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Abstract

We show that computing iterated multiplication of word matri-
ces over {0.1}". using the operations maximum and concatenation, is
complete for the class optL of log space optimization functions. The
same problem for word matrices over {1}~ is complete for the class
FNL of nondeterministic log space functions. Improving previously
obtained results, we furthermore place the class optL in AC!, and
characterize FNL by restricted log space optimization functions.
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1 Introduction

The class NC classifies those problems that are solvable rapidly in parallel
with a feasible amount of processors. NC has been shown to include a large
and interesting variety of problems from different areas (like, e.g., the theory
of linear algebra, formal languages, automata, graphs). Structurally, NC can
be defined as a hierarchy of function classes NC*, k > 1, where NC* con-
tains all functions computable by a uniform bounded fan-in circuit family
C, of n°M) size and O((logn)*) depth [Co]. With the exception of some few
examples, most problems known to be in NC are known to be in NC?, and
can be further classified according to Cook’s taxonomy (see Figure 1 below).

FLOGCFL C AC!

1
NC'CFLCFNLC *

C NC? [Co]

Figure 1: Cook’s taxonomy

NC!(DET) denotes the class of functions NC! Turing reducible to comput-
ing the determinant of an integer matrix, AC! (respectively, FLOGCFL)
the class of functions computable by uniform unbounded fan-in or semi-
unbounded fan-in circuits of logarithmic depth, and FNL (respectively, FL)
denotes the class of functions computable with nondeterministic (determin-
istic) logarithmic space. (Note that FNL, FLOGCFL and NC!(DET) are
named NL*, CFL*, and DET", respectively, by Cook.) None of the inclu-
sions is known to be proper and no relationship between NC!(DET) and
FLOGCFL or AC! is known.

Recently, two further subclasses of NC? turned out to be interesting: optL,
the class of logarithmic space optimization problems and #L, the class of
logarithmic space counting problems. These classes were introduced in [AJ]
and characterized by complete problems in terms of graphs and automata.
Subsequently, a tight relationship between #L and NC'(DET) has been dis-
covered in [Da], [To], and [Vi]: #L can be characterized by the iterated
product of positive integer matrices, and the closure of #L under NC' Tur-
ing reducibility coincides with the class NC!(DET) that is characterized by
the iterated product of integer matrices.

o



As a result of a considerable amount of recent research, iterated mul-
tiplication problems are now known to be complete for any of the classes
of Figure 1 (see [Ba] [BC] [CM] [Co] [BM], and [IL], which gives also an
overview).

In this note, we study properties of the class FNL of nondeterministic log
space functions and the class optL of log space optimization functions. In
[AJ] it was shown that FNL C optL C NC2. The possible “difference” be-
tween FNL and optL is emphazised by the fact that computing the maximal
word function for deterministic finite-state automata is complete for FNL,
whereas for nondeterministic automata it is complete for optL. The maximal
word function computes, for an automaton and a word z, the lexicographi-
cally greatest word that is smaller than or equal to £ and accepted by the
automaton. (Subsequent investigations of the complexity of maximal word
problems, e.g. for context-free languages, are done in [Vi], [BP], and [ABP].)

In this note, we characterize optL by the problem of computing the it-
erated product of word matrices over {0,1}*, using the operations maxi-
mum and concatenation (instead of “4+” and “.”, respectively). We show
that hence optL is already included in AC!. Furthermore, we characterize
FNL by optimization functions defined via restricted, so-called “confluent”
NL transducers. We show that when the word matrices in the above problem
contain only entries from {1}*, then a complete problem for the class FNL
is obtained. Both facts mirror the possible weakness of FNL as compared to
general optL functions.

The characterization of optL by iterated multiplication might be useful
for a deeper understanding of the relationships between the classes optL.
FLOGCFL, AC! and NC}(DET). As Cook has pointed out. with the excep-
tion of very few examples most natural problems in NC? are known to be
contained in FLOGCFL or NC}(DET). One example of a natural problem
in AC! not known to be in FLOGCFL is computing the iterated product of
integer matrices using the operations maximum (or minimum) and addition
[Co]. Note that the iterated matrix product that is complete for optL is a
“mixture” of this matrix product and the one complete for NC*(DET).



2 Preliminaries

An L transducer (NL transducer) is a deterministic (nondeterministic) log-
arithmic space-bounded Turing machine with (unbounded) output tape and
accepting and rejecting final states. The output y of a computation of a
transducer T' on input z is the content of T’s output tape when T halts.
An output is only considered to be “valid”, if T halts in an accepting state.
We assume all L and NL transducers to be polynomially time bounded (by
imposing a polynomial-time clock). Furthermore, we assume that any trans-
ducer has at least one valid output for each input. This is no restriction for
NL transducers: Since NL is closed under complementation [Im] [Sz], the
absence of a valid output could be checked by a precomputation.)

Note that for an NL transducer T on input of length n the length of an
output is always bounded by a polynomial in n, and note that T' can have
exponentially in n many valid outputs, although the number of reachable
configurations of T is bounded by a polynomial in n due to T"’s space bound.
The output is not considered part of a configuration of T'.

If a transducer computes exactly one valid value for each input it is called
“single-valued”. Clearly, any deterministic transducer is single-valued.

For a transducer T, let optr denote the function from {0,1}* to {0,1}"
such that optr(2) is the maximum valid output value of T on input x with
respect to lexicographical order. We will consider only the maximum. All
results obtained hold with appropriate changes also for the minimum.

We assume all functions to be from {0,1}= to {0.1}".

Definition 2.1

FL := {f|f is computed by some L transducer };
FNL := {f ]| f is computed by some L transducer
that has access to an oracle from NL}:
SVNL := {f]| f is computed by some single-valued NL transducer};
optL := {f|f = optr for some NL transducer T'}.

For definitions of the uniform circuit classes NC¥, ACk and the corre-
sponding (Turing) reducibilities see [Co]. We assume log space uniformity,
i.e., the description of the nth circuit C, can be computed from 1™ with
logarithmic space.



3 Properties of the class FNL

The function class FNL can be considered as “the” functional analog of the
language class NL. The class FNL has been characterized as the closure of
NL (as 0-1 functions) under NC!, AC® or (non-adaptive) log space Turing
reducibility [ABJ]. Note that FNL is named NL* by Cook in [Co].

The following proposition shows that FNL can also be characterized using
single-valued NL transducers.

Proposition 3.1 FNL = SVNL.

Proof. For the inclusion from left to right, let f be a function in FNL
computed by an L transducer T with oracle A € NL. Since NL is closed
under complementation [Im] [Sz], there are both an NL machine M, that
accepts A and an NL machine M5 that accepts A, the complement of A.
Construct an NL transducer T that on input z of length n simulates T
and whenever T starts to write a query ¢ saves the current configuration ¢,
guesses the answer 1 or 0 of the oracle, and accordingly starts a subroutine
that consists in the simulation of M4 (guessed value 1) or M7 (guessed value
0) on ¢. Since ¢ might be of size polynomial (in n}, it can not be kept on the
working tapes of T'. However, each bit i of ¢ can be obtained via simulation
of T starting in ¢, up to the ith symbol written by T in its oracle tape. If
a subroutine halts in an accepting (rejecting) state, the computation of T
will be continued (aborted) by 7”. Since during subroutines no output is
produced, it is obvious that T’ is single-valued with valid output flz).

For the inclusion from right to left, denote by f;(z) the ith bit of a function

f(z). Define the individual bits of f with
IB; := {$:i8b | 1 <i <[ f(x)}, b€ {0,1}, filz) = b}.

For f € SVNL, clearly IB; € NL. To compute f, an L transducer with
oracle IB; on input z of length n first computes the length [ of f(z). lis
bounded by a polynomial p in n and is obtained by asking z$:30 and z$:81 in
decreasing order for each ¢, 1 < i < p(n), until the oracle answers positively.
The transducer then outputs each bit fi(z) for 1 <i < I. fi(z) has value 1
if 28:81 € IBy, and value 0 otherwise. )



Since for a single-valued transducer, the value and optimal value is the
same, Proposition 3.1 implies that FNL is a subclass of optL. a result already

obtained in [AJ].
Corollary 3.2 [AJ] FNL C optL.

We show now a further relationship between these function classes.

Nondeterministic log space functions also can be characterized in terms of
optimization functions, if restricted, so-called “confluent” NL transducer are
considered. We call a transducer M confluent, if for any two computations
of M on input z that have the same accepting final configuration, the output
of M is the same. (Note that the term “confluent” appears with a different
meaning in the context of nondeterministic oracle machines in [SMB].)

For a confluent transducer, we can identify with each accepting configu-
ration a unique output. An NL transducer has due to its logarithmic space
bound only polynomially (in n) many configurations for each input = of length
n. Hence, any confluent NL transducer is polynomially valued, i.e. the num-
ber of different valid outputs on input z is bounded by a polynomial in 7.
But it is far from obvious whether every polynomially valued NL transducer
can be made confluent.

We remark that for NP transducers. “confluence” is no restriction. It is
not hard to show that for any NP transducer T, an equivalent confluent NP
transducer can be constructed that computes the same set of output values

than T.
Theorem 3.3 FNL = {f | f = optr for some confluent NL transducer T }.

Proof. For the inclusion from right to left, let f = optr for a confluent
NL transducer T. Note that on input 2 of length n there are at most p(n)
different accepting configurations for a polynomial p due to the logarithmic
space bound. Since T is confluent, we can identify with each accepting
configuration ¢ of T' an output o. Define the following set OB that provides
information about the output bits occuring up to oc:

OB := {z3$c5!$:36 | on input z, T produces up to
the final accepting configuration ¢

an output of length [ whose ith bit is b}.



[t is not hard to see that OB is a variant of the graph accessibility problem
and therefore contained in NL.

In order to find the final accepting configuration m that corresponds to
the maximal output of T, i.e. o, = optr(z), an L transducer T” cycles
through all possible configuration in lexicographical order according to the
following program.

input z of length n

m:=1

for c:=1to p(n) do
begin
if o, > o0,, then m := ¢
end

output o,

end

For the comparisons o, > o, and for the output of on,, T” uses the oracle
OB. With queries to OB, T” computes the lengths of both o. and o, and
for o¢,0m of the same length, it can find the first bit (from the left) that
(possibly) separates them. Thus, 7" can decide 0. > 0m,. Furthermore, when
finally a configuration m is found that outputs the maximum string o, on
input z, again with queries to OB, T’ obtains every bit of o, and produces
it as output.

For the inclusion from left to right, a single-valued NL transducer that
exists by Proposition 3.1 for functions in FNL can be forced to have just one
final accepting configuartion by standard methods. a

It seems unlikely that Theorem 3.3 could be strengthened to hold for
arbitrary polynomially valued transducers. In general, a log space machine
can not compare more than a constant number of outputs of polynomial size
in order to find the maximum one. It is essential for the proof of Theorem
3.3 that the output values of the NL transducer have a short description by
an accepting final configuration. In the next section we will show that this is
mirrored by the fact that FNL has a complete iterated matrix product over
an infinite structure where the values in the matrices are compressible.



4 Complete functions

As mentioned in the introduction. many complexity classes within NC? have
characterizations by iterated multiplication problems (see [IL] for a survey).
We are interested here in the following general case of iterated matrix mul-
tiplication.

Let (D;op;,0p;) be a set D with binary operations op;, op, defined on D.
The general iterated matriz product (D; op1,0p2) ITMATPROD is defined as:

Input: m n x n matrices A, A2,..., A™ with entries from D

and an index 27,1 <1,5 < n.

Compute: the ijth entry of the iterated matrix product A! - A% .. A™,
where “+” and “” are taken as the operation op;, op2.

The general matriz product (D;op1,op;) MATPROD is defined by setting
m = 2.

Figure 2 presents an overview about the known complexity results for the
iterated product.

ITM »‘\TP ROD Class

(Z; NCYDET) | [Co]

(N #L [Da] [To] [Vi]

(N \/I ~\"( +) AC! [Co] (completeness not known)
({0,1}*; MAX, o) | optL Theorem 4.1

({1}, MAX.0) FNL Theorem 4.2

({0,1};V, A) FNL (Co

Figure 2: General Iterated Matrix Products

We show in the following that ({0,1}*; MAX, o) ITMATPROD is com-
plete for the class optL, whereas ({1}*; MAX, o) ITMATPROD is complete
for FNL. Here “MAX” denotes the maximum of two elements and “o” de-
notes concatenation. We assume that there is an absorbing element L for o
that is the identity for MAX; i.e. it holds for each z € {0,1}* U {1}, z o L
= loz =1, and MAX(z, 1) = z. The identity for o is A.

(v 4]



The two completeness results differ in the reducibilities used. Complete-
ness for FNL is via NC! Turing reducibility, whereas for optL the com-
pleteness is obtained for the following stronger functional log space many-
one reducibility: A function f is log space many-one reducible to a func-
tion g, if there exist functions hy,h, € FL such that for all z it holds:

f(x) = ha(g(ha(2))).
Theorem 4.1  ({0,1}*; MAX, o) ITMATPROD is complete for optL.

Proof. For given m n x n matrices A!,..., A™ with entries from {0,1}"
the ({0,1}*; MAX,0) ITMATPROD results in computing

(%) MAXE (- MAXE, i ( MAXE _ (Al o Al ,) o Al )o--)o AL )
= NIAle,kQ,...,km_lzl(A}L 0 Azlkg 0...0 ATL}

*1 m—1J )

An NL transducer T successively guesses the indices k1 up to km_1 in bi-
nary and outputs the corresponding matrix entries Ajy , ..., A7} _ ; according
to the following program:

input A, A%, ... A™; 1,7 (1<i,5<n)
S:=1
for [:=1to mdo
begin
if | #m then guess ¢t (1 <t <n)elset:=
output A7
if A7, =1 then accept else s :=1
end
accept
end

Here “AT:” denotes entry st of matrix A™. Note that T" always accepts,
but its maximal value is the value of (*).

For the hardness, let f be a function in optL such that for an NL trans-
ducer T, f(z) = optr(z) for all z € {0,1}. Let z be an input of length
n, and denote by ¢y the start configuration and by ¢, the unique accepting
configuration of 7. W.l.o.g. we can assume that every computation path of
T has length exactly p(n) for a polynomial p. Define for T and z the transi-

tion matrix A with entries 4;; € {0,1.A. L} as follows, where ci—l—>cj means
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that the configuration c; is reachable from the configuration c; in one step
whereby an output [ € {0,1} or, if [ = A, no output is produced:

l
Aij _ {l, l e {0, 1,/\}, C;i—C;
L, else.

A}; contains the maximal output that may occur between configuration
¢ and configuration j in a computation of T on input z of length ¢. Clearly,
then f(z) = AE’E‘]. The matrix A can be produced easily from the transition
table of T with a log space many-one reduction. a

If the alphabet is restricted to a single element, the problem turns out to

be FNL complete.
Theorem 4.2  ({1}*; MAX,0) ITMATPROD is complete for FNL.

Proof. TFor the containment, a confluent NL transducer T" on input of
m n x n matrices Al,..., A™ just follows the algorithm of Theorem 4.1, but
instead of producing an output # L it counts the number of output symbols
(i.e. the number of ones) in binary on its worktape. Before accepting, F
deletes everything but this number from its worktapes. As in the proof of
Theorem 4.1. the maximal valid output of T computes (). but now T is
confluent, and by Theorem 3.3 optr € FNL.

For the hardness, note that computing the transitive closure of a boolean
matrix is complete for FNL (with respect to NC! reducibility) as shown in
[Co] and can be simulated by ({A}; MAX, o) ITMATPROD using, respec-
tively, L, A\, MAX, o instead of 0,1.V.A. a

We show now that ({0,1};MAX, o) ITMATPROD can be computed
by AC! circuits. This follows from the fact that the product of two ma-
trices ({0,1}*; MAX,0) MATPROD can be computed in AC°. The proof
generalizes to the statement that if (D;op,,0p2) MATPROD € ACP, then
(D; 0py,0p;) ITMATPROD € AC!.
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Theorem 4.3  ({0,1}*; MAX,0) ITMATPROD € AC'.

Proof. First, we claim that ({0,1}; MAX, o) MATPROD is contained
in log space uniform AC®. In [CSV] it was shown that the maximum of a
list of n strings of n bits each can be computed by a non-uniform AC°circuit
family C,. It is not hard to see that these circuits in fact can be made log
space uniform, i.e. that there exists a function in FL that computes the
description of circuit C,, on input 1*. Furthermore, the concatenation of two
strings x,y of variable size l3,l; can be computed by a log space uniform
ACP circuit family D,, provided that z,y are coded appropriately padded
up to size m with m > l,l;. Then, MAXP_ | Aix 0 Ax; can be computed by
using the circuits for the maximum and concatenation as subcircuits.

Second, we use the ACP circuits for ({0,1}*; MAX, o) MATPROD to com-
pute the iterated product in O(log k) levels of suitable matrix products. For
given matrices A',..., A™, let 2* be the smallest power of 2 such that m < 2k
and if m < 2% let any of the matrices A™*1,.. ., A?" be the n x n identity
matrix. Then compute A%~!. A% for 1 < ¢ < 2! in parallel, and repeat
the process for the resulting 2! matrices k = logm times. This yields an

AC? circuit for ({0,1}"; MAX, o) ITMATPROD. m

Since the reduction of optL functions to ({0,1}"; MAX, o) ITMATPROD
described in the proof of Theorem 4.1 can be computed easily in log space
and AC! is closed under log space reductions, we can improve the upper
bound NC? of optL given in [AJ]. This result has been subsequently proved
in [ABP] with different methods.

Corollary 4.4  optL C AC!.
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