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Abstract

Discrete-time optimal control (DTOC) problems are large-scale opti-
mization problems with a dynamic structure. In previous work this struc-
ture has been exploited to provide very fast and efficient local procedures.
Two examples are the differential dynamic programming algorithm (DDP)
and the stagewise Newton procedure — both require only O(N) operations
per iteration, where N is the number of timesteps. Both exhibit a quadratic
convergence rate. However, most algorithms in this category do not have
a satisfactory global convergence strategy. The most popular global strat-
egy is shifting: this sometimes works poorly due to the lack of automatic
adjustment to the shifting element.

In this paper we propose a method that incorporates the trust region
idea with the local stagewise Newton’s method. This method possesses ad-
vantages of both the trust region idea and the stagewise Newton’s method,
i.e., our proposed method has strong global and local convergence proper-
ties yet remains economical. Preliminary numerical results are presented
to illustrate the behavior of the proposed algorithm. We also collect in the
Appendix some DTOC problems that have appeared in the literature.
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1 Introduction

Discrete-time optimal control (DTOC) problems arise in many practical appli-
cations including multi-reservoir control problems[14], the treatment of polluted
groundwater [3], and inventory control [2]. In this paper we are concerned with
the unconstrained discrete-time optimal control problem,

min F' = Ef\sl Li(yi, zi) + Ln(yn)

Yi+1 :Tz(yzvxz)’ LzlaaN_l (P)

Y1 = 1.
The vectors y; € R™,1 = 1,..., N are called state variables and the vectors
z; € R 1 =1,..., N — 1 are called control variables, y; is a constant vector;

F=F(y,z): RwN>*ne(N-1) _, p

where y is a vector in R™" and z is a vector in R™N=1 (we put them in the
matrix form, i.e., y = [y1,...,yn] and © = [21,...,2ny_1]). We assume that

Tl(y“:cl)Rnanz _>R7L: 177N_1

and L;, : =1,..., N are all twice continuously differentiable functions. Through-
out this paper we denote n = n (N — 1), y; the i-th state variable, x; the i-th
control variable, y; ; the j-th component of the i-th state variable, z;; the j-th
component of the i-th control variable and 7;; the j-th component of the i-th
transition function.

Obviously, problem (P) is an optimization problem with a dynamic struc-
ture. Taking advantage of this structure, and using the principle of optimality,
Mayne [10] and Jacobson and Mayne [6] propose a second order algorithm called
the differential dynamic programming (DDP) algorithm for solving (P).

It has been proven, see Murray and Yakowitz [14] for example, that the DDP al-
gorithm is locally quadratically convergent. However, we note that most DDP-like
algorithms do not have a satisfactory global convergence strategy. For example,
Liao and Shoemaker [7] propose an “adaptive shift” procedure which guarantees
global convergence. This procedure is similar to the method proposed in Luen-
berger [9]: the smallest eigenvalue of each of the stagewise Hessian matrices {C;}
needs to be calculated. If the matrices {C;} are large the adaptive shift procedure
can be very expensive. Another disadvantage of this kind procedure is that the
value of the shifting parameter is not easy to choose.



In the next section we propose a new method for problem (P): this method
has strong global convergence properties, local quadratic convergence and a re-
markably low computational cost per iteration. In section 3 numerical results are
presented to illustrate the behavior of our algorithm.

2 Description of the algorithm

In this section we describe our algorithm which combines the stagewise Newton’s
method of Pantoja [16] with the trust region method of Nocedal and Yuan [15].

2.1 The stagewise Newton’s method

Pantoja [16] proposes a modified DDP method for solving (P) which produces

iterates identical to those that Newton’s method would produce for problem (P):

min f(z) _
x e R" (P)

which is obtained by eliminating the state variables in (P). Pantoja’s algorithm
is regarded as a stagewise Newton’s method. Unlike the conventional Newton’s
method for (P) which requires Q(N?) works per iteration! Pantoja’s algorithm
needs only O(N) operations per iteration.

Pantoja [16] shows that the DTOC problem (P) can be transformed into the
following equivalent problem:

min £ =y + L(yy)

yig =T/ (yl,z5), 1=1,...,N—1 (PP)
y1 =1
where
yz/ = [yiTayz/',ny-I—l]T € Rny+17 1= 17 c '7N7
Tz,(yz/7r2) = [Ti(yirri)Tayz/',ny-}—l + Ll(ylvxl)]T7 i = 1) SR 7N —1

and y; = [y{,0]".
In the following we denote n, :=n,+ 1, (f). the gradient of f with respect to
x and % the Jacobian of f with respect to . Algorithm 1 is Pantoja’s algorithm

'We denote by p = Q(q) if there are 0 < ¢; < ¢ such that ¢1q < p < eaq.
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for calculating the Newton direction d = —H~'g, where H is the Hessian of f(z)
(we assume that H is invertible).

Algorithm 1 [Pantoja’s stagewise Newton’s method [16]]

Step 1. Given the current control variable x; calculate the current state variable
y' via the transition function 77; calculate P = (Ly)y, 1, @ = (Ln)y,, G =
Q.

Step 2. Perform backward recursion:
For:=N—-1,...,1 do
(i). Calculate A;, B;, C;, D; and E; according to

n. .t

BT 6T’ v
a5 (
8y2 5y2 ;

n. .t

BT’ 8T’ v
B] - ( ayZ arl —I— Z G y Ty

A =

7=1
or aT' &
G = (a”cz 8@ —I_]Z;G Jouz,
T} ¢
D = (3@
aT!
E;, = H7Q.
o
(ii). Calculate:
(873 - _CZ'_IDZ
B = _Ci_lBiT'

(iii). Update P, () and G:

P — Ai—-plCs
Q < Ei+ B
aTi/ T

G «—



End
Step 3. Calculate the Newton direction. Let (6y); = 0.
For:=1,...,N—1do

di = o+ Bi(6y)i

(0y)is1 = ay;(‘sy)ﬁa?d’

End

At first glance it may be difficult to see the connection between Algorithm 1
and Newton’s method. However, there is a clear relationship. As we shall see in
the discussion in section 2.3, if we linearize the transition functions and expand
function F' up to second order derivatives, then the outcome of the DDP procedure
for this approximation model is —H;'g where H = H, + H, is a partition of H.
Pantoja’s algorithm is a modification of the DDP algorithm so that the first part
of H, Hy, can be included. Transforming (P) into (PP) makes a clear connection
between matrices {C;} and the Hessian of f, H. It follows from Lemma 2.2 in
section 2.3 that

Cno1=Hy_1noa

where Hy_q n-1 is the (N — 1)-st diagonal block. If C'y_; is nonsingular then we
can use it as the pivot element and one step of Gaussian elimination zeroes the
first N — 2 block-elements in the (N — 1)-st block column. After this elimination,
the matrix obtained by eliminating the (N — 1)-st block column and row is just
the Hessian of function f at the current point & where xxy_; is replaced by

N-2
TN-1 =TN-1F Z fa:N_l,zjcﬁl_l(fﬁj - f])

i=1

This procedure is repeated recursively in the next step of Pantoja’s algorithm. It
follows from Lemma 2.2 again that Cy_3 is the (N — 2)nd diagonal block matrix
of the matrix obtained from H by one step Gaussian elimination. This argument
applies to all matrices C;;2 = N — 1,...,1; thus we have that H = UL where U
is an upper triangular block matrix and L is a lower triangular block matrix with
C; being its diagonal block matrices. The prootf of the equivalence of Algorithm
1 and Newton’s method can be found in Pantoja [16].

b}



Returning to problem (P), we can define a procedure for calculating New-
ton’s step d = —H'g as follows: we first transform (P) into (PP) and then use
Algorithm 1 to obtain d. We denote this procedure by

d = newton({x:}, {(Li)es, (Li)yir (Li)eiwss (Li)ziyer (Li)yiws }
{(Ti)zm (Ti)ym (Ti)zz‘l?n (Ti)wz‘yz‘v (Ti)yz‘yz‘ })

or simply d = newton(x, L,T).
If we ignore the lower order terms the total number of operations per iteration
of Pantoja’s algorithm is the same as the DDP algorithm [7]:

1
N - (2n3 + ;ningg + Qnyni + gni) (1)

2.2 A trust region method

The trust region method of Nocedal and Yuan [15] is actually an algorithm that
employs both trust region techniques and line searches. Consider an unconstrained
minimization problem of the form

min f(z).

A trust region method calculates a trial step by solving the subproblem

min ¢r(d) := (¢*)Td + 1d"Hyd

subject to ||d|| < Ay, (subP)

where ¢g¥ = V f(z*), H} is an n x n symmetric matrix which is either the Hessian
of f or some approximation to it and Ay > 0 is a trust region radius. (Throughout
this paper we assume that H is the Hessian of f and || - || is the l; norm.) Then,
based on the ratio between the actual reduction in the function and the predicted
reduction, the step d* —the solution of (subP)- is either accepted or rejected and
Hy and Ay are updated.

Nocedal and Yuan [15] propose the following algorithm to solve (subP) ap-
proximately:

Algorithm [Algorithm 2.6 of Nocedal and Yuan [15]]

Step 1. Given v > 1, € > 0, set A := 0. If H is positive definite go to Step 2;
else find A € [0, || H|| + (1 + €)]|g]|/A] such that H + AI is positive definite,

where [ is the identity matrix.



Step 2. Factor H + M = RTR, where R is upper triangular, and solve RT Rd =
—g for d.

Step 3. If ||d|| < A stop; else solve R q = d for ¢, and compute

I* vl dll = A

A=)+ ; (2)
lqll> A

go to Step 2.

The Nocedal-Yuan algorithm uses the Cholesky factorization of H + Al; how-
ever, H is not available in the DTOC setting. To overcome this difficulty, we note
that factoring H + Al = RT R is not necessary: the update (2), which is based on
Newton’s method for equation

AN S
Al dM)ll
where d(\) = —(H + M) 'g, is equivalent to
oy P Al = A
A=A TR

where d = —(H + A\ )7'g and d' = (H + A )~*d. We thus propose the following
algorithm to solve (subP).

Algorithm 2

Initialization. Given v > 1, ¢ > 0 and a A € [0, ||H|| + (1 + €)||g||/A] such that
H + M\ is positive definite.

Until ||d|| < A, do

d = —(H+ )\])_lg

d = (H + )\])_ld
31l - A

A~ A+ I A .

End



The following algorithm is based on Algorithm 3.1 of Nocedal and Yuan [15]

in which we use our modified algorithm to solve (subP).

Algorithm 3

Initialization. Given z! and A; > 0, choose ¢;,¢c; such that 0 < ¢; < 1 and
0<ecy <. Set k=1.

Until convergence do
(i). Solve (subP) using Algorithm 2.

(ii). Calculate f(z* + d*).
It f(o + ) > f(c)
use a simple binary search to find 0 < s;, < 1 such that f(z*+s,d*) < f(z*)
and put ¥t = 2% + spd*, Ay = |25 — 2F;
else
set Ft1 = 2% 4+ d* and

1 >
Apyy = { Ay if pr > 1

coA\p o.w.
where
1) =
¢k(0) — dr(d*)
End if

Calculate ¢g*t1; set k =k + 1.

End

2.3 Combining the trust region method and the stage-
wise Newton’s method

To carry out the trust region method with the Newton step d = newton(u, L, f)
we need the following:

(a). A way to detect if H + A/ is positive definite, where [ is the identity matrix,
and a procedure to find a A € [0, ||H|| + (1 + €)]|g]|/A] such that H + A is

positive definite.



(b). g: the gradient of f(z).

(¢). d=—(H+ X)'gand d' = (H + M) td.
(d). ¢(d) = gTd+ %dTHd.

We show below that these quantities can be calculated in O(N) operations.

We first consider (b). It turns out the g can be obtained efficiently by means

of a “backward” sequence of equations. The following procedure is essentially
that of Dyer and Mcreynolds [4].

We assume that ¢ is in the matrix form, i.e.,
g = [91,---79N—1]7gi € an7i = 177N—1
Note that we can extent the definition of ftoallz=1,..., N
fi = fi(‘yi,[l‘i,...,,IN_l]),i = 1,...,N—1
and fy := Ly(yn). (Thus f(z) = fi(y1,).) Then we have

fi= fiv1 + Li(yi, ;).
Taking 5 on both sides of (3) yields

Ofi  0fiyq1 01y OLi(yi, ) (4)
&m - 6yi+1 8332 6?.12 '
It is easy to check that g—i = g—i Taking 8%1' on both sides of (3) gives

Jy;  Oyiy1 Oy; dy;

Also we have
dfn _ OLn(yn) (6)
dyn dyn

Combining (3)-(6) we have the following algorithm for calculating the gradient g.

Algorithm g

Initialization. Given z = [z,

... xn_1], calculate y = [y1,...,yn] and % =
9L (yn)
dyn



Fori:N—L...,l do
0fi _ 0fin 01;  OLilyi,z)

y; i1 yy, dyi

Oh _ O0fim OT;  OLilyi i)

Ox; Y1 O dxi
- Ofr

End

We note that the total number of operations for Algorithm g is
N - (nf/ + nyng). (7)

We now consider (a) and (c). The key to our approach is the following obser-
vation.

Lemma 2.1 H s positive definite if and only if C; is positive definite for all
1=1,...,N—1.

Proof. According to Theorem 4.6 of Pantoja [16], if C; is positive definite for
allz =1,..., N—1then H is positive definite. On the other hand, if H is positive
definite then it follows from Theorem 4.5 of Pantoja [16] that C; is invertible for
all ¢. Thus the Gauss block-triangularization procedure in Pantoja [16] can be

carried out. We thus have H = UL where

[ My My -+ Min-a
U= 0 Mm EE MQ,‘N—I
L 0 0 - My_1n-1
and
e 0 e 0
RN
| Lnv-1q Ln-ig -0 COnea
where M;; = 1,7 = 1,...,N — 1. It is easy to check that H = UCUT with
C = diag(Ch,...,Cn—1). Therefore C; is positive definite for all 7. O
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To our knowledge, the observation that if H is positive definite then C; is
positive definite (for all ¢) is a new one.

Lemma 2.1 provides us with a method to detect if H is positive definite: we
just need to check if each C; is positive definite. This can be done by attempting
the Cholesky factorization of Cy,e =1,..., N — 1.

Now consider how to calculate (H + )\])_lh where A 1s an arbitrary vector and
H is the Hessian of f at . Consider augmenting F':

N-1
A
F'o= F+ ) (5l = > = (g + k)" (2 — 7)) + La(yn)
=1
N-1 Y
= [Li(yi, x 5”%’ — 2> = (9 + h)"(z; — )] + Ln(yn)
=1
N-1
=1 Y Li(yi, ) + Liy(yn).
=1

In the following we show that if d is the output of procedure newton for the
problem with F’ as the objective function, i.e., d = newton(z, L’,T), then d' =
—H'"'¢' = (H + M )~'h. We need a technical result first.

Lemma 2.2 The gradient and Hesstan, g and H respectively, can be written,

_ (%
ay 2 & ny 2
81‘ =1 1

where [ is the n by n identity matriz, a—y is the Jacobian of y with respected to
x and is an nyN by n matriz and (VF),,  is the component of the gradient of
F corresponding to y; ;. The block rows of g—z can be calculated via the recursive

formula:
Oy 0Ty OT; Oy,
dx Oz Oy; Oz
where a7 a7
8;(; == [O,...,O,a—xi,o,...,()],
with the boundary condition
Iy1

1 _
=0 Rnyxng@( 1)‘
Oz €

11



Proof. By direct calculation. a

Lemma 2.3 Let f' = f'(x) be the objective function reduced from F', H' be the
Hessian of f' evaluated at T and ¢' be the gradient of ' evaluated at T. Then,
H =H+ M and ¢' = —h.

Proof. It follows from Lemma 2.2 that

g = L) VF =[O0 VF 4 Me —3) ~ (9 +h)
Thus 5
g =gl =1, (5)"]-VF g —h=—h

On the other hand, by Lemma 2.2,

, dy , i
o= G| 4 |+ X SR, v
8]} =1 ]:1
B Y 1 [ s MO0 N-1 % )
= [Z,(%)](VF+l 0 ODl ]+21;[VF%] V2T
. dy T2 I = 2
= [I,(%) IV2F | oy |+ M+ DY (VF),, VT
* Bm i:l j:l

= H+ ).

O

Therefore (H + AI)™'h can be calculated by applying the procedure newton

to (P) with F being replaced by F’. We note that the total number of operations
needed for this calculation is the same as (1):

7 1
N - (Zn + Znynz + Znyn + 3nI) (8)
It is clear that this method can be used to calculate the vectors —(H + )\])_1

and (H + A )~'d, both of which are needed in (c).
Now we consider (d). Note that H = H; + H, with

N—-1 ny
H, = Z Z[(VF)%,J‘ 'meTi,j]
=1 7=1
0 I
H, = [I, (ay) ]VQF[ ]
T 81‘
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Consider the following DTOP problem:

Zit1 = wZ(Z“dZ) = gz} ; + 8T”“ dZ + %dZT(TZ)mIzd“ 1= 1, Ce ,N —1 (Pl)

dz;
Z1 = 0,

where d?(T}),,z,d; is an n,-vector whose j-th component is d? (T} ;)z.zdi. Let
fi(d) be the reduced function. Then obviously, fi(d) is a quadratic function.
Using Lemma 2.2 simple calculations lead to:

82

o5

_ _!/ T _
5 02 1o 1 Nl 9
Vi) = LEnea | L]+ Y SR, - Vi
ad =1 j=1
N—-1 ny
= Z [(VF) y” Vime] = H;
=1 7=1

Therefore

1
fild) = ¢g"d + 5dTﬂld

which can be calculated via (P;) using (ignoring the lower order terms)

operations.
We now consider another DTOP problem:

min F2(Z d) z(zfvzl[zg([fi)yiyizi + QZZ'T(L'L')ymﬁdi + dzT(LZ)zzzde])
+3 ZN(LN)yNyNZN
zig1 = Wiz, d;) = Siz + 8T*d 1=1

21:0.

N-1 (F2)

ey

Let fy(d) be the reduced function which is also a quadratic function. Using
Lemma 2.2 we have

f2(0) =
sz(()) =

13



V) = LG
Y\ 12 I _
] ]
Hence,

1
fg(d) - §dTH2d

which can be calculated via (P,) using
N - (nf/ + nyng + ni)

operations. Putting them together, the value of ¢(d) = fi(d) + f2(d) can be
calculated in two forward recursive sweeps and the total number of operations is
(ignoring the lower order terms):

N (nyny). (9)

It then follows from (1), (8) and (9) — ignore the operations for calculating the
gradient (7) which is regarded as a lower order term — that the total number of
operations per simple-iteration, i.e., no shifting or line search is needed, is

21
N - (6n3 + 77137% + 7nyni + ni)

Finally, we propose a procedure to find a A € (0, | H|| + (1 + €)]|g||/A) such
that H 4+ A is positive definite.

Algorithm )

Initialization. Take A = ||g||/A and let 6\ = (]|g]|/A)/2.
Until H + M\ is positive definite do

Ae— A+ 06X

End

Note: checking if H + Al is positive definite can be carried out by checking if
all C;,2=1,..., N — 1 are positive definite during the procedure newton.
For this algorithm we have

14



Lemma 2.4 If H is not positive definite then Algorithm X terminates in at most
[CA[HD/NglT + 1 steps.

Proof. If H is not positive definite, then it follows from Lemma 2.3 of Nocedal
and Yuan [15] that the solution of (subP) is on the boundary, i.e., if d* is a solution
of (subP) then ||d*|| = A, and there is a A* such that H + A\*[ is a positive semi-
definite and 0 < A* < ||H|| + |lg]|/A. Therefore for any given ¢ > 0 H + AI
is positive definite for any A € (||H| + |lg|l/A, |H|| + (1 + ¢)]|g]|/A). Hence,
Algorithm A terminates in at most [(2A[H]|)/|lg|l1 + 1 steps. O

Our algorithm is the trust region method of Nocedal and Yuan [15] tailored
to the DTOC setting by adapting the efficient stagewise Newton idea due to
Pantoja [16]. Clearly, the convergence properties of the Nocedal-Yuan method
carry over here.

Theorem 2.5 Assume that f : R* — R is twice continuously differentiable on
the level set O = {z : f(z) < f(z°)} and the sequence {z*} be generated by our
algorithm. If Q is a compact set and V? [ is bounded on Q, then:

1. The sequence z* satisfies

klim inf ||¢"|| = 0.
2. If f is convex it follows that
i [lg"] = 0.

3. If 2% converges to a point =* then V*f(z*) is positive semi-definite.

4. If 2% converges to a point x* such that V*f(z*) is positive definite, the rate of
convergence is quadratic.

Proof. See Nocedal and Yuan [15]. 0

We note that it follows from Theorem 4.14 of Moré [11] that if, in addition to
the assumptions of Theorem 2.5, f is bounded below on ) and V f is uniformly
continuous then we have

. 1T
Jim [|g*]] = 0.
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Table 1: Numerical results for problem 1 (n, = 4,n, = 2)

7 N | Iter | Feva F* llgll 0
0 10 | 10 10 7.3594539E-02 | 5.3041E-11 | 3.3180E-10
50 | 9 9 2.2994188E-01 | 5.1724E-07 | 8.2697E-08
1/200 | 10 | 10 10 7.5313313E-02 | 6.1530E-10 | 9.8368E-11
20 | 9 9 2.3950010E-01 | 7.9095E-07 | 1.2655E-07
1/20 |10 | 8 9 9.8483463E-02 | 3.0286E-07 | 7.6949E-08
20 | 9 9 3.8293257E-01 | 5.0803E-08 | 7.8325E-09
/2 |[10] 7 7 3.1230671E-01 | 4.4406E-10 | 8.1275E-11
50 | 7 7 | 1.7218828E+00 | 4.4103E-09 | 8.3894E-10
1 10| 6 6 4.1425647E-01 | 2.1047E-07 | 6.2088E-08
50 | 6 6 2.3208717E400 | 1.9211E-07 | 5.6377E-08

3 Numerical results

We tested our algorithm with the problems collected in the Appendix. Our algo-
rithm was written in MATLAB and all runs were performed on a SUN Sparcsta-
tion. We take v = 1.05 and € > 0.5 in Algorithm 2 and ¢; = 0.1 and ¢; = 0.5 in
Algorithm 3. The line search algorithm in Algorithm 3 is carried out so that

Fa*) < f(2®) 4+ 0.0001 (2" — 2*)T gk
The convergence criterion is ||g|| < 107%. We also give the corresponding value of
6 which is often used as the convergence criterion for DDP algorithms.

For problem 1 we take n, =4, n, = 2and g = 0,1/200,1/20,1/2,1. The larger
i, the more nonlinear the transition functions. For each p we choose N = 10 and
N = 50. The initial point is 2! = 0. The numerical results are presented in
Table 1.

The numerical results for problem 2 are presented in Table 2. This problem is
very nonlinear. The initial point is ! = 0.

Numerical results for problems 3-5 are presented in Table 3. We take s = 1/N

I = ¢ where € is the all-one

in problem 3. The initial point for problem 5 is z
vector.
Problem 6 is the DTOC form of the so-called “sum of exponentials” problem

[13]. We solve it using both our algorithm and the conventional method-using
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Table 2: Numerical results for problem 2 (n, = 4,n, = 2)

N | Iter | Feva F* llgll 0
10 | 13 13 | 4.8598254E-01 | 5.3958E-08 | 1.5343E-08
20 | 12 12 | 4.8621209E-01 | 1.1622E-07 | 5.8311E-11
30 | 15 16 | 4.8644162E-01 | 3.1724E-07 | 1.2261E-10
40 | 15 16 | 4.8667115E-01 | 8.1564E-08 | 1.3184E-11
50 | 15 16 | 4.8690068E-01 | 2.0792E-08 | 2.0315E-11
Table 3: Numerical results for problem 3-5
problem | N | Iter | Feva F* llgll 0
Prob. 3 | 10 17 | 27 | 2.2459038E4-02 | 3.5404E-07 | 7.1388E-10
100 | 19 29 | 2.3428772E+02 | 4.1082E-08 | 2.7744E-10
500 | 25 36 | 2.3508445E+02 | 5.6098E-07 | 7.7792E-10
1000 | 27 | 33 | 2.3518341E+402 | 4.5233E-07 | 4.2776E-09
Prob. 4 | 10 14 14 | 3.7508235E+00 | 8.6445E-11 | 1.2410E-10
100 | 12 12| 2.9473466E400 | 2.3395E-07 | 1.4338E-06
500 | 25 25 | 2.8828510E+00 | 1.5253E-09 | 2.7640E-08
1000 | 35 35 | 2.8748904E+00 | 1.1013E-11 | 1.8059E-10
Prob. 5 | 10 4 4 | 1.4519006E4-00 | 8.9753E-08 | 7.0031E-07
100 9 9 | 1.5325863E400 | 4.0516E-10 | 3.8686E-09
500 | 17 17 | 1.5347290E4-00 | 3.5983E-11 | 7.3166E-10
1000 | 23 23 | 1.5349460E+00 | 1.2683E-11 | 3.6280E-10
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Table 4: Numerical results for problem 6

n (N —1) | Iter (Feva) F* llgll tN tp | ty/iter | tp/iter
10 9 1.9804145E4+01 | 7.9E-09 1.4 5.1 0.16 0.57
20 13 6.2495269E+01 | 5.0E-07 7.7 19.2 0.60 1.48
30 17 1.1903301E4+02 | 1.7E-07 23.9 40.6 1.41 2.39
40 21 1.8589622E+02 | 4.3E-10 60.0 70.1 2.86 3.34
50 24 2.6111329E+02 | 1.7E-07 | 124.2 | 101.4 5.18 4.23
70 30 4.3184514E402 | 7.1E-07 | 434.1 | 186.4 | 14.47 6.21
90 36 6.2461932E4+02 | 6.2E-08 | 1,225.2 | 301.9 | 34.03 8.39
100 39 7.2798132E402 | 6.6E-10 | 1,892.6 | 361.2 | 48.53 9.26

the Hessian explicitly in the trust region algorithm. Results are presented in
Table 4 where ¢ty (tp) is the cpu time (in seconds) for the conventional Newton’s
method (our method). It is obviously from the last 2 columns that the cpu time
per iteration for our algorithm is a linear function of N while it is a cubic function
of N for the conventional method. Hence if a nonlinear optimization problem
with a dense Hessian matrix can be transformed into the DTOC form it can yield
an enormous reduction in computational cost.

4 Concluding remarks

We have proposed a trust region method for the unconstrained DTOC prob-
lem. Our method possesses advantages of both the trust region method and the
stagewise Newton’s method. It has strong convergence properties yet remains
economical.

There are other trust region algorithms, such as those proposed in Moré and
Sorensen [12] and Gay [5], which have stronger convergence properties. In the
Nocedal-Yuan algorithm the subproblem (subP) is not solved very accurately: it
only guarantees that

$x(d*) < Bmin{gy(d) : d = pg", ||d]| < Ax}, [|d"] < A,
where [ is some positive constant. In the Moré-Sorensen and Gay’s algorithms
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the subproblem (subP) is solved more accurately; i.e.,
r(d*) < prmin{g(d) : [ld]] < Ay}, [|d*]| < B2A,

for some positive constants #; and (5. Therefore, the Moré-Sorensen and Gay’s
algorithms possess stronger convergence properties [11]: if {z*} is bounded then
there is a limit point x* which satisfies the first and second order necessary con-
ditions; if V2 f(z*) is nonsingular for some limit point z* then V?f(2*) is positive
definite and {z*} converges to z*. However both the Moré-Sorensen algorithm
and Gay’s algorithm assume that the explicit Hessian is available which is not the
case for most discrete-time optimal control problems.

Another algorithm, in the trust region camp, is the dogleg algorithm of Pow-
ell [18]. The convergence results for the dogleg algorithm do not guarantee both
the first and second order necessary conditions in the case that {z*} converges
to z*; therefore, they are weaker than those for the Nocedal-Yuan algorithm. We
also note that the mechanisms for the dogleg algorithm and the Nocedal-Yuan
algorithm are different. For the dogleg algorithm the search direction is the im-
proved steepest descent direction with the help of Newton’s direction and is not
expected to be the solution of the subproblem (subP); while for the Nocedal-Yuan
algorithm the search direction is based on Newton’s method for equation

where v > 1 is some constant and d(\) = —(H + M )~'g. Therefore, if v is near
1, it is the solution to the subproblem (subP) except for the “hard case”. To
compare the dogleg algorithm with the Nocedal-Yuan algorithm numerically we
solve our test problems using the dogleg algorithm. Our numerical experiments
show that the Nocedal-Yuan algorithm performs better. We present in Table 5
the results for problems 35 using the dogleg algorithm to highlight the behavior
of this algorithm for the DTOC problems.

Another popular method for solving DTOC problems is the DDP method.
Both the DDP and the stagewise Newton methods are locally quadratically con-
vergent. We note that the stagewise Newton method is independent of the tran-
sition functions as long as they give the same function f, while the DDP method
depends on the transition functions. Sometimes the DDP performs better for (P)
by solving the corresponding DTOC problem (P) if the transition functions are
chosen properly, but it seems that there are no general rules to follow. It would
be of interest to generalize our approach to the DDP method.
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Table 5: Numerical results for problem 3-5 using the dogleg algorithm

problem | N | Iter | Feva F llgll
Prob. 3 | 10 | 101 | 101 | 2.2459038E+02 | 8.9568E-07
100 | 124 | 124 | 2.3428772E402 | 8.8156E-07
500 | 90 90 | 2.3508445E4-02 | 7.8271E-07
1000 | 96 96 | 2.3518341E402 | 9.7264E-07
Prob. 4 | 10 | 18 | 18 | 3.7508235E+00 | 2.5192E-07
100 | 12 12| 2.9473466E+00 | 1.6331E-08
500 | 20 | 20 | 2.8828510E+00 | 3.7078E-07
1000 | 27 27 | 2.8748904E4-00 | 2.7201E-07
Prob. 5 | 10 16 16 | 1.4519006 E+00 | 6.7223E-07
100 | 21 21 | 1.5325863E4-00 | 7.1019E-07
500 | 33 33 | 1.5347290E4-00 | 9.9071E-07
1000 | 34 34 | 1.5349460E4-00 | 9.1366E-07

We also would like to point out that although the DDP method requires
less computation than the stagewise Newton method during each iteration, Pan-
toja [16] provides an example showing that the stagewise Newton method gives
the exact solution in one iteration while DDP only provides an iterative solution.

Finally, while our work makes use of the dynamic structure in series, Ralph [19]
and Wright [20] propose some parallel algorithms for DTOC problems that explore
the dynamic structure in parallel.

Acknowledgment: We thank Christine Shoemaker and Li-Zhi Liao for many
illuminating discussions on discrete-time optimal control problems.
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Appendix
We collect some test problems in this section.

Problem 1. [§8]

min F':= EfV:II(E?il(‘yi,j + 5)4 + E?il(xi,j + %)4) + Eyil(‘yl\ﬂj + 5)4
Yi+1 :Tl-(yi,:ci), T = 1,..., —1

=

where
Ti(y:, x;) = Ay + B + (y! Cai)e,i=1,...,N — 1
y1 =0, and A € R™*" given by:

?

0.5 ifi=j
(A)i; =4 025 ifj=i+1
—0.25 ifj=1i—1;

B € R"™*" given by:

(B)ij =~
Ny + Ny
C € R"*" given by:
i+
C)ij = ;
(C)i; Nny_l_nz

e is the all-one vector in R™.

Problem 2. [§]

min F:= SN (]2 - [sin?(E05) + 1)) + Jlyw |2

.

Yirr = Ti(yi,zi), 1=1,...,N—1
where
Ti(yi, x:) = sin(y;) + C - W(z;)
and C' € R"*"* given by
i+

¢ 9
2n,

Cij =

v=1,...,n; 3=1,...,m.

W(z;) = (sin(z;1),...,sin(z;,,))T. The initial state is given by



The initial point is z' = 0.

Note: this problem is the modification of that in [21] where the the single
loss function is given by

=]

Ly 2) = sl [sne(120) 4 1]

Ny
Problem 3. [1] (ny, =2 n, = 1)

min F = § 705 (] Quivs + Raf)
1 s 0 :
yH_l:[_S ]yi—{_[s]xi’Z:l""’N_l'

1
20
o= |5 1]

s €(0,1) and y; = (15,5)T. The initial point is z! = 0.

where R = 6 and

Problem 4. [17] (n, =2 n, = 1)
min £ := (3 lyall* + 5hat) + 50 S5 (lwill* + 27) + T llywl”
(1= i2))(gin) = (ig) + @i | . _

y¢+1=y¢+5hl ],

N -1
(%,1)

ge ey

where h = 1/N and y; = (0,1)?. The initial point is z! = 0.
Problem 5. [17] (ny, =1 n, = 1)

min F = h 35 (7 + a7)
Yipr = ¥ + h(y? — ), i=1,...,N—1

where i = 1/N and y; = 1. The initial point is 2! = e.
Problem 6. [13] (n, =1 n, =1)

min F := YN 3y + exp(:))? + L(2:)?]
Yi+1 = y2+exp(rz)7 1= 177N_1

where y; = 0. The initial point is z; = 0.
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Note: this is the DTOC formulation of the so-called “Sum of exponentials:”

fe) = L5t + 5 exple;))]

=1

with n = N — 1. There are some other nonlinear optimization problems

in [13] that can be reduced to the DTOC form.
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