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1 Introduction 
Qualitative domains were introduced by Girard [ 5] in order to give a 
model of system F, originally introduced by Girard [ 2 ]. The closed terms 
in system F will be interpreted as consistent objects in their corresponding 
domains. Girard added a notion of totality to the qualitative domains. A 
free type variable may be interpreted as any qualitative domain with any 
set of consistent sets representing the total objects. When the free variables 
are abstracted away, each closed type-term is interpreted as a specific 
domain with a specific set of total objects. Since there is no restriction on 
the familie~ that may be used as the total objects, there is no structural or 
conceptual analysis of the notion of totality in Girard's work. 
A general line of interest to both authors has been the search for a 
conceptual understanding of totality. The first author has carried out a 
program for investigation the notion of totality for qualitative domains. 

In Normann [ 8] the notion of totality is discussed and axiomatized. It is 
shown that the elements of a fix-point of a strictly positive inductive 
definition within a reasonable semantics for type theory will satisfy the 
suggested axioms of totality set up. Berger [ 1 ] discusses the notion of 
totality for general domains and effective totality for effective domains. He 
uses his notion of totality for generalizing e.g. the Kreisel-Lacombe­
Shoenfield theorem to domains. 

The basis for this paper is an analysis of totality due to Kristiansen. 
Kristiansen has isolated a family of structures which will be qualitative 
domains with a set of total objects. The notion of totality is partly based on 
the conceptual discussion in [ 8 ]. An object will be total if it "answers" a 
fixed set of "questions", represented by stable chains. In addition 
Kristiansen's total objects and questions are effectively dense. This is 
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reflected in the supporting E-structures that will be described in section 2. 
The notion of totality used here is more restricted than that of Berger [ 1 ]. 
It will for instance not be the case in general that the set of maximal 
elements may form a set of total objects. This, and other results not used 
here will appear in the forthcoming Kristiansen [ 7 ]. 

In this paper we will construct a hierarchy of coherence-spaces (i.e. 
qualitative domains where consistency is 2-based) with totality, starting 
with the natural numbers as the base-type and using infinite dependent 
products for forming new types. Our main theorem is that the length of 
this hierarchy corresponds to recursion in the Kleene-functional 3E. The 
proof is an implementation of a general proof-frame, and we expect 
similar results to hold for other natural ways of modelling types, e.g. using 
domain theory. 
In Normann [ 9] a similar result is shown using the empty type. There is 
no significant analysis of totality behind the proof in [ 9 ]. The virtue of 
that proof is that the complexity can be shown using constructions 
standard in type theory. 
In this paper the domains will be effectively nonempty. One main aspect 
of the proof in this paper is that if we restrict ourselves to a hierarchy of 
effectively nonempty types, we may ad a fine-structure on the types that is 
so rich that it enables us to carry out finer recursive constructions. We 
expect tha~ these methods can be used for investigating other semantics of 
type-theory as well, and thereby throw some light on the various type­
constructors used. We also see our result as the first developement of tools 
for investigating sets of high complexity in the same way that the Kleene­
Kreisel continuous functionals, and the Dilators and Ptykes (Girard [ 3] 
and [ 4] ), can be used to investigate concepts with complexity in the 
projective or analytic hierarchy. 
Finally we think that the main theorem itself is of a nature where its proof 
will set a standard for the kind of fine-structure we are looking for in the 
semantics of type-theory. 

2 E - structures and totality 
We will assume familiarity with the notions of qualitative domains and 
coherence spaces as introduced in Girard [ 5 ] 

2.1 Definition 
Let X be a qualitative domain. 
a) A chain in X will be a set C of pairwise inconsistent finite 

consistent sets. 
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b) If x e X and C is a chain in X, then x meets C if x contains an 
element of C as a subset. 

If cl and c2 are chains in X we may form the product cl X c2 by 

cl X c2 = { Al u A2 E X I Al E cl and A2 E c2 } 

C1 X C2 is also a chain, and if X meets Cl and C2 then X also meets 

C1 xC2. 

2.2 Definition 
a) Let X be a qualitative domain. 

X is organized to a partial £-structure if it is equipped with 

i) To each a e I X I a chain Cx,a containing {a}. 

ii) To each finite A e X an extension 

subset. 

Let Xmcr = {Ex A I A Efin X} , 

Ex A e X containing A as a , 

XETOT = { x e X I x meets Cx,a for all a e I X I } 
b) X is an E - structure if in addition all chains Cx,a and all extensions 

meet, i.e. XEXT c: XETOT· 

Remark 
Using products of chains we construct chains Cx A containing A for all , 
finite A e X, and XETOT is not changed by adding these chains. 

2.3 Definition 
An E - structure X can be extended to a totality-domain if we add a set 

of questions Qx u { a I a e I X I } and a chain Cq to each question q, such 
that 

where XTOT = { x e X I x meets all chains Cq for q e Qx and all chains 

ca for a E I X I } 

We will require that Qx is non-empty and that the chain Cq is not 
dummy, i.e. different from { 0 }. 

Our notion of totality is in accordance with the discussion in 
Normann [ 8 ]. The notion of totality in Berger [ 1 ] is somewhat more 
liberal but covers this case. 
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The restriction XEXT c XTOT c XETOT will in some cases rule out XMAX 
as a legal choice for XTOT· In Kristiansen [ 7 ] it will be shown that there is 

no E - structure on X = ( N --7 N ) --7 N with XTOT = XMAX· 

The standard total elements of ( N --7 N) --7 N will however satisfy 

XEXT c XTOT c XETOT c XMAX 
where c is proper inclusion. This will be used in section 4. 

Remark 
In a totality-domain we will call a chain total if it meets all x e XToT· 

In an E - structure we will call a chain ext-total if it meets all x e XEXT 

and E-total if it meets all X E XETOT· 
By a modified chain product we may define chains 

Cx, { A1 , ... , AJ => { A1, · · · ' ~ } 

for all finite chains { A1 , ... , An} such that Cx, { A1 , ... , AJ is an E-total 

chain. 

Girard [ 5] uses stable functions for the interpretation of function spaces, 
and the stable functions are represented by their traces. We assume some 
familiarity with the use of stable functions, though the original definition 
can be recovered from definition 2.4 below, using a constant 
parameterisation. 
We see stable functions as a way to model deterministic sequential 
algorithms, and we will often use such algorithms for proving that a 
given function is stable. 

2.4 Definition 
a) Let X and Y be two qualitative domains. X is a subdomain of Y if 

I X I c I Y I , and if x c I X I then x e Y if and only if x e X. 
b) A stable parameterisation of a family of qualitative domains is a 

family { Y A } A E X such that: 

i) c( A ) = I Y A I is a stable function, c : X --7 1( U { I Y A I I A e X } 

ii) If A 1 c A 2 then Y A is a subdomain of Y A 
1 2 

c) A stable function relative to this parameterisation is an 

f:X --7 u { Y A I A e X } such that 

i) f( A) e Y A ( f gives consistent output ) 

ii) A 1 c A 2 implies f( A 1 ) c f( A 2 ) ( f is monotone ) 

iii) If b e f( A ) there is a finite A' c A with b e f( A' ) ( f is finitely 
based) 
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i v) If A1 u A2 e X and b e f( A1 ) r1 f( A2 ) then b e f( A1 r1 A2 ) ( f is 

uniquely based ) 

d) The qualitative domain Il(Ae X)Y A is defined using the traces of the 

stable functions: 

We let I Il(AeX)YAI = {(A,b) I AefinX and be IYAI} 

t = { ( A1 , b1 ) , ... , ( ~ , bn) } is consistent ( i.e. t e Il(Ae X)Y A) if 

i) Ai u ... u ~ = A E X => { bi ' ... ' bi } E y A 
1 k 1 k 

ii) Ai u ~ E X " bi = bj => ~ = ~ 

Then we have the usual bijection between stable functions and 

Il(Ae X)Y A via traces and application. For t e 11(Ae X)Y A the 

application f( A ) = A.Ae X.App( t , A ) is defined by 
f( A ) = { b I (3 A' c A)(( A' , b ) e t) } 

The 11 - construction can be extended to partial E-structures, to E­
structures and to totality-domains. Here we will consider 
parameterisations of partial E-structures and the product of such: 

2.5 Definition 
a) Let X be a qualitative domain. 

A stable parameterisation of a family of partial E-structures indexed 
by X Will be a stable parameterisation of the corresponding qualitative 
domains such that 

i) For each b e u{ I Y A I I A e X } , the map 

Cb( A) = Cy A' b is stable ( if b e I Y A I then Cb( A) will be 

empty). 

ii) For each finite, consistent B c u{ I Y A I I A e X}, the map 

EB( A) = Ey A'B is stable ( if B e Y A then EB( A ) will be empty ). 

2.6 Lemma 
Let X be a partial E-structure and let { Y A } A e x be a stable 

parameterisation of partial E-structures. 

a) 11( A e X )Y A can be organized to a partial E-structure. 

b) If X is an E-structure, and Y A' is an E-structure for all A' e XEXT 

then 11( A e X )Y A is an E-structure. 

c) If in addition X is a totality-domain and Y A' is a totality-domain for 

all A' e XTOT then Il( A e X )Y A is a totality-domain. 
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Proof 
The details of the proof will be worked out in Kristiansen [ 7 ]. Here we 

will define the chains and the extensions in Il( A e X )Y A and give the 

intuition behind them. Let Z = Il( A e X )Y A . 

For part c) ZTOT = {f e Z I ('v' Ae XTOT )(f( A ) e (Y A)TOT } . 

Let Q2 = {(A , q) I A e XToT" q e Qy } . 
A 

The idea is that ( A , q ) is the question: What wili f( A ) answer to 
question q? 
Of course Q2 is exactly the questions we need to define ~OT' given that 

Qy is the set of questions needed for (Y A)TOT for all A e XToT· 
A 

So we want C< A 
1 
q > to meet ( the trace of ) f if and only if f( A ) meets 

cq. This is obtained by the following definition: 

C( A 
1 
q ) contains all sets of the form { ( A1,b1 ) , ... , ( ~ , bn ) } where ~ 

is a finite subset of A and { bt, ... I bn } E cq. 

We use the same construction for producing the chains in the E-structure1 

i.e. in defining Cz1 (A1
b) when ( A , b ) e I Z I we use Ex 1 A and Cy E 1b 

X,A 

as we used A and Cq above. 

In order to define the extension Ez
1
t when 

t =_ tr( g ) = { ( A1, bl ) , ... , ( ~ , bn) } 

we need Cx1~ for i = 1 1 ••• , n. 

The idea is to have App( Ez t , A ) = Ey g( A ) for all A e XEXT ( in fact for 
1 A, 

all A e XETOT ). 

Let Ez t be the trace of the following stable function <j>: 
1 

if for some i , ~ c A and b = bi let b e <!>( A ) , 

or if this is not the case 

if A meets all chains Cx A I ••• , Cx A ( then g( A ) = { bi I Ai c A } ) I 
1 1 1 n 

then we let b e <j>( A ) if b E Ey A 
1
g( A )• 

This proves a). 

Cz,( A',b) tests only f( A) where A= Ex1A' e XExT· 

Under the assumptions of b), YA will be an E-structure for A e XEXT 

and f( A) = Ey Ag( A) e ( Y A)EXT c ( Y A)ETOT· Thus 

(tr)( f) E ( rrc A E X )Y A )ETOT if and only if f( A ) E ( y A )ETOT for all 

A E XEXT· 

If <1> = A.A.App( Ez,t , A ) then <!>( A ) e ( Y A )EXT for all A e XETOT· 
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So when XEXT c XTOT c XETOT and ( y A)EXT c ( y A )TOT c ( y A )ETOT for 

all A E XTOT we obtain 

( II( A E X )Y A )EXT c ( II( A E X )Y A )TOT c ( II( A E X )Y A )ETOT . 

This proves the lemma, and establishes II( A E X )Y A as a totality 

domain. 

We close this section by some constructions needed in section 3. 

2.7 Definition 
go£= { 0 , { n } I n E N } with I g.£1 = N , i.e. the set of natural numbers. 

E9t£0 = { 0} I E9t£{ n) = { n} I c9i n = { { m} I mE N} for n E N. 

Q!J{. consists of one question q with cq = c9i { n )· 

This establishes go£ as a totality domain. 
Similarily we define !Nk as the totality-domain representing { 0, ... , k }. 

9Xk will inherit the E-structure and the totality from 9o£ so in all respects it 

will be a substructure of 9i. 

In Normann [ 8] embeddings between totality-domains are discussed and 
strictly positive inductive definitions are carried out. There are no 
stability-requirements and nothing like an E-structure is used in [ 8 ]. 
Moreover we let the empty domain start the induction. 
In Kristiansen [ 7 ] we have qualitative domains with E-structure and 
totality. It is shown that a non-empty least fixpoint of a general positive 
induction can be interpreted as an E-structure with totality. We exclude 
the empty domain { 0} from being an E-structure with totality. 

We do not need embeddings between totality-domains in this paper, only 
the substructure relation for qualitative domains and the interpretation of 

ED and x for qualitative domains. These are discussed in detail in 
Girard [ 5 ], so we will be brief: 

2.8 Definition 
a) Let xl, ... I ~ be qualitative domains. 

We define X = xl X ••• X ~ by 

I X I = ( { 1 } x I X1 1 ) u ... u ( { n } x I ~I } 

For x c I X I let 1ti ( x ) = { a I (i , a ) E x } 

Then we let x E X when 1ti ( x ) E Xi for all i = 1 , ... , n. 

We will sometimes write x = ( x1 , ... , xn) for ~ = 1ti( x ). 

b) If X1 and X2 are qualitative domains, we define Y = X1 ED X2 by 
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1 Y 1 = ( {1 } x I x1 I ) u ( { r } x I x2 I ). 

If y e I Y I we let y e Y if for some y 1 in Y 1 we have that y = {I } x y 1 

or if for some y2 in Y2 we have that y = { r} x y2 . 

We will sometimes write r( a) for ( r, a) and r( x) for { r} x x, etc. 

In Kristiansen [ 7 ] it will be shown how these constructions can be 
extended toE-structures and to totality-domains. 

3 Codes for syntactic forms 
In this section we will define a hierarchy of E-structures with totality with 
the natural numbers !11[_ at the base and using products of stable 
parameterisations for obtaining new structures. 
We will let all structures be substructures (as domains) of one universal 
domain D, and we will represent the various elements of the hierarchy by 
consistent sets s in a domain S of "syntactic forms". 

3.1 Definition 

a) Let D0 = 0, Dk+1 = 9{ $ ( Dk ~ Dk), and let D be the limit-structure. 

b) Let S0 =%EF>0,~+1 =%EIH%x~x(Dk~~)L andlet S bethe 
limit. 

Remark 
D will be a qualitative domain satisfying 

D = .?£$ ( D ~D) 
while S will be a qualitative domain satisfying 

S =%EF><-% xSx (D ~s)) 

If s e S , s '* 0 and s '* r( 0 , s1 , p ) we have 
i) s = 1( { 0}) 

or 
ii) s = r( { 0 } , s1 , p } 

The idea is that in case i) s will represent !11[_ while in case ii) , if s1 

represents X and p( A) represents Y A for A e X then s represents 

TI(Ae X)Yk 

Following this idea we will define the interpretation I( s ) for s e S as 
qualitative domains such that {I( s) lse 5 is a stable parameterisation of 
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qualitative domains. Also, each I( s) will be given a partial E-structurel 
and we will show that {I( s) }5e 5 also is a stable parameterisation of 

partial E-structures. 

In case i) 0 e 9{_ and E5,0 = { 0 }, while in case ii) 0 e II( A e X )Y A and 

E5 0 = (tr)( AA.e X.Ey 0 ) 
' A' 

In order to make E5,0 stable in s it is convenient to use r( { 0 } , 0 I 0 ) as 

the unique basis for going to the right. 

We will use the following conventions: d will be an element in I D I 

while o will be a finite element in D. 

s will be an arbitrary element of S while cr will be a finite element of S. 

p will be an element of D ~ S while 1t will be a finite element of D ~ S. 

3.2 Definition 
We define I( s) for s e S by defining I( cr) for finite cr e S essentially by 

induction on the least k for which 0' E Sk 

For cr = 0 1 let I I( cr) I = 0. 

For cr = 1( { 0}) , let I( cr) = 9{_$ 0 

If cr = r( { 0} I cr111t) E sk+11 then 0'1 E ~ and 1t E Dk ~ski and we let 

d = r( o1 1 d2 ) e I I( cr) I if and only if o1 e I( cr1 ) and d2 e II( 1t( o1 ) I. 

Consistency is inherited from D 1 i.e. consistency of traces. 

3.3 Lemma 

The function c( s ) = I I( s ) I is a stable function from S to P( I D I ). 

Proof 
By induction on k we can prove this for cr e ~·The details are left for 

the reader. 

We see that I( s) is the minimal solution to the equation system 

* I(l( { 0}) = 9{_E!:> 0 

* * I( r( { 0 } I s I p ) ) = 0 (f) fi( x e I( s ) ) I( p( s) ) 

and lemma 3.3 ensures that this minimal solution exists. 

Likewise we can use the construction of lemma 2.6 to organize each I( s ) 

to a partial E-structure. By induction on k we can prove that for cr e Sk 

this is a stable parameterisationl and thus {I( s) }5 e 5 can be considered as 
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a stable parameterisation of partial E-structures. We thus have 

3.4 Theorem 
There is a minimal solution {I( s) }5 e 5 as a stable parameterisation of 

partial E-structures such that the equations * and ** hold. 

We will now define our hierarchy of types, {I( s) }5 e s : 
W:f 

3.5 Definition 
Simultanously we define swf c s and (I( s ))TOT for s E swf as the least 

solution of 

i) 1( { 0 } ) } e Swf with (I( s ))TOT as { 1( { n } ) I n e N } 

ii) r( { 0}, S, p} E Swf if S E Swf and for all X E (I( S ))TOT we have that 

p( X) E Swf· 
(I( r( { 0}, s, p} ))TOT will be r( { x I xis the trace of a stable function 

mapping an element y e (I( s ))TOT onto an element of 

(I( p( Y) ))TOT } 

Using lemma 2.6 c) , lemma 3.4 and induction we see that when s e Swf 

then I( s) is a totality-domain, and thus swf is well defined. 

In section 4 we will investigate the length of this inductive definition. In 
order to do so we need some more structure on the domains I( s ) for 

s E swf· Notice that if s E swf then all extensions in I( s ) are total and the 

total objects meet all the chains. 

3.6 Definition 
Assume that we have a fixed enumeration of each finite o e D. 

We define the stable functions Id:s ~ P( I D I ) and Id f: S ~ P( I D I <ro ) 

as the minimal solution to the following equations: 
Id(l( { 0 } ) ) = 10 $ ( D ~D) I 

Id( r({ 0}, s, p) = I .9{$ 01 

u { r( o, d ) 1 o e Idf( s )} 

u { r( o, d) I o c I I( s ) I " ( d e Id( p( EH 5 >, 0)) v d e I( p(E1< 5 ), 0 ) 

but the basis for this ( c E1( 5 ) , 0 ) is not contained in o } . 
Idt< s) = { 8 = { d1 , ... , dn} e D I n :=:: 1 and 3~( d1 e I I( s) I " ... " 

dk-t e 1 I( s > 1 " dk e Id( s ). 
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3.7 Lemma 
a) For all s e S Id( a) n I I( s ) I = 0 

Idf( s) n I( s) = 0 

b) For all s E swf I for all d E I D I and for all finite 8 E D we have 

d e I I( s ) I or d e Id( s ) 

8 e I( s) or 8 e Idf( s) 

The proof is straightforward and is left for the reader. 

Notice that we need 3.7 a) in order to show that Id and Idf are stable 

functions. 

The definition of Idf illustrates that stable functions correspond to 

deterministic, sequential algorithms. If we instead define Id f by 

Idf( s ) = { 8 e D 1 3d e 8( d e Id( s ) l 

then Idf (and hence Id at the next level) will not be stable. 

We will use I I( s) I and Id( s) to transform total elements x in I( s) for 

s E swf to total functions hx,s from N to N in a stable way 

3.9 Definition 

Let { di lieN be a fixed enumeration of I D I , and let { 8i lieN be a fixed 

enumeration of the finite elements in D. 

For s e S and x e I( s ) let 

hx,s< { i l) = 

.{ { 0 } if '4 E Id( s ) 
{ j+ 1 } if diE I I( s) I 

CI( s) I '4. 

and 8j is where x meets 

Thus hx,s< i) tests if di is in I I( s) I, and in case it is, find where x meets 

C1< s ), di. So , if s e S is such that I I( s ) I and Id( s ) are complementary, 

we have that ~,s is total if and only if x e I( s )ETOT· 

3.10 Lemma 

a) A.se S.A.xe I( s ).~,s is stable 

b) For s E swf and X I y E ( I( s ) )TOT we have that ~,s is total and X = y 

if and only if ~,s = l)r,s· 

c) For any s e S and x e I( s ) , if hx,s is total, then x is maximal. 
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The proofs are easy and left for the reader. For c), notice that it is a general 

fact forE-structures X that if x e XETOT then x e XMAX· 

4 Simulating recursion in 3 E 
We will now prove that the hierarchy Swf is as complex as recursion in 

3E. 3E is the type-3 functional defined as follows: 

3E(F)= { 

0 if F is total with constant vaiue 0 

1 if F is total, but not constant 0 

Kleene [ 6] defined a notion of computations { e }( w1 , ... , 'l'k) = n where 

w1 , ... , 'l'k is a sequence of total functionals of finite, pure type. We will 

be interested in computations with input 3E and a sequence f from 

N u NN. We will omit the mentioning of 3E in our computations. 
When we write 

{e}{f)=n 
we mean that f = £1£2 and that 

{ e }( £1 , 3E , £2 ) = n 

according to Kleene's original definition. 
We will systematically omit the Kleene-scheme 55 in our treatment, 
since this scheme can be reduced to the other schemes. 

We will prove the following theorem 

4.1 Theorem 

Assume that { e }{f)..!., i.e. takes a value. 
Uniformly in e , f and n there is 

1. An element C( e, f, n) E swf 

2. An object a( e , f , n ) e I( C( e , f , n ) ) 
such that 

a( e , f , n ) is total in I( C( e , f , n ) ) if and only if { e }( f ) = n. 

With our conventions, this shows that semirecursion in 3E can be 
reduced to 

{ ( s , X ) I s E swf and X is total in I( s ) } . 

The converse is not hard to prove, see Normann[ 9] for an analogue 
result. 

In a way we will construct C( e , f , n ) and a( e , f , n ) by recursion on the 
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computation { e }(f). In the case of composition we will use a 
mollification-technique in order to avoid explicit use of the intermediate 
value, and for this we will need approximal computations. The 
approximations will be more at the syntactical than at the computational 
level, but this Will be sufficient for our purposes. 

4.2 Definition 
By recursion on k we define { e }k( f ) for all e and f. 

i) { e }0( f) = 0 for all e , f. 

ii) Assume that { e }k( f ) is defined for all e , f. 

We define { e }k+1 (f) following 51- S4, 56- 59 as follows 

1. { e }(X 1 f) =X+ 1 : { e }k+1 (X, f) =X+ 1 

2. {e}(f)=q: {e}k+1(f)=q 

3. { e }( X , f) = X : { e }k+ 1 ( X , f ) = X 

4. { e }(f) = { e1 }( { e2 }(f), f) : { e }k+1 ( f) = { e1 }k( { e2 }k( f) , f) 

6. { e }( f ) = { e1 }( a( f) ) : { e }k+ 1 ( f ) = { e1 }k( a( f) ) 

7. { e }(X, f, f)= f( X): { e }k+1( X, f, f) = f( X) 

8. { e }( f) = 3E( A.g. { e1 }( g , f ) ) : { e }k+ 1 ( f) = 3E( A.g. { e1 }k( g , f ) ) 

9. { e }( e1 , f)= { ed( f): { e }k+1 ( e1 , f) = { e1 }k( f) 

Otherwise we let { e }k+1( f)= 0 

4.3 Lemma. 
Uniformly in the signature for f there is a primitive recursive function p 
such that 

i) { e }k( f ) = { p( k , e ) }( f ) for all e , f . 

ii) If k1 ::;; k2 then 

p( k1, p( k2 , e ) ) = p( k1 , e ) 

p( k2, p( k1 , e ) ) = p( k1 , e ) 

The proof is trivial and is left for the reader. We will omit any reference to 
the signature of f, though we need it to distinguish between the 
otherwise-case and the rest. 

The next definition represents the main construction in this paper, and 
the central idea of proof is laid down in this definition: 

4.4 Definition 
By induction on k we define 

Ck( e , f, n) and ak( e , f , n ) 

for all f and n. 
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We will have that Ck( e, f, n) e 5 and that the definition is monotone in 

k. 

We will have that ak( e, f, n) e I( Ck( e, f, n)) and that ak is 

monotone in k. 

Both Ck( e, f, n) and ak( e, f, n) are uniformly recursive in e, f, n as 

subsets of I 5 I and I D I respectively. 

H { e }(f) is an initial computation, let m = { e }( f). 

Let Ck( e, f, n) be the element of 5 representing ( N ~ N) ~ N for all 

k. 
Let a( e, f, n) be the element of I( Ck( e, f, n)) representing 

A.f.Jlk( ( f( 0 ) = k A n = m ) v f( k ) ::~: k ) , and let 

ak( e , f , n ) = a( e , f , n ) n I ~ I. 

If { e }(f) is at first sight not a computation, we let Ck( e, f, n) represent 

( N ~ N ) ~ N for all k. 

Let a( e, f, n) be the element of I( Ck( e, f, n)) representing 

A.f.Jlk( f( k ) ::~: k ) , and let ak( e , f , n ) = a( e , f , n ) n I Dk I. 

This leaves us with the cases S4, S6, 58 and 59. 

Then we let C0( e , f , n ) = 0 and a0( e , f , n ) = 0, and we will define 

ck+l and ak+l for these cases. 

54: { e }( f) = { e1 }( { e2 }( f ) , f ). 

We want C( e, f, rt) to represent the following object: 

II( me N )IJ(x e I( C( e2 , f, m )I( D( x, m) ) 

where D( x, m) = C( e1 , m, f, n) if x = a( e2 , f, m ) 

D( x , m ) = C( p( k , e1 ) , m f , n ) for the least k such that 

h (k)::~:h (k) x, C( e2 , f, m) a( e2 , f, m), C( e2 , f, m) 

when x ::~:a( e2 , f, m ). 

We let Ck+l( e, f, n) be the trace of the following function in m and x: 

r e Dk( x, m) if there is a minimal k1 $ k such that 

i) r e Ck ( e1 , m , f , n ) 
1 

or 

14 



ii) h c ( f )( kl ) :;C h ( f ) c ( f )( kl)' 
xl k e 2 1 lm a.k e 2 1 1 m 1 k e 21 1 m 

and in case ii) , r e Ck( p( k1 , e1 ) , m, f, n ). 

In order to prove that this is stable, we must show that 

kl ::;; k2 => ck ( e ' f 'n ) c ck ( p( k2 ' e ) ' f' n ). 1 - 2 

We will do so when the full definition of Ck+l is given. 

We also want a( e, f, n) to represent the function 

A.m.A.xe I( C( e2 I f I m) ).f3( x I m ) 

where 

f3( x , m ) = a( e1 I m , f 1 n ) if x = a( e2 , f I m ) 

f3( x 1 m ) = Ec( P ( k e ) m f n ) a. ( e m f n ) for the least k such that 
I 1 I I I I k 11 I I 

hx 1 C( e2 If I m )( k ) * ha.( e 21 f I m) I C( e 21 f I m )( k) 

when x :;e a( e2 If I m ). 

Let <1> = A.m.A.x e I( Ck( e2 I f , m ) )f3k( x, m ) 

where we have the following algorithm for computing de f3k( x, m ): 
Find a minimal k1 ::;; k such that 

i) d e ak ( e1 , m , f , n ) 
1 

or 

ii) ~~ Ck( e2 , f I m )( kl) * ha.k( e2 , f lm) 1Ck( e2 1£ 1m)( k1 ). 

If i) applies, we let d e f3k( x , m ). 

If ii) applies we let de f3k( x, m) if 
d E . . 

E ck ( p ( k 1 e1 ) 1 ffi 1 f 1 n ) 1 a.k1 ( e1 1 ffi 1 f 1 n ) 

Welet ak+l(e,f,n)bethepartof <1> thatisin Dk+l· 
This end case 4. 

56: { e }( f ) "" { e1 }( cr( f ) ) 

Let Ck+l( e, fIn)= Ck( e1 , cr( f), n) 

ak+l ( e, fIn) = ak( e1 , a( f) , n) 

58: {e}(f),3E(A.g.{e1 }(g,f)) 

We want C( e, f, 0) to represent II< g e ~---+~{)I( C( e1 , g, f, 0)) 

and a( e, f, 0) to represent A.g.a( e1 , g, f, 0 ). 
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Moreover we want C( e, f, 1) to represent I( C( e, f, 0)) ~ tJ1£. and 

a( e , f, 1 ) to represent A.x.J.Lk(~ I C( e If, 0 )( k ) * ha( e If I o) I C( e, f I o )( k) ). 
We do this by letting 

ck+1 ( e, f, 0) represent rrc g E .9X: ~ ~I( Ck( el , g, f, 0) 

ak+1 ( e, f, 0) represent A.g.ak( e1 , g, f, 0) restricted to Dk+1 

Ck+1( e, f, 1) represent I( Ck+1( e, f, 0)) ~ lJ'i. 
ak+1 ( e, f, 1 ) represent A.x.J.Lk1 ~ k(hx I ck+1 ( e If I 0 )( k) * 

hak+1( e 1 £1 0) 1 Ck+1 ( e 1 £10 )( k)) restricted to Dk+1. 

If n > 1 we let Ck+1 ( e, f, n) represent ( .9i ~ .9i) ~ .9i and we let 

ak+ 1 ( e , f , n )represent A.g.J.Lk1 ( g( k1 ) * k1 ) restricted to Dk+ 1. 

59: { e }( e1 , f ) = { e1 }( f ): 

Let Ck+1(e,e1 ,f,n)=Ck(e1,f,n) 

ak+ 1 ( e , e1 , f , n ) = ak( e1 , f , n ) 

This ends Definition 4.4. 

4.5 Lemma 
a) If k1 < k then for any e , f , n 

ck ( e , :f, n) = ck ( p( k , e ) , f , n ) 
1 1 

ak ( e, f, n) = ak ( p( k, e), f, n) 
1 1 

b) For all e , f , n and k 

Ck( e , f, n) c Ck( p( k, e) , f, n) 

ak( e , f, n ) c ak( p( k , e ) , f, n ) 

Proof 
The proof of a) is by induction on k1 while the proof of b) is by 

induction on k. Both proofs are tedious but simple. 

This lemma shows that the definition of Ck and ak is sound. Moreover, 

they are recursive, so they are stable in the variables e , f , n. 

We obviously have that ak( e , f , n ) is finite and that the definitions are 
monotone in k. 
As indicated, we let 

C( e , f, n) = U( k e N )Ck( e, f, n ) 

a( e , f, n) = U( k e N )ak( e , f, n ) 
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We complete the proof of Theorem 4.1 by showing: 

4.6 Lemma 

If { e }( f )J, then for all n 

a) C( e , f , n ) E 5wf and 

a( e, f, n) is total in I( C( e, f, n) ) if and only if { e }(f) = n 

b) ha( e If In) I C( e If In) is total 
c) a( e , f , n ) is not an extension in I( C( e , f , n ) ) , i.e. not one of the 

Ex a sets. 
I 

Proof 
The lemma is proved by induction on the length of the computation, 
which gives 8 cases 51-54,56-59. To be formally correct we should first 

prove the lemma for computations on the form { p( k, e)}( f ) by 
induction on k, but since this will only lead to a repetition of details, we 
leave it for the reader. 

For initial computations, a) is trivial, and in these cases C and a are 
carefully defined for b) and c) to hold. 
The cases 56 and 59 are trivial, so we concentrate on cases S4 and 58. 

54 { e }( f) = { e1 }( { e2 }(f) , f). 

Let m0 = { e2 }( f ) , n0 = { e1 }( m0 , f ) 

By construction 
I( C( e, f, n) ) = r( IT( m e 9\0IT( x e I( C( e2 , f, m) ) )I( D( x, m) ) ) 

where 

D( x , m ) = C( e1 , m , f , n ) if x = a( e2 , f , m ) 

D( x , m ) = C( p( k , e1 ) , m , f , n ) for some k otherwise. 

Here we use that ha ( e2 I f I m ) I C( e2 If I m ) is total. 

If m * m0 and x is total in I( C( e2 , f , m ) ) we cannot have that 

x = a( e2 ' f ' m ) ' so ~ I C( e2 I f I m ) * ha ( e2 I f I m ) I C( e2 I f I m ) ' and D( x ' m ) 

= C( p( k , e1 ) , f , m ) for some k depending on x. 

Then IT( x e I( C( e2 , f, m)) )I( D( x, m) can be represented in 5wf· 

Moreover a( e, f, n )( m )( x) is an extension and thus total whenever x 
is total in I( C( e2 , f , m) ). 

If m = m0 we can argue as above except for x =a( e2 , f, m0 ). 
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Then D( X I mo) = C( elI mo If In), which is in swf by the induction 

hypothesis. This shows that C( e I f I n ) E swf· 

Moreover, totality of a( e, f, n) is equivalent to totality of 
a( e1 , m0 , f , n ) in I( C( e1 , m0 , f I n ) ) which again is equivalent to n = 
no. 
This proves a) for case 54. 
To prove b), recall that the extending chains in a products are based on an 
extension A in the parameter-space X and chains in the corresponding 

Y A. Since a( e , f , n ) is total except at most at ( m0 , a( e2 , f , m0 ) ) , and 

since a( e2 , f , m0 ) is not an extension it follows that a( e , f , n ) will 

meet all extending chains, and b) follows. 
To prove c) , notice that an extension in a product space will send all total 

elements to extensions. Since a( e1 1 m0 , f , n ) is not an extension, c) 

follows. 

58: { e }(f) = 3E( A.g.{ e1 }( g, f). 

For n * 0,1 the case is trivial. 
8.0: C( e, f, 0) represents TIC g e .?£~~I( C( e1 , g, f, 0 ), so C( e, f, 0) 

will be in SWf independent of the values of { el }( g 1 f ) for various g. 

If { e1}( g , f ) = 0 for all g, then a( e , f , 0 ) representing A.g.a( e1 , g , f , 0 ) 

is total, otherwise not. 

In any case, a( e 1 f 1 0) is not an extension because a( e 1 f 1 0 )(g) is not 
an extension for any g. 

Moreover ha ( e I £ I 0 ) I C( e I f I 0 ) is total because ha ( ell g If I 0 ) I C( et, g I f I 0 ) 

are total for all g. 

8.1: C( e, f, 1) represents I( C( e, f, 0)) ~.?£and is in Swf· 
We have 

{e}(£)=1 

~ a( e , f , 0 ) is not total in I( C( e , f , 0 ) ) 

~ a( e, f, 1 ) is totalin I( C( e I f, 1 ) ). 
This shows a), and b) and c) are trivial in this case. 

This ends the proof of the lemma and of Theorem 4.1. 
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