined

domain-specific knowledge types:

1. structural  knowledge (e.g., IS-A, PART-OF, CONTEXT-INDUCING, and ABSTRACTED-INTO relations);

2. classification (functional) knowledge (e.g., how raw hemoglobin values are mapped into hemoglobin states);

3. temporal-semantic (logical) knowledge (e.g., the CONCATENABLE property [16], which enables the

potential join of meeting proposition intervals, depending on the proposition type; two consecutive weeks of

coma can be summarized as a 2-week interval of coma, but 2 consecutive episodes of a 9-month pregnancy

cannot be summarized as an 18-month pregnancy);

4. temporal-dynamic (probabilistic) knowledge (e.g., temporal persistence functions, which imply context-

specific constraints with respect to bridging of gaps between temporally disjoint intervals [15]).
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Values for the four knowledge types are specified as the domain’s temporal-abstraction ontology when

developing a TA system for a particular domain and task.  The TA ontology is a domain-independent, but task-

specific theory of the domain-specific entities, properties, and relations relevant for the TA task in each domain.

The KBTA method has been implemented as the RÉSUMÉ system [13] and evaluated with encouraging results

in several different medical domains, such as oncology, therapy of AIDS patients, monitoring of children’s

growth, and monitoring of diabetes patients [2].

4. From Temporal to Spatial Abstraction

The KBTA method performs makes only few assumptions regarding the structure of time, along which it creates interval-

based abstractions.  For instance, it assumes for each time line a set of totally ordered time stamps, one of which must be a

zero point, and a time measure with predefined granularity units (e.g., HOUR); adding or subtracting a time measure to or

from a time stamp returns a time stamp.

Thus, the KBTA method can easily be applied to a domain with different linear-distance stamps and measures,

as long as they comply with the algebraic constraints imposed on time lines.  By changing the interpretation of

the distance stamps, measure, and units to those relevant to the spatial dimension, we obtain a knowledge-based
spatial-abstraction (KBSA) method that is useful for the control-action monitoring task.

Only few changes to the TA ontology had to be made to apply it to the spatial dimension.  The most significant

change was knowledge about the distance units.  In particular, the time-units (temporal-granularities) conversion

table had to be substituted with the corresponding spatial-metrics version.  Special time stamps, such as

PRESENT,

although theoretically meaningful for certain spatial tasks, were not found to be useful either (for practical

purposes, it could be replaced by END).  Thus, we obtained a spatial-abstraction (SA) ontology).

With respect to the TA computational mechanisms using the SA ontology, several slots that have certain defaults

or a list of allowed time-unit symbols needed to be changed as well.  Note that, although the TA mechanisms can

function perfectly well in a spatial domain with internal time-oriented distance symbols such as start-time (as

long as the input data is mapped to such terms from terms such as start-distance), their use for an SA task is

obviously facilitated by these minor changes.  Less obvious is the fact that an automated knowledge-acquisition

tool generated automatically from the SA ontology, which can be created and customized using tools such as

those of the PROTÉGÉ-II system [17], and which would acquire knowledge from domain experts to be used by

the TA mechanisms, would use highly nonintuitive time-oriented terms if the SA ontology and corresponding

links to what would be now SA mechanisms were not modified.

One can easily see at this point that a more general method ontology and related computational mechanisms

could be constructed without any prior commitments as to the distance measure used, and even with several

different distance measures (e.g., both time and space) within each parameter interval (see Section 2). This

option will be presented when discussing the knowledge-based linear-abstraction method in Sections 5 and 6.
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4.1. Spatial Abstraction in Traffic Domain

Given the KBSA method, we can consider each highway as a linear space.  Primitive parameters (sensor

measurements) along the highway, all measured at the same time, are abstracted over spatial intervals into values

of abstract parameters; the relationship is represented in the traffic-domain’s SA ontology (Figure 3).

The primitive parameters and respective units in the traffic domain are the three basic magnitudes recorded by

sensors which are the inputs of the system: Speed (km/h), Flow (vehicle/hr), and Occupancy (percentage).

The abstract parameters are high-level qualitative variables representing the state of the traffic and several

intermediate variables in the abstraction process, such as Saturation degree (percentage), Circulation (on of

FLUID, UNSTABLE, CONGESTED), and Saturation level (one of FREE, CRITICAL).  The Saturation level (one of

FREE, CRITICAL) abstract parameter is abstracted from the Saturation degree.  The Circulation parameter is

abstracted from Speed and Occupancy using a 2:1 classification table.

Interpretation contexts  include, for example, the number of lanes of the highway.  Interpretation contexts are

induced also by events such as the presence of an accident blocking one or more lanes, a road construction

reducing the capacity of a freeway section, or the state of a reversible lane.  Interpretation contexts determine

how parameters such as the Saturation degree should be abstracted (e.g., the Saturation degree for one lane is

100 x Flow/1600, but is 100 x Flow/3500 for two lanes).

Parameter

Abstract Primitive

Saturation  level

Event Context

Saturation degree

SpeedOccupancyFlow

Circulation regime

Saturation_One-lane Saturation_Two-lanes Saturation_Three-lanes

One-lane Two-lanes Three-lanes

Number-of-lanesIncident Control action

Traffic accident Road construction Reversible lane

Figure 3:  Part of the spatial-abstraction ontology for the traffic domain.  Names represent classes, lines
represent IS-A relations, dashed lines represent ABSTRACTED-INTO relations.
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Other types of knowledge are represented in the traffic-domain’s SA ontology, besides vertical-classification

knowledge.  One is the ®⇤↵PD[LPDO⇣JDS�⇤SHUVLVWHQFH⇤IXQFWLRQ, a dynamic knowledge type (see Section 2) which

expresses the maximal distance between successive disjoint parameter intervals that still allows joining them into

a new parameter interval through interpolation.  Thus, in the case of the Circulation parameter and the

CONGESTED value, this distance could be established as 3 km (i.e., two Circulation-parameter intervals with the

CONGESTED value would be joined into a longer interval when the distance between the endpoint locations was

less than 3 km;  if the distance was bigger, they would be interpreted as two different problems). This particular

feature of the KBSA method is especially useful in the traffic domain since sometimes sensors do not work,

certain data are missing, and the system must be able to interpolate using other sensors and heuristics.

Values for the knowledge type depend on particular highways.  One approach is to consider each highway as a

different interpretation context, and specialize the SA ontology by these contexts, as is done in the TA ontology

and implemented in RÉSUMÉ [2].  The other approach involves defining different instances of the SA ontology

for each highway, as would be done using the Knowledge Structure Manager (KSM) [3] (see Section 5)

knowledge-units.

Using an appropriate SA ontology, the KBSA method was used to create spatial abstractions using the spatial

version of RÉSUMÉ (i.e., the SA mechanisms) and values from simulated highway data sensors (Figure 4).

Three Lanes Two Lanes

Freeway

Flow 
Speed 
Occupancy

Three Lanes

X

Regime = Fluid Regime = Congested Reg. = Fluid

Sat.  = Free Saturation Level = Critical Saturation Level = Free

Figure 4:  Spatial abstraction of a highway section. At the bottom, a scheme of the highway is presented
showing different densities of traffic.  Above that, respective values are presented for different magnitudes
recorded by sensors at consecutive locations (speed, occupancy and flow).  At the top, different intervals are
shown as a result of the spatial abstraction.  The figure shows only top-level abstraction intervals although
different intermediate intervals are also created during the inference process.  r = Flow; • = Speed;
° = Occupancy;  = context;  = closed abstraction interval.
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In summary, the first part of the solution for the traffic-control task (i.e., the solution of the SA task), shows how

the KBTA method and its TA ontology were transformed (within a few days) into the KBSA method and its SA

ontology, and were applied to traffic control.  The KBSA method provides a rich representation and inference to

easily model the knowledge involved in traffic domain for linear spatial abstraction.

4.2  Temporal Abstraction in The Traffic Domain

In addition to the SA task, the control-monitoring task requires also a solution for a TA task to determine

conclusions the adequacy of control  actions.  This subtask receives as input a set of qualitative instantaneous

views of the highway (Figure 5) which are the output of the KBSA module, corresponding to consecutive time

instants, and determines the adequacy of the current control action by abstracting these views over time.

In this case, the primitive parameters include values provided by the output of the SA task and values provided

by sensors at critical points outside the highway, such as ramps or intersections:  Congestion length (meters),

Flow at point Pi (vehicles/hr) (the number i of these points is usually less than 5 per highway).

For the sake of clarity, we assume that a highway can have at most one problem at a time.  In fact this is

normally true.  However, reasoning about multiple problems is not difficult; several zones, as they are often

called, must be defined, with each zone corresponding to a spatial interval  between two consecutive message-

sign devices.  Zones can be represented as subcontexts (a part of the TA and SA interpretation-context

ontologies).  A traffic queue usually has a fixed starting point where there is a lack of capacity (an accident, a

bottleneck, etc.) and the end of the congested area evolves according to the demand.  This means that if there

were several problems on the same highway, each one could be identified by the zone of their starting point.

T = 1 min

T =  3 min

T = 5 min

T = 7 min

Figure 5: The input for the temporal abstraction task in the domain of traffic is a sequence of qualitative
instantaneous views of the same segment of the highway.  The figure presents the temporal evolution of the state
of a highway in which the congestion-length gradient in a certain zone can be abstracted as INCREASING over
successive temporal snapshots (at T=1min, T= 3min, T= 5min, and T= 7min).
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The abstract parameters of the TA ontology for the control-monitoring task in the traffic domain include:

Congestion-length gradient (one of INCREASING, DECREASING, CONSTANT); Flow gradient at point Pi (one of

INCREASING, DECREASING, CONSTANT); Saturation level at point Pi (one of FREE, CRITICAL) (Figure 6).

The Congestion-length gradient is necessary to decide if the control action is having an effect on the existing

problem.  Flow gradients monitor whether control actions such as diversion are followed by drivers.  The

Saturation level at critical points is useful to determine whether a new problem may appear as a consequence of

the control action.  Vertical-classification tables for the Saturation-level are specialized by each subcontext

created by each point Pi.

Interpretation contexts are also induced by events (execution of traffic-control actions), such as a turning on a

congestion warning at a certain zone or creating a path diversion.

The horizontal-inference knowledge for gradient interpolation includes values of variations significant to the

values of the parameters abstracted (e.g., 1000m for Congestion length, 500 vehicles/hr for the Flow parameter).

Finally, to determine the adequacy of a control action it is necessary to define temporal patterns.  Using the

terminology introduced in section 3.1, for each control action we defined the following set of TA patterns

representing its adequacy: APPROPRIATE, USELESS, NEGATIVE, UNKNOWN, SOLVED and INSUFFICIENT.

Parameter

Abstract Primitive

Event Context

Control action

Warning activation

State Gradient Queue lengthFlow

Saturation Queue length  gradientFlow gradient

Flow gradient  Pi Flow gradient  Pj

Flow Pi Flow Pj

Satur.  Pi Satur.  Pj

Path recommendation 
activation

Path recommendation Congestion warning

Path-1 Path-2 Path-3 Location-1 Location-2

Figure 6:  Part of the temporal-abstraction ontology for the traffic domain. Each name represents a class, a
normal  line represents an IS-A relation and a dashed line represents an ABSTRACTED-INTO relation.
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Figure 7: Temporal abstraction of a highway section.  At the bottom is the evolution of the highway spatial-abstraction
state over time; a queue first increases and then decreases.  Above that, values are presented for the queue length and for
values measured by sensors at critical spatial locations.  At the top are inferred temporal abstraction intervals.   =
context;  = closed abstraction interval.

Each pattern is expressed as a set of parameter intervals with temporal and value constraints among them.  The

values of these patterns (typically one of TRUE, FALSE) supplied the final  answer to the control-action

monitoring task.

Figure 7 shows an example of a temporal abstraction of the spatial data abstracted from one highway section,

showing an evolution of its (abstract) parameters over time.

In summary, we reused the KBTA method again within the control-action monitoring task of the traffic domain.,

this time, to solve a TA task.  The knowledge model uses the TA ontology of the traffic domain, including TA

properties of parameters that are part of the SA ontology for that domain, to determine if executed control actions

are adequate and consistent with the traffic behavior.

5.  Assembling Problem-Solving Methods: The Spatiotemporal-Abstraction method

The previous sections have shown how the KBTA method was reused to perform two different subtasks of the

control-action monitoring task  in the traffic domain.  Note that each of the two versions, spatial and temporal,

has its own particular knowledge model (ontology).  Thus, for a particular highway, the same method must be

applied in two different ways.  In addition, since the complete system supervises a set of highways, this process

must be repeated several times, as many as the number of highways.  This section shows how all those subtasks

can be assembled to solve the control-action monitoring task using a new, higher-level problem-solving method.

We will demonstrate this assembly using the PROTÉGÉ-II framework.

t=1 t=2 t=3 t=4 t=5
T

X

Flow at point Pi

Flow at point Pj

Queue Legnth

Flow point Pi = Med

Flow point Pj = Low

Gradient Flow Pi = SAME Gradient Flow Pi = INC

Gradient Flow Pj = INCG.Pj = SAME

Queue Length Grad. = INC Queue Length Grad. = DEC

Congestion Warning
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Knowledge-based architectures present unique opportunities for software reuse.  Several theoretical and practical

frameworks for knowledge reuse have been proposed.  One such framework is PROTÉGÉ-II [17; 18; 12].

PROTÉGÉ-II uses a library of domain independent problem-solving methods, which can be reused to solve

different domain-dependent tasks by defining explicit mappings between method ontologies (i.e. a theory of

entities, their properties, and their relations) and domain ontologies.  Graphical tools for acquiring the domain-

specific knowledge required by the selected problem-solving method are then generated automatically,

customized for the particular domain ontology.

Another approach  for configuration of knowledge-based systems is the Knowledge Structure Manager
(KSM) environment [19].  In KSM, the developer can create generic abstract knowledge structures that can be

applied to different specific domains by duplicating and configuring their components.  The Knowledge Reuse
Tool (KREST) is another software-reuse environment, based on the components-of-expertise approach [20].

KREST presents a knowledge-level description of an application and assists non-programmer users in reusing

parts to develop applications.   Other approaches to the design and configuration of knowledge-based systems

exist, such as the KADS project [21].

5.1.  The PROTÉGÉ-II Approach

PROTÉGÉ-II is a development environment and methodology for the construction of knowledge-based systems

with reusable components (see Section 1).  This section shows first, how in PROTÉGÉ-II, knowledge

components can be constructed by reusing other components and second, how to assemble them in order to solve

the global task.

In PROTÉGÉ-II, a method is a domain independent description of how to solve a problem.  Methods have their

own ontologies (inputs, outputs and required knowledge).  Methods decompose tasks into subtasks.  A method

that solves a task without further decomposition is a mechanism.  The declarative domain knowledge (concepts,

properties, and relations) is defined by a domain ontology.  At least a part of the domain ontology is method

independent, and can be used by different methods to carry out several tasks.  New method-dependent concepts

might be added to enable the application of a specific method, thus creating an application ontology.  The KBTA

method (see Figure 2) fits the PROTÉGÉ-II model well.

The developer uses PROTÉGÉ-II to define the application ontology.  Given the structure of that ontology, a

graphical knowledge acquisition tool is generated automatically (with optional customization) for the acquisition

of the specific domain knowledge.  In addition, the developer defines mapping-relations between the method

ontology and the application ontology.  Mapping relations explicitly show how the domain-independent method

is applied to the particular domain to perform the task.  Mapping-relations express the role that the relevant

domain concepts play in the method.  The clear distinction between methods and domains facilitates both reuse

and sharing.
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5.2 Generalization: The Knowledge-Based Linear-Abstraction Method

Given the initial results of the study in the clinical and traffic domains, we generalized the KBTA method into a

slightly more general method, the knowledge-based linear abstraction (KBLA) method.  In the KBLA

method, knowledge about the dimension, or distance measure along which data should be abstracted (e.g., time,

space), is an additional knowledge role to be mapped to the domain ontology.  The KBLA method has a method

ontology identical to the TA or SA ontologies, but uses a distance measure which must be linear and must

comply with several formal properties of timelines, such as a zero point, a total order of distance stamps, and

certain algebraic relations (e.g., adding a distance measure to a distance stamp results in a distance stamp). The

KBLA method receives as input a set of values of parameters at different levels of abstraction with associated

time intervals, and a set of event intervals (data can arrive out of order).  The KBLA method returns abstractions

and answers to pattern-matching queries over the predefined distance measure.  There are also certain knowledge

requirements that are part of the KBLA method’s assumptions; for instance, there needs to exist domain-specific

knowledge for abstracting parameter values into higher level parameter values, knowledge about relevant

contexts and their relations, etc.

Thus, in order to model spatial and temporal abstraction in the traffic domain, the developer must define

mapping-relations between the KBLA method and the traffic domain.  For instance, speed, flow and occupancy

play the role of primitive parameters, and the relation between speed, occupancy and circulation is mapped to a

relation of type ABSTRACTED-INTO; the associated with it a 2:1 function is mapped into a vertical-classification

table.  One set of mapping relations describes how to perform the SA task and another set of mapping relations

describes the TA task. Both subtasks use the same application ontology but with different mappings.  In addition,

if the final application supervises several areas (for example 20 sections of highways) there will be either up to

20 different contexts (or up to 20 different knowledge bases, if we were to use the KSM methodology).  The next

subsection shows how to assemble methods to build the final application.

5.3  Assembly with PROTÉGÉ-II

Although the current version of the PROTÉGÉ-II architecture does not yet provide automated support to

developers for assembly of existing library problem-solving methods to create new ones, we can use the

PROTÉGÉ-II theoretical approach (task-methods-subtasks-mechanisms) to show how to assemble components

to create the final application.  (In practice, the configuration process was performed manually.)

The model is presented in figure 8.  The implicit domain-specific top-level task is control-action monitoring of a

network of highways.  We solve that task with a new method—the knowledge-based spatiotemporal
abstraction (KBSTA) method, which formally solves the multiple-region spatiotemporal-abstraction task.

The KBSTA method reasons over a set of linear spatial regions and performs both spatial and temporal

abstractions.  The KBSTA method decomposes the task it solves into three subtasks: decomposition, spatial

abstraction and temporal abstraction. The first subtask is necessary to successively decompose the global

abstraction process into spatial regions (each region will be mapped to a particular section of a highway).  This

subtask is performed by the decompose by regions mechanism.  Then, both the SA and the TA tasks are solved

by the KBLA method.  The KBLA method will be considered for this example as a mechanism, i.e. it will not
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Spatio-temporal
Abstraction Method

Spatial Abstraction
Task

Decompose
Task

Temporal Abstraction
Task

Decompose by
Regions

KB Linear Abstraction
Method

Method Ontology Method Ontology

Mapping Relations Mapping Relations Mapping Relations

Network of Freeways Freeway #1 Freeway #2 Freeway #N

...

Figure 8:  Assembly of the spatiotemporal-abstraction problem-solving method using PROTÉGÉ-II.  The method
decomposes its task into three subtasks: (spatial) decomposition, spatial abstraction and temporal abstraction.  The last
two subtasks are solved by knowledge-based linear abstraction, each time using a different set of mapping relations to the
same domain, and thus a different knowledge base.

decompose its task into subtasks.  Each of the three mechanisms has its own ontology which has to be mapped to

the particular domain, in this case, the traffic domain.  In the case of the KBLA mechanism there are two sets of

mapping-relations, one for the SA task and another for the TA task.  The final application will have several

subparts of each ontology, modeled as specializing contexts, or several knowledge bases, one for each region.

Thus, at runtime, the KBLA method will have to select the appropriate mapping and knowledge base.

The new, composite KBSTA method needs to include control knowledge that defines how to use the

mechanisms during its reasoning.  The control knowledge represents (1) how subtasks are connected, i.e. how

outputs of some tasks are inputs of others (in our example for instance, the output of the spatial abstraction is the

input of the temporal abstraction), (2) the way in which subtasks are executed (in this case it is a loop that

performs sequentially in each time step the subtasks decompose by regions, SA, and TA), and (3) what mapping

relations and ontologies must be used by methods each time.  Thus, in each reasoning cycle, the KBLA method
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must select one kind of mappings (spatial or temporal) and one region, or context (e.g., a highway section) in the

appropriate ontology.  The algorithm used for spatiotemporal abstraction, given a regional decomposition ℜ

and a set of spatiotemporal measurements, can be summarized as follows:

1. For each region Ri ∈ ℜ  and set of time stamps Ti during which the region Ri has been observed:

1.1. For each time-stamp τij ∈ Ti,

Apply the KBLA method to the (spatial) parameter values set measured over Ri at time τij, each

measured at spatial-distance measure Di, using the knowledge of spatial-abstraction ontology SAOi, to

produce a set of regional spatial abstractions RSAij (i.e., for region Ri at time τij);

1.2 Apply the KBLA method to the (temporal) parameter values set RSAij (where τij ∈ Ti) measured

throughout the set of time stamps Ti, each measured at time τij, using the knowledge of temporal-

abstraction ontology TAOi, to produce a set of regional temporal abstractions RTAi (e.g., to evaluate

traffic patterns in region Ri over  time period Ti).

2. Match global spatiotemporal patterns defined over one or more regions Ri ∈ ℜ , if existent, using the

knowledge of temporal-abstraction ontology TAOℜ , to produce a set of multiregional spatiotemporal

abstractions (e.g., to evaluate control actions over several highways over a time period).

There are still several open problems for assembling tasks using PROTÉGÉ-II.  One is the appropriate

representation to model the control knowledge.  Another is how to determine the method ontology of the global

KBSTA method.  The global ontology is not just the union of the included-methods’ ontologies.  With a simple

union, in our example the spatial and temporal distinctions would disappear.  This suggests an explicit mapping

between tasks and method.  This mapping would establishing the role of the method in a particular task.

6. Summary and Conclusions

This experiment and analysis demonstrate the high level of reusability of the KBTA method.  The KBTA

method has a domain-independent, but task-specific, model of TA constraints (the four knowledge types).  The

method has been shown to be reusable in very different domains for abstraction of high-level concepts from

time-oriented data in a context-sensitive manner.  Originally, it was created to be applied in clinical domains,

where it was used to build several applications involving interpretation of clinical time-oriented data in the

domains of oncology, experimental AIDS therapy, monitoring of children’s growth , and diabetes care [[13; 2].

In this paper, we showed how it was applied to a very different domain—traffic management; in addition, the

new domain involved reasoning along both the time and space dimensions.  In order to do so, a significant step

involved the translation of the TA reasoning into a new dimension, space instead of time, to solve the task of

abstraction of unidimensional spatially-oriented data, creating the KBSA method.

The results of the initial experiments then led us to the proposal and configuration of the more general KBLA

method, which abstracts data along any linear distance measure.  Solving the traffic-domain control-action

monitoring task requires two versions of this method, one for reasoning about time and another for space.  These

two versions can be assembled to create the new KBSTA method for spatiotemporal abstraction.
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Besides demonstrating the reusability of the KBTA method, the results provide a good example for the different

requirements of reuse and assembly of high level components, using as a paradigm the PROTÉGÉ-II

task/method framework.  The same generic method was mapped to two different dimensions (temporal and

spatial), each version being used for a different task (SA, TA); finally, all of these components can be assembled

to create the final application.

The detailed process of assembly in PROTÉGÉ-II is still an open question that for the moment is solved by ad

hoc procedures.  The example we use here illustrates well several interesting requirements for assembly to be

used in the future for characterizing in detail this activity.  One issue is that, during run time, since a particular

method may be applied in different ways, control knowledge must indicate the knowledge base and mapping-

relations to be used by the method each moment (while considering that this information may be the result of a

previous task).  Another requirement the example shows is that, in order to determine the ontology of a

composite method, it may be necessary to define method-task mappings.

Finally, developers using the KBSTA method need to consider the issue of efficiency.  In the traffic domain, a

decision-support system must operate in real time, receiving every minute data from sensors.  In our prototype

model, whenever the method is executed (1) the particular knowledge base with mapping-relations is selected,

(2) data are mapped from domain ontology to method ontology, (3) the method is executed, (4) results are

mapped from the method ontology to the domain ontology.  To be efficient, an appropriate technical solution for

these four steps must be used.  For instance, it may be best to store in memory several predefined mappings to

knowledge bases to provide quick access.

In summary, this study has shown how a domain-independent conceptual and computational methodology for

representation and use of temporal-abstraction knowledge was reused both for two very different domains

(medicine and traffic control) and for two unidimensional distance measures (time and linear space).  In the

process, the temporal-abstraction method was generalized into a linear-abstraction one.  In addition, using the

methodology of the PROTÉGÉ-II framework for construction of knowledge-based systems, we have

demonstrated that task-specific but domain-independent problem-solving methods, such as the KBTA method,

provide high level building blocks that assist in both the development and maintenance of large knowledge-

based applications, such as abstraction of meaningful, domain-specific, high-level spatiotemporal patterns.
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Figure Captions

Figure 1:  Abstraction of platelet and granulocyte values during administration of the PAZ clinical protocol for treating

patients who have chronic graft-versus-host disease (CGVHD).  The time line starts with a bone-marrow transplantation
(BMT) event.  The platelet and granulocyte count primitive (raw-data) parameters and the PAZ event are typical inputs to
the temporal-abstraction task.  The abstraction intervals and context intervals are typically part of the output.
Intermediate-level abstractions such as platelet-state and granulocyte-state abstractions are not shown in this figure.  • =

platelet counts; • = granulocyte counts;  = event;  = open context interval;  = closed abstraction interval;
M[n] = myelotoxicity (bone-marrow–toxicity) grade n.

Figure 2:  The knowledge-based temporal-abstraction method.  The temporal-abstraction task is solved by this method by

decomposing it into five parallel subtasks.  Each subtask can be solved by one of five temporal-abstraction mechanisms.

The temporal-abstraction mechanisms depend on four domain- and task-specific knowledge types.  —> = DECOMPOSED-

INTO relation;  = SOLVED-BY relation; --> = USED-BY relation.

Figure 3:  Part of the spatial-abstraction ontology for the traffic domain.  Names represent classes, lines represent IS-A

relations, dashed lines represent ABSTRACTED-INTO relations.

Figure 4:  Spatial abstraction of a highway section. At the bottom, a scheme of the highway is presented showing

different densities of traffic.  Above that, respective values are presented for different magnitudes recorded by sensors at
consecutive locations (speed, occupancy and flow).  At the top, different intervals are shown as a result of the spatial
abstraction.  The figure shows only top-level abstraction intervals although different intermediate intervals are also

created during the inference process.  r = Flow; • = Speed; ° = Occupancy;  = context;  = closed abstraction
interval.

Figure 5: The input for the temporal abstraction task in the domain of traffic is a sequence of qualitative instantaneous

views of the same segment of the highway.  The figure presents the temporal evolution of the state of a highway in which

the congestion-length gradient in a certain zone can be abstracted as INCREASING over successive temporal snapshots (at

T=1min, T= 3min, T= 5min, and T= 7min).

Figure 6:  Part of the temporal-abstraction ontology for the traffic domain. Each name represents a class, a normal  line

represents an IS-A relation and a dashed line represents an ABSTRACTED-INTO relation.

Figure 7: Temporal abstraction of a highway section.  At the bottom is the evolution of the highway spatial-abstraction

state over time; a queue first increases and then decreases.  Above that, values are presented for the queue length and for

values measured by sensors at critical spatial locations.  At the top are inferred temporal abstraction intervals.   =

context;  = closed abstraction interval.

Figure 8:  Assembly of the spatiotemporal-abstraction problem-solving method using PROTÉGÉ-II.  The

method decomposes its task into three subtasks: (spatial) decomposition, spatial abstraction and temporal
abstraction.  The last two subtasks are solved by knowledge-based linear abstraction, each time using a different
set of mapping relations to the same domain, and thus a different knowledge base.


