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A New Measure for the Study of On-Line Algorithms 

S. Ben-Dav id  1 and  A. Borod in  2 

Abstract. An accepted measure for the performance of an on-line algorithm is the "competitive ratio" 
introduced by Sleator and Tarjan. This measure is well motivated and has led to the development of 
a mathematical theory for on-line algorithms. 

We investigate the behavior of this measure with respect to memory needs and benefits of lookahead 
and find some counterintuitive features. We present lower bounds on the size of memory devoted to 
recording the past. It is also observed that the competitive ratio reflects no improvement in the 
performance of an on-line algorithm due to any (finite) amount of lookahead. 

We offer an alternative measure that exhibits a different and, in some respects, more intuitive 
behavior. In particular, we demonstrate the use of our new measure by analyzing the tradeoff between 
the amortized cost of on-line algorithms for the paging problem and the amount of lookahead available 
to them. We also derive on-line algorithms for the K-server problem on any bounded metric space, 
which, relative to the new measure, are optimal among all on-line algorithms (up to a factor of 2) and 
are within a factor of 2K from the optimal off-line performance. 

Key Words. On-line algorithms, Competitive analysis. 

1. Introduction.  We cons ider  the p rob l em of  ca r ry ing  out  a sequence of  tasks  
subject  to some cost  funct ion where at  any  given m o m e n t  a cur rent  task  has to 
be processed wi thou t  knowledge  of  future requests. 

In  a seminal  paper ,  S lea tor  and  Tar j an  [ST]  in t roduce  a measure  for ana lyz ing  
the pe r fo rmance  of  on- l ine  a lgor i thms.  In par t icu lar ,  they s tudy  the move  to front  
s t ra tegy for list accessing and  var ious  strategies for paging.  Ra the r  than  s tudy the 
pe r fo rmance  of such on-l ine  a lgor i thms  relat ive to p robab i l i s t i c  assumpt ions  a b o u t  
the  inpu t  d is t r ibut ion ,  they relate  the on-l ine cost  to tha t  of  an op t ima l  off-line 
a lgor i thm.  An a lgo r i thm is said to be M-competitive if the cost  incurred  by  using 
it on any  request  sequence is never  more  than  M times the min imal  poss ible  
(off-line) cost  of  serving tha t  sequence (up to an addi t ive  constant) .  The resul t ing 
measure ,  called the compet i t ive  ra t io  in [ K M R S ] ,  has now been invest igated in a 
n u m b e r  of  specific and  abs t rac t  settings. A l though  the compet i t ive  ra t io  is in 
general  a pessimist ic  b o u n d  (in tha t  it  appl ies  even when the future is comple te ly  
unpredic table) ,  there  are  often a lgor i thms  yie lding surpr is ingly  good  bounds  on 
this rat io.  

O n  the o ther  hand,  since on-l ine versus off-line cons idera t ions  are  so pervasive,  
it  should  no t  be expected tha t  cons ide ra t ion  of  the compet i t ive  ra t io  (or any  one 
measure)  will a lways  lead to efficient (or even reasonable)  a lgor i thms.  
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The following example describes a fairly common situation in which we choose 
to abandon all competitive strategies in favor of a noncompetitive one. Consider 
the question of buying an insurance policy. Paying $5 a month to insure one's 
car against theft is a noncompetitive strategy! The mere existence of a scenario 
where one will never present a claim to the insurance agent suffices to make it so. 
On such a scenario the all-knowing off-line strategy would have never bought the 
policy. 

We introduce another measure, which we call the Max/Max ratio. Simply stated, 
the Max/Max ratio compares the worst-case amortized behavior of an algorithm 
with that of an optimal off-line algorithm. An algorithm is said to have Max/Max 
ratio M if it is guaranteed that on no request sequence will it ever have to pay 
more than M times the maximal cost that an optimal off-line algorithm pays on 
a sequence of the same length (up to an additive constant). Thus our "new" 
measure is just a revival of the traditional worst-case amortized analysis except 
that we now normalize by the best that can be done using an optimal off-line 
algorithm. We discuss the basic features of this new measure and investigate the 
types of on-line algorithms it suggests. 

We consider several aspects of the on-line versus off-line problem, such as the 
effects of available lookahead and the dependence of the on-line algorithm upon 
memory. We investigate both the competitive and the Max/Max measure with 
respect to these aspects and show that, as far as these questions are concerned, 
the Max/Max gives rise to a perhaps more intuitive behavior. 

Using a simple argument, we show that the definition of the competitive ratio 
measure implies that it does not reflect any improvement in an on-line agent's 
behavior due to any finite amount of lookahead. This is a rather disappointing 
aspect of that measure. With respect to the Max/Max ratio, we will see that the 
potential benefit of finite lookahead becomes a central issue. 

One of the more enticing aspects of the perspective provided by the competitive 
ratio is the role of memory. In fact, at first it appears to be a paradox that the 
known competitive algorithms make essential use of memory even though the past 
is uncorrelated with the future. The paradox is explained by observing that the 
goal of a competitive algorithm is not to be optimal on any sequence but rather 
to make sure that the optimal (off-line) algorithm cannot be doing too much better. 
That is, it is sometimes beneficial to increase one's own cost, if in doing so it can 
be guaranteed that the optimal off-line cost grows accordingly. 

In Section 3 we examine this question. We show that memory dependence is 
inherent in the competitive ratio by giving some lower bounds on the amount  of 
memory needed for running competitive on-line algorithms. Our results imply 
that, for certain on-line tasks, any competitive algorithm should devote unbounded 
(i.e., must grow with certain parameters of the metric space) memory space to 
recording past behavior. We limit our discussion to deterministic algorithms. 
Randomization can compensate for memory constraints, but our arguments can 
be applied to derive similar lower bounds on the product of the number of memory 
bits and the number of random bits used by any competitive algorithm. 

This paradoxical behavior seems to disappear when considering the Max/Max 
measure. We show, in Section 5, that once efficiency is measured via the Max/Max 
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ratio, then, for every metric space, there exists a 2K-competitive memoryless 
on-line algorithm for the K-server problem on that space. 

For  definiteness we formulate our considerations in terms of the K-server model 
of Manasse et al. [MMS2]  although the issues transcend this particular abstract 
model. In the next section we introduce the required definitions and notation. 
Section 3 investigates the issues of memory  and the benefits of lookahead for the 
competitive measure. Starting in Section 4 we shift our  focus to the Max/Max 
measure. We first introduce the new measure and its basic properties. In Section 
5 we proceed to show that for every bounded K-server system there is a natural, 
simple, and memoryless on-line algorithm achieving a Max/Max ratio of 2K. This 
should be contrasted with the still open and intriguing K-server conjecture of 
[MMS2],  of whether or not for every K-server system the competitive ratio is 
equal to K. (Fiat et al. [FRR] and Grove I-G] have made substantial progress on 
this conjecture by showing that the competitive ratio for every K-server system 
is bounded by an (exponential) function of K.) An additional benefit of our 
Max/Max measure is that on-line algorithms can be directly compared (i.e., 
without reference to the performance of an optimal off-line algorithm whose 
analysis might be quite complex). Our  natural and memoryless on-line algorithm 
is shown to be within a factor of 2 of any on-line memoryless algorithm. In Section 
6 we begin the study of lookahead, starting with a complete analysis of "paging." 
In particular, we show that with lookahead l = n -  1, an on-line player can 
perform optimally in the K-server paging problem; that is, the Max/Max ratio 
equals one! We then consider arbitrary K-server problems and conclude with our 
own version of a K-server conjecture. 

2. Definitions and Notation. A K-server system consists of a metric space (V; d) 
where V is a set of nodes (possibly infinite) and d is a metric defined on the nodes. 
That  is, d: V x V ~ R >~ is symmetric and satisfies the triangle inequality. 3 At any 
time, K-servers are located on the nodes, where K < I VI. Following a request for 
a node v, if no server is on v, at least one server must be moved from its present 
location u to v at a cost of d(u, v). Given a request sequence ~ = vl,/)2, .. . ,/)t, an 
algorithm d responds by an appropriate  sequence of moves. 

Given a K-server system and an initial configuration So of servers, an algorithm 
d ,  when applied to a request sequence # = vl . . . . .  v~, produces a sequence of 
configurations $1, S 2 . . . . .  S t such that v t ~ S t ~ V. 4 The cost of d on ~, denoted 
C~aV;d)(~), is the sum of move costs, ~ = i  d(Si, Si+l) where d(Si, Si+l) is the cost 
induced by the metric d to change from configuration Si to configuration Si+ 1 
(i.e., d(Si, Si+O = min{~,~si d(u, f(u)): f is a function from Si onto Si+l}). 

3 In the [MMS2] formulation, d need not be symmetric but since all the known results concern 
symmetric systems we always make this assumption. 
4 The original definition of the K-server problem also implies that IS i n Si+ 11 -> K -- 1 (i.e., at most 
one server moves). As observed in [MMS2], because of the triangle inequality, the competitive ratio 
does not change when we allow more than one server to move. However, when memory requirements 
are also considered, this greater generality is useful and we allow this generality in the definition. 
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Define the competitive ratio of an algorithm ~ as 

W(cV;d)(d) = lim sup Cd(#) 
t ~ oo C o t ,  T ( 6 )  >_ t COPT(#) ' 

where COPT(# ) is the optimal cost to satisfy the request sequence #.5 That  is, we 
compare the on-line and off-line performance on the same request sequence and 
consider the limiting behavior of the worst sequences in terms of this ratio. An 
algorithm d is called competitive if its competitive ratio is bounded by some 
constant. I t  should be noted that the optimal cost is well defined since t3 is a finite 
sequence. Moreover, dynamic programming affords an obvious algorithm (see 
[BLS] and [MMS2])  to realize the optimal bound. However, dynamic pro- 
gramming is an "off-line" algorithm in that the entire sequence must be seen in 
order to produce the configuration (or server move) sequence. (A much more 
efficient but still off-line algorithm can be found in [CKPV].)  An algorithm d is 
called on-line if, for all i, S~+ 1 is a function of v 1 . . . . .  vi+t. We can also define 
algorithms with limited lookahead and we do so by saying that d has lookahead 
I if, for all i, S~+ 1 is a function of vl . . . . .  v~+,. In particular then, on-line algorithms 
are algorithms with lookahead l = 1. 

The concept of memory  in server systems is introduced by Raghavan and Snir 
[RS]. They define a K-server on-line algorithm with Q memory  states (i.e., I-log 2 Q-] 
bits of memory) as a function u: Q x V K x V~--~Q x V r satisfying the server 
property that if u(s, <x l , . . . ,  xr>, z) = (s', <Yl . . . . .  YK>), then z e {Yl . . . .  , YK}. 

This definition of memory  is permissive in the sense that it allows the algorithm 
to store for free any information that does not vary with request sequences. 
Furthermore, the algorithm may use unlimited working space, as long as it resets 
it afresh after each move of a server. 

3. The Role of memory and Lookahead in the Competitive Ratio. In this section 
we wish to show that competitive K-server on-line algorithms have to use memory  
growing (unboundedly) with the distances of the graphs they are designed for. 

As mentioned at the end of the previous section, our definition of memory  is 
very permissive. It  does not charge for any computation or data size as long as 
the computat ion can be done (and the  data be written down) before seeing the 
request sequence. I t  follows that the memory  we are charging for can be thought 
of as "learning from past experience." On the other hand, such learning should 
be irrelevant to the on-line/off-line problem as we are assuming the worst-case 
scenario where the future can be independent of the past. 

This state of affairs differs from most real-life situations. In our personal lives 

5 We henceforth drop the superscript (V; d) whenever it is clear from the context. We should note that 
an equivalent definition of the competitive ratio as defined in [BLS] and [MMS2] is given as 

inf{plthere exists a constant fl such that, for all finite request sequences #, CA(~ ) - p- COPT(#) < fl}. 
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we often do find that "experience is the best teacher." What  is the reason for this 
discrepancy between daily practice and what should be expected from a measure 
of success for on-line algorithms ? The answer is twofold. First, in real-life situations 
there is usually a correlation between past and future. Second, in practice there 
is always a limitation on computat ional  resources so that not all possible 
precomputat ion is available. We therefore view the results of this section as 
reflecting a counterintuitive aspect of the competitive ratio in spite of their 
consistency with daily practice. 

We begin by considering the restricted model of reasonable algorithms (as defined 
in the conference version of Manasse et al. [MMS1])  6 in which a server is only 
allowed to move if it serves the current request. Then, in Theorem 3.2, we show 
how a memory bound for the general model can be easily derived from bounds 
in the restricted scenario. The main tool for our proof  of a memory lower bound 
is the following simple lemma. 

LEMMA 3.1. For every competitive on-line algorithm d for the K-server problem 
on a metric space T of size (K + 1 ) , / f d  is reasonable and uses at most M memory 
states, then, in some sequence of (KM + 1) requests, ~ will leave every node of T 
unoccupied for at least one point of time. 

PROOF. Let us denote by {t o . . . . .  tK} the vertices of T and examine the response 
of the algorithm d to a long sequence of requests that keeps hitting the unoccupied 
node of T (as T has (K + 1) many  nodes and ~r operates only K many servers, 
such a node always exists). 

If  d keeps a server on some node, say to, for more than M K  many responses 
to consecutive requests, then, due to its memory  bound, there must be two 
requests--o-(/), a ( j ) - - to  the same node in {t 1 . . . . .  t~c}, such that d sees both 
requests in the same configuration (of servers and memory  state). It follows that 
~r will then keep a server immobile on to for any request sequence that, from that 
moment  on, will just repeat the requests a(i), a(i + 1) . . . .  , a(j). As all these 
requested nodes are among {t 1 . . . .  , t~} the off-line player can fix his servers, pay 
nothing, and defeat any competitive ratio. This contradicts our assumption that 
~r is competitive. [] 

The following definition extracts the metric space parameters that we use to 
bound (from below) the necessary memory  size. 

DEFINITION 3.1. Let (G; d) be a metric space and let T be a finite subset of G. 

* Let L(T) be max{d(t, (T - {t})): t e T} (where, for a point t and a set S, d(t, S) 
denotes the distance between t and the member  of S closest to it). 

�9 Let l(T) denote the smallest distance between two (different) members of T. 

6 The journal version of Manasse et al. [MMS2] refers to such algorithms as lazy algorithms which 
should not be confused with the concept of a "lazy adversary" as defined in [RS]. 
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�9 Let Sr(G ) denote the supremum of the ratio L(T)/l(T) over all K-size subsets 
T~_G. 

THEOREM 3.1. Let (G; d) be a metric space over n vertices, K < n and M a 
natural number. Every reasonable on-line algorithm for the K-server problem on 
G that has at most M memory states achieves a competitive ratio no better than 
(i.e., at least) (2MK + 2SK + I(G))/(2MK + 1). 

PROOF. Assume d is a competitive on-line K-server algorithm for G. Let 
T = {to, tl . . . . .  tK} be a (K + 1)-size subset of G such that 

SK+ I(G) = d(to, {tl . . . . .  tK})/d(tl, t2). 

Without loss of generality we assume that in the initial configuration all the 
servers are occupying nodes on T (we can always force a competitive algorithm 
to set his servers in a given configuration by a long enough sequence of requests 
to these nodes only). 

By Lemma 3.1, d is bound to vacate t o at least every (MK + 1) many 
requests. Every such move costs d at least 2L(T), while the off-line player is 
being charged at most l(t) per request (on any request sequence confined to T). 
Our claim now follows by a straightforward calculation (taking into account 
that, on a request sequence that always hits an unoccupied node, ~ '  is charged 
at least l(T) on every request). []  

COROLLARY 3.1. If(G; d) is such that SK + I(G) is infinite, a finite memory reasonable 
algorithm cannot be competitive for the K-server problem on G. Similarly, no finite 
memory on-line algorithm can achieve a bounded competitive ratio on a family of 
spaces with unbounded SK + 1. 

COROLLARY 3.2. Any K competitive reasonable on-line algorithm for the K-server 
problem on a space (G;d) should have at least (2SK+x(G)- K)/(K 2 -  K) many 
memory states. 

THEOREM 3.2. Let (G; d) be a finite metric space of size n. Let K < n and M be 
natural numbers. I f  d is an on-line algorithm for the K-server problem on G and M 
is an upper bound on the number of d ' s  memory states, then the competitive ratio 
Wc(d) is no better than (i.e., at least) (2nK-1MK + 2SK + I(G))/(2n K- 1MK + 1). 

PROOF OF THE THEOREM. We wish to apply Theorem 3.1 but now we should 
consider the possibility that many servers can move on a given request. A simple 
way of doing this is to simulate any algorithm that moves servers at will, by an 
algorithm that moves a server only to service a request. We do this by using 
memory to recall the "virtual locations" of the original algorithm's servers. For  
such a simulation of a K-server algorithm with M memory  states on an n size 
space, < n K- 1M memory states are needed. The theorem now follows by substitu- 
ting this memory  formula in the bound of Theorem 3.1. []  
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How well do our bounds for memory size fit in with the memory use of known 
on-line algorithms? Well, for the two-server problem on a triangle our bound 
meets precisely the needs of the BALANCE algorithm (known also as the "Ski 
Rental" algorithm). This algorithm serves with the closest server to a requested 
node until it has incurred a cost that would have sufficed for bringing over the 
remote server, and at such points it does choose to serve with the remote server. 
To implement such an algorithm, we have to compare costs accumulated by 
portions of size l(T) with L(T), thus using at least L(T)/I(T)= S3(G ) many 
memory states (here G = T is the underlying triangle). 

Chrobak et al. [CKPV] present a K-competitive on-line algorithm for subsets 
of the real line. On any request to an uncovered point, their algorithm moves 
the two servers adjacent to that point. (If the request is to one side of all the 
servers, then only the one adjacent server moves.) Both servers "move toward 
the request with equal speed" and stop when the first of them reaches it. Such 
an algorithm can be viewed as being "memoryless." The "memoryless" aspect 
of the Chrobak et al. algorithm is achieved by allowing more than one server 
to move and by having the ability to move servers to arbitrary points on the line. 

To bridge the gap between our model and theirs, consider again the reason- 
able algorithm model. It is clearly possible to simulate the Chrobak et al. 
algorithm in such a model by using memory to recall "virtual locations" of 
servers. It is interesting to note that the upper bounds, for K-servers on the line 
that follows from such a simulation, match the behavior of the lower bounds 
on memory provided by the above results (e.g., when K is kept constant, both 
the bound of Corollary 3.2 and the memory needs of the simulated algorithm 
grow linearly in the ratio between the smallest and largest distances among the 
requested nodes). 

On the other hand, as SK+I(G ) can be arbitrarily high for finite subsets on 
the real line, our theorems can be applied to conclude that, for every n > 1 and 
1 < K < n, there can be no finite upper bound for the competitive ratio of a 
memoryless on-line algorithm that must work for every K-server system on a 
finite set of nodes on the line. 

3.1. The Competitive Ratio of  Memoryless Algorithms. As we have mentioned 
in the introduction the exact value of the best possible competitive algorithms 
is a major open question. Applying the above results we can give an almost 
complete answer to this question in the realm of memoryless algorithms. 

DEFINITION 3.2. Let (G; d) be a metric space. 

�9 The basic K competitive ratio of (G; d) is the best possible competitive ratio 
of a memoryless K-server on-line algorithm for (G; d). That  is, 

E~(G) = inf{wc(d): sr is a reasonable memoryless 

K-server on-line algorithm for G} 

�9 Let S(G) denote sup{(d(x, y)/d(s, t)): x, y, s ~ t ~ G}. 
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THEOREM 3.3. For every metric space (G; d) and every K, the basic K-competitive 
ratio of G satisfies 2SK+I(G) _< EKc(G) <_ K .  S(G). 

PROOF. The lower bound is just the bound derived by substituting M = 0 in the 
bound of Theorem 3.1. For  the upper bound the algorithm ROTATE presented 
by Chrobak et al. [CKPV] can be applied. This algorithm is reasonable and 
memoryless but just the same, it is shown in that paper, that this algorithm is 
K-competitive for every K-server on any uniform space (i.e., the distance between 
any pair of different points equals 1). It is easy to see that, for every space (G; d), 
if an algorithm is W-competitive for (G; u), where u is the uniform metric on G, 
then it is < W" S(G; d) competitive for (G; d). [] 

We have limited our discussion to deterministic algorithms. Randomization can 
compensate for memory constraints, but our arguments can be applied to derive 
similar lower bounds on the product of the number of memory bits and the number 
of random bits used by any competitive algorithm. 

It is an interesting open problem as to whether or not for every K-server system 
the optimal competitive ratio can be obtained by memoryless algorithms whose 
servers are allowed to move a fractional distance on an edge (in the spirit of the 
[CKPV] line algorithm). In order to avoid trivializing this question (say by 
encoding arbitrarily many memory states in the least-significant digits of one 
server's location), we can restrict the algorithm's function u: V tc x V ~ V K so that 
u(vl, v2, . . . ,  Vk, V) is determined by an algebraic computation on the costs d(u, w) 
for u, w ~ {vl, . . . ,  Vk, V}. 

3.2. The Role of Lookahead. The only advantage an off-line algorithm has over 
an on-line one is its ability to see the future. It might be expected that allowing 
an on-line agent access to some finite lookahead would result in improving its 
performance relative to that of the off-line algorithm. Contrary to this expectation, 
as far as the competitive ratio is concerned, no finite lookahead is sufficient for 
any improvement in the performance of an on-line algorithm. As a measure of 
efficiency of an algorithm, the competitive ratio fails to reflect an important aspect 
of one's everyday experience--the benefits of (finite) lookahead for decision- 
making tasks. 

THEOREM 3.4. For every l-lookahead on-line algorithm d (for any K-server system) 
there exists a fully on-line (i.e., with lookahead l -- 1) algorithm ~ achievin 9 exactly 
the same competitive ratio. 

PROOF. Let ~ react to any sequence of requests tz = (x~, x2 . . . . .  x 0 by simulating 
d ' s  behavior on a t =  ( x l " " x l  X z ' " x 2 " " x t ' " x t ) .  It is straightforward to note 

l l l 
that C~(tr)/CoPT(Cr) = Cd(cr~)/CoPr(~r~). It now follows from the definition of the 
competitive ratio that Wc(d) > Wc(~). (The reverse inequality is trivially true.) [] 
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It should be noted that this simple argument remains valid when the on-line 
algorithm is allowed to chose its responses with the help of a random source (and 
the cost of serving a sequence is defined as the average cost over the bits generated 
by that source). 

4. Definition and Basic Properties of the M a x / M a x  Ratio. We now introduce a 
new ratio which, in some sense, seems closer to the spirit of traditional worst-case 
complexity analysis. The new measure we offer here gives rise to a different priority 
relation between on-line algorithms. The Max/Max ratio supplies a mathematical  
model for preferring to buy an insurance policy, a model in which the benefits of 
lookahead are evident and there exist (almost) optimal memoryless algorithms. 
The new measure clearly fails to capture locality of reference; in particular, for 
the paging problem all K-server on-line algorithms have the same Max/Max ratio. 
It  should be noted though that, contrary to common belief, the competitive ratio 
suffers from a similar p rob lem-- i t  does not necessarily prefer algorithms employ- 
ing locality of reference. Chrobak et al. [CKPV]  present an on-line algorithm for 
p a g i n g - - R O T A T E - - t h a t  is absolutely memoryless (and therefore cannot take into 
account any such consideration), but still achieves the best possible competitive 
ra t io - -K.  

Thus we are not trying to argue in favor of a particular measure. Rather we are 
simply claiming that different measures reflect different concerns. 

We first define the amortized cost of an algorithm d as: 

DEFINITION 4.1. Mr(d) = maxl~ I =t rgd(#)/t. The amortized cost of an algorithm 
d is defined as M ( d )  = lim supt~ ~ Mr(d  ). 

This is a natural adaptation of the notion of amortized complexity to our 
context. However, in order to make this concept well defined, we hereafter assume 
that our server systems are bounded in the sense that, for some N < oo, d(u, v) < 
for all nodes u, v. (Alternatively, we could normalize Mr(d) by the diameter covered 
by the requested nodes.) Also for definiteness we assume that both the on-line and 
off-line algorithms start in the same specified initial configuration. 

The following technical lemma helps to simplify the presentation. 

LEMMA 4.1. For every bounded K-server system and any optimal off-line algorithm 
OPT for serving it, the sequence Mr(OPT ) converges to a (finite) limit as t goes to 
infinity (thus M(OPT) = limt_~ ~ Mr(OPT)). 

We are now in a position to introduce the main definition of this paper - - the  
Max/Max  ratio of an algorithm: 

DEFINITION 4.2. Let d be an algorithm for serving requests on some K-server 
system, the Max/Max ratio of d denoted wM(d) is lim supt~ ~(Mt(d)/Mt(OPT)). 
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It immediately follows from Lemma 1 that: 

LEMMA 4.2. wM(d) = lim sup,__,~(Mt(d)/M,(OPT)) = M(sd)/M(OPT). 

That is, we compare the worst-case behavior of A and OPT rather than their 
performance on the same sequence. Our Max/Max ratio is a normalized amortized 
complexity measure, where here we normalize by the best that can be done using 
the optimal off-line algorithm. 

The entity abstracted by the competitive ratio is quite different; in many cases 
minimizing the amortized cost is in sharp conflict with minimzing the competitive 
ratio, as illustrated by the following problematic concern: 

Let us consider a two-server, .three-node system as a very simplified abstraction 
for studying the purchase of insurance (say on a car). Let d(1, 2 ) =  p and 
d(1, 3) = d(2, 3) = c for some c much larger than p. We can think o fp  as an annual 
premium and c as the cost of replacement. The presence (resp. absence) of a server 
on node 3 will correspond to the state of being insured (resp. not being insured). 
To obtain a bounded competitive ratio (say by using the BAL algorithm of 
Manasse et al. [-MMS1]) we must vacate node 3 whenever the premium costs paid 
thus far equals the replacement cost. This decision takes place no matter how 
many times node 3 has been requested (i.e., how many replacements have taken 
place)! On the other hand, minimizing the Max/Max ratio forces us to buy 
insurance every year as long as p < c. Clearly, the different measures determine 
very different strategies! In practice the measure (or combination of measures) has 
to be chosen that best reflects the consideration(s) bein9 emphasized. 

We would like to point out a few more properties of the Max/Max measure. 

COROLLARY 4.1. Let d ,  ~ be algorithms for servicin9 the same finite K-server 
system, then 

M ( d )  wM(d) 
m 

M(,~) w~(~) 

PROOF. This is a straightforward consequence of Lemma 2. []  

Corollary 4.1 indicates that for a given space (V; d) the Max/Max measure 
orders all servicing algorithms. This property enables a complete analysis of the 
relative (Max/Max) efficiency of two on-line algorithms without referring to an 
optimal off-line algorithm (and consequently without having to analyze it). We 
make use of this convenience in Section 4 where we present an on-line algorithm 
which is optimal up to a factor of 2 amongst all on-line algorithms for any bounded 
K-server system. 

One more possible use of this comparability property is that it gives an exact 
measure for the improvement in performance gained by increasing the number of 
servers; it is not clear how best to address this issue relative to the competitive 
ratio. (For one interesting approach, see Young [Y].) 
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4.1. The M a x ~ M a x  Ratio Is Graph-Dependent. Given the [MMS1] competitive 
ratio lower bound of K for every K-server system, and their K-server conjecture 
which states that this is optimal for every K-server system, it may very well be 
that the competitive ratio is independent of the underlying system. The situation 
is quite different when we consider the Max/Max ratio. In Section 6 we see that 
for uniform K + 1 node space the Max/Max ratio for K-servers is exactly K. We 
now present a class of metric spaces for which this ratio is 1. 

DEFINITION 4.3. A space (G; d) is a K-cluster if it can be partitioned into K subsets 
G~, . . . ,  G K so that: 

(i) For  all i, there are at least two nodes in G i. 
(ii) For  all i ~ j, if x ~ G i, y ~ Gi, z ~ G j, then d(x, z)/d(x, y) > K. 

(iii) For  all i, j, diameter (G,) = diameter (G j). 

FACT 1. I f  G is a K-cluster, then an on-line K-server algorithm exist that achieves 
a M a x / M a x  ratio o f  1 on G. 

PROOF. Let the on-line algorithm devote a fixed server to every cluster. The 
amortized cost per request of such an algorithm is at most the diameter of the 
G~'s. On the other hand, if v 1 . "  VK, UI""  U K are nodes such that, Vi, 1 _< i _< K, 
diameter (Gi) = d(vi, ui), then the request sequence (vl"'" VKUl"'" UK)* forces any 
off-line algorithm to pay d(viui) per request. [] 

"Cost Graphs" are a simple tool for visualizing the behavior of servicing 
algorithms and for comparing different measures. A cost graph displays the cost 
that an algorithm incurs as a function of the task sequence it has to serve as 
follows: Given a K-server system we fix a natural number t and consider the set 
of all request sequences of length t. We present the request sequences in an 
arbitrary order along the x-axis and use the y-axis for the cost. 

J 

FACT 2. Given any task system and any algorithm ~ for  servicin9 it, w M ( d  ) < 

Wc(d). 

PROOF. This fact becomes self-evident when cost graphs are viewed. Given a task 
system, for every s and every positive p the cost graphs of all algorithms that are 
within competitive ratio p of the optimal off-line lie in the strip between the graph 
of COPT(~) and pCoPT(a), whereas any algorithm whose graph is bounded by 
p'maxl~j= , CoPT(~ ) is within a Max/Max factor <p.  [] 

4.2. Memoryless  M a x ~ M a x  Optimal Algorithms. The first issue on which we 
wish to compare the Max/Max ratio with the competitive measure is the de- 
pendence of good algorithms upon memory. We have seen in Section 3 that 
competitive on-line algorithms necessarily depend upon memory. We wish to show 
that, once the Max/Max ratio is used for measuring the efficiency of on-line 
algorithms, memory use becomes irrelevant. Unfortunately we are unable, at this 



84 S. Ben-David and A. Borodin 

stage, to prove the ultimate result along this line--i.e., that, for any K and any 
metric space G, a memoryless on-line algorithm exists that achieves the optimal 
Max/Max ratio. In Section 5 we do prove a result that approximates the above 
statement. That  is, we provide a general purpose memoryless on-line algorithm 
that, for any K and any bounded metric space G, achieves a Max /Max  ratio that 
is within a factor of 2 of the best possible on-line algorithm (for this K and G). 

5. A Good Algorithm. Considering the previous discussion, we can expect that 
a relatively simple algorithm based on "staying in one's terri tory" will yield a 
good bound on the Max/Max  ratio. This is indeed the case. 

DEFINITION 5.1. Given a bounded metric space G = (V;d) and K e N ,  the 
K-coverin9 radius of G is defined as 

R(K,  G) = inf{rlthere exist a "set of centers" X = {vl . . . .  , vr} ~ V 

such that d(u, X)  < r for all u e V}. 

(Recall that d(u, X )  denotes infwx d(u, v).) 

LEMMA 5.1. Let  R(K,  G) = r. Then for  every e > 0 there exist  u~, . . . ,  u K+ ~ in V 
such that d(u i, u j) > r - e for  all i r j .  

PROOF. Suppose that for every set of K + 1 distinct points ux . . . . .  u K + 1 there is 
a pair of points u~, u i with d(u~, uj) <_ r - e. Then we can define a K-set X = 
{vl , . . . ,  vK} such that the covering radius (by using these points) is _ < r -  e as 
follows: Choose vl arbitrarily. Given X = {vl, . . . ,  vt} with d(v i, vj) > r - e for all 
i r j, if a v e V exists such that d(v, X )  > r - e, then set X = X u {v}. Otherwise 
the process ends. By assumption the process must end with # X ___ K and X is 
an appropriate set of centers. []  

Consider the following K-Center  algorithm for any K-server problem on a 
bounded metric space (V; d). Let the covering radius be R and let X = {vl, . . . ,  vK} 
be a set of centers such that all nodes in V are within R of X. Place the ith server 
on v,. To serve a request, choose any server subject to the constraint that the ith 
server remains within distance R of v,. 

THEOREM 5.1. The above K-Center  algorithm achieves a M a x ~ M a x  ratio <_2K 
for  the K-server problem on any bounded metric space. 

PROOF. Clearly the algorithm never pays more than 2R to serve a request. For  
every e >  0 let ul . . . . .  Uk+~ be a set of pairwise ( R - - e )  remote nodes whose 
existence is established by Lemma 5.1. Consider any (off-line) algorithm on the 
repeating request sequence (u~ . . . . .  Ur+O*. Clearly, for every e > 0, even the 
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op t imal  a lgor i thm mus t  pay  R - e every K requests (see the discussion concerning 
the uni form system in the next section), so that,  for all e > 0, WM(K-Center)< 
2R/ ( (R- -e ) /K) .  As we can choose e arbi trar i ly small, we can conclude 
wM(K-Center) <_ 2K. [] 

COROLLARY 5.1. The K-Center algorithm is optimal up to a factor of  2 amongst 
all on-line algorithms. 

PROOF. F o r  every e > 0, let ul . . . . .  Uk + 1 be a set of pairwise (R -- 5) remote  nodes 
as in the theorem. By always requesting an unoccupied node f rom this set every 
on-line a lgor i thm can clearly be forced to pay  at least R - e in every request. [ ]  

H o c h b a u m  and Shmoys  [HS]  show that  the p rob lem of comput ing  an opt imal  
K-set  of centers for a finite metric  space is an N P - h a r d  problem.  In [HS]  it is 
shown tha t  an efficient app rox ima t ion  a lgor i thm does exist for obta ining a K-set  
with radius r '  < 2r where r is the opt imal  radius, but  obta ining an approx ima t ion  
within a factor  of  (2 - e) remains  an N P - h a r d  problem.  If  the on-line a lgor i thm 
uses this approx imat ion ,  then clearly wM(approximate K-Center) <__ 4K. 

Finally, one might  ask abou t  the per formance  of perhaps  the " m o s t  basic"  
a lgori thm, namely,  serving with the closest server. It  is easy to see tha t  if the 
K-servers  are configured so as to m a k e  the covering radius of  the remaining nodes 
large (e.g., by having one server for two remote  nodes), then "serving with the 
closest server"  will not  correct  itself. Even if the servers are initially placed on an 
opt imal  set of  centers, it is still possible to drag  serves away  f rom their terri tory. 

CLAIM. There is a finite metric space such that, starting from any initial configura- 
tion, the M a x / M a x  ratio of  the Serve-with-Closest on-line algorithm on this metric 
space is exponential in K. 

PROOF. Let  b i be the ith element in the Fibonacci  sequence and let a'~ = 0 
and a'i+l = a'i + bi. Let our  space be a set of  reals {al . . . . .  a2r} where, for all 
i satisfying 3 < i < 2 K -  1, we have ai+ 1 - a ~  < a i - a i - 2  and the a~'s are 
arbi t rar i ly  close to the a'i's (i.e., given any e choose the a~'s so as to m a k e  sure that  
~=K1 [a'i - ai[ < e). The metr ic  on the space is natural ly  defined by the distances 
between the points  on the real line. 

We wish to show that,  s tar t ing f rom any initial configuration,  we can force a 
Serve-with-Closest player  to set its K-servers  on the odd indexed points. 

We do this in K steps. At the beginning of stage i (i > 1), we have the p roper ty  
that  for each j < i there is exactly one server on node  azj_ 1 and  that  all of  the 
remaining K - i + 1 servers are on the nodes {ajl j  >_ 2i - 1}. Stage i proceeds as 
follows: Unti l  there is at mos t  one server on the two nodes {a2~_ 1, a2~}, we cont inue 
to move  servers toward  azK by requesting any node  aj (j > 2/) such tha t  aj is 
unoccupied but  a j_ 1 is occupied by a server. If  the total  numbe r  of servers on 
{azi-  1, azl} is greater  than  one, then such an aj must  exist. I f  there is exactly one 
server on the nodes {azi_ 1, azl}, then request  az~_ 1 to complete  stage i. 

Otherwise  we bring one server toward  a2~_ ~ by requesting the lowest a i such 
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that a s is unoccupied but as+ ~ is occupied by a server. The stage ends when a2i_ 1 

gets requested. 
Having so forced the servers to the odd indexed points, the adversary requests 

a2K-a and azK alternatively, so that the Serve-with-Closest algorithm is forced to 

pay b2K_ 1 ,,~ ~/)2K-2 per request, where ~0 = (1 + x/5)/2. 
On the other hand, as ~ r - l l  bi < bK- 1 + bK, the K-Center  algorithm will station 

its servers on the upper half of the set of vertices and serve all requests to vacant 
nodes by the leftmost stationed server. It is easy to check that the cost of serving 
any request is thus O(q~K). [] 

6. The Influence of Lookahead. Unlike the situation for the competitive ratio, we 
now show that, when considering the Max/Max ratio, lookahead can improve 
on-line performance. In particular, we can completely analyze the power of 
lookahead with respect to any uniform server system (i.e., paging). 

LEMMA 6.1. Let  U, denote the uniform n-node space (i.e., d(i,j) = 1 for  all i r  
Then, for  all K < n - 1, 

n - K  
M ( O P T )  - 

n - 1  

PROOF. If we consider the uniform server system U,, then the off-line player can 
play a simple greedy strategy, namely, to postpone paging as long as possible. 
That is, it evicts the page whose next request is farthest in the future. (This strategy 
was proposed by Belady [B] and proven optimal by Mattison et al. [MGST].  An 
elegant proof can be found in [MS].) We assume the initial configuration has 
servers on nodes x,-K+l,  . . . ,  x, and consider the request sequence xt, . . . ,  x,, 
xl . . . . .  x . . . . . .  In trying to postpone moving as much as possible, at time t the 
off-line player will serve an uncovered node with that server whose present location 
will be the last to be requested. In doing so, it is easy to see that on the given 
input sequence the off-line player then moves n - K times for every n - 1 requests. 
Conversely, by looking ahead at the next n - 1 requests in any request sequence, 
O P T  can guarantee that at most n - 1 - (k - 1) = n - k nodes will be unoccupied 
when requested. []  

We now show that an on-line player with lookahead l -- n - 1 can achieve the 
same max cost by essentially following the same greedy strategy. Indeed, for any 
l satisfying n - K < l ___ n - 1, the on-line player can use the greedy strategy to 
achieve a max ratio of (n - 1)/1. 

THEOREM 6.1. Consider the K-server problem on U,, with lookahead l, 1 <_ 
l<_ n - 1 .  
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(i) I f  I < n - K,  then the greedy strategy achieves a M a x ~ M a x  ratio = (n - 1)/ 
(n -- K)  and this is optimal. (That  is, any l < n - K yields the same M a x ~ M a x  

rato as f o r  l =  1.) 
(ii) I f  n -- K < 1 < n -- 1, then the greedy strategy achieves a M a x / M a x  ratio o f  

(n - 1)/I and this is optimal. (Thus, in particular, the M a x / M a x  ratio = 1 for  
l = n -  1.) 

PROOF. We first consider the case l _< n -  K so without  loss of  generality let 
l = n -- K. At every point  in time, there are n - K uncovered nodes. The adversary 
constructs the request sequence by maintaining the proper ty  that  the next n - K 
requests are distinct and different f rom the K covered nodes. To do so, the 
adversary makes the (n - K)th next request to be a node that  is neither covered 
now nor  is it requested in the next I - 1 requests foreseen by the on-line algorithm. 

Clearly, such a strategy forces the on-line player to move  a server on every 
request. 

N o w  we consider the case n - K < l _ n - 1. The on-line a l g o r i t h m / - G R E E D Y  
is as follows: 

Lookahead  to the next l requests and use the greedy strategy described 
above (in Lemma 6.1's proof), relative to the lookahead  available to you. That  
is, if there are any presently occupied nodes which are not  requested in the 
next I requests, then use any server sitting on such a node. Otherwise use that  
server whose locat ion is the last to  be requested for the first time amons t  the 
next l requests. 

We will show M(I -GREEDY)  = (n - K)/l. Combining  this with Lemma 6.1 we 
have 

n - K / l  n - 1 
w~t"(I-GREEDY) - 

n -- K / n  -- 1 l 

Let us prove that, in any sequence of  I requests, the on-line algori thm pays at 
most  n - K. 

Let 0.1a~"" 0.m be a sequence of  requests and let C be a configurat ion of  servers. 
We say 0.i is a repeat point in o"1o"5"'- 0.rn relative to C if either 0.i is a location 
occupied in C or  there exists j < i such that  0.j = 0.~. 

CLAIM 1. I f  t < t', and Ct and C c represent the configurations (before satisfying 
the request) at times t and t' respectively, then any request at time t" > t' to a node 
v in Ct, is a repeat point with respect to Cr  

PROOF. If  v = a~ is in Ct we are done. Else, v must  have been requested before 
time t' (else v r Cc). Thus a~ is a repeat point  relative to C t. [ ]  

CLAIM 2. For every C and every a l a 2 . . . a l ,  at least I - ( n -  K)  repeat points 
relative to C exist.  
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PROOF. Claim 2 is immediate since there are only n - K uncovered nodes. [ ]  

CLAIM 3. Suppose / - G R E E D Y  vacates a node v in configuration Ct. Then  either 

v is not requested in the nex t  I steps or before the f irs t  request to v there are at least 

K - 1 requests to members o f  Cr  

PROOF. If V is vacated even though  it is to be requested within the next I requests, 
then, by  definition o f / - G R E E D Y ,  there must  have been at least K - 1 requests, 
one to each of  the nodes in Ct - {v}. 

CLAIM 4. Relat ive to any Ca the f i rs t  K - 1 repeat points (or as many  that exist) 

in a a a 2 " "  a t do not  c o s t / - G R E E D Y .  

PROOF. Let a s be the ith repeat point  for any 1 __ i < K - 1; i.e., as occurs with 
the algori thm in configurat ion Cs. 

If  a s is in C a and is not  vacated in the processing of  a a . . . . .  ~ a, then clearly 
as does no t  c o s t / - G R E E D Y .  If a s is not  in C1, then it mus t  have been requested 
at some time t': 1 <_ t' < s. Let t' be the last such request. Clearly, o- s e C c + ~ and 
if it is not  vacated in the processing of at,+a, . . . ,  o's, then again a~ does not  cost 
the algorithm. [ ]  

Returning to the p roof  of  the theorem, suppose that  C~ is the last configuration 
from which a s was vacated. Then by Claim 3 there must  be at least K - 1 requests 
in a~, . . . ,  a s_ a to members  of C~ and, by Claim 1, each of these requests is a repeat 
point  with respect to C1. Hence there are K - 1 repeat points relative to Ca in 
a~a2"'" as -  1 contradict ing the assumption that  a s is the i _< K - 1 repeat point  
relative to Ca. 

The on-line player then pays at most  n -  K in any l steps since the first 
l - (n - K) repeat points are free. Thus the 

(n  - -  K ) / l  n - -  1 

M a x / M a x  ratio <_ (n - K)/(n - 1) = - - f - - "  

Finally let us show a lower bound  of  (n - 1)/1 on the M a x / M a x  ratio of any 
on-line algori thm with lookahead  1 in the range [n - K, n - 1]. 

CLAIM 5. For any n -- K < l < n - 1 and for  any on-line algori thm d with 

lookahead l, a request sequence on n nodes exists  that forces  the on-line player to 
move a server at least n - K many  times on every subsequence o f  I many  consecutive 

requests. 

PROOF. The claim follows once we can demonstrate  the existence of a request 
sequence o-~ such that, for every i, the subsequence a(i + 1), a(i + 2), . . . ,  a(i + / )  
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contains at least n - K nodes that are not occupied by servers after d ' s  response 
to the ith request of a. Such a sequence can be easily generated by letting 
a(1) . . . . .  a(/) contain n -  K nodes not occupied by the servers in their initial 
configuration (this is possible whenever n - K </) ,  and then, at each stage i > l, 
chose as a(i + 1) the last node vacated by d before it serves a(i - l + 1). [] 

This completes the proof of Theorem 6.1. [] 

The previous theorem raises an important question. Namely, is it the case that, 
for every bounded K-server problem, indeed for every bounded task system 
problem, an l exists such that there is an l-lookahead algorithm achieving a 
Max/Max ratio equal to 1 ? That  is, can amortized optimality always be achieved 
with finite lookahead? The following example shows that finite lookahead cannot 
always guarantee optimality. 

CLAIM. There is a K-server system for which no amount of finite lookahead can 
guarantee Max~Max optimality. Consider three servers with lookahead l on a 
"barbell" graph with nodes {a,b, c, d} and edge costs d(a, b )= d(c,d)= 1 and 
d(a, c) = d(a, d) = d(b, c) = d(b, d) = 4. The initial configuration is {a, b, c}. The 
sequence of requests is generated in segments. The prefix (abcd) z begins each segment. 
I f  before the first request of the segment, a or b is vacant, ab is added to end the 
segment, otherwise c or d is vacant and cd is added to end the segment. Segments 
are repeatedly generated this way. The on-line algorithm incurs a cost of at least 2 
per (abcd) piece and an additional 2for the two requests at the end of each segment, 
for an average cost of (2l + 2)/(4l + 2) per request. For any sequence of n requests, 
O P T  can incur an average cost per request bounded by �89 + 4/n by immediately 
moving a server so that both nodes on the side of the barbell that will be requested 
most are covered, and then only moving the server on the other side of the barbell 
back and forth. 

Although finite lookahead cannot always guarantee optimality, it is the case 
that increasing the lookahead can improve the Max/Max ratio. As observed before, 
the usual optimal (off-line) algorithm is dynamic programming which needs to see 
the entire request sequence. The obvious approach then would be to use an 
l-lookahead approximation to dynamic programming, which indeed as l grows 
gives a better approximation to the optimal dynamic programming algorithm. We 
have the following: 

THEOREM 6.2. For every bounded K-server system, Ve > 0, 31 and an 1-lookahead 
algorithm DP(1) such that the M a x / M a x  ratio of DP(l) <_ (1 + e). 

PROOF. Let R = R(K, G) be the K-covering radius of G, so that by the argument 
of Theorem 5 the off-line player pays at least R / K  per request on a worst-case 
sequence. The on-line algorithm DP(l) simply looks ahead I requests and performs, 
as does the dynamic programming solution O PT  for the sequence of l requests 
~1a2"'" a~, say, ending in configuration C. Then DP(1) looks ahead at the next l 
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requests tTl+ltYl+2ff2l and now simulates the behavior of O PT  on the entire 
sequence of 21 requests a~tr2"..tr2~. If OPT would be in configuration C' after 
a l a 2 " " a  t, then, in processing a t+ l . . . a2 t ,  the cost to DP(1) will be at most 
d(C, C') + OPT's cost on at+ l ' . .a2 t .  Continuing in this manner, it follows that if 
1 = m.max(c,c, ) d(C, C')/(R(K, G)/K), then CDP(l)(6) ~ (1 + 1/m)Copr(#). [] 

The argument above produces an l that depends upon both K and the metric 
space. We have already seen that in the paging scenario the amount of lookahead 
needed for approximating an off-line performance grows unboundedly with n (and 
therefore with K). 

CLAIM. For a two-server problem on a triangle G, any lookahead less than 2S3(G ) 
does not improve the Max~Max ratio of an on-line algorithm. (It should be noted, 
though, that such lookahead can help an on-line algorithm reduce its cost on some 
request sequences; e.g., sequences with blocks of length < l on which the requests are 
constrained to a subset of size <_ K of the nodes). The claim can be easily extended 
to any K-server problem. 

PROOF. The idea is similar to that of Theorem 3.1. 
Let (vlv2) be the smallest edge of G. Let d denote d(vlv2) and let D be the length 

of the medium-sized edge of G (so Sa(G) = D/d). An on-line algorithm can choose 
to leave a server at Va and thus bound its amortized cost by d per request. 

Let A be any l-lookahead on-line algorithm. If I < 2S3(G), then, being faced with 
a sequence of l many requests alternating between v 1 and v 2, A should keep a 
server unmoved on v 3. Having only l-lookahead there is the risk that the (l + 1)st 
next request may be to v 3, and as d ' l  < 2D this is the best way to serve 
VlV2Vl...v2v3v 1. It follows that A's amortized cost _>d, just as could be achieved 

without lookahead. [] 

CONJECTURE. We conclude with our own version of a K-Server Conjecture: 

For every (bounded) K-server system, the Max~Max ratio < K; furthermore, 
this ratio can be achieved by a memoryless algorithm. 
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