EFFICIENT COMPARISON OF PROGRAM SLICES
by

Susan Horwitz and Thomas Reps

Computer Sciences Technical Report #982

December 1990

Efficient Comparison of Program Slices

SUSAN HORWITZ and THOMAS REPS
University of Wisconsin—Madison

The slice of a program with respect to a component ¢ is a projection of the program that includes all components that
might affect (either directly or transitively) the values of the variables used at c. Slices can be extracted particularly
easily from a program representation called a program dependence graph, originally introduced as an intermediate pro-
gram representation for performing optimizing, vectorizing, and parallelizing transformations. This paper presents a
linear-time algorithm for determining whether two slices of a program dependence graph are isomorphic.

CR Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs—control structures;
D.3.4 [Programming Languages]: Processors—compilers, optimization E.1 [Data Structures] graphs

General Terms: Algorithms

Additional Key Words and Phrases: Control dependence, data dependence, graph isomorphism, program dependence
graph, program equivalence, program slice

1. INTRODUCTION

The slice of a program with respect to a component ¢ is a projection of the program that includes all com-
ponents that might affect (either directly or transitively) the values of the variables used at ¢. For example,
Figure 1 shows a program that computes the arithmetic and geometric means of the numbers in the range
M..N, and the slices of this program with respect to three different components. Program slicing was origi-

nally defined in [Weiser84];! [Ottenstein84] gave an efficient algorithm for computing program slices using
a representation of programs called the program dependence graph.

This paper studies the problem of determining whether two slices are “equal.” It is not necessary for the
two slices to be exactly identical in the sense of their representations occupying the same storage locations;
two slices are considered to be equal if their (labeled) graph representations are isomorphic—ithat is, if
there is a 1-to-1 and onto map between the vertex sets of the two graphs that preserves adjacency and
labels.

The work presented here is the first to address the problem of efficiently testing whether two slices are
isomorphic, and we present a linear-time algorithm for the problem. Although there is no known

This work was supported in part by a David and Lucile Packard Fellowship for Science and Engineering, by the National Science
Foundation under grants DCR-8552602 and CCR-8958530, by the Defense Advanced Research Projects Agency, monitored by the
Office of Naval Research under contract N0O0014-88-K-0590, and by grants from IBM, DEC, Xerox, 3M, Eastman Kodak, and the
Cray Research Foundation.

Authors’ address: Computer Sciences Department, University of Wisconsin—Madison, 1210 W. Dayton St., Madison, W1 53706.
Copyright © 1990 by Susan Horwitz and Thomas Reps. All rights reserved. '

'Weiser’s definition of a slice was more general than the one given here. Weiser allowed a slice to be specified in terms of a com-
ponent ¢ and a set of variables §; variables in S might or might not be used at c.

Original Program Slice with respect to Slice with respect to Slice with respect to
“amean = sum | num” “gmean :=prod ** (1 / num)” “num =N -M + 1"
program program program program
sum =0 sum :=0 prod:=1 num =N ~M +1
prod =1 i=M i=M end
i=M while i<N do while i<V do
while i<N do sum = sum+{ prod :=prod * i
sum = sum+ i im=igl i=i+1
prod =prod * | od od
i=i+l num =N -M +1 num =N-M+1
od amean = sum | num gmean = prod ** (1 / num)
num :=N-M+1 end end
amean = sum | num
gmean = prod ** (1 / num)
end

Figure 1. A program and three of its slices. Note that while the programming language does not include input state-
ments, variables can be used before being assigned to; these variables’ values are taken from the initial state.

polynomial-time graph-isomorphism algorithm for arbitrary, unlabeled graphs [Hoffmann82], there are
efficient algorithms for restricted classes of graphs, such as graphs of bounded valence [Luks80]. Slice-
isomorphism testing also concerns a restricted class of graphs: the vertices and edges in a program depen-
dence graph are labeled, and the labeling, in conjunction with one of the classes of program-dependence-
graph edges (called def-order edges—-discussed in Section 2), permits the control and flow edges incident
on each vertex to be totally ordered. It is this property that allows our slice-isomorphism-testing algorithm
to run in time linear in the sum of the sizes of the two slices being tested.

The significance of a slice is that it captures a portion of a program’s behavior in the sense that, for any
initial state on which the program halts, the original program and the program that corresponds to the slice
compute the same sequence of values for each component of the slice [Reps88]. In our case a program
component can be (1) an assignment statement, (2) a control predicate, or (3) an expression in an output
statement. Because a program component can be reached repeatedly in a program, by “computing the
same sequence of values for each element of the slice” we mean the following: (1) for an assignment state-
ment, the same sequence of values is assigned to the target variable; (2) for a control predicate, the same
sequence of boolean values is produced; and (3) for an expression in an output statement, the same
sequence of values is written out.

Theorem. (Slicing Theorem [Reps88]). Let s be a slice of program P and let Q be a program whose pro-
gram dependence graph is isomorphic to s. If © is a state on which P halts, then (1) Q halts on o, and
" (2) corresponding components in s and Q compute the same sequence of values. e

An immediate consequence of the Slicing Theorem is that two programs that have a slice in common
exhibit the same behavior at all corresponding components of the slice.

Corollary. (Slicing Corollary). Let s, and s, be slices of programs P and P, respectively, such that s,
is isomorphic to sy. Then, for any initial state & on which both P | and P, halt, corresponding components

ERPRVN

in s, and s, compute the same sequence of values.

Consequently, the slice-isomorphism-testing technique described in this paper provides a safe way of test-
ing whether two program components (possibly in different programs) have equivalent execution

behaviors: if the two components have isomorphic slices then they are guaranteed to have equivalent exe-

cution behaviors.?

Being able to test whether two slices are isomorphic has a number of practical uses in program-
development environments. For example, the slice-isomorphism test can be employed in the language-
based program-differencing algorithm described in [Horwitz89]. Slice-isomorphism testing is also an
important aspect of the problem of integrating different variants of a program’s source code [Horwitz89a].
However, the integration algorithm given in [Horwitz89a] sidesteps some potential problems in testing
slice isomorphism by relying on a pre-existing mapping between the components of different program vari-
ants. This mapping is maintained by a special program editor that must be used to create the program vari-
ants from the base program (it places a hidden tag on each program component, which is used to identify
which components correspond in different variants). Because of the need for such tags, the integration
algorithm from [Horwitz8%a] can only support program integration within a closed system; integration can-
not be performed on programs developed outside the system using ordinary text editors, such as vi and
emacs. As we discuss in Section 5, the techniques developed in [Reps90] offer a way to integrate pro-
grams in the absence of such editor-supplied tags—and hence make it possible to handle programs created
using ordinary text editors—by manipulating sets of slices. The need to test whether two slices are iso-

morphic is fundamental to this approach.>

The remainder of the paper is organized as follows. Section 2 defines the program dependence graphs of
[Horwitz89a]; these are the dependence graphs used by our algorithms (the dependence graphs of [Otten-
stein84] could also be used at the expense of first computing the transitive closure of the graphs’ output
dependences). Section 2 also describes how to compute slices using dependence graphs. Section 3
presents our linear-time algorithm for determining whether two slices are isomorphic. The algorithm is
proved correct in Section 4. Section 5 discusses applications and extensions.

Sections 2, 3, and 4 concern the slice-isomorphism problem for programs written in a restricted pro-
gramming language that includes only assignment statements, conditional statements, while loops, and out-
put statements. (Although the language does not include input statements, our convention is that variables
can be used before being defined, in which case their values are taken from the initial state). One of the
extensions described in Section 5 adapts our slice-isomorphism-testing algorithm to handle programs that
consist of multiple (and possibly mutually recursive) procedures.

The isomorphism-testing algorithms from this paper have been been implemented as part of the Wiscon-
sin Program-Integration System [Reps89,Reps90a). In particular, the isomorphism-testing algorithm
(including an extension to handle variable renaming as described in Section 5) is used as the basis of an
implementation of the language-based program-differencing algorithm from [Horwitz89].

2. THE PROGRAM DEPENDENCE GRAPH AND PROGRAM SLICING

Different definitions of program dependence representations have been given, depending on the intended
application; however, they are all variations on a theme introduced in [Kuck72]. The definition used in this

mpins

2A much different algorithm for testing whether two pﬁo’gr;lm corﬁponems have equivalent execution behaviors is given in [Yang89].

3A drawback of the approach is that it entails additional costs for finding the program that corresponds to the set of dependence graphs
that result from an integration.

paper is taken from [Horwitz89a].

The program dependence graph (or PDG) for a program P, denoted by Gp, is a directed graph whose
vertices are connected by several kinds of edges. Gp is defined in terms of an augmented version of the
program’s control-flow graph. The standard control-flow graph includes a special Entry vertex and one
vertex for each if or while predicate, and each assignment and output statement in the program. The
control-flow graph is augmented by adding a vertex at the beginning of the control-flow graph for each
variable x that may be used before being defined. This vertex, called an initial definition vertex, represents
an assignment to x from the initial state, and is labeled “x := InitialState (x).”

Example. Figure 2(a) shows the augmented control-flow graph for the program of Figure 1.

The vertices of Gp are the same as the vertices in the augmented control-flow graph (an Entry vertex and
one vertex for each predicate, assignment statement, output statement, and initial definition). The edges of
Gp represent control and data dependences.

A control dependence edge from vertex v to vertex w is denoted by v —>_w. The source of a control
dependence edge is always either the Entry vertex or a predicate vertex; control dependence edges are
labeled either true or false. The intuitive meaning of a control dependence edge from vertex v to vertex w
is the following: if the program component represented by vertex v is evaluated during program execution
and its value matches the label on the edge, then, assuming that the program terminates normally, the com-
ponent represented by w will eventually execute; however, if the value does not match the label on the
edge, then the component represented by w may never execute, (By definition, the Entry vertex always
evaluates to frue.)

Algorithms for computing control dependences in languages with unrestricted control flow are given in
[Ferrante87, Cytron89]. For the restricted language under consideration here, control dependence edges
reflect the nesting structure of the program (i.e., there is an edge labeled true from the vertex that
represents a while predicate to all vertices that represent statements nested immediately within the loop;
there is an edge labeled true from the vertex that represents an if predicate to all vertices that represent
statements nested immediately within the true branch of the if, and an edge labeled false to all vertices that
represent statements nested immediately within the false branch; there is an edge labeled true from the
Entry vertex to all vertices that represent statements that are not nested inside any while loop or if state-
ment).

Data dependence edges include both flow dependence edges and def-order dependence edges. A flow
dependence edge from vertex v to vertex w is denoted by v —>,w. Flow dependence edges represent pos-
sible flow of values, i.e., there is a flow dependence edge from vertex v to vertex w if vertex v represents a
program component that assigns a value to some variable x, vertex w represents a component that uses the
value of variable x, and there is an x-definition clear path from v to w in the augmented control-flow graph.
For the purposes of this paper it is convenient to assume that if vertex w uses variable x as more than one
operand (e.g., vertex w represents the statement “g := x + x ** 27) then there is more than one flow-
dependence edge from v to w, and that each such edge is labeled with the appropriate operand number.

Flow dependences are further classified as loop independent or loop carried [Allen83]. A flow depen-
dence v —>,w is carried by the loop with predicate vertex p, denoted by v —> 1.,y w, if both v and w are
enclosed in the loop with predicate vertex p, and there is an x-definition clear path from v to w in the aug-
mented control-flow graph that includes a backedge to predicaw vericx p. Loop-carried flow dependence
edges are labeled with their carrying-loop-predicate vertex. A fiow depéfldence v —>¢w is loop indepen-
dent, denoted by v —>;; w, if there is an x-definition clear path from v to w in the augmented control-flow
graph that includes no backedge. It is possible to have several loop-carried flow edges between two ver-
tices (each labeled with a different loop-predicate vertex); it is also possible to have both a loop-
independent flow edge and one or more loop-carried flow edges between two vertices.

M := InitialState(M)
N := InitialState(N)

\ gmean := prod**(1/nu

amean ;= sum/num

gmean = prod**(1/num

(2) ®

Figure 2. (a) The augmented control-flow graph for the program of Figure 1; (b) the program’s program dependence
graph. In the program dependence graph, all edge labels have been omitted; control dependence edges are shown using
bold arrows; loop-independent flow dependence edges are shown using arcs; loop-carried flow dependence edges are
shown using arcs with a hash mark; def-order dependence edges are shown using dashed arcs.

For the purposes of this paper it is convenient to assume that, for every vertex w, for every operand i of
vertex w, the set of flow edges v —>,w for operand i is stored at w, sorted as follows. The loop-
independent edge v —>; w (if it exists) is stored first, followed by the loop-carried edges from vtow. The . .
loop-carried edges are ordered by the nesting depth of their carrying loops, from most-deeply to least-
deeply nested. Note that if the most-deeply nested carrying loop is at nesting level j and the least-deeply
nested carrying loop is at level , then the loops at all intermediate levels (between j and k) are also carry-
ing loops for this dependence. It is this density property of loop-carried flow edges that makes it possible

to find a canonical order for the incoming edges of a vertex in time proportional to the number of such
edges.

Def-order dependence edges are included in program dependence graphs to ensure that inequivalent pro-
grams cannot have isomorphic program dependence graphs [Horwitz88]. A program dependence graph

contains a def-order dependence edge from vertex v to vertex w iff all of the following hold:*

(1) Vertices v and w are both assignment statements that define the same variable.

(2) There exists a vertex u such that there is a flow dependence edge from v to u, and there is a flow
dependence edge from w to u.

(3) The program component represented by v occurs before the program component represented by w in
a preorder traversal of the program’s abstract syntax tree.

A def-order dependence edge from v to w with “witness” u is denoted by v —> 4, ¢,y w. A def-order edge is
labeled with its “witness” vertex.

Note that a program dependence graph can be a multigraph (can have more than one edge v-»w). In this
case, the edges are distinguished by their types (control, loop-independent flow, loop-carried flow, or def-
order) and/or by their labels (the operand number for flow edges, the carrying loop-predicate vertex for
loop-carried flow edges, and the “witness” vertex for def-order edges).

Example. Figure 2(b) shows the program dependence graph of the program from Figure 1. All edge
labels have been omitted. Note that several pairs of vertices have multiple def-order edges between them.
Each such edge would be labeled with a different witness vertex.

2.1. Compauting Program Slices Using the Program Dependence Graph

For a vertex x of a program dependence graph G, the slice of G with respect to x, denoted by G /x, is a
graph containing all vertices on which x has a transitive flow or control dependence (i.e., all vertices that
can reach x via flow or control edges): V(G /x) = {we V(G) | w =" ;x].

The edges in the graph G /x are essentially those in the subgraph of G induced by the vertices of the
slice, with the exception that a def-order edge v — 4, ¢,y w is only included if, in addition to v and w, the
vertex u that is directly flow dependent on the definitions at v and w is included in the slice. In terms of the
three types of edges in a program dependence graph we have:

EGI/x)= {((v—w)eEG)|v,weV(G/x)}
u{(v—=.w)eEG) | v,weV(G/x)}
V{(v=24wwW)eEEG) lu,v,we V(G/x)].

Example. Figure 3 shows the graphs that correspond to the slices shown in Figure 1.

In practice, the slice of graph G with respect to vertex x can be computed by following flow and control
edges backwards, starting at x. To permit the efficient computation of slices, each vertex should, therefore,
include pointers to its control and flow predecessors rather than to its control and flow successors. Because
a def-order edge is included in a slice only if its “witness” vertex is included in the slice, the presence of a
def-order edge should be recorded only at its “witness” vertex (as the pair <source, target>), rather than at
its source or target vertices.

*[Horwitz88] includes a-fotiziis wixdiiion, ihat v and w are in the same branch of any conditional that encloses both of them. However,
the same set of programs have isomorphic dependence graphs whether or not this condition is included, and the algorithms of this pa-
per are easier to express given the definition of def-order dependences that omits this condition.

I

N := InitialSiate(N)

N
@"‘

Slice with respect to “gmean := prod**(linum)”

N := InitialState(N)

Slice with respect to “num := N -M +1”

Figure 3. The program dependence graphs that correspond to the slices given in Figure 1. All edge labels have been
omitted; control dependence edges are shown using bold arrows; loop-independent flow dependence edges are shown
using arcs; loop-carried flow dependence edges are shown using arcs with a hash mark; def-order dependence edges are
shown using dashed arcs.

3. A LINEAR-TIME ALGORITHM FOR TESTING SLICE ISOMORPHISM

In this section we define what it means for two slices to be isomorphic, we give an algorithm for testing
slice isomorphism, and we show that the algorithm runs in time linear in the sum of the sizes of the two
slices.

Definition 3.1. Let s, and s, be slices with respect to v, and v,, respectively (i.e., (s;/v;)=s; and
(s2/v2)=15,). Then s, and s, are isomorphic with respect to vertices v, and v, iff all of the following
hold: ,
(1) Slices s, and s, have the same number of vertices and the same-fiumber of edges.
(2) Thereis a 1-to-1 and onto map M from the vertices of s to the vertices of s, such that

i M) =v,.

(i) For all vertices w of s,, w and M (w) are the same kind of vertex (i.e., entry, assignment-

statement, output-statement, if-predicate, while-predicate, or initial-definition).

(iii) For all vertices w of s,, w and M (w) have identical abstract syntax trees (i.e., corresponding
internal nodes of the two vertices’ abstract syntax trees contain the same operator, and
corresponding leaf nodes contain the same identifier or the same constant).

(3) Forevery edge e =v —win s, there is an edge ¢’ = M (v) — M (w) in 5, such that

(i) The edge type of e (control, loop-independent flow, loop-carried flow, or def-order) is the
same as the edge type of ¢”.

(ii) If e is a control dependence edge then its true/false label matches the true/false label of ¢”.

(iii) If e is a flow dependence edge then its operand-number label matches the operand-number
label of ¢,

(iv) If e is a loop-carried flow dependence edge with carrying-loop-predicate label p then the
carrying-loop-predicate label of e” is M (p).

(v) Ifeisadef-order edge with witness-vertex label u then the witness-vertex label of e” is M ().

Note that although a program dependence graph can be a multigraph, no two edges between a given pair of
vertices can have both the same type and the same label. Thus, a 1-to-1 and onto vertex map M from slice
s to slice s, induces an edge map E), from the edges of s, to the edges of s,. Furthermore, if 5, and 5,
are isomorphic under vertex map M, then E,, is the edge map specified by part (3) of Definition 3.1.

3.1. An Algorithm for Testing Slice Isomorphism

Given slices s, and s, with respect to vertices v, and v, respectively, our algorithm for testing slice iso-
morphism, TestIsomorphism(s{, s,, v1, v3), shown in Figure 4, performs three steps.

Step 1: Preprocess slices s, and s,
Preprocess slices 5, and s,, creating graphs G and G ,, as follows:

(a) For every flow dependence edge e = v-—>u, label e with the number of def-order edges with witness
label u for which v is the target. This number is used in Step 2 below to order u’s incoming edges;
thus, this number is called e’s ordering number.

function Testlsomorphism(s,, s,: slices, v,, v,: the sources of s, and s,, respectively): returns a boolean
declare
G, G,: preprocessed slices
DFS: a map from vertices of G, to vertices of G,
begin
G, = Preprocess(s;)
G, = Preprocess(s,)
DepthFirstSearch(G, vy)
DepthFirstSearch(G,, v,)
DFS = Av .(the w € G, such that depthFirstNumber (w) = depthFirstNumber (v))
return(FinalCheck(G, G4, vy, v4, DFS))
end

Figure 4. Linear-time slice-isomorphism test.

(b

Remove all def-order edges from the two slices. (Figure 5 shows a slice before and after preprocess-
ing. In Figure 5(b), flow edges are labeled with (operand-number, ordering-number) pairs. For
example, in Figure 5(b) the edge [8] —» [7] has operand-number label 2-—because variable i is
defined at vertex [8] and is used as the second operand at vertex [7]—and has ordering-number label

[10] amean:=sum/num

(@)

[2] M:=InitialState(M)

{3] N:=InitialState(N)

()

Figure 5. The first slice from Figure 3 before and after preprocessing. All control edges are shown (unlabeled).
In Figure 5(a), all def-order edges are shown with their witness labels. Only flow edges that contribute to the
presence of a def-order edge are showun: in Figure 5(a) these edges are shown with their operand-number labels;
in Figure 5(b) these edges are shown with their operand-number labels and their ordering-number labels.

-10-

1—because in Figure 5(a) vertex [8] is the target of one def-order edge with wimmess label [7],
namely the edge [5]—> 4 () [8].)

Step 2: Number the graphs’ vertices using depth-first search

Assign numbers to the vertices of G| and G, using depth-first search: start with v or v, (depending on
which graph is being processed), and search backwards along flow and control dependence edges; assign a
number to a vertex when that vertex is first visited. The depth-first search is made deterministic by using
edge type, carrying-loop-predicate vertex, operand number, and the ordering numbers assigned in the
preprocessing step to decide the order in which to visit a vertex v's predecessors. In particular, v’s incom-
ing edges are ordered as follows:

(1) Vertex v's incoming control dependence edge is first in the ordering.
(2) For each operand i, in order,
For each ordering number j, in order,
First, append the loop-independent flow dependence edge with operand-label i and ordering
number j (if it exists).
Then append all loop-carried flow dependence edges with operand-label i and ordering number
J» ordered by loop nesting level (from most-deeply to least-deeply nested).

The depth-first search is also used to count the number of vertices and edges in each graph. (Code for this
step is given in Figure 6.)

Step 3: Check whether the depth-first numbering is an isomorphism map

Let DFS be a map from the vertices of G to the vertices of G,, defined as follows. For every vertex v of
G, let DFS (v) be the vertex of G, that has the same depth-first search number as vertex v. Let Epgg be
the edge map induced by DFS. Check whether the maps DFS and Eppg are isomorphism maps between G
and G,. In addition, check whether, for every flow-dependence edge e of graph G, the ordering number
of e is the same as the ordering number of edge Eppg(e). (Code for this step is given in Figure 7.) If both
of these conditions are satisfied, then the algorithm returns true; under all other conditions, the algorithm
returns false.

3.2. Algorithm Testlsomorphism Runs in Linear Time

By considering each step of the algorithm in tum, we can show that the algorithm runs in time proportional
to the sum of the sizes of the two slices.

(1) The preprocessing step computes ordering numbers (which involves examining each flow depen-
dence edge and each def-order edge once) and removes def-order edges. Thus, an upper bound for
the time required for this step is O(number of edges).

(2) Depth-first search requires time O(number of vertices + number of edges). The ordering of a
vertex’s incoming edges can be performed by function OrderInEdges in time proportional to the
number of edges because of the density property of loop-carried flow edges discussed in Section 2.

(3) FinalCheck tests whether G, and G, are isomorphic and have corresponding ordering numbers
under maps DFS and Epps. It examines edcnt paue of vertices v and DFS (v) exactly once, and also
examines each pair of edges ¢ and Ebps(e) once © check ordering numbers. This requires time
O(number of vertices + number of edges) assuming that DFS (v) and Epgg(e) can be determined in
constant time, and that abstract syntax trees can be compared in constant time.

—-11-

global vertexNumber, edgeNumber: integer

procedure DepthFirstSearch(G: a preprocessed slice, v: a vertex of G; the source of the slice)
begin

for every vertex x in G do depthFirstNumber(x) := 0 od

vertexNumber := 0; edgeNumber := 0

Visit(G, v)

numberOfVertices(G) := vertexNumber; numberOfEdges(G) := edgeNumber
end

procedure Visit(G: a preprocessed slice, v: a vertex of G)
declare
inEdges: an ordered list of the edges incident on v
begin
vertexNumber := vertexNumber + 1
depthFirstNumber(v) := vertexNumber
inEdges := OrderInEdges(G, v)
for each edge e in inEdges (in order) do
edgeNumber := edgeNumber + 1
if depthFirstNumber(source(e)) = 0 then Visit(G, source(e)) fi
od
end

function OrderInEdges(G: a preprocessed slice, v: a vertex of G): returns an ordered list of the edges incident on v
declare
inEdges: an ordered list of edges
e: an edge of G incident on v
begin
if v is the Entry vertex then return(emptyList) fi /* the Entry vertex has no incoming edges */
inEdges := incomingControlEdge(v)
for i := 1 to numberOfOperands(v) do
for j := 1 to numberOfFlowPredecessors(v, i) do
if 3 an incoming loop-independent flow edge e for operand i with ordering number j— 1
then inEdges := inEdges || ¢
fi
for k := mostDeeplyNested(v, i, j — 1) to leastDeeplyNested(v, i, j— 1) do
e := the incoming loop-carried flow edge for operand i with ordering number j — 1 and labeled with
the predicate of the enclosing loop at nesting level k
inEdges := inEdges || e
od
od
od
return(inEdges)
end

Figure 6. DepthFirstSearch is applied to the two preprocessed slices G and G,. It assigns a depth-first search number
to each vertex and counts the number of vertices and edges in G, and in G ,.

-12-

function FinalCheck(G, G,: preprocessed slices,
V1, v, the vertices with respect to which the slices were taken,
DFS: a map from the vertices of G, to the vertices of G,
): returns a boolean
declare
Epgs: a map from the edges of G to the edges of G,
w:avertex of G,
e: anedgeof G,
begin
if numberOfVertices(G) # numberOf Vertices(G,) then return(false) fi
if numberOfEdges(G ,) # numberOfEdges(G ,) then return(false) fi
if DFS(v,) # v, then return(false) fi
for all vertices w in G, do
if vertexKind(w) # vertexKind(DFS (w)) then return(false) fi
if w and DFS (w) do not have identical abstract syntax trees then return(false) fi
od
Epps = the edge map induced by DFS
for every edge e in G| do
if Epgs(e) is undefined then return(false) fi
if ordering-number label (e) # ordering-number label (Epgs(e)) then return(false) fi
od
return(true)
end

Figure 7. FinalCheck tests whether the vertex map DFS and the edge map Epps define an isomorphism between
graphs G, and G, and whether the ordering numbers of the edges of G, and G, correspond under map Epgs.

4. CORRECTNESS OF THE ISOMORPHISM-TESTING ALGORITHM

Theorem 4.1. Function Testlsomorphism(s,,s;,V1, Vo) returns true if and only if s, and s, are iso-
morphic with respect to v, and v,.

This theorem follows immediately from the following two lemmas:

Lemma 4.2. Slices s, and s, are isomorphic under vertex map M iff the graphs G| = preprocess(s) and
G, = preprocess(s,) are isomorphic under M, and Ey respects ordering numbers.

Lemma 4.3. If G| = preprocess(s,) and G, = preprocess(s,) are isomorphic under some vertex map M,
and Ey respects ordering numbers, then G, and G are isomorphic under vertex map DFS and Epgpg
respects ordering numbers.

The proof of Lemma 4.2 relies on the following proposition, which we prove first before turning to the
proofs of Lemmas 4.2 and 4.3.

Proposition 4.4. For all vertices v, w, and u of slice s, such that v —> 4,4y w, (i.e., v and w are both flow
predecessors of vertex u for the same operand i) the ordering number of the edge v—u in preprocess(s) is
less than the ordering number of the edge w—u in preprocess(s).

-13 -

Proof. Let S be the subgraph of s that includes u, its flow predecessors for operand i, and the flow edges
and def-order edges between these vertices. It is clear that if the proposition holds for § and preprocess(S),
then it holds for s and preprocess(s). We will show that the proposition holds for § and preprocess(S) using
induction: we start with graph S’, a subgraph of § and show that the proposition holds for §’; then we show
that each time the size of §” is increased by adding a vertex from § (and its incoming and outgoing edges)
the proposition still holds.

Base case. Subgraph 8’ is the graph induced on § by the three vertices u, v, and w. In §’, the only def-
order edge is from v to w; thus, in preprocess(S”), the ordering number of edge v--»u is 0 and the ordering
number of edge w—»u is 1, so the proposition holds.

Induction Step. We assume that the proposition holds for subgraph S°, with n vertices, such that 1 £ n <
number-of-vertices(S). We create graph S, by first adding to $’, a vertex x from § (and not in §’,), and
then adding to §’,,; all edges of § that have both source and target in S',;;. We show that the proposition
still holds for §*,,;.

Let the values old_v and old_w be defined as follows:

old v £ ordering-number(v—u) in preprocess(S’,)

old_w # ordering-number(w—u) in preprocess(S’,)
By the induction hypothesis, old v < old w. We must show that in preprocess(S’,.;) ordering-
number(v—u) < ordering-number(w—u).

By the definition of def-order edges, there must be an edge between v and vertex x, as well as between w
and vertex x in §, and therefore in §’, ;. If the def-order edge between v and x is directed from v to x, then
in preprocess(S’,41), ordering-number(v—u) = old_v. Because old_v < old_w < ordering-number(w—u),
we have that ordering-number(v—u) < ordering-number(w—>u), as required. On the other hand, if the
def-order edge between v and x is directed from x to v, then in preprocess(§’,4;), ordering-
number(v—u) = old_v+1. However, in this case, there must also be an edge from x to w in §',,1, because
otherwise there would be a def-order-edge cycle. (Such a cycle cannot occur because the direction of a
def-order edge is determined by the relative order of its source and target in a pre-order traversal of the
program’s abstract-syntax tree.) Thus, in preprocess(S’,4;) we have old v+1 < old_w+1 = ordering-
number(w—u), and so ordering-number(v—u) < ordering-number(w-->u), as required, [

Proof of Lemma 4.2, = case: We must show that if slices s, and s, are isomorphic (under some map M)
then the graphs G = preprocess(s,) and G, = preprocess(s,) are isomorphic under M, and E,; respects
ordering numbers. Suppose this is not true. If 5; =5, under inap M, then obviously G ; = G, under map M
as well. Therefore, if the lemma fails, it must be because Ej; does not respect the ordering numbers of G,
and G,; ie., there must be an edge ¢ =v—u in G,, such that ordering-number(e) # ordering-
number(Ey(e)). This means that the number of def-order edges with witness label u incident on v in 5,
differs from the number of def-order edges with witness label M (i) incident on vertex M (v) in slice §,.
However, in this case, M is not an isomorphism map between s; and s, as assumed (since there must be
some def-order edge with witness label u and target v in s, that has no corresponding edge in s,, or vice
versa). Contradiction.

Proof of Lemma 4.2, < case: We must show that if the graphs G, and G, are isomorphic under vertex
map M, and Ej, respects ordering numbers, then the slices s; and 54 are isomorphic under M. Suppose
G, =G, under map M and Ey, respects ordering numbers, but not s; = s, under M. In this case, there must
be vertices v and w in s; such that v —> 4, ¢,y w, but there is no edge M (v) — 4, aruy M (W) in 5,. The
edge v —> 4, (,) w means that both v and w are flow predecessors for the same operand of vertex u. Since M
is an isomorphism map for G and G ,, and since G, and G, include all of the flow edges in s, and s, it

-14 -

must be that M (v) and M (w) are also flow predecessors for the same operand of vertex M (u); thus, there
must be a def-order edge with witness M (u), either from M (v) to M (w) or vice versa. Because we have
assumed that there is no such edge from M (v) to M (w), it must be that the edge runs from M (w) to M (v).
However, in this case, by Proposition 4.4, ordering-number(v—u) < ordering-number(w-—u), but
ordering-number(M (v)->M (1)) > ordering-number(M (w)—M (u)), so Ey does not respect the ordering
numbers of &, and G, as assumed. Contradiction. O

Proof of Lemma 4.3. We prove Lemma 4.3 by proving a stronger property: if there exists a vertex map M
such that G and G, are isomorphic under M, and E,, respects ordering numbers, then the vertex map DFS
is identical to map M. The proof is by contradiction.

Assume that the lemma is wrong. Consider the vertices of G, ordered by their depth-first-search
numbers, and let vertex v be the first vertex in this sequence such that M (v) # DFS(v). Note that M (v)
must have a higher depth-first-search number (in G,) than DFS (v), otherwise v would not be the first ver-
tex on which M and DFS disagree. (Consider the vertex v’ of G, whose depth-first-search number in G,
equals the depth-first-search number of M (v) in G,; v would occur earlier in the sequence than v and
M@)#DFSv").)

Note, in addition, that v cannot be the vertex v; with respect to which the slice was taken; by definition,
M (v,) = v,, and both of these vertices have depth-first-search number = 1. Because v is not the first vertex
in the depth-first-search number sequence, v must have at least one control or flow successor that precedes
it in the depth-first-search number sequence. Let x be the control or flow successor of v that occurs latest in
the sequence but ahead of v. M (v) must also have a control or flow successor M (x) with a lower depth-
first-search number than M (v), and it must be that DFS (x) = M (x); otherwise x, not v, is the first vertex on
which M and DFS disagree. Thus, x and M (x) are visited on corresponding calls to procedure Visit of Fig-
ure 6.

Let w be the vertex of G, such that M (w) = DFS (v). Note that w must have a higher depth-first-search
number (in G 1) than v, otherwise v would not be the first vertex on which M and DFS disagree. The rela-
tionships between v, x, w, M (v), M (x), and M (w) (and one additional vertex that will be introduced
shortly) are depicted below (in the two graphs, left-to-right ordering of vertices indicates low-to-high
depth-first-search numbering):

........................

. .
o o,
o s,
o o,
o

E, (e

Note that in graph G, M (v) is a direct predecessor of M (x) and that M (v) occurs later in the depth-
first-search number sequence than M (w). Therefore, by the properties of depth-first search, M (w) must be
a transitive predecessor of M (x) (i.e., there must be a path from M (w) to M (x) in G,). By the assumption
that G, and G, are isomorphic under map M, there must be a corresponding path from w to x in G ;.

- 15 -

Now consider the sequence of calls made on Visit during the depth-first search of G,. Because M (w)
precedes M (v) in depth-first search order in G, and M (v) is a direct predecessor of M (x), there must have
been a call “Visit(G,, M (u))” (which traverses some edge Ejy(e”) and eventually leads to the visit on
M (w)) prior to the call “Visit(G,, M (v)),” which traverses edge Ej;(e).

Because the calls on predecessors are made according to the canonical ordering of a vertex’s incoming
edges determined by function OrderInEdges, in the depth-first search of G, there must have been a call
“Visit(G,, u),” which traverses edge ¢’, prior to the call “Visit(G,, v),” which traverses edge e. However,
because Visit performs a depth-first search, all transitive predecessors of u that have not been previously
visited are visited during the call “Visit(G,, u).” In particular, vertex w will (eventually) be visited for the
first time as a result of this call. Note that vertex v cannot be a transitive predecessor of u because, by
assumption, x is the control or flow predecessor of v that occurs latest in the depth-first-search number
sequence of G (but still ahead of v). Therefore, w must precede v in the depth-first-search number
sequence of G, which contradicts our previous deduction that w must occur later than v in the sequence.
O

5. APPLICATIONS AND EXTENSIONS

As discussed in the Introduction, the work on slice-isomorphism testing reported in this paper was
motivated by our previous work on an algebraic framework for manipulating programs [Reps90] and on
identifying the textual and semantic differences between two versions of a program [Horwitz89]. In this
section we discuss several extensions to the slice-isomorphism testing algorithm presented in Section 3 that
make it particularly useful in those two contexts.

5.1. Algebraic Program Manipulation

One of the results reported in [Reps90] is the definition of a lattice-theoretic framework for representing
and manipulating programs. In this lattice, a program is represented as a set of slices; programs can be
combined using meet and join, as well as a kind of difference operation. These operations involve taking
the intersection, union, and set-difference of the sets of slices that represent the programs. These set opera-
tions require testing two set elements—two slices—for equality (for example, if slice s is in set S, then it
isin §; NS, iff there is a slice s” in §, such that s = 5s”). As discussed in the Introduction, two slices are
considered to be equal if they are isomorphic. Thus, an efficient slice-isomorphism test is essential to pro-
viding efficient slice-set operations.

If a sequence of operations is to be performed on a collection of programs, it may be desirable to prepro-
cess the programs so that slice isomorphism can be determined in constant time for any pair of slices. In
other words, the preprocessing partitions the programs’ slices into equivalence classes; two components are
in the same class iff their slices are isomorphic. A naive partitioning technique based on slice-isomorphism
testing would compare all pairs of slices; in the worst case this would require time O (n3), where n is the
size of the programs’ dependence graphs. A more efficient technique for performing such a partitioning
would exploit the fact that a vertex’s incident control and flow edges can be totally ordered, which permits
an entire slice to be linearized in a canonical fashion. Given this insight, partitioning can be performed in
time proportional to the sum of the sizes of all the slices in the programs, which is O (n2) in the worst case.

The key to this more efficient partitioning is to group isomorphic slices into equivalence classes, assign-
ing each class a unique representative. Each vertex of the programs’ graphs in tumn is associated with the
representative for its slice’s isomorphism class; thus, two vertices have isomorphic slices iff they are asso-
ciated with the same representative. The partitioning is performed as follows:

-16 -

(1) A dictionary of linearized slices is maintained. Associated with each different slice is the unique
representative for that equivalence class.

(2) For each program dependence graph G and each vertex v of G, the canonical linearization of slice
G /v is computed. The linearized slice is looked up in the dictionary; if the slice is in the dictionary,
the unique representative for that equivalence class is associated with vertex v; if the slice is not in
the dictionary, it is inserted along with a new unique representative.

Assuming that a lookup can be performed in time proportional to the size of the slice (e.g., using hashing)
the total time for the partitioning is proportional to the sum of the sizes of the programs’ slices.

5.2. Testing Component Equivalence in Procedures

A tool that identifies both the textual and semantic differences between two versions of a program is of
obvious utility in a program-development environment. The design of such a tool is proposed in
[Horwitz89]. The tool makes use of an auxiliary algorithm that partitions the programs’ components into
equivalence classes. In [Horwitz89], the suggested auxiliary algorithm is the one defined in [Yang89];
however, the partitioning technique based on slice-isomorphism testing discussed above can also be used
for this purpose. While Yang’s algorithin is more efficient than the technique based on slice-isomorphism
testing, the latter has the advantage of being extendible to handle programs with procedures, as described
below (it might also be possible to extend Yang’s technique to handle procedures, however no such exten-
sion is currently known).

One way to identify procedure components with equivalent execution behaviors is to compare the com-
ponents’ “backward-2” slices, where a backward-2 slice is obtained using the second pass of the interpro-
cedural slicing algorithin defined in [Horwitz90]. (Backward-2 slices are computed using a system depen-
dence graph, a graph representation for programs with procedures. A backward-2 slice taken with respect
to a component ¢ in procedure P includes all components of P or of procedures called (directly or transi-
tively) from P that might affect the values of the variables used at ¢. The backward-2 slice does not
include components of procedures that call P that might affect the values of the variables used at c.)

Because system dependence graphs include some kinds of vertices and edges that are not in program
dependence graphs, the slice-isomorphism testing algorithm of Section 3 does not immediately apply to
backward-2 slices. However, it is straightforward to extend that algorithm to handle backward-2 slices
because for every vertex in a backward-2 slice the vertex’s incoming edges can be canonically ordered.
Consequently, it is possible to determine whether two backward-2 slices are isomorphic in linear time, and
it is possible to partition the components of a procedure into equivalence classes in time proportional to the
sum of the sizes of the procedure’s backward-2 slices.

As shown in [Binkley91] two procedure components with isomorphic backward-2 slices have equivalent
behaviors according to the following definition: two procedure components have equivalent execution
behaviors iff they produce the same sequence of values when their respective procedures are called with
the same argument values. (Note that two such procedure components may produce different sequences of
values when their respective programs are executed, because the programs may include different
sequences of calls and/or may make those calls with different argument values.)

_ 5.3. Isomorphism Under Variahle Renaming

"‘One advantage of Yang’s techmque fut identifying program components with equivalent execution
behaviors as compared to testing whether the components have isomorphic slices is that the former tech-
nique can find equivalences in the presence of variable renaming. For example, consider the two pairs of
programs shown in Figure 8. In each pair, the two programs’ final statements clearly have equivalent exe-

~17 -

cution behaviors (the same value is assigned to both left-hand-side variables); however, the statements do
not have isomorphic slices because of the differences in variable names.

Minor changes to the definition of slice isomorphism and to the algorithm for slice-isomorphism testing
can be made so that in each of the pairs shown in Figure 8, the two programs are considered to be iso-
morphic. Rather than requiring that corresponding vertices have identical abstract syntax trees,
corresponding vertices are required to have abstract syntax trees that are identical up to variable renaming.
That is, for each vertex v in slice s, there must exist a one-to-one and onto map from the variable names
used in v to the variable names used in the corresponding vertex of slice s,. Note that each vertex can have
a different map; for example, in Figure 8(b), the map for the third statement maps x to a, while the map for
the final statement maps x to b.

ACKNOWLEDGEMENTS

We would like to thank Genevieve Rosay, Sam Bates, and Thomas Bricker for their roles in implementing
the isomorphism-testing algorithms.

REFERENCES

Allen83.
Allen, J.R., “Dependence analysis for subscripted variables and its application to program transformations,” Ph.D.
dissertation, Dept. of Math. Sciences, Rice Univ., Houston, TX (April 1983).

Binkley91.
Binkley, D., “Multi-procedure program integration,” Ph.D. dissertation (in preparation), Computer Sciences
Department, University of Wisconsin, Madison, WI (1991).

Cytron89.
Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., and Zadeck, K., “An efficient method of computing static
single assignment form,” pp. 25-35 in Conference Record of the Sixteenth ACM Symposium on Principles of Pro-
gramming Languages, (Austin, TX, Jan. 11-13, 1989), ACM, New York, NY (1989).

Ferrante87.
Ferrante, J., Ottenstein, K., and Warren, J., “The program dependence graph and its use in optimization,” ACM
Transactions on Programming Languages and Systems 9(3) pp. 319-349 (July 1987).

x:=0 a=0 x:=0 a=0
y=1 b=1 ye=1 b=1
z=x+y c=a+b z:=x~Yy c=a~b
x=z+1 b=c+1
(a) (b)

Figure 8. In 8(a) and (b), the slices with respect to the two programs’ final statements are not isomorphic; however, in
both cases the two statements have equivalent execution behaviors.

—18~

Hoffmann82.
Hoffmann, C.M., Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Computer Science, Vol.
136, Springer-Verlag, New York, NY (1982).

Horwitz88.
Horwitz, S., Prins, J., and Reps, T., “On the adequacy of program dependence graphs for representing programs,”
pp. 146-157 in Conference Record of the Fifteenth ACM Symposium on Principles of Programming Languages,
(San Diego, CA, January 13-15, 1988), ACM, New York, NY (1988).

Horwitz89.
Horwitz, §., “Identifying the semantic and textual differences between two versions of a program,” Proceedings of
the ACM SIGPLAN 90 Conference on Programming Language Design and Implementation, (White Plains, NY,
June 20-22, 1990), ACM SIGPLAN Notices 25(6) pp. 234-245 (June 1989).

Horwitz89a.
Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” ACM Trans. Program.
Lang. Syst. 11(3) pp. 345-387 (July 1989).

Horwitz90.
Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using dependence graphs,” ACM Trans. Program.
Lang. Syst. 12(1) pp. 26-60 (January 1990).

Kuck72.
Kuck, D.J., Muraoka, Y., and Chen, S.C, “On the number of operations simultaneously executable in
FORTRAN:-like programs and their resulting speed-up,” IEEE Trans. on Computers C-21(12) pp. 1293-1310
(December 1972).

Luks80.
Luks, E., “Isomorphism of bounded valence can be tested in polynomial time,” pp. 42-49 in Proceedings of the
Twenty-First IEEE Symposium on Foundations of Computer Science (Syracuse, NY, October 1980), IEEE Com-
puter Society, Washington, DC (1980).

Ottenstein84.
Ottenstein, K.J. and Ottenstein, L.M., “The program dependence graph in a software development environment,”
Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, (Pittsburgh, PA, Apr. 23-25, 1984), ACM SIGPLAN Notices 19(5) pp. 177-184 (May 1984).

Reps88.
Reps, T. and Yang, W., “The semantics of program slicing,” TR-777, Computer Sciences Department, University
of Wisconsin, Madison, WI (June 1988).

Reps89.
Reps, T., “Demonstration of a prototype tool for program integration,” TR-819, Computer Sciences Department,
University of Wisconsin, Madison, WI (January 1989).

Reps90.
Reps, T., “Algebraic properties of program integration,” pp. 326-340 in Proceedings of the Third European Sym-
posium on Programming, (Copenhagen, Denmark, May 15-18, 1990), Lecture Notes in Computer Science, Vol.
432, ed. N. Jones,Springer-Verlag, New York, NY (1990).

Reps90a.
Reps, T., “The Wisconsin program-integration system reference manual,” Unpublished document, Computer Sci-
ences Department, University of Wisconsin, Madison, WI (April 1990).

Weiser84.
Weiser, M., “Program slicing,” IEEE Transactions on Software Engineering SE-10(4) pp. 352-357 (July 1984).

Yang89.
Yang, W., Horwitz, S., and Reps, T., “Detecting program components with equivalent behaviors,” TR-840, Com-
puter Sciences Department, University of Wisconsin, Madison, WI (April 1989).

