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Abstract

We study the existence of polynomial time Boolean connective functions for languages. A
language L has an AND function if there is a polynomial time f such that f(z,y) € L <
z € Land y € L. L has an OR function if there is a polynomial time g such that g(z,y) €
L <= z € L or y € L. While all NP-complete sets have these functions, we show that Graph
Isomorphism, which is probably not complete, also has them. We characterize the complete sets
for the classes DP and PNPIO(ogn)] ip terms of AND and OR, and we relate these functions to
the structure of the Boolean hierarchy and the query hierarchies. We show that the sets that
are complete for levels above the second level of the Boolean hierarchy do not have AND and
OR unless the polynomial hierarchy collapses. We show that most of the structural properties
of the Boolean hierarchy and query hierarchies depend only on the existence of AND and OR
functions for NP-complete sets.

1 Introduction

In this paper we consider the existence of polynomial time Boolean combining functions for lan-
guages. We say that a language L has a binary AND function, i.e. an AND, function, if there is
a polynomial time function f such that for all strings z and y, f(z,y) € Lif andonly if z € L
and y € L. Similarly, we say that a language L has a binary OR function, an OR; function, if
there is a polynomial time function g such that for all strings z and y, ¢g(z,y) € L if and only if
z € L or y € L. In addition, a language may have “any-ary” Boolean functions ( AND,, and OR,,),
polynomial time functions f and g such that for all n and strings z4,---,Zn, f(z1,--,2n) € L if
and only if z1,---,2, are all in L, and g(zy,---,2,) € L if and only if at least one of z1,---,z, is
in L.

The existence of these functions is intimately tied to questions about polynomial time reducibil-
ities and structural properties of languages and complexity classes. Our initial motivation for con-
sidering these functions was the observation that all NP-complete languages have AND,, and OR,,
functions. In fact any:language that is <P -complete for even relativized versions of complexity
classes such as P, NP, PSPACE have any-ary Boolean functions by virtue of the fact that such
robust complexxty classes are represented by machine models that can be run on the different
strings in the input tuple. We will show that languages that are <P -complete for DP [PY84] have
AND,, but do not have OR; unless the polynomial time hierarchy collapses. Complete languages
for the higher levels of the Boolean hierarchy [CGH*88] do not have either AND; or OR; unless
the polynomial time hierarchy collapses.
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These Boolean functions are related to polynomial time conjunctive and disjunctive reducibil-
ities (defined by Ladner, Lynch, and Selman [LLS75]) and to closure of complexity classes under
union and intersection. Let m-1(L) be the class of languages <F - reducible to a language L. It is
easy to show that:

L has AND; <= m-1(L) is closed under intersection
<= m-1(L)is closed under <5 __,

L has AND, <= m-1(L)is closed under <F

C

( <P_. and <F are defined in [LLS75]). Similarly, OR is related to disjunctive reducibilities and
union. Hence by looking at these concepts in terms of Boolean functions for languages, we are
simply thinking of them more as structural properties of languages than as structural properties of
complexity classes. An advantage of this approach is that it becomes convenient to study interesting
languages such as Graph Isomorphism and USAT (the set of Boolean formulas that have exactly
one satisfying assignment) that are not known to be <P -complete for any standard classes.

The paper is organized as follows. Section 2 presents definitions and preliminary concepts. In
Section 3 we discuss some languages that have AND and OR functions. Most notably, we show that
Graph Isomorphism does have any-ary AND and OR functions even though it is not known to be
NP-complete. In Section 4 we characterize the <P -complete languages of DP and PNP[O(logn)] iy
terms of AND and OR functions. In Section 5 we use the above characterizations to show that the
complete languages of the different levels of the Boolean hierarchy and the related query hierarchies
do not have AND and OR functions unless the Boolean hierarchy collapses (which implies that the
polynomial time hierarchy collapses [Kad88]).

Finally, in Section 6, we observe that the existence of AND and OR functions for languages is
a condition that makes many proof techniques work. For instance the mind-change technique used
by Beigel to show that PSATI2*-1] = PSATIk] works for any set A that has binary AND and OR
functions. Similarly, most of the theorems concerning the basic structure and normal forms of the
Boolean hierarchy and the intertwining of the Boolean and query hierarchies depend only on the
fact that SAT has AND, and OR,. The results of this section have been proven independently by
Bertoni, Bruschi, Joseph, Sitharam, and Young [BBJ+89].

2 Definitions, Notations and Facts

We assume the reader is familiar with the classes P, NP, the polynomial time hierarchy (PH),
the NP-complete language SAT, the graph isomorphism problem, and polynomial time many-one
reducibility (<P).

Although our intuitive notion of AND and OR consists of polynomial time functions that operate
on strings, it is convenient to define ANDy, AND,,, OR,, OR,, as sets:

Definition For any set A, we define the sets

AND2(A) = {(z,y)|z€ Aand y € A}
OR2(A) = {(z,y)|z€Aorye A}

ANDi(4) = {(z1,...,2k) | Vi, 1<i<k,z;€ A}
ORir(4) = {(z1,...,2zx) | 3, 1 <1< k,z; € A}
AND,(4) = AND;(A)
i=1



OR,(4) = GOR,-(A).
i=1

If AND,(A4) <P A or AND,(A) <P A, then we say that A has AND, or AND,, respectively. If
OR;(4) <F 4 or OR,(4) <P 4, then we say that A has OR; or OR,, respectively. Some obvious
facts about AND2(A) and OR2(A) are:

1. ANDy(A4) <P A4 <= ORy(4) <P 4.
2. if A =F B then AND,(4) <P A <= AND,(B) <F B.
3. if A=F B then OR,(4) <P 4 <= OR,(B) < B.

These facts hold for AND,(4) and OR,,(A) as well.
Note that if AND,(A) <P A, then for all kK, AND;(A) <P A.1It is possible that AND,(4) <P 4,
but AND,,(4) £F, A. However if ANDy(A) <P A by a linear time reduction, then AND,(4) <P 4.

Lemma 1 If ANDy(A) <P A by alinear time reduction, then AND,,(A) <P A. Similarly, if OR,(A)
<P A by a linear time reduction, then OR,,(4) <F 4.

Proof: Let f be a linear time reduction from AND,(A) to A. For any r, we can take a tuple
(z15...,%,) and apply f pairwise to f(z1,z2) f(z3,24) --- f(zr—1,2,). Then we can apply f
pairwise to the outputs of the first applications of f. Repeating this process until we have a single
string gives us a tree of applications of f. The height of the tree is logr. If n is the total length of
the tuple, r < n, and so the total running time is bounded by c!°8"n for some constant ¢. This is
polynomial in n. g

Definition We write BH(k) and co-BH(k) for the k** levels of the Boolean hierarchy, defined as
follows:
BH(1) = NP,
BH(2k) = {L|L=L'nL; where L’ € BH(2k — 1) and L, € NP},
BH(2k+1) = {L|L=L'uL; where L' € BH(2k) and L, € NP},
co-BH(k) {L| T € BH(k)}.

Definition We write Lpy(k) for the canonical complete language for BH(k) and L,.gy(x) for the
complete language for co-BH(k):

Lgu) = SAT,

LBH(2k) = {(z1,...,z) | (T1,...,T2k-1) € LBH(2k—1) and 332k' € m},
Lu(k+1) = {(e1,-..,22k41) | (21, .., Z2k) € LBH(2k) OF T2k41 € SAT},
Leo-BH(1) = SAT, "
Leo-Ba2k) = {(z1,-.,22) [ (21, .., 226-1) € Lco-BH(2k-1) OF T2k € SAT},
Lco—BH(2k+1) = {(z1,.-.,Z2kt1) | (T1,...,22%) € Lco-BH(2k) and zok41 € §7ﬁ“’}

Alternatively, BH(2) is called DP = {L; — Ly | L;,L, € NP}. We will use the two terms
interchangeably. Also, we will refer to LpH(2) as SAT A SAT the traditional <P _complete language
for DP.



Definition For any set A, we write P4[¥ for the set of languages recognized by polynomial time
Turing machines that ask at most k queries to the oracle A on any input. The query hierarchy
relative to A is QH AdéfU,‘:‘;l PA],  Similarly, PAlO(ogn)] js the set of languages recognized by
polynomial time Turing machines that ask O(logn) queries to A. Also, we write PAIl¥] for the set
of languages recognized by polynomial time Turing machines which ask at most k queries in parallel

on any input. Finally, we define the parallel query hierarchy relative to A as QH, Adéf U, PAIIK.

Fact The Boolean, parallel query and the query hierarchies (relative to SAT) are intertwined
[Bei87,Hem87]

—

. PSATI € BH(k + 1) N co-BH(k + 1).
2. BH(k) U co-BH(k) C PSATIIK],
3. PSATI|[] — pSAT[2*-1]

4. PNP[O(logn)] — PSAT||.

3 Languages Which Do
In this section, we present some familiar languages which are known to have AND,, and OR,,.

Lemma 2
1. SAT has AND,, and OR,,.
2. SAT A SAT has AND,,.

Proof:
1. Given n formulas (f1,..., fa),

(fi,--+, fn) € AND,(SAT) <= fiA...A fn € SAT
(fis---s fn) € ORL(SAT) <= fi V...V f, € SAT.

2. Given n tuples ((fi1,91),---,(fny9n)),

<(f17.ql)7 . "(frngn)) € ANDW(SAT A SAT)
<= (fiN...Afa,g1V...Vgn) € SAT A SAT.

a

Lemma 2 also implies that all NP-complete languages have AND,, and OR,. In fact any
language that is <P -complete for any relativized version of NP, P, or PSPACE has AND,, and
OR,. In addition, all languages in P also have AND,, and OR,,. One question is whether any of the
incomplete languages in NP — P have these Boolean functions or not. In our next theorem, we show
that Graph Isomorphism, a natural language that is probably not <P -complete for NP [Sch8§],
does have AND,, and OR,,. One open question is whether Primes has these Boolean functions.

Definition GI%f G,H) | G and H are isomorphic graphs}.
g



The Labelled Graph Isomorphism problem is the problem of recognizing whether two graphs
with labelled vertices are isomorphic by an isomorphism that preserves the labels.

Definition

LGI & {(G,H) | G and H are isomorphic graphs with labelled nodes, and the
isomorphism preserves labels }.

We will show that LGI has AND, and OR,, functions. The existence of AND, and OR,,
functions for GI follows from the fact that LGI =F GI [Hof79].

Lemma 38 LGI has AND,, and OR,,.

Proof: Without loss of generality we can assume that graphs are represented as adjacency matrices
paired with a table mapping vertices to integer labels.

We define an AND,, function for LGI as follows. Given r pairs of graphs ((G1, H1), - .., (Gr, Hy)),
we preprocess each G; and H; by:

1. for each G; and H;, add a new vertex and make it adjacent to every old vertex of the original
graph.

2. define r new labels. For each 7, label the new vertex of G; and H; with new label :.

Then let G be the disjoint union of all the altered G;’s (i.e. put them all together in one graph
with no extra edges), and let H be the disjoint union of all the altered H;’s.

If for all 7, the original G, is isomorphic to the original H; by a label preserving mapping, then
G is isomorphic to H by mapping each G; to H; and the new vertex of G; to the new vertex of H;.
Clearly, this is an isomorphism from G to H that preserves the labelling. If G is isomorphic (label
preserving) to H, then the isomorphism must map the unique vertex in G with new label ¢ (the
new vertex added to G;) to the unique vertex in H with new label ¢ (the new vertex added to H;).
This induces an isomorphism between G; and H; (for all 7).

To show that LGI has OR,,, we first show that LGI has OR,. Then, we note that the reduction
can be done in linear time, which implies that LGI has OR,,.

Given 2 pairs of labelled graphs, (G1, H1) and (G2, H3), we preprocess the graphs as described
above (adding 2 new labels). Define a new labelled graph G containing all four graphs G, Hy, G2,
and H, as subgraphs with 2 new edges added connecting the new vertices of G; and G, and the
new vertices of Hy and Hy. H is produced similarly except the new edges connect G; with H, and
H, with G; (see Figure 1).

Suppose G; and H; are isomorphic by a label preserving mapping. Then, G and H are isomor-
phic by mapping G, in G to Hy in H, Hy to G1, G3 to G5 and H, to Hy. Symmetrically, if G,
and H, are isomorphic, then G and H are also isomorphic. o

If G and H are isomorphic and G; is not isomorphic to H;, then the new vertex of G; in G
must be mapped to thé new vertex of G; in H. This means that the new vertex of G in G must
be mapped to the new vertex of Hy in H. This induces an isomorphism between G5 and Hj.

To see that the reduction from ORy(LGI) to LGI is linear time, note that we only doubled the
size of the input and added only 2 new labels. Lemma 1 then implies that LGI has OR,,. m]

Corollary 4 GI has AND,, and OR,,.



G, H, G, H,

Figure 1: New labelled graphs G and H.

4 Characterizations of Complete Languages

In this section, we show that the complete languages for DP and PNP[O(logn)] can be characterized
using AND; and OR,,. We show that the two characterizations are very similar. The only difference
is that PNP[O(ogn)] complete sets have OR,, and DP complete sets do not. Since DP # PNP[O(logn)]

unless PH collapses, DP complete sets probably do not have OR,,.
Lemma 5 If SAT, SAT <P 4 and A4 has AND,, then 4 is DP hard under <P reductions.

Proof: SAT ASAT is <P -complete for DP. Clearly, SAT A SAT<P 4. So, A must be DF hard.
O

Theorem 6 A set A is <P -complete for DP if and only if
1. AeDP.
2. SAT,SAT <P 4.
3. A has AND,.

Now, we show that if a DP-hard set has OR; or OR,,, then it is also hard for higher levels of
the parallel query hierarchy.

Theorem 7 Let A be any set that is <P -hard for DP.
1. If A has ORg, then for all k, A is <P -hard for PSATI],
2. If A has OR,, then A4 is <P -hard for PNP[O(logn)]

Proof: Let C be any set in PSATK], To determine if z € C, consider the query tree of the PSATI¥]
computation. (The query tree is a full binary tree where the internal nodes are labelled by the
oracle queries. The two subtrees below the node represent the computations that follow oracle
reply. One branch assumes the oracle replied “yes”, the other “no”.) The query tree has height &
and 2* leaves. Only one path in the tree (from root to leaf) is the correct path, and z € C if and
only if this path ends in an accepting configuration.



Now we show that a DP computation can determine if a given path is the correct path. Let
P1,---,pi be the queries on the path assumed to be answered “yes”, and ¢1,...,q; be the queries
assumed to be answered “no”. Then, the path is correct if and only if p; A... A p; € SAT and
@1 V...V g; € SAT. This is exactly a DP computation.

Since the query tree is of constant depth, it is possible to generate the entire tree in polynomial
time and write down all the paths that end in an accepting configuration. Note that = € C if and
only if one of these accepting paths is the correct path. Let r be the number of accepting paths.
We can use r separate DP computations to check if any of the accepting paths is the correct path;
and since we are assuming that 4 is DP-hard and has OR;, we can use one A computation instead
of the r DP computations.

The proof of the second case is similar. The only difference is that the query tree is polynomial
in size instead of constant. m]

Corollary 8 If SAT, SAT <P A and A has AND, and OR,, then A is PNP[OUogn)] hard under
<P reductions.

Proof: By Lemma 5 A is a DP-hard set. By the preceding theorem, A is also hard for PNP[O(logn)],
O

Theorem 9 A set A is <P -complete for PNP[OUogn)] if and only if

. A € PNP[O(logn)]

—

2. SAT,SAT <P A.
3. A has AND,.
4. A has OR,,.

Notice that the only difference in the characterizations of DF complete sets and PNP[O(logn)]
complete sets (Theorems 6 and 9) is that PNP[O(ogn)] complete sets have OR,,. So, we have the
following corollary.

Corollary 10 If SAT A SAT has OR,,, then PNP[O(ogn)] C DP,

Since PNPIOUcgn)] C DP implies that PH collapses to just above £F [CK89], Corollary 10 is
evidence that SAT A SAT does not have OR,,. In fact, it probably does not have ORg, either.

Corollary 11 If SAT A SAT has OR;, then PNP[O(logn)l C DP.

Proof: If SAT A SAT has OR;, then by Theorem 7, SAT A SAT is hard for PSAT(2], However, the
complement of SAT A SAT is SAT V SAT which is in PSAT[?). So, SAT A SAT=FsSAT v SAT. Since
SAT A SAT has AND,, (Lemma 2), SAT V SAT has OR,, by DeMorgan’s Law.. Thus, SAT A SAT
must also have OR,, since the two sets are <P -equivalent. Then, by Corollary 10 PNP[O(logn)] C DP,
O

Corollary 12 If DP= co-DPthen PH collapses and PNP[O(logn)] C DP.



Proof: If DP= co-DP, then SAT v SAT is <P -complete for DP. So, SAT v SAT has AND; by
Theorem 6. Then, by DeMorgan’s Law, SAT A SAT has OR, which implies PNP[O(ogn)] ¢ DP by
Theorem 11. The polynomial hierarchy collapses by Kadin’s proof [Kad8s]. O

It was observed by Kadin [Kad87] that the collapse of the Boolean hierarchy at level 2 (DF = co-
DP) immediately implies PNP[O(losn)] ¢ DP, However, we cannot push the same theorem through
for the collapse of the Boolean hierarchy at levels 3 or higher. We explain this phenomenon using
AND; and OR;. Observe that in the proof above we relied on the fact that SAT A SAT has AND,.
We will show in the next section that the complete languages for the levels of the Boolean hierarchy
cannot have AND; or OR;, unless PH collapses.

5 Languages Which Don’t

In this section, we show that the complete languages for the levels of the Boolean hierarchy and
query hierarchies probably do not have AND; or OR;,. In the following theorems, keep in mind
that BH(k) C BH C PNPIOUegn)l. Also recall that if BH C BH(k), QH;| C PSATIK, QH C PSATHM,
or PNP[O(logn)] C BH(k), then the polynomial hierarchy collapses. Of course Theorems 13 and 14
apply to any <P -complete sets for the various levels of the BH.

Theorem 13 For k > 2,

1. LpH(x) has OR; <= BH C BH(k).

2. Lpy(x) has OR, <= PNPIOUosn)] C BH(k).
Proof:

1. (=) For k > 2, Lpy(x) is DP-hard, so by Theorem 7, LpH(x) has OR; implies that it is hard
for PSATIK. However, L,-pu(x) € PSATH, so Leo-BH(k) <% Ln(k). This implies that BH(k) is
closed under complementation, which implies BH C BH(k).

(<) If BH C BH(k) then PSATI2X] C BH(k), since PSATI2Kl C BH(2k + 1). Clearly,
ORZ LBH k) € PSAT”[ﬂC], SO LBH k has OR2
(k) (k)

2. (=) As above, Lpn(x) is DP.hard. By Theorem 9, Lpu(x) has OR,, implies that Lpyx) is
<P -complete for PNP[O(logn)] 5o PNP[O(logn)] C BH(k).

() ORu(LpH(x)) € PSATII = pNP[O(ogn)], 5o, if PNPIO(sn)] C BH(k) then Lpy(x) has OR.,.
0O

Theorem 14 For k > 3,
1. LBH(k) has AND;. <= BH C BH(k)
2. Lpy(x) has AND,, <= PNPIO(sn)] C BH(k).

Proof: DeMorgan’s Law implies that Leo-BH(k) has OR2 or OR,,. Then, the proof proceeds as
above, because for k > 3, Leo-pu(x) is DP-hard. O

If we believe that the polynomial hierarchy does not collapse, then the preceding theorems tell
us that as we go up the Boolean hierarchy, the complete languages lose the Boolean connective



functions. At the first level, Lgy(;) = SAT, so Lpu(1) has both AND,, and OR,. At the second
level, Lpy(g) is DPcomplete, so Lgy(2) has AND,, but does not have OR;. From the third level
up, Lpy(x) has neither AND; nor OR;. In conclusion, we see that when we walk up the Boolean
hierarchy from level one, the complete languages lose pieces of “robustness”.

The <P -complete languages for the different levels of query hierarchy and the parallel query
hierarchy (relative to SAT) also do not have AND, or OR; unless the PH collapses.

Theorem 15 For any k, if C is <F -complete for PSATII¥] then

C has AND, or OR; => BH C PSATI|[¥],

Proof: First, note that since PSATII¥] is closed under complementation, C =F, C. Therefore C
has AND; if and only if C has OR;. We will show that if C has either Boolean function, then
BH(k + 1) C PSATI¥ which implies the collapse of the BH (and the PH). If k is odd, then the

<P -complete language for BH(k + 1) is
LBH(k+l) = {<(E1, ooy :l?k+1> | (xl, . .,Il?k) € LBH(k) and Tk41 € SAT}

If C has AND,, then LBH(k+1)S§1 C since LBH(k)SEI C and SAT<F C. But this implies BH(k + 1) C
PSATIIK], If k is even, then the <P -complete language for BH(k + 1) is

Leuk+1) = {{1,. -, Zk41) | (21,...,2x) € Lpnk) or Tky1 € SAT}.

If C has OR;, then LBH(k+1)SII:1 C since LBH(k)SP C and SAT<P C. Again this implies BH(k + 1)

C
PSAT||[k]. O

In related research, we have shown that USAT, the set of Boolean formulas that have exactly
one satisfying assignment, does not have OR,, unless the PH collapses [CK90).

6 AND, and OR, and Hierarchies

Considerable research has focused on understanding the structure of the Boolean hierarchy and
the query hierarchies [WW85,Bei87,CGH+88, KSW87]. The basic structural properties of these
hierarchies are as follows:

1. Normal forms for BH: there are many different but equivalent ways to define the levels of the
BH [CGH*88].

2. Complete languages:

(a) Lpnk) is <F -complete for BH(k).
(b) ODD,(SAT) is <F, -complete for BH(k) [Bei87,WW85]. (ODD(SAT) is defined below)
(c) EVENi(SAT) ® ODDy(SAT) is <P -complete for PSATII] [Bei87,WW8%].

3. Basic containments and intertwining [Bei87,KSW87]:

BH(k) U co-BH(k) C PSATIKI € BH(k + 1) N co-BH(k + 1).



4. Intertwining of the query hierarchies [Bei87):

PSAT||[k] — pSAT[2*-1]

5. Upward collapse:
BH(k) = co-BH(k) = BH C BH(k)
PSAT[IK] — pSATI|lk+1] — QH| C PSATIIH
PSATIK] = PSATIk+1] — QH C PSATIK,

Definition For any set A, we define the following languages:

ODDx(4) ¥ {(e1,...,2x) | [[{z1,..., 2k} N A]| is odd}
EVENi(4) ¥ {(z1,...,2x) | |[{z1,..,2x} N 4] is even).

In this section, we show that all the above properties follow simply from the fact that SAT (or
any NP-complete set) has AND, and OR,. That is, they do not depend on the fact that SAT is
NP-complete or even in NP at all. This observation follows from the fact that given any set 4 that
has AND; and OR;, the Boolean and query hierarchies based on A have all the above properties.
The results of this section have been proven independently by Bertoni, Bruschi, Joseph, Sitharam,
and Young [BBJ*89].

The QH and QH| relative to a set A were defined in section 2. We define the Boolean hierarchy

relative to A as the difference hierarchy of m-l(A)déf set of all languages <P -reducible to A.
Definition

BH4(1) = m-1(4),
BH4(2k) = {L|L=1L'NnL, where L' € BHa(2k — 1) and L, € m-1(A)},

BHA(2k+1) = {L|L=L"UL; where L' € BH4(2k) and L, € m-1(A)},
CO-BHA(k) = {L I Le BHA(k)},
oo
BH, = BH 4 (k).
k=1

First, we will leave it to the reader to show that if A has AND, and OR,, then the various
normal forms defined in [CGH*88] hold for the different levels of BH, (see [CH85]). For example,

a language L is in BH 4(k) iff there exist languages L;,..., Ly € m-1(A) such that
L=D(Ly,...,L)¥ L, — (Ly - (L3 - (- - Ly))).
Theorem 16 If A has AND, and OR;, then ODDy(A4) is <P -complete fo'r BHA(k:).

Proof: First, we show that ODDy(A4) is <P -hard for BH4(k). If L € BHj(k), then L =
D(Ly,...,Ly) for Ly,...,Lx € m-1(4). Define L/*' N, L;. Then each L} € m-1(4), since

m-1(A) is closed under intersection, and L} D L} D --- D Lj. One can prove by induction that
D(Ly,...,Ly) = D(LY,...,L,). Then clearly, z € L iff the number of sets Li,..., L; that contains
z is odd. Since each L} is in m-1(A), given a string z, we can reduce z to (qi,...,q) such that

€L < gi€A Thenz €L < (q,...,qx) € ODDg(A). Therefore ODDy(4) is <P -hard
for BH4(k).
To see that ODD(A) € BH4(k), for each ¢ < k, consider the set

10



Li¥ Yz, .. oz) | {z1,-- .z} 0 A]> i)

L; € m-1(A) since given (zy,...,zk), we can generate all s = ('f) subsets of 7 strings and use the
reduction from OR,(AND;(A)) to A to generate a string that is in A iff all ¢ strings in one of the
subsets are in A. Then ODDy(4) = D(Ly,..., L), implying ODDx(A) € BH4(k). O

The most difficult proof in this section is the argument that EVEN(A) @ ODDy(4) is <P -
complete for PAIlKl, We prove this by showing that the mind-change technique used by Beigel
[Bei87] works provided A has AND, and OR,.

Theorem 17 If A has AND; and OR;, then EVEN,(A) @ ODDy(A) is <P -complete for PAII],

Proof: Both EVEN(A4) and ODD(A) are obviously in P4l so we need to show that every set
in PAlK] can be reduced to EVEN(A) @ ODDi(A).

Let L be a language in P4Il¥] computed by a polynomial time oracle Turing machine M which
asks at most k parallel queries. With each M4(z) computation, we associate truth tables that have
the following syntax:

@1 @2 ... g | result
0O o0 ... O acc
0o o ... 1 rej
1 1 ... 1 rej

The idea is that gy, ..., gk are the queries that M4(z) makes. Each row of the truth table records
whether the computation accepts or rejects assuming that the answer to the queries are as listed
in the row. (A “1” in column ¢; means we are assuming that ¢; € A and a “0”, ¢; ¢ A). The full
truth table has 2% lines, but consider truth tables with fewer lines. In particular, we call a truth
table valid if

1. The first row of the truth table is all 0’s.

2. If a “1” appears in column g¢; of row j, then for all rows below row j a “1” appears in column
gi- (Think of each row as the set of ¢;’s assumed to be in A represented as a bit vector. This
condition implies that the rows are monotonic under the set containment relation.)

3. If a “1” appears in column ¢; of any row, then ¢; is in fact an element of A.

N.B. valid truth tables have between 1 and k + 1 rows. The following is an example of a valid truth
table.

result
rej
acc
acc

=
fry
_
N
P~
wn

'3

o
3

rej
acc
rej

cococoo
co o oo o
e e e = o)

cooco o
e = =)
== -0 OO
coocoo o

1 0

For each valid truth table T, we associate a number mr—the mind changes of T—which is the

number of times the result column changes from accept to reject or from reject to acc. In the

example above, mr is 4. Since valid truth tables have between 1 and k 4 1 rows, 0 < mr < k.
Now we define the set of valid truth tables labelled with the number of mind changes.
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T = {(T,z,s) | T is a valid truth table for M4(z) and mg = s}.

Claim: 7<P A. On input (T, z,s), a polynomial time machine can simulate M4(z) to determine
which strings, ¢i1,...,qk, will be queried. Then, the machine can easily check the syntax of T to
see if it meets conditions 1 and 2 in the definition of a valid truth table and to see if the number
of mind changes is indeed equal to s. If any of these conditions is not met, (T, z, s) is reduced to a
known string in A. Otherwise, T is a valid truth table if and only if all the ¢;’s with a 1 in the last
row are actually in A. This last condition can be reduced to A via the reduction from AND(4) to
A.

Now define

ET, = {z | 3T, s such that s > r and (T, z,s) € T}.

Claim: £7,<F A. Since k is constant, for fixed queries g, .. .» Qk, there is only a constant number
of truth tables with k& columns. So simply generate all truth tables T and all values of s between
0 and 7. Since z € £T; if and only if (T,z,s) € T for one of the (T, s) pairs generated and since
T<P A, £T, can be reduced to 4 by using OR2(A4) to combine all the reductions from 7 to A into
one reduction.

We use the reduction from £7; to 4 to produce a reduction from L to EVEN,(A) @ ODDx(A).
This reduction will simply print out a k-tuple (21, ..., zx) and an extra bit to indicate if the reduction
is to EVENy(A) or ODDi(A). Each z has the property that z; € A iff z € £7; iff there exists
a valid truth table that makes ¢ mind changes. Let ¢ be the maximum number of mind changes.
Then, 2y,...,2; € A and 2z441,...,2x € A. So, the parity of the number of 2;’s in A is the same as
the parity of t.

Now, we claim that the parity of the maximum number of mind changes is enough to determine
if M4(z) accepted. First, note that there must exist a valid truth table with the maximum number
of mind changes which has, in its last row, the actual oracle replies. (Le., there is a 1 in column
gi of the last row if and only if ¢; € A.) To see this, simply confirm that adding the row of actual
oracle replies to the bottom of a valid truth table results in another valid truth table. Thus, M4(z)
accepts iff the result in the last row of this truth table is “accept”.

Second, consider this valid truth table that makes ¢t mind changes. Note that if ¢ is odd (even)
then the result in the last row is the opposite of (same as) the result in the first row. Suppose the
result in the first row is “accept”, then z € L iff t is even iff (z1,...,2x) € EVENi(A). Similarly,
if the result in the first row is “reject”, then = € L iff (z1,...,2x) € ODD4(A). Since the result
in the first row can be computed in polynomial time, a polynomial time function can reduce L to
EVEN(A) ® ODDy(A). a

Theorem 18 If A4 has‘ANDz and OR,, then
BH4(k) U co-BH,(k) C PAIKI € BH4(k 4 1) N co-BH4(k + 1).

Proof: The first containment follows straight from the definitions of the various iclasses.
The second containment holds because EVEN;(A) @ ODDy(4) <P ODD;;1(A) and the com-
pleteness results of the previous two theorems. a

Theorem 19 If a set A has AND; and OR;, then PAK] = pAlll2*-1],
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Proof: For any A, PAKl C PAll2*~1] 50 all we need to show is P4lll2*~1] ¢ PAK], We will do this
by showing that ODD,._;(A) € PA["] and then Theorem 17 implies that PAl[2*~1] C pAIK],

The main idea of this proof is to use k serial queries to do binary search over ok _ 1 strings
to determme how many are elements of A. To determine if at least r strings are in A, generate all
s = ( ~1) subsets of the queries with r elements. Then, use the reduction from OR s(AND,(A)) to
A to determme if one of the subsets contains only strings in A. If so, at least r of the query strings

are elements of A. Since it takes exactly k steps of binary search to search over 2F — 1 elements,
pAlk — pAlli2*-1], m]

In [Cha89], Chang erroneously stated that for all A, if PAllK] = PAlllk+1] then the entire query
hierarchy based on A collapses to P4, This is only known to be true when A has AND; and
OR,.

Theorem 20 If A has AND; and OR; and PAlllK] = PAlllk+1] then for all j > &, P4l = pAlll],

Proof: It suffices to show that under these assumptions, PAlllk+1] = P4llk+2], Since A has AND,
and ORy, by Theorem 17, EVENk41(A4) @ ODDg4q(A) is <P -complete for PAlllk+1] However,
PAllK] = PAI*+1] 5o there is some PAllFl computation for EVENkH(A) ® ODDg41(A). This
means that a PA”[’”’I] computation can accept EVENy2(A) @ ODDg42(A4) by using k queries to

compute the parity of the first k£ + 1 strings and the last query to determine if the last string is in
A. Since EVENy;(A4) ® ODDg42(4) is <P -complete for PAllk+2] pAlilk+1] = pAlllk+2], o

The upward collapse properties of the BH4 and QH 4 follow from Theorem 20.
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