H H n =120 ‘ n = 480 ‘ n = 960 ‘ n = 1440 H

processors 4 8 16 32

major iter 34 59 58 41

PCQG iter 116 169 227 87

function eval 40 68 70 41

#Hx 520 934 1026 528

Real time (sec) 1591 11032 23254 21503

fopt 1.867292 x 10* | 1.84625 x 10* | 1.841288 x 10* | 1.662569 x 10*

Table 7: Results - Reflective Newton method for problem ‘hole’

[| n=320 | n=640 | n=960]
processors 8 16 16
major iter 12 173 190
function eval 15 317 362
active 246 582 838
Real time (sec) 522 19784 38957
Jopt 3.83221 x 10% | 3.794078 x 10°® | 3.785172 x 10°

Table 8: Results - NPSOL for problem ‘beam’

[| n=320 n=640 | n=960 |

processors 8 16 16

major iter 35 48 60

PCG iter 92 146 163

function eval 39 54 66

#Hx 511 753 964

Real time (sec) 3695 10938 21715

Jopt 3.8179236 x 10° | 3.789715 x 10° | 3.778519 x 10°

Table 9: Results - Reflective Newton method for problem ‘beam’

21

H Problem1 ‘ Problem?2 H

Line search 27.4 27.2
Conjugate gradients 16.5 15.7
Function evaluation 49.7 51.4
gradient evaluation 1.7 1.5
Other 4.7 4.2

Table 4: Breakup of CPU time (percent) for the reflective Newton method on prob-

lems in table 1

H hole ‘ beam H
n 120, 480, 960, 1440 320, 640, 960
Nelems 120, 480, 960, 1440 320, 640, 960
Negns || 2328, 8974, 17686, 20464 | 6240, 11520, 16800
c 1 10000
Cy 1 1
C 1 1
) 0.464169 1
u 1.5 10
Lstart 1 b

Table 5: Test problems for comparing NPSOL and reflective Newton method

H H n =120 ‘ n = 480 ‘ n = 960 ‘ n = 1440 H
processors 4 8 16 32
major iter 124 198 127 99
function eval 270 411 256 214
active 76 372 561 1404
Real time (sec) 2437 25281 40034 64161
Jopt 1.860103 x 10* | 1.840978 x 10* | 1.842017 x 10* | 1.668379 x 10*

Table 6: Results - NPSOL for problem ‘hole’

20

H Probleml1 ‘ Problem?2 H

n 600 720
Nelems 844 780
Negns 11496 11082
¢ 1 1
Cy 1000 25
C 2875 2875
) 0.05 0.05
U 2 2
Tstart 1 1

Table 1: Description of bone remodeling problems

H H Problem1 ‘ Problem?2 H
processors 16 16
major iter 5 17
function eval 6 31
active 600 719
Real time (sec) 1087 4653
Jopt 2.390043x10* | 9.949413 x 10?

Table 2: Results of NPSOL for problems in table 1

H H Problem1 ‘ Problem?2 H
processors 16 16
major iter 22 24
PCG iter 50 57
function eval 25 26
#Hx 309 353
Real time (sec) 6459 7398

fopt

2.391010 x 10*

9.058229 x 10°

Table 3:

Results of reflective Newton method on problems in table 1

19

[Subbarayan 90] Subbarayan, G., “Bone Construction and Reconstruction: A Varia-
tional Model and its Applications”, Phd Thesis, Department of Mechanical
and Aerospace Engineering, Cornell University, 1990.

18

References

[Burstein 72] Burstein, A. H., Currey, J. D., Frankel, V. H., Heiple, K. G., Lunseth,
P., and Vessely, J. C., “Bone strength: The effect of screw holes”, Journal
of Bone and Joint Surgery, VH4-A, N6, pp. 1143-1156, 1972.

[Carter 77] Carter, D. R. and Hayes, W. C., “The Compressive Behavior of Bone as
a Two-Phase Porous Structure”, The Journal of Bone and Joint Surgery,

V59-A, pp. 954-962, 1977.

[Coleman 92a] Coleman, T. F., and Li, Y., “A reflective Newton method for mini-
mizing a quadratic function subject to bounds on some of the variables”,

Technical Report, CTC92TRI111, Nov 1992.

[Coleman 92b] Coleman, T. F., and Li, Y., “On the convergence of reflective Newton
methods for large-scale nonlinear minimization subject to bounds”, Tech-

nical Report, CTC92TR110, Nov 1992.

[Dunigan 91] Dunigan, T. H., “Performance of the Intel iPSC/860 and Ncube 6400
Hypercubes”, ORNL/TM-11790, Oak Ridge National Laboratory, April
1991.

[Geijn 91] van de Geijn, R. A., “Massively parallel LINPACK be nchmark on the Intel
Touchstone DELTA and iPSC/860 systems”, Progress Report, Department
of Computer Sciences, University of Texas, Austin, Texas, 1991.

[Geist 91] Geist, G. A., Heath, M. T., Peyton, B. W., and Worley, P. H., “A
Users” Guide to PICL: A Portable Instrumented Communication Library”,
ORNL/TM-11616, Oak Ridge National Laboratory, February 1991.

[Gill 86] Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H., “User’s guide
for NPSOL (version 4.0): A fortran package for nonlinear programming”,
Technical report SOL 86-2, Systems Optimization Laboratory, Department
of Operations Research, Stanford University, 1986.

[MathWorks 90] The MathWorks, Inc., “PRO-MATLAB for Sun workstations”, Jan
1990.

[Nash 90] Nash, S. G., and Sofer, A., “Assessing a search direction within a truncated-
Newton method”, Operations Research Letters, V9, N4, pp. 219-221, 1990.

[Pothen 91] Pothen, A. and Sun, C., “A distributed multifrontal algorithm using
clique trees”, Technical Report CTC9ITR7T2, Advanced Computing Re-
search Institute, Cornell Theory Center, Cornell University, August 1991.

17

function evaluations. On the other hand, the reflective Newton method requires sig-
nificantly fewer iterations and function evaluations (tables 6-9). From the results for
the reflective Newton method, it can be seen that PCG requires approximately 3
iterations for the approximate solution of equation (9). The objective function has
multiple minima for the problems solved, causing NPSOL and the reflective Newton
method to give different results.

For the problem with 1440 variables, the reflective Newton method is 3 times
faster than NPSOL, which suggests that for large problems, significant benefits can
be realized by using the reflective Newton method. Even though we have not paral-
lelized the entire code, the computationally intensive portion of the reflective Newton
method (function evaluation, gradient evaluation, line search, and conjugate gradi-
ents) was parallelized. From table 4 it can be seen that the sequential portion of
the code consumed less than 5 percent of the total time. As mentioned earlier, in
case of NPSOL, because of the difficulty of parallelizing the active set method, only
the objective function and gradient evaluation was parallelized. The remaining code
used up approximately 10 percent of the real time. Therefore, in spite of the different
extents to which parallelism is exploited in the two methods, it is apparent that for
large problems, the reflective Newton method can be significantly faster than NPSOL.

5 Conclusions

This paper shows how the reflective Newton method can be used to solve structural
optimization problems in parallel on distributed memory machines. The method is
applied to problems in bone remodeling. For the problems solved, the bone remod-
eling theory did not give realistic results; further experimentation is necessary. It
can also be seen that for large problems with few activities at the solution, the re-
flective Newton method can outperform the active set method. When the Hessian is
expensive to evaluate, PCG can be used provided the product Hz is easy to evaluate.

In order to get realistic results for bone remodeling problems, several improve-
ments are necessary. The choice of ¢; and ¢y is not obvious. For the problems in
section 4, different combinations of ¢; and ¢, were tried. But in real implant design
applications, it is important to be able to know the values of ¢; and ¢y that produce
accurate results. It is also important to use linear and non-linear equality and in-
equality constraints so that this theory can be applied to other areas of structural
optimization. The problem of multiple minima needs to be addressed as it is not
computationally feasible to explore the entire design space and it is not easy to at-
tribute any meaning to local minima. It might also be beneficial to incorporate shape
variables in the analysis as the shape of the bone can change during reconstruction.

16

1500.

ik

Figure 6: Finite element mesh for bone remodeling problem in figure 5

Figure 7: Optimal density distribution for the problem in figure 6

15

1.82

1.65.

1.47.

1.29

1.1

.936.

.759.

582

.405.

2274 1

0500.

Figure 4: Optimal density distribution for the problem in figure 3

W

Cr

[)99)2)))

Figure 5: Canine bone and plate: the plate is attached to the bone by screws

14

Figure 2: Fractured bone supported by a steel implant

Figure 3: Finite element mesh for bone remodeling problem in figure 2. Only a
quarter of the physical domain is modeled

13

out. Figure 4 shows the predicted density distribution in the bone. It can be seen
that this model predicts that a significant portion of the bone would atrophy. Since
the implant is very stiff and since a linear finite element analysis is performed, load
transfer from the bone to the stem takes place at the top of the stem and results in
negligible stresses at the bottom of the bone. If a non-linear analysis using interface
elements had been performed, the load transfer would have taken place over a longer
region and such a large portion of the bone would not have atrophied. Tables 2 and
3 show the performance of NPSOL and the reflective Newton method on the above
problem. Because most of the variables are at their bounds at the solution, NPSOL
converges fast and the reflective Newton method takes longer.

The second example is that of a screw hole in a femur. Sometimes, a broken
bone is supported by metallic plates affixed by screws (figure 5). After a few weeks,
when the bone heals, the plate and screws are removed. The presence of holes in the
bone caused by the removal of screws results in stress concentration. Experiments
performed by researchers on canine bones ([Burstein 72]) show that after a few weeks
the bone properties around the hole change in order to eliminate stress concentration
and the bones become as strong as the original bones without holes. To analyze this
problem, a finite element model with 780 elements is constructed (figure 6). Table 1
shows some details of the problem. Tables 2 and 3 show the performance of NPSOL
and the reflective Newton method on this problem. Figure 7 shows the distribution of
density of bone after reconstruction. The results are not entirely realistic because the
model predicts some zero density areas which are not observed in practice. This may
be because the shape of the domain is not allowed to vary. In experiments on canine
bones, it was observed that the bone thickened near the hole. In [Subbarayan 90],
when the thickness of the 2-D model was allowed to vary, realistic results were ob-
tained. In the 3-D case, the bone also became thinner because the stresses on the
outer surface are greater than the stresses on the inner surface. But in practice, the
bone does not become thin. Unless the mass of the marrow is included in the analysis,
this effect will be observed. Using different values for the ratio ¢; /¢y, different density
distributions will be obtained. However, it is not clear as to how that ratio should be
chosen.

Table 4 shows the breakup of the time taken during different stages of the reflec-
tive Newton method. It can be seen that the time spent on solving for the search
direction and the line search is quite significant. Function evaluations take up ap-
proximately half of the total time. However, it should be noted that the floating point
speed during function evaluation is much higher than the floating point speed during
PCG and line search.

Some models are constructed to illustrate possible problems with the active set
method and why the reflective Newton method might be better in these circum-
stances. Table 5 shows two cases. For each case, models with different numbers of
elements are constructed. When few variables are active at the solution, NPSOL
is found to perform poorly, requiring more than 100 iterations and more than 100

12

. (au)T&L ou
EEY du? "9,

This can be written as AT K"'BK~'A, where B = gz—uf. B is computed by the
following formula:

9%

2

= 33 (ClM + Cy Z 1/2uTK6u) (23)
w -

= 0, Y K, (24)

where the summation is over all bone elements. B is thus equivalent to the col-
lection of element stiffness matrices. B is not computed explicitly; the element
stiffness matrices are stored separately before assembly of K. K~'Az has been
computed earlier and can be reused. The above product therefore requires the
solution of one system of equations, namely, K ~'(BK ™' Ax).

In summary, the cost of computing H in product form is negligible and the cost of
computing Hz is roughly equivalent to that of solving 3 sparse systems of equations
(with known factorization of the coefficient matrix).

When the above calculations are performed in parallel on the hypercube, the ma-
trices such as %u and %KA are computed independently in parallel and are stored
and used on an element-by-element basis.

On the Intel iPSC/860, the time spent on sending a message of n bytes from a pro-

cessor to its neighbor can be approximated by 75+ 0.4n microseconds ([Dunigan 91]).
The startup time (latency) of 75 microseconds has a noticeable effect on the overall
performance when the messages are small. This is the case during forward elimination
and back substitution. Since calculation of Hz requires 3 such solutions, it can be ex-
pensive. However, by solving 2 sets of equations, K ' Az and K ~!Ax, simultaneously,
the speed of calculation of Hx can be increased.

4 Problems and results

As mentioned in an earlier section, the methods developed in this paper are applied
to problems in bone remodeling. Figure 2 shows a steel stem (implant) in a fractured
bone. The stiffness of steel is much greater than that of bone. As a result, the steel
implant carries most of the applied load. This ultimately causes the bone to atrophy
as shown in 2 and can result in loosening of the implant. The presence of the implant
thus has an undesirable effect on the bone. It would be beneficial to see if this model
can predict the actual behavior correctly. To analyze this problem, a finite element
model with 844 elements is constructed (see figure 3). Table 1 shows some details of
the problem. Different values of ¢; and ¢; are used and the optimization is carried

11

829
9999 : o :
This term is easy to compute because % is a simple function of ¢. When each

¢; 1s the density in a single finite element, this matrix is diagonal.

8%y du
Budp; " 96,
2,7, , 2.7, K
0% Ou _ 0 a0k (17)
Judeg; 0¢; udé [J0)
0%
= — KA 18
udp (18)
The matrices A and % are sparse and are computed on an element-by-element

basis. When forming the product %[X’_IAI, calculation of K~!(Az) requires
the solution of one system of equations with the Cholesky factor of K computed

in (4).

82117 du
dudd, " 9
This term is the transpose of the previous term. Using the objective function in

equation (2), this term reduces to —CyAT K= A which is symmetric and hence

is the same as the previous term. If a different objective function is used, this
term would have to be computed and would also require a solution of one system
of equations with known factorization of the coefficient matrix.

Y 9%

EURETIERS

Equation (4) can be differentiated twice with respect to ¢ and substituted in

the above expression to obtain:

o Pu O

-7 KL _% 8_u _ % % _ K . (19)
Ju06:0%; Ou 06: 00; 09; 06 06:06;
0K du 0K du K
N [__.__ oK u _] 2
0di 9¢; 0¢; 09 09i0¢; (20)
Since A = %—gu,
ArOROu 2 OK oy (21)

d¢ 9¢ d¢

When multiplying by z, the term K~ Az computed earlier can be reused. Sim-
ilarly, the second term is equivalent to AT%K_lA. When multiplying by z,
another system of equations K~'(Az) needs to be solved. The last term is
non-zero only if ¢ = j.

10

k=0; 29=0;1r0=0b— Azg; Qo = 0; kmaz = n/2;
while (k < kmax)
Solve Mz, =1y,

k=k+1

if (k = 1) then
di = 2

else

Be=rE oz 1 /rl sz
de = zg—1 + Brdp—1
endif
if (7& < 0) then
s =dy
return
endif
ap = ri_ 21/
T = Tp_1 + apdy
T = rp_1 — apAdy
Qr = 0.5x£Aajk —blz,
if (k(Qr — Qr-1)/Qr < 0.1) then
S = T
return
endif

end

Figure 1: The preconditioned conjugate gradient algorithm

and the preconditioner, M, is set to
M = Dlng + D2 (16)

If a diagonal element M; happens to be negative, M, is set to 1.
Figure 1 shows the algorithm used for PCG. If df Ady is less than 0, the matrix
A is indefinite and dy, a direction of negative curvature, is returned.

3.6 Hessian in product form

As mentioned earlier, if H can be computed in a product form, and if the product
Hz can be computed cheaply for any vector x, then PCG can be used to solve (9).
Terms in equation (12) can be computed as follows:

3.4 Hessian of the objective function

The Hessian is given by:
0 0% O Ou | 9% Ou 0P 9*
H=[hj] = ¢: ¢+ ¢.u+ ¢.u+—¢. -
0600, 0009, 06:0u 0%; | 06,0u 9g; | du’ 0608,
u\ L 924 o
Ou 8_@[)‘&(12)
96:) ou 04,
It can be shown that the Hessian is dense. Calculation of the Hessian requires calcu-

lation of g—“. This is expensive to compute because for each z, the following equation
needs to be solved:

Ju oK
K = —— 13
96 96")
Even though the factorization of K has been computed earlier, calculation of g—;

requires the solution of ny systems of equations (where n, is the number of indepen-
dent variables). Moreover, g—“ needs to be stored as it is needed for computing various
terms in the formula for the Hessian. Therefore, this approach requires a significant
amount of memory.

3.5 The preconditioned conjugate gradient method

The preconditioned conjugate gradient method (PCGQG) can be used to solve (9). This
approach is preferred if the Hessian is not known explicitly, but the product Hzx, for
any vector x, can be computed cheaply. As shown in section 3.6, it is indeed the
case. Since PCG is used only to compute a search direction, an accurate solution
is not necessary. Therefore, PCG is used with a very loose convergence criterion so
as to reduce the number of iterations. Solving Az = b is equivalent to minimizing
Q = 327 Az — bTz. Convergence is based on the criterion ([Nash 90]):

k(Qr — Qr-1) <
(Qr — Qo) —

where k is the iteration number,)y = %r;{Ark — bz, x is the value of = at iteration
k, and o = 0. « is chosen to be 0.1. The above convergence criterion is equivalent

(14)

to stopping when the reduction in () is a small fraction of the average reduction in)
per iteration.

A diagonal preconditioner whose entries approximate the diagonal entries in H
is used. Since H is not known explicitly, 3 random vectors, x, are chosen and the
product Hz is computed. A diagonal approximation to H, viz. H is computed by
solving the following least squares problem:

min”ﬁx—HxHF (15)

Ne 7

and the summation ‘Y"

i, corresponds to an assembly of individual element vec-

tors (%u) into a global vector. When each ¢; is the density in exactly one finite
element, 88]# is non-zero only when ¢ = j and therefore %—gu is easy to compute.

Calculation of the gradient therefore requires a solution of a system of equations with
known factorization and several small matrix-vector products that can be performed
independently.

3.3 The reflective Newton method

In this research, the reflective Newton method is used because it requires relatively
few iterations (and function evaluations) for convergence and can be parallelized rel-
atively easily. It is compared with the active set method with quasi Newton updates
(NPSOL). Unlike NPSOL, the reflective Newton method can take advantage of an
indefinite Hessian by using a direction of negative curvature. Details can be found in
[Coleman 92a] and [Coleman 92b].

The reflective Newton method generates a sequence of strictly feasible iterates
that converges at a quadratic rate to a local solution. The search direction s used in
the line search is computed by solving the following system of equations:

As=b (9)
where

A: DlHDl +D2 (10)

b=—Dg (11)

where Dy and D, are known diagonal matrices, H is the Hessian of the objective
function, and ¢ is the gradient. If A is positive definite, s is a direction of descent.
It A is indefinite, a direction of negative curvature needs to be computed from the
above equation.

The reflective Newton method therefore requires the Hessian or an approximation
to it. One of the following approaches can be used:

e A quasi Newton approximation can be used, but this ignores any negative cur-
vature the objective function might have.

o A finite difference approximation can be computed, but it can be very expensive.

e The Hessian can be computed analytically (see section 3.4) and is cheaper than
finite differences but is still expensive.

e The Hessian can be computed in a ‘product form’ (a sum of the product of
several terms) and can be used to compute Hx for arbitrary vectors x and the
preconditioned conjugate gradient method can be used to solve (9).

mapping. However, column based methods are faster for solution of equations as the
communication bandwidth is unimportant because message size is small. When the
preconditioned conjugate gradient method is used with the reflective Newton method,
several systems of equations need to be solved for the same factorization of K. In
this case, a column based mapping for K is used. When NPSOL is used to solve (2),
factorization time dominates and hence the torus wrap mapping is used with NPSOL.

Assembly of the global stiffness matrix can be performed independently by all
processors; each processor is responsible for computing its portion of K. Global
stiffness matrix assembly is low order work and can be done with little redundant
computation.

Calculation of stresses and strains in each element can be performed in parallel
without interprocessor communication. Therefore, the only message passing required
is during the factorization and solution of equations and during the initial data dis-
tribution.

The parallel multifrontal method (e.g., [Pothen 91]) can also be used for solving
the finite element system of equations (4). It is marginally faster than the skyline
solver, but it requires significantly more memory. Hence it cannot be used to solve
large problems.

3.2 Calculation of gradient

The gradient of the objective function with respect to the independent variables is
given by the following formula:

oy AT(af 0K)

96 = 3¢

where 1 is equivalent to v, but with v and ¢ regarded as independent variables and
A is an adjoint vector that can be computed from:

~T
)
[XA—% (6)

Since K is already factored for solving (4), A can be computed by solving a system
of equations given the Cholesky factor of K. If the ¢;’s are the densities in individual

finite elements, % is zero.
0K oK . 9K, oK
where

OK I (0K,
aqx“:z(a@) (8)

i=1

The next few sections describe in greater detail the approach used for solving (2).
We have further restricted ourselves to problems where the independent variables are
the densities in individual finite elements, i.e., we have not considered variation in the
shape of the domain. During some of the discussions, we will use the objective func-
tion in equation (2), although the techniques are applicable with minor modifications
to other objective functions as well.

3 Computational methods

We have introduced parallelism during various stages of the computation. The ob-
jective function evaluation, which includes the finite element analysis, is carried out
entirely on the hypercube, along with the calculation of the gradient and the Hes-
sian. The matrix vector products needed for the conjugate gradient method are also
computed in parallel.

Two important issues in distributed memory programming are data distribution
and load balancing. For structural optimization, information such as nodal coordi-
nates and element connectivity is made available to all processors. Moreover, the
torus wrap mapping which is used for storing the stiffness matrix ensures uniformity
of data distribution. The element stiffness matrices are needed during the calculation
of the gradient and the Hessian and are stored in a distributed fashion with each
processor storing the stiffness matrices of a few elements. Load balancing among pro-
cessors is also achieved easily because of the use of a torus wrap skyline factorization
instead of other methods such as domain decomposition.

When NPSOL is used to solve 2, only the objective function and gradient is eval-
uated in parallel on the hypercube. The rest of the active set method runs on the
Sun front-end.

3.1 Parallel finite element analysis

In structural finite element analysis, the following large sparse system of linear equa-
tions needs to be solved:

Ku=f (4)

where K is the global stiffness matrix, u is the vector of nodal displacements and f is
the vector of externally applied nodal loads. We have considered only direct methods
for solving the above equation because as shown in the next few sections, one needs to
solve several systems of equations with the same coefficient matrix, K, which makes
iterative methods unattractive.

In this work, the matrix K is stored in a skyline form and is distributed among
the processors using a torus wrap mapping ([Geijn 91]). The torus wrap mapping
increases the communication bandwidth and hence reduces the communication cost.
The more common row and column wrap mappings are special cases of the torus wrap

The structural response is a complex function of the design variables and the

input parameters, and requires a finite element analysis.

The input parameters are independent of the model parameters.

Y(y(¢,), ¢) is a measure of the performance of the structural system.

Objective function evaluation is significantly more expensive than the linear
algebra portion of the optimization algorithm.

Realistic finite element models of physical systems have several thousand degrees of
freedom and the solution of such large problems is computationally intensive. During
the optimization process, several hundred such functions may have to be evaluated.
In order to speed up the optimization process, parallelism must be introduced.

In this work, the reflective Newton method ([Coleman 92a], [Coleman 92b]) is used
for the non-linear optimization. Among its advantages are fast convergence, ease of
parallelization, and relatively few function evaluations at the expense of more linear
algebra per iteration. In contrast, active set methods such as NPSOL ([Gill 86]) may
require several hundred iterations in some cases and are also difficult to parallelize.
For example, the quadratic programming subproblem in an active set method requires
O(n?) work for updating a Cholesky factorization every time a variable is added or
removed from the active set. It is difficult to obtain high speedups for these updates
on a message passing machine. On the other hand, the reflective Newton method
requires a single solution of a system of equations at every iteration and is hence
easier to parallelize.

This research is carried out on a 32 processor Intel iPSC/860 hypercube with 8
Mbytes of local memory per processor. The processors of the iPSC/860 are connected
by ethernet with peak communication speed of 2.8 Mbytes/second. Processors ex-
change data by sending and receiving messages. The nodes of the hypercube are
attached to a front-end called the System Resource Manager (SRM) which is used
to load the program on the nodes. Instead of the SRM, a Sun workstation can also
be used as a front-end for the hypercube. In this work, some of the code ran on
the front-end, but the computationally intensive portions ran on the hypercube. The
reason for using the Sun front-end is two-fold:

e since the active set method (NPSOL) is difficult to parallelize, it is run sequen-
tially. However, the memory on each node of the hypercube is too small to have

NPSOL running on it. Therefore, NPSOL is run on the Sun front-end.

e proprietary code such as Matlab ([MathWorks 90]) used with the reflective New-
ton method is not available in source form and hence needs to be run on the
Sun front-end for which a compiled executable is available.

The Portable Instrumented Communication Library (PICL) is used for message-
passing ([Geist 91]). Use of PICL ensures portability across several distributed mem-
ory platforms.

subject to:

L, <p<U,
L <t < U
L. <r<U,

where

M = mass of the structure

U = strain energy in the entire domain =
p = density

t = thickness

r = shape parameters

) = structural domain

0o [
?
1S
)
="
o)

o = stress tensor
¢ = strain tensor
L,, L L, = lower bounds on independent variables
U,,U, U, = upper bounds on independent variables

Solving the above problem would help researchers understand the changes in the prop-
erties of human bone due to the presence of artificial implants and can ultimately lead
to the design of better implants.

The Young’s modulus of the bone, E, which is used in finite element analysis, is
empirically related to the bone density by the relationship ([Carter 77]):

E=Cp’ (3)

where (' is an empirical constant.

In this multi-objective optimization problem, a linear combination of the two ob-
jective functions is minimized. The objective function we use is ¢; M + U and the
coefficients ¢; and ¢y are chosen suitably. In order to solve this optimization prob-
lem numerically, the structural domain € is discretized into finite elements. A finite
element solution gives nodal displacements, which are used to compute the strain
energy, . The above formulation holds for a 2-D model. 3-D finite elements do
not have ‘thickness’; shape variables play the role of thickness in 3-D models. In
[Subbarayan 90], 2-dimensional problems were analyzed; we would like to study the
applicability of the variational method of bone remodeling for 3-dimensional prob-
lems.

It is important to note that problems arising from diverse structural applications
also have similar characteristics. In structural design problems, the designer is inter-
ested in choosing model parameters (¢) in order to minimize an objective function
such as cost or weight. Some important common characteristics of these optimization
problems are:

e The objective function is a simple function of structural response, along with
the input parameters () and the design variables (model parameters, ¢).

3

1 Introduction

Structural design applications often require the solution of a large optimization prob-
lem. Designers are interested in minimizing the cost or weight of complex structures
such as automobiles and bridges. Structural optimization is moving towards larger
and larger problems. Not only do these problems require a significant amount of mem-
ory, they also need to be solved fast so as to speed up the overall design process and
help designers study different configurations. These factors make sequential machines
inadequate for solving large problems and parallelism needs to be introduced.

A popular approach towards solving structural optimization problems is to use
an active set method with a BFGS update. But as problems get larger, active set
methods tend to require hundreds of iterations. Moreover, active set methods do not
parallelize well on distributed memory machines. For these reasons, we suggest a
new approach for solving such problems. Our approach uses the reflective Newton
method ([Coleman 92a], [Coleman 92b]). The Hessian is computed exactly, but is not
stored explicitly. Instead, it is stored in a product form (as a sum of the product of
several terms), and a preconditioned conjugate gradient method is used to solve for
the search direction. Typically, fewer iterations are required and the method can be
parallelized on distributed memory machines.

The next few sections describe in greater detail the approach used. Section 2
describes the problem and the motivation behind solving this problem. Section 3
describes the computational techniques used in this work, and section 4 describes the
results of some numerical experiments performed in this work.

2 Problem description

Consider structural optimization problems of the following form:

miné(u(6), 9 (1
st <o <U

where L and U are lower and upper bounds respectively on the vector of independent
variables, ¢. The dependent variables, u(¢), are computed by means of a finite ele-
ment analysis. The most general form of structural optimization problems contains
linear and non-linear equality and inequality constraints; we restrict ourselves to the
simpler case here.

An area of application for the above formulation is bone remodeling. In some
recent work ([Subbarayan 90]), the distribution of material and physical properties
of the bone was predicted using a variational model for bone reconstruction. The
prediction was based on the solution of the following optimization problem:

} M
%}&9{ u } 2)

Parallel Structural Optimization Applied to
Bone Remodeling on Distributed Memory
Machines*

Shirish Chinchalkar’ and Thomas F. Coleman?

Abstract

This paper demonstrates parallel structural optimization methods on dis-
tributed memory MIMD machines. We have restricted ourselves to the simpler
case of minimizing a multivariate non-linear function subject to bounds on the
independent variables, when the objective function is expensive to evaluate as
compared to the linear algebra portion of the optimization. This is the case in
structural applications, when a large three-dimensional finite element mesh is
used to model the structure.

This paper demonstrates how parallelism can be exploited during the func-
tion and gradient computation as well as the optimization iterations. For the
finite element analysis, a ‘torus-wrapped’ skyline solver is used. The reflec-
tive Newton method which attempts to reduce the number of iterations at the
expense of more linear algebra per iteration is compared with the more con-
ventional active set method. All code is developed for an Intel iPSC/860, but
it can be ported to other distributed memory machines.

The methods developed are applied to problems in bone remodeling. In the
area of biomechanics, optimization models can be used to predict changes in the
distribution of material properties in bone due to the presence of an artificial
implant. The model we have used minimizes a linear combination of the mass
and strain energy in the entire domain subject to bounds on the densities in
each finite element.

Early results show that the reflective Newton method can outperform ac-
tive set methods when a significant number of variables are not active at the
minimum.

Keywords: structural optimization, parallel finite element analysis

*Partially supported by NSF New Technologies Program, # 9108787, and by the Cornell Theory
Center, which receives major funding from the National Science Foundation and IBM Corporation,
with additional support from the State of New York and its Corporate Research Institutes.

tAdvanced Computing Research Institute, Cornell Theory Center, Cornell University, Ithaca,
NY 14853.

tComputer Science Department, Cornell University, Ithaca, NY 14853.

