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Abstract

We examine certain questions related to the choice of scaling, shift-
ing and weighting strategies for interior-point methods for linear pro-
gramming. One theme is the desire to make trajectories to be followed
by algorithms into straight lines if possible to encourage fast conver-
gence. While interior-point methods in general follow curves, this oc-
currence of straight lines seems appropriate to honor George Dantzig’s
contributions to linear programming, since his simplex method can be
seen as following either a piecewise-linear path in n-space or a straight
line in m-space (the simplex interpretation).

Prologue

Some six years ago, I bought a small sailboat, which was named Dantzig
in view of its ability to follow piecewise-linear paths joining extreme points of
a convex set (Cayuga Lake) in trying to attain a certain goal. At times, this
is the most efficient method of progress, while in other situations a smooth
curve through the interior is preferable.
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1 Introduction

Interior-point methods for linear programming arose from the seminal work
of Karmarkar [14]. By now there is a vast literature on the subject (see the
extensive bibliography of Kranich [16], numbering over 1300 items), treating
a wide variety of algorithms and their analysis. Certain common themes
underlie these methods: the idea of moving in a direction of scaled projected
steepest descent and the concepts of barrier function and central trajectories
(see, e.g., Gonzaga [11] and Todd [23]). Here we study some aspects of the
choice of a scaling matrix and of shifting and weighting strategies in barrier
methods.

In section 2 we show that a choice of weights that leads to the primal-
dual affine-scaling direction can be viewed as an approximation to weights
(depending on the optimal solution and hence unknown) that yield a straight-
line trajectory from the current solution to the optimal one. Section 3 demon-
strates that a primal or dual barrier method that does not update the barrier
parameter but merely adjusts weights can still yield convergence even without
using shifts in the logarithmic barrier terms. This is related to convergence
proofs by Polyak [21] and Powell [22] for Polyak’s modified barrier method,
and more general strategies for shifting and weighting studied by Gill et al.
[12]. While in the unshifted case the main iterates converge to a point in
the interior of the feasible region, an auxiliary sequence of iterates defined
by straight-line extrapolations from a fixed interior point does converge to
an optimal solution; indeed, the auxiliary sequence coincides with that gen-
erated by the modified barrier method.

Finally, in Section 4 we observe that the symmetric primal-dual scaling
matrix can be motivated as an approximate Hessian of a new primal-dual
barrier due to L. Tuncel [25].

Our focus here is on basic concepts rather than practical implementations.
Readers interested in algorithms with good performance in practice, along
with appropriate choices of starting points etc. and efficient implementations
of the linear algebra required, are urged to consult the excellent papers of
Lustig, Marsten and Shanno [17] and Mehrotra [19].

Throughout, we consider the primal problem in standard form:



T

min ¢ T
(P) Ar =
z > 0,
and its dual (with explicit slacks s)
max b'y
(D) ATy +s5 = ¢
s >0,

where A € R™*". b€ R™, and ¢ € IR*. We assume that

FO(P):={z € R": Az =b, z >0}

and

FO(D) :={(y,s) e R™ xR": Ay +s=c¢, s> 0}

are nonempty. We use e to denote the vector of ones in R"™, and for any
lower-case letter representing a vector in IR" (e.g. z, s*), the corresponding
upper-case letter (e.g. X, S*) represents the diagonal matrix of order n with
the components of the vector on its diagonal.

2 Weighted trajectories

Several authors have introduced weights into the basic logarithmic barrier
function. For the primal problem (P), the standard barrier

Yu(z)i=c'z—py Inz; (2.1)

is replaced by
Puw(T) =c' z— pZ w; lnx;; (2.2)
i

here p > 0 is the barrier parameter and the w;’s are positive weights. The
weights are used to define trajectories passing through every strictly feasible
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point, or alternatively to allow starting path-following methods at initial
points that are far from the central trajectories. See, for example, Megiddo
[18] and Freund [9].

Usually, the weights w; are fixed and the barrier parameter p approaches
zero. An alternative approach, in which p is held fixed while the weights are
adjusted, is usually applied together with shifts, and is discussed in the next
section. Here we provide a new motivation for particular weights that have
been studied by Megiddo [18] and Adler and Monteiro [1].

Suppose we have z° € F°(P) and (y°,s°) € F°(D). We can then define

w=w’ = X°5% (2.3)

as our weight vector. Adler and Monteiro [1] have shown that these weights
are very closely related to the primal-dual affine-scaling directions, which we
now describe.

The optimality conditions for (P) and (D) can be written as

Az = b (220)
ATy+s = ¢ (s>0) (2.4)
XSe = 0,

where the first two systems ensure feasiblity in the primal and dual respec-
tively, and the last complementary slackness. A Newton step from (z?,¢°, s%)
for equations (2.4) moves in the direction (d;, dy, d;) defined by

Ad, = 0
A'd,+d, = 0 (2.5)
S%, + X%, = —X°SC.
It is not hard to show that
dx = -DPADDC, (26)
where D is the scaling matrix
D := (X°)Y/2(5%)~1/2 (2.7)

and Pjs denotes the orthogonal projection matrix into the null space of the
matrix M. (Efficient methods of computing d;, d, and d; are described in
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[17, 19].) In contrast, the primal affine-scaling algorithm of Dikin [5, 6] (see
also Barnes [2] and Vanderbei, Meketon and Freedman [26]) moves in the
direction

dy = —DP,5Dc (2.8)

where D is the primal scaling matrix
D = X°. (2.9)

Returning to the primal-dual setting, we can use the directions (d,, d, ds)
to motivate the trajectory defined by (z(u),y(r), s(x)) solving

Ai = 0
ATj+5 = 0 (2.10)
Sz+Xs = +XSe
z(1)=2° y(1)=y9° s(1)=s"

(We have reversed the sign in the last system so that moving in the direction
(dz, dy, ds) corresponds to decreasing u.) Adler and Monteiro [1] prove:

Theorem 2.1 Let (z(p),y(r),s(u)) solve (2.10). Then, for each p > 0,
z(p) is the unique solution to the weighted barrier problem

(WBP) min{t,.(z) : Az = b,z > 0}

where the weights w = w° are given by (2.3). O

Thus the primal-dual affine-scaling directions are the tangents to the
trajectories defined by the weighted barrier function %, ,,. In the following we
provide a motivation for choosing these weights and hence a possible reason
for the efficiency of these directions.

Suppose (P) has a unique optimal solution z*, and let (y*,s*) be an
optimal solution to (D) satisfying strict complementarity with z*, so that
z* + s > 0. Such a solution exists by a result of A.W. Tucker (see [4],
p. 139). If B:= {j : s =0} = {j : 2} > 0}, then it is easy to see that the
columns of A indexed by B are linearly independent.

Let

w” = X%S%e. (2.11)



Theorem 2.2 If w = w*, the unique solution to (WBP) for0 < pu <1 is
() = pz® + (1 — p)z™. (2.12)

Proof. Since ATy* + s* = ¢ and Az = b for all feasible solutions, the
objective function %, ,«(z) differs by a constant (b"y*) from

J’u,w‘(m) = (5*)T-T - “Zw; Inzj,
J

whose gradient is 3
Vippue(z) = 8" — pX°S* X e
Let N ={1,2,...,n}\B. Since z} = 0,

zy(p) = pay,

which shows that the components of V), .(z()) indexed by N vanish.
Since s = 0, the components indexed by B are also zero. Moreover, z(n) > 0
for 0 < u < 1 (since 2° > 0 and z* > 0) and Az(p) = b. It follows
that z(u) is the unique solution to (W BP) as long as %, .~ (or equivalently
Pwr) is strictly convex on FO(P). But this is a consequence of the fact that
the logarithm function is strictly convex and the linear independence of the
columns of Ap (so that any nonzero direction in F°(P) must have a nonzero
component with index in N). O

Theorem 2.2 implies that, if we knew an optimal dual slack vector s*,
the weights w* would result in a straight-line trajectory from the current
solution z° to the optimal solution z*. Of course, we do not know s*; but
in a primal-dual algorithm, we have an estimate (y°,s°) of the optimal dual
solution. It therefore seems highly appropriate to use the weight vector w°
in (2.3) as an approximation to w* in (2.11); we can thus hope that the
primal-dual affine-scaling direction will point close to the optimal solution.

Of course, a similar analysis motivates the use of w® to improve the dual
solution, since it approximates

wt = XS,

which also gives a straight-line trajectory to the optimal dual solution under
suitable conditions.

To conclude this section, we mention a related result: Polyak [21] has
shown that, with optimal weights, a single unconstrained minimization of the
modified barrier function yields the exact solution of a linear programming
problem.



3 Shifted barriers

Adding shifts to the barrier terms in a logarithmic barrier function can serve
several purposes: it allows one to start at a point which is not strictly feasible
with respect to the unshifted constraints (Freund [8]); it permits an algorithm
to adjust both shifts and weights in an effort to get faster convergence (Gill
et al. [12]); and it allows convergence to be achieved with fixed shifts and
fixed barrier parameter, only adjusting the weights (Polyak [21] and Powell
[22]). The last results are for Polyak’s modified barrier method, which also
enjoys the other advantages. Here we show that, if a strictly feasible solution
is available, a natural choice of shifts is in some sense equivalent to no shifts
at all; hence we obtain an unshifted algorithm which only adjusts the weights
and yet converges to the optimal solution. For easy comparison with Gill et
al. [12], Polyak [21] and Powell [22], we assume that a barrier method is
applied to (D). (Polyak and Powell consider a minimization problem with
greater-than-or-equal-to inequality constraints, but the changes are obvious.)
The standard barrier function is then

bu(y) = —bTy — u_In(c; — a]y), (3.1)

where c; and a; are the jth columns of ¢’ and A. Gill et al., Polyak, and
Powell use instead the weighted and shifted function

Ouwi(y) = —bTy — u Y wjln(c; — ajy + phy), (3.2)
J

with h = e for [21] and [22].

Let y(u,w, h) denote the minimizer of 8, ., 1, which exists and is unique
under the assumption, made for this section, that F°(D) is bounded and
nonempty. Consider the modified barrier method (Polyak [21]): Let p > 0,
w% h € R", with w® > 0 and A > 0. For each k, let

y¥ = y(p, v, h), (3.3)

and let
Wbt = /(e — aly* + uhy). (34)

Then Polyak shows that {y*} converges to an optimal solution to (D), as
a special case of a result for nonlinear programming, under some additional
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assumptions; also, the weights converge to an optimal solution to (P). Pow-
ell [22] shows that these assumptions are unnecessary in the case of linear
programming. (Actually, both assume that h = e, but clearly y(u,w, k) also
maximizes

bTy + 3o wjln(ei/hi — (a;/h;) Ty + p),
J

so we can assume all the shifts are one by rescaling the data A and ¢.) We
will sometimes call the modified barrier method above the shifted barrier
algorithm, to compare it with the unshifted version (with h = 0) introduced
below.

How should the shifts A be chosen? Clearly, they should reflect in some
way the scaling of the constraints. One possibility is to choose h; = ||a;]|, so
that all constraints are shifted by the same Euclidean distance. This may not
be appropriate if, say, the dual constraints are —1 < y; <1, —108 < y, < 108.
Let us suppose that some (¢, 3) € F°(D) is known. Then

hi=ri=r1(c—ATY) (3.5)

for some T > 0 seems suitable; each constraint is then shifted by a Euclidean
distance proportional to the distance from the constraint to the strictly fea-
sible solution g.

The result below relates y(p,w, iz) to y(&,w) := y(fi,w,0), the unique
minimizer of the unshifted barrier function, with

i p
= . .6
P T UT (3.6)
Proposition 3.1 Let p and the components of w € IR™ be positive. Let
(i1,8) € F°(D) be arbitrary, and define h by (3.5) and i by (3.6). Then

. 1 > 7
= h
y(fi, w) 1+my(u,w, )+ Tl

(3.7)

is a convexr combination of the shifted barrier minimizer y(p,w, iAz) and .

Proof. Under our assumptions, both ;.0 and 6, , ; are strictly convex
functions that attain their minima uniquely at points where their gradients
vanish. Thus § = y(fi, w) uniquely solves

—b+ Y _i‘-“—’i-f-y:a,- =0, (3.8)



and y := y(u, w, 71) uniquely solves

pw;
—b+ —a; = 0. (3.9)
;Cj—a‘-'eruhj ’

If we set y = '171,;3/ + 1-‘;:&7:’)’ we find
e—ali = pho(c—aly)+ (e —a] ) (3.10)

= -1-_}—_1-‘;(6]' - ajTy + uhj),

and thus (3.8) follows from (3.9). Since (3.8) has a unique solution, we obtain
(3.7). O

(3.7) can be viewed as describing a straight-line trajectory from g extend-
ing past § along which the shifted barrier minimizer moves as the shifts and
the barrier parameter are adjusted suitably.

From (3.4), (3.6), and (3.10), we obtain

witt = pwkh;/(c; —aly* + uhs) A
[mwihil/ ez (e — al y* + ph;)] (3.11)
= jwih;/(c; — a]§*)

if yF = y(ﬂ,wk,iz) and §* = y(ji,w*). Thus the update formula for the
algorithm with shifts ~ corresponds to a simple formula for the following
unshifted algorithm: Let i > 0, w® € R™ with w® > 0, and h = 78 =
r(c — AT§) for some (g, 3) € FO(D) and some 0 < 7 < 1/ji. For each k, let

7 1=y ) (3.12)
and let

witt = jwihi/(e; - ] §"). (3.13)

Define also the auxiliary iterates

& 1

y* o= —— (" — 7). (3.14)

Corollary 3.2 In the unshifted algorithm above, the auziliary iterates are
ezactly those generated by the shifted algorithm initiated with p = /(1 — 1),
w® and h. Hence {y*} converges to an optimal solution to (D).
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Proof. By induction. Suppose both algorithms have the same weights
w* at the start of iteration k. It is easy to see that f = p/(1+pT). Hence by
Proposition 3.1, y(u,w*, h) and §* are related by (3 7). Solve for y(u, wk h)
and using the definition of u, we find that y(u,w* iz) = y* given by (3.14).
Then (3.11) shows that the two update formulae, (3 4) and (3.13), generate
the same w**!. O

As in the modified barrier method, the Hessian of the barrier function in
our unshifted barrier algorithm does not become increasingly ill-conditioned
as the iterations proceed; here this is because the main iterates {§*} do not
approach the boundary, while the barrier parameter is fixed. In the nonlinear
case, the shifts are necessary (as in the augmented Lagrangian method-see,
e.g., [7]) so that the iterates can approach the boundary while the barrier
(or penalty) parameter remains fixed, in order that the algorithm can gain
information about the objective and constraint functions near the optimal
point. In the linear case, this is no longer necessary; our algorithm’s main
iterates {f*} do not approach the boundary, and yet the auxiliary iterates
(which do not affect the method) still converge to an optimal solution.

We remark that the shifts & are not used in generating the sequence {7*}
directly, but just 1n the updates of the weights. Hence we can postpone
choosing h until 7° is computed, and then use §° for § to define h. In this
form, the unshifted algorithm requires only ji, 7 and w® for its initialization.

One of the referees has pointed out that Jensen and Polyak (in the con-
cluding section of [13]) discuss another interesting relationship between the
modified (shifted) barrier method and the unshifted method. Namely, the
iterates of the modified barrier method for a linear programming problem
can alternatively be generated by successive minimization of a weighted log-
arithmic barrier function for the dual problem, followed by appropriate ad-
justments of the weights. In the dual barrier function there are no shifts in
the barrier terms, but there is a shift in the objective function.

4 Scaling matrices

As we observed in Section 2, primal-dual methods use as search directions
negative scaled projected gradients, there of the objective function but more
generally of a barrier or potential function, using the scaling matrix

D= (Xk)l/Z(Sk)~1/2 (41)
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where (z*, s¥) is the current iterate. Primal methods use directions that can
be similarly motivated, using the scaling matix

D = X*. (4.2)

Here we provide some justification for the choice (4.1).

It is not hard to motivate (4.2). The simplest such reason is that the
transformation £ — % := D!z takes the current iterate z* to 2*¥ = e, a
distance 1 from all constraints, where a ball of radius 1 inscribes the nonneg-
ative orthant and hence the feasible set. A more fundamental reason is that

=2 = (X*)~? is the Hessian of the barrier function

-—c T - Zlnxj

for any p > 0, and also the Hessian of the “convex part” of the potential
function

pln(c'z — 2) Zlnxi

for any p > 0 and z less than the optxmal value of (P). Hence a negative
scaled projected gradient can often be regarded as a Newton or Newton-
like step. Alternatively, the Hessian matrix of the barrier —37;Inz; can be
regarded as providing a local metric of the feasible region, possessing many
useful properties (Bayer and Lagarias [3], Nesterov and Nemirovsky [20], and
Karmarkar [15]). This viewpoint extends to more general linear constraints
([10] and [24]) and to the nonlinear case [20].

Now let us revert to the primal-dual setting. The transformation z — z =
D'z, s — § = Ds takes both z* and s* to &* = % = v := (X*)V/?3(Sk)V/ 2,
around which balls of radius min; v; can be inscribed in the nonnegative
orthants, and hence in the feasible regions. This is the largest radius achiev-
able by a diagonal scaling that preserves the scalar product z's. We would
like a motivation in terms of the Hessian of a primal-dual barrier; is there a
function ¥(z, s) with

X-1s 0
2 - ?
v = (X0 g0y ) 43)
The standard barrier ¥(z,s) = — 2 ;lnz; — 3°;Ins; gives rise to
X% 0
V2’¢'($,S) = ( 0 S-2 ) ’ (4'4)
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leading to separate scalings for primal and dual, which do not preserve the
scalar product zTs; this leaves unanswered the question of whether (4.3) is
achievable.

Unfortunately, the answer is in the negative, by simple arguments—
consider the case with n = 1. We should add, however, that the diagonal
scaling D of the variables z and s that preserves the scalar product z"s (i.e.,
z — D7 'z,5s — Ds) and that transforms the Hessian matrix in (4.4) to the
most well-conditioned one (or to the closest matrix to the identity in either
the Frobenius or ¢;-operator norm) is D := X1/25-1/2,

On the other hand, we can approximate (4.3), using an entropy-like bar-
rier introduced by L. Tuncel [25]. Let

Y(z,s) = ijsj In(z;s;). (4.5)

Then it is easy to obtain

Proposition 4.1 (Tuncel). Let v be given by (4.5) above. Then

) B X-19 diag(2 + In(z;s;))
V(e 5) = ( diag(2 + In(z;s;)) ° S1X ) ’ (4.6

whose diagonal, positive definite part agrees with the right-hand side of (4.3).
(]

It is easy to see that (4.6) itself is not positive definite—take n = 1 and
z = s = 1, for instance—so that using just its diagonal part seems reasonable
for a Newton-like method. This result suggests the examination of algorithms
using v in (4.5) as their barrier, which is the subject of current research.
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